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Abstract

We show that the Melitz (2003) continuum interpretation of the Dixit-
Stiglitz monopolistic competition model does not represent a reasonable limit
of a large finite economy unless it is built on a micro-foundation of heteroge-
neous agents. We argue for both theoretical and empirical reasons that each of
these heterogeneous agents must choose consume at most a strictly bounded
number of commodities instead of a strictly positive quantity of each of the
infinite number of goods produced (as in Melitz). We show in a highly general
framework that this implies that (1) the benefits to product diversity converge
to zero as the economy gets large and (2) the proportion of imports goes to
zero as countries get large in the presence of iceberg costs. We conclude it is
difficult to build a case for trade exclusively on the back of a desire for product
diversity. Instead, trade should take place when fixed costs are high relative
to the size of the economies (and firm are therefore not price takers), different
countries have fundamentally different production costs or different counties
possess technology or resources that allow them to produce goods unavailable
in other countries.



1. Introduction

The Dixit-Stiglitz (1977) model of Chamberlinian monopolistic competition model

(hereafter, DS) has had an enormous impact on research in Industrial Organization,

Economic Geography, Monetary and Real Business Cycle Theory, Growth Theory, and

especially in International Trade. Beginning with Krugman (1979, 1980) and more

recently extending through the work of Melitz (2003) and his followers, DS has become

the workhorse model in the field.1

Traditional theory predicted that countries with differences in technology (the

Ricardian model) or with differences in endowments (the Heckscher-Ohlin model) were

likely to finds gains from trade. This suggested a pattern of trade in which the goods

that a country imported would quite different from those that it exported. Empirical

studies by Balassa (1967), Grubel and Lloyd (1975), and others, however, showed

that there was also significant trade amongst countries with similar technologies and

endowments. Even more surprising, it was often the case that very similar items were

being exported and imported For example, Italy might export Fiats to Germany and

import Volkswagens in return.2 It was therefore attractive that theoretical predictions

that the DS approach to trade yielded seemed to be consistent with these empirical

observations. Of course, it was also attractive that these DS models had a closed

form solutions and offered a flexible and mathematically tractable foundation for the

theoretical study of how government interventions, changes in the underlying economic

environment, and other factors might, be expected to affect the pattern of trade.

Unfortunately, this tractability came at the cost of certain simplifying assumptions.

Most important of these was that the DS model assumed a representative consumer

who benefits directly from product variety and who always chose to consume a strictly

1 Melitz (2003) has over 3000 citations according to Google Scholar. Peter Neary (2004, p. 161) recently
wrote: “It is even rumoured that there are universities where the graduate trade curriculum covers
nothing but monopolistic competition!”, and in a similar vein Broda and Weinstein (2006) write: “It
is striking that in the quarter-century since Krugman (1979) revolutionized international trade theory
by modelling how countries could gain from trade through the import of new varieties ...” (italics ours).

2 See Neary (2004) for a more complete analysis.
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positive level of all goods produced in the economy.3 In addition, DS approaches

assumed that the economy was “large” in the sense that there were enough firms (each

producing a distinct product) that producers would be price taker and would therefore

not act strategically.

The central point of this paper is to argue the first assumption is “unrealistic”, not

just in the conventional sense that all economic models abstract from the real world,

but in the sense that it fundamentally drives the theoretical conclusions and leads to

predictions that are, in fact, inconsistent with empirical observations. Reconstructing

the the model on what we argue is more reasonable theoretical foundation, one reaches

very different and theoretical conclusions that in turn have very different policy and

empirical implications. In particular, one is forced to conclude that trade is likely to

take place only in markets in which firms do have market power and so will not be

price takers. In other words, the price taking assumption which is key to obtaining

for a closed form solution in any DS model is fundamentally inconsistent with derived

market equilibrium behavior for a large (or indeed, any) economy. In addition, if

the only motivation for trade is a desire for product diversity, then the benefits from

trade converge to zero as economies get large, and in fact, trade ultimately disappears

completely in the presence of iceberg costs.

The problem is most starkly displayed in the continuum version of DS-trade model

as developed in Melitz (2003).4 As is well known, it is quite possible to write a mathe-

matically correct measure theoretic model that suggests underlying structures that may

3 Preferences are assumed to satisfy Inada conditions and so all consumers demand a strictly positive
quantity of every good regardless or either the number of goods, or the price of any particular good. See
Broda and Weinstein (2006) for the empirical implementation of the DS model in an investigation of
the gains from trade due to increased variety, and again, see Neary (2004, p. 174) for a more complete
description of the non-diminishing returns to variety feature.

4 It is interesting to note that in an early unpublished version, Dixit and Stiglitz (1974) did assume a
continuum, only to abandon the approach in their next version, Dixit and Stiglitz (1975). In the 1975
version, they claimed in a footnote that they had abandoned the continuum version because ”technical
difficulties ... led to unnecessary confusion.” Recent treatments, however, almost exclusively use the
continuum version, without apology. We will argue that although there are technical problems with the
continuum approach, in fact, any model in which both large (but finite) numbers of goods are produced
and agents are assumed to consume positive levels of all goods will give misleading conclusions, at least
in the context of trade.
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or may not be economically sensible. Unless the the continuum economy one constructs

is a reasonable limiting case of a large finite economy, one risks finding results that are

only artifacts of the mathematical approach and thus do not give correct economic

insights.5

With this in mind, consider Melitz’s model of international trade. His approach

is to use a representative consumer whose preferences are given by a C.E.S. utility

function over a continuum of goods indexed by ω:

U =

[∫

ω=∈Ω

q(ω)αdω

]1/α

where the measure of the set Ω represents the mass of available goods. Then P =
[∫

ω∈Ω
p(ω)1σdω

]1/1−σ
is the price of the “aggregate good” Q where σ = 1/(1α) > 1

and:

q(ω) =

[
Q
p(ω)

P

−σ
]
.

Note that this means that strictly positive levels of each good are consumed by the

representative agent. The question, therefore, is to understand what sort of large finite

economy the Melitz model represents as a limiting case. We see two possibilities.

Perhaps the economy consists of an infinity of homogeneous agents with utility

functions exactly like the representative agent above. The problem with this is quite

simply that it is resource infeasible. To see this, suppose that the good with number .3

is a banana and each agent consumes one banana. If we integrate to find the number

of bananas consumed in total, a measure one of bananas must be produced. If it

costs one unit of labor per banana, a measure one of labor is required. Thus, the

measure of bananas consumed is of the same order of magnitude as the total supply

5 A classic example of how the mathematical features of the continuum can yield artificial results can
be be seen the marriage problem. Suppose there is an interval [0, 1] of girls, and [0, 2] of boys. If we
match girl number g ∈ [0, 1] to boy number 2g ∈ [0, 2], each and every agent has exactly one partner.
Clearly, this is nonsense. If the large finite economy has twice as many boys as girls, then half the boys
must remain unmatched. The continuum model, in other words, does not reflect the economic fact
that girls are scarce. There is little predictive value in the continuum model in this case. (See Kaneko
and Wooders 1986 on “Measure Compatibility” for a solution.)
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of labor. Unfortunately, since all agents consume a strictly finite amount of each of

an (uncountably) infinite number of goods, an infinite measure of labor is required.

Needless to say, this is a rather serious violation of the resource constraint. Even if

it were feasible to produce, agents don’t have the physical ability to consume a finite

amount of an infinite number of goods.6

Note that even in an economy with a large but finite number of both consumers

and goods, per capita consumption still could not be strictly bounded from zero as

both the number of goods and agents increased for exactly the same reasons. The core

problem can really be traced back to Dixit and Stiglitz who embedded in the structure

of their model that all agents consume some of all goods produced in the economy. Of

course the Dixit and Stiglitz approach does not violate the budget constraint since the

consumption levels of each good to go to zero as the number of goods increases. If

one takes this to the continuum limit as Melitz does, one would therefore expect to see

all agents consuming infinitesimal quantities of an infinite set of goods. However, this

does not appear to be what Melitz has in mind and to state such a model correctly,

we would have to resort to a non-standard analytic approach to reflect that fact that

demand for each good would literally be infinitesimal, but when multiplied by prices

and integrated, expenditure would still equal the representative agent’s finite income.

Even if one went to the trouble to follow this approach, it is doubtful that the correct

(meaning economically relevant) limiting case of an economy with a large number of

goods is for agents to choose to consume smaller and smaller slivers of all the goods

the economy produces. From this we conclude that it is hard to give a reasonable

interpretation of the Melitz model if one insists on both homogeneous agents and an

infinite or even large number of goods.

Alternatively, perhaps the utility function is supposed to be a reflection of aggre-

gate behavior and so the resulting demand is really meant to be interpreted as market

6 Another way to see this is that ask: what it would cost an individual to buy a finite quantity of an
infinity of goods? If the prices (which relate to input costs) are also finite, then the cost is infinity
which is a slight violation of agents’ budget constraints. We wish to emphasize that we are in no way
suggesting that there is a mathematical flow in the Melitz model. We are only pointing out that it is
not a reasonable limiting case of a large finite economy.
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demand. This would solve the feasibility issue, but in this case, the “aggregate” utility

function Melitz considers cannot be representative of a homogeneous and infinite set of

consumers (or by extension, a homogeneous set of consumers in economy with a large

but finite number of agents and goods). If consumers were homogeneous, then each of

them would have to consume some of each good produced and we would be back to

the first case discussed above. Thus, to be sensible, the utility function must represent

the aggregate behavior of an infinite set of heterogeneous consumers. This means there

must be some micro-foundation with heterogeneous agents behind the Melitz approach.

The correct interpretation of Melitz’s model and results therefore depends upon this

exactly what this micro-foundation is.

The main point of this paper is explore what properties such a micro-foundation

needs to have and to explore the implications for policy. We begin with a key obser-

vation: In real life, individual agents (even in a large finite economy) consume at most

a finite (in fact, a strictly bounded) number of goods. For example, how many of the

goods offered at Amazon have you personally consumed? One reason that you only

purchase a tiny fraction of Amazon’s offerings might be transactions costs. Even if we

had infinite money and stomach capacity, we would not have the time to complete an

infinity of transactions. A second reason might be non-convexities driven sometimes by

indivisibilities. Half a Camry plus half an Accord won’t take as far or as fast as whole

Maxima.7

We therefore add explicit constraints that imply that each agent will choose to

consume only a strictly bounded number of goods. This means both that agents must

choose a subset of all the goods produced in the world to consume and that firms must

anticipate how many agents will choose to add their products to their consumption sets

as well as guessing the quantities. This in turn leads to important questions on the

7 We find it interesting that one of the most salient examples used to illustrate the idea of intraindustry
trade is in fact that of the auto industry, an example for which the idea of consuming a “little bit
of everything” is obviously inappropriate. For example, in the best-selling undergraduate textbook
of Krugman and Obstfeld (2009), the “Case Study” for “Intraindustry trade in action” is the North
American Auto Pact of 1994, (p.134-5), and the numerical problem they give concerns a fictitious auto
industry (problem 5, p. 150).
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nature of innovation and product differentiation. In the DS framework, all products are

identically desirable. In this sense, each potential new product a firm might choose to

produce is perfectly substitutable for each existing product. In contrast, we argue that

product innovation is a significant force that drives both trade and consumer welfare.

What fraction of goods that we buy today even existed ten years ago, for example? We

therefore develop two different modelling approaches that allow products to be truly

distinct and that therefore allows us to think about both consumption and product

development choices in a non-trivial way.

Our work, then, is part of a long-standing literature that criticizes the DS frame-

work as one with important limitations. We think our major contribution is to show

that these limitations are especially important in providing misleading lessons about

the gains from trade and the pattern of trade in relatively large economies. The rest

of the paper proceeds as follows. In section 2, we follow Melitz and formally show how

heterogeneous consumers are required for the model to make sense. In section 3 we

propose a more general model and prove some theorems. In section 4, we make some

remarks the more general implications of approach suggest for product innovation.

Section 5 concludes.

2. An Algebraic Example with Bounded Consumption

3. An Algebraic Example with Bounded Consumption

In this section, we will dispense with the representative agent approach and instead

build a model based on heterogeneous agents each of whom in limited in the number

of goods that they can simultaneously consume.
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Before doing so, we should note that are not the first to suggest that the DS

”representative consumer” approach has problems. For example, Perloff and Salop

(1985) point out that the DS approach would not apply to the many types of products

for which we usually observe consumers purchasing only one (or a few) unit(s), such as

automobiles. Hart (1979, 1985a, 1985b), on the other hand, emphasized problems with

the limiting behavior of the DS model. All of these papers argued that it was necessary

to incorporate heterogeneous consumers into a monopolistic competition model. Their

focus was on the foundations of monopolistic competition, however, and not on the

extensions of the DS model to trade and the implications of those extensions for gains

from variety.

In the trade literature itself, Lancaster (1980) introduced the “ideal” variety ap-

proach as a method for explaining intraindustry trade among similar countries. The

tractability of the DS model seems to have limited the appeal of this approach to

modelling trade and variety.8

More recently, Mrazova and Neary (2011) note that almost all results on the selec-

tion of more productive firms into export activities have been developed within the DS

monopolistic competition paradigm. They point out that a large literature, starting

with Melitz (2003), suggests that more efficient firms select into export activities. This

basic idea suggests that more efficient firms should also be large, which is not consistent

with the idea of monopolistic competition. Thus, Mrazova and Neary argue there is an

essential tension between the assumption of price taking and the result that efficient

firms tend to grow larger in equilibrium.

At a formal level, assume that there are an uncountably infinite set of heteroge-

neous consumers in the economy and denote agents by the index i ∈ [0, I] ≡ I. We

assume the interval of consumers is endowed with Lebesgue measure. Agents are each

endowed with an amount ω of a “traditional” good denoted y.

There are a countably infinite set of potential goods denoted produced by firms

8 As Neary (2004, p. 160 ) puts it: “Ultimately, though, these alternative approaches proved less tractable
and hence less fruitful than the DS specification.”
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which arise endogenously in the economy. Each firm that decides to enter the market

uses the traditional good to produce only one and only commodity. We denote the

production of a typical firm as Xn for n ∈ N where N is the set of goods produced in

the economy.9 We will often use N = | N | to denote the number of goods that firms

produce in equilibrium. On the cost side, firms must spend a fixed amount to enter

production and then a variable amount that is proportional to the quantity produced.

Thus, firm have identical affine cost functions of the following form:

Cn(Xn) = F + V Xn,

where F, V > 0 are technological parameters, and Cn(Xn) denotes the measure of

traditional good needed to produce a measure Xn of good n. This means that if

xni is the level of good n consumed by agent i, then material balance requires that

Xn =
∫
i
xnidi. Note that we construct the model so that fixed costs are large compared

to size of agents in the sense that that is will take a positive measure of labor cover

these costs. This is important because if fixed costs were something finite (that is, could

be paid for by the labor of a finite set of workers), they would negligible in proportion

to the variable costs of production if the firms produced positive measures of goods.

Moreover, this reflects the idea that fixed costs are somehow related to capacity. For

example, a marketing and distribution network might be a fixed costs that are of the

same scale as size of the market one wishes to serve.

We take a simple approach to modelling the idea that agents have a limited capacity

to consume goods in this section. While many goods may be offered, we assume

that that there is an exogenously given upper bound, K, on the number that can

be consumed by an agent at any one time. Agents must therefore choose a set N i ⊂ N

where ‖ N i ‖ ≤ K. We call this the demand set of agent i. A typical good is denoted

xn. We assume the following functional form for agents’ utility functions:

9 In general, N may not the sequential index set {1, . . . , N} since any set of goods might in principle
be optimal for the firms to produce. In fact, N need not be finite, in general, although it will be in
equilibrium in the economy we describe below.
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Ui(x, y) =
∑

n∈N i

(αnixni)
1
2

1
2

+ yi

The essential element of our approach in modelling this choice is that for each i ∈ I

and each n ∈ N , the preference parameter, αni, is independently drawn from a uniform

distribution over [0, 1]. We assume that these heterogeneous agents are fully informed

about the set of commodities being produced and their own preference parameters

associated with each. Note that in contrast to the DS, this approach to new products

does not imply they are equally desirable to all agents. As new products are developed,

agents separately evaluate them and may find that the they are desirable or undesirable

substitutes for existing products.

Given this, the problem of the consumer is as follows. Normalizing the price of

the endowment good to py = 1 and taking the demand set as given for the time being,

we get the following budget constraint for agent i:

yn = ω −
∑

n∈N i

pnxn

Substituting this into the preferences gives us the following problem:

maxUi(x, y) =
(αnixni)

1
2

1
2

+ ω −
∑

n∈N i

pnxn

This gives the following first order conditions:

∂U

∂xni
= −pn + (αn)

1
2 (xn)

1
2−1

= 0, n ∈ N i

Solving this gives:

(xn)
1
2−1

=
pn

(αn)
1
2

(
(xn)

1
2−1

) 1

1
2−1 = xn = (αn)

1
2

1−
1
2 (pn)

1

1
2−1

This in turn gives the following demand system for agent i:
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xn =
(αn)

(pn)
2 .

Up to this point, we have taken the demand set as given. To find the aggregate

demand for any specific good n, however, we need to know how many agents choose to

put this good in their demand sets. Suppose we assumed all firms behaved as price-

takers and that in equilibrium, all firms set equal prices. Then agents would would

choose to divide their income over the K goods for which their preference parameters

happened to be the highest (since this would clearly yield the highest utility). Since we

know that each agent has a utility parameter for each produced good that is indepen-

dently drawn from a uniform distribution over the unit interval, it is possible to use a

combinatoric argument to calculate exactly what the aggregate demand for each good

would be and also how many firms would enter in equilibrium.10

Unfortunately, since there will be a finite (though possibly very large) number of

firms producing goods in equilibrium, firms will not, in fact, be price-takers. If we took

the realistic step of also assuming that costs are heterogeneous and randomly drawn,

then equilibrium prices also would not be symmetric in general. Including these factors

turns out to make getting a closed form solution difficult or impossible to find. We

will therefore set aside the attempt to solve an algebraic model for the time being, and

consider the problem from a general standpoint. We will argue in the conclusion that

the general model suggests that there may be limited value in considering closed form

models out outlined above or in Melitz,

4. General Model

In this section, we consider the planner’s problem for a much more general economy.

We retain the quasi-linearity of agents’ utility, but do not impose a functional form or

10 Contact the authors for an earlier draft of this paper in which this exercise is carried out.
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even convexity or monotonicity on the utility functions. We drop the ad hoc limit on

the number of goods that agents can add to their demand sets and instead we make

this an endogenous choice on the part of agents. Agents could in principle choose to

consume all the goods produced, even an infinite number. Quasi-linearity is convenient

here since it provides us with a clear metric for social welfare. If we were willing to state

a welfare function, on the other hand, we could dispense with this assumption and the

results given below would continue to hold, even if we added additional non-produced

goods.

On the production side, we retain the affine production technology, but assume that

firms are heterogeneous and randomly realize different fixed and variable cost param-

eters after paying a research and development cost. Firms may decide not to produce

after seeing their ex post cost functions. Again, it would be possible to generalize these

results to have several non-produced goods as inputs with arbitrary technology. All

that would be be required for the results we find to continue to hold is that there is

a lower bound on the implicit fixed and marginal costs. We don’t feel much insight is

added from this generalization so we consider the simpler case.

Our strategy here is not to solve the exact planner’s problem. This turns out to

be quite complicated since we would have maximize the expected payoff from choosing

any number of development projects which would in turn would require calculating

the maximum payoff from choosing any subset of these developed projects for any

realization of fixed and variable costs, and then choosing maximizing the production

levels and allocations of goods across agents. Given the lack of convexity and the

minimal assumptions on utility, this is quite difficult and it might not be the case that

the implicit optimal allocations would even be measurable. Instead, our strategy is

to construct a series of well defined and feasible plans. Since the plans are feasible,

each one provides a lower bound on the social welfare one would obtain in any socially

optimal plan. We then show that as the economy gets large, the welfare obtained

in these“guarantee point”. plans converges to maximum possible social welfare one

can ever obtain. Since we show that there is a uniform finite upper bound on the

11



number goods produced in each of these guarantee point plans, we conclude that the

social payoff to increasing the number of goods produced diminishes to zero in the

limit. Finally, we show that this in turn implies that volume of trade between any two

economies diminishes to zero as both of the economies get large.

More formally, we consider an economy with one non-produced endowment good

y which is initially held by agents. All the other goods are produced by firms using

the endowment good. We take the following approach to product innovation wich is

new as fare as we are aware, although it is related to the ”public project” approach to

pubic good equilibrium pioneered by Mas-Colell (1980). Produced goods each have a

product characteristic g drawn from separable metric space (G, d) where G is a convex

and compact set.11 Since we focus on the social planner’s problem in this section, we

abstract from the issue of how firms decide to enter and exit. The planner, therefore,

decides how many development projects to undertake. To make the argument simpler,

we will assume that the planner can choose exactly which goods to produce but that

research and development costs are D per project. We denote the set of goods produced

by the planner as N .

The cost of producing a good g is given by an affine function:

Cg(Y g) = F g + V gY g,

where F g and V g are independently drawn the intervals [F , F ] and [V , V ] under fre-

quency distributions fF and fV , respectively where F , V > 0.

We assume that there is there an interval of agents [0, I] ≡ I endowed with

Lebesgue measure. Agents are each endowed a strictly bounded quantity the non-

produced good: ωi ≤ ω > 0. Let Ω(i) be a measurable function that gives the endow-

ment for the economy.

We assume that agents can always consume the non-produced good, but deciding

to consume a positive quantity of any produced good, and thus, adding it to ones’ utility

11 The space of potential product characteristics might be a finite dimensional Euclidean space, but need
not be.
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function, is costly. This might be due to a transaction cost of ordering a quantity of a

new good or going to a store to buy some of it, or perhaps an attention or effort cost of

deciding to start to consume a new good.12 Since it will not matter for the point we are

investigating in this section, we will take the simple approach that if an agent i decides

to add a produced good g to his demand set, N i, he must pay a cost of t > 0 of the

non-produced good to cover the transactions costs. As a result, the size of the demand

set | N i | = Ni is endogenously determined and may differ across agents. Given this,

the utility function of the agent i is given by the quasi-linear function:

Ui(xi, yi) = yi + hi({x
g
i }g∈N i

)− tNi

We make two key assumptions on agents and goods.

Assumption A. Agents in a close neighborhood of each other are similar: For

all ǫI > 0 there exists δI > 0 such that for all i, j ∈ I such that |i−j| < δI

then

(a) | ωi − ωj | < ǫI

(b) for any demand set N i ⊂ G and consumption bundle (xi, yi) permis-

sible under N i, | Ui(xi, yi)− Uj(xi, yi) | ≤ ǫI

This says that if agents are close together as measured by the their identify in-

dex then they have similar endowments and get similar utility levels from the same

consumption bundles.

Assumption B. Goods in a close neighborhood of each other are close substitutes:

For all ǫG > 0 there exists δG > 0 such that for all i ∈ I and all integers

N :

(a) for all N i = (ḡ1, . . . ḡN ), N̂ i = (ĝ1, . . . ĝN ) such at for n = 1, . . . N ,

d(ḡn, ĝn) < δG and xḡn
i = xĝn

i then | Ui(x̄i, yi)− Ui(x̂i, yi) | < ǫG.

(b) for all N i = (ḡ1, . . . ḡN ), if for some ḡn ∈ N i, N̂ i = N i \ ḡn and for

12 More fundamentally, this might be due to a time cost of engaging in the act of consuming a good.
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some ḡm ∈ N i d(ḡn, ḡm) < δG it is the case that xĝm
i = xḡm

i + xḡn
i while

for all k 6= n,m, xḡk
i = xĝk

i then | Ui(x̄i, yi)− Ui(x̂i, yi) | < ǫG.

This says that if we take an arbitrary bundle of goods and replace each of these

goods with an identical levels of very similar goods as measured by the characteristic

space metric d, then utility levels change very little. In addition, if two goods in a

consumption bundle are similar and we force an agent to consolidate this consumption

on one of the goods rather than splitting it between the two, utility levels change very

little.

Next, we make two minimal assumptions on the utility function:

Assumption C. Continuity and diminishing utility of produced goods: For all

i ∈ I, hi is continuous, differentiable, and there exists an upper bound B

such that for any consumption vector (x, y) that includes some good g for

which xg > B, it holds that: ∂h(x)/∂xg < V

Note that convexity and monotonicity are not needed. We only require that the

marginal willingness to pay for any produced good falls below the minimal marginal

cost of production at some high consumption level. Without this, it might be possible

for an agent to get infinite utility by allowing the consumption level of the endowment

good to be infinitely negative in order to pay or infinitely high levels of produced good

in which he is never satiated.

Finally, we assume there is at least a positive probability any given pair of cost

parameters will be draw for any particular g.

Assumption D. Full support in cost space: The frequency distributions fF

and fV over [F , F ] and [V , V ] respectively are strictly positive.

A feasible plan is (ND,N , X, Y, C) Where ND ⊂ G is the choice of research-

development projects to undertake, N ⊂ ND is the choice of goods to actually produce,

Y : I → ℜ and X : I → ℜN
+ are measurable functions describing the allocation of goods

to agents, and C : I × N → {0, 1}N is a measurable function that describes whether

or not agent i has added good g ∈ N to his demand set, such that

14



∫
Y (i)di+

∑

g∈N

(
F g + V g

∫
Xg(i)di

)
+

∑

g∈N

t× C(g, i)di−D × | ND | ≤

∫
Ω(i)di

In the following, it will be useful to define the notion of a minimal δ−grid in the

goods space G. Recall that G is bounded. Let N be a finite subset of G. then N is a

δ−grid of G if

max
g∈N

min
g∈N
ḡ 6=g

d(g, ḡ) ≤ δ.

Let Nδ be the set of all δ−grids of G.13 Then the N is a minimal δ−grid of G if

no N ∈Nδ has a smaller number of elements. Note this is well defined since the set of

elements are integers and are bounded below.

We begin by considering how well an individual consumer i could conceivable do

in the best of all possible worlds. Thus, we consider the following idealized consumer

problem: Suppose that an agent could choose any demand set N i ⊂ G and could

purchase as much of each good as he wished at price V per unit. Formally the idealized

consumer consumer problem is:

max
N i⊂G

max
{xg

i
}
g∈N i

hi({x
g
i }g∈N i

)− tNi − V gxg.

We will call a solution an idealized consumer demand and denote it as: N ∗
i and x∗

i

respectively. We now show two things about the about this solution.

13 If it is not immediately obvious that such a δ− grid exists, consider the following. Note that an open

cover of open δ−hyper-balls must exist. To see this, suppose we constructed a sequence of 1

2
δ−hyper-

balls as follows: Place the first ball anywhere in G. Place the next ball with its center point is at
least 1

2
δ from every point in the first 1

2
δ−hyper-ball. Place the center of each subsequent 1

2
δ−hyper-

ball such that it is at least 1

2
δ from every point in the union of all the previous balls. One of two

things is true: Either one can this do forever, or eventually one runs out of space and can not place
any more balls. However, if one could do this forever, then one could take the center points of each
of these 1

2
δ−hyper-balls as a sequence which does not converge under d contradicting the fact that

G is compact. If we do eventually run out of space, then every point not contained in the union of
1

2
δ−hyper-balls is no more than 1

2
δ from some point in one of the existing balls, and thus no more

than δ from one of the center points of the existing balls by the triangle inequality. These center points
therefore form a finite δ−grid (and of course the implicit set of δ−hyper-balls form a finite open cover
of G).
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Lemma 1. There exists an integer N such that for all i ∈ I and for any solution to

the the agent’s idealized consumer problem, Ni < N

Proof/

By Assumption B, For all ǫG > 0 there exists a δG > 0 such that for all i ∈ I

and all integers N for all N i = (ḡ1, . . . ḡN ), if for some ḡn ∈ N i, N̂ i = N i \ ḡn and

for some ḡm ∈ N i d(ḡn, ḡm) < δG it is the case that xĝm
i = xḡm

i + xḡn
i while for all

k 6= n,m, xḡk
i = xĝk

i then |Ui(x̄i, yi)−Ui(x̂i, yi) | < ǫG. Given this, let ǫG = t, that is,

the utility cost of adding a good to the demand set, and let δtG be the associated delta.

Note that since all goods are equally costly by assumption, cost is not a consideration

in deciding of which specific goods to add to the demand set. Then if two goods ḡ, ĝ

are in an agent’s demand set but closer than δtG in the characteristic space, then utility

is improved by consolidating consumption on one of the goods since the savings from

not adding the other goods to demand set exceeds the maximal utility loss from the

consolidation. Now consider any minimal δtG−grid. We know that this grid has a

finite size which we will denote N − 2. One of two things is true: First, the size of

the demand set set chosen in the idealized consumer problem is no more than N . In

this case, the Lemma is proved. Second, the size of the demand set set chosen in the

idealized consumer problem is greater than N . But note that by construction, there

must be an element of the δtG-grid within δtG of any good in the idealized demand set.

Then suppose we shifted demand from each good in the idealized demand set to an

identical quantity of the closest good in the δtG-grid. Then by Assumption B, utility

decreases by at most ǫ = t. However, the agent is consuming at least two fewer goods,

so utility must go up by at least 2t. Since the cost of the two consumption bundles

is the same, the agent is strictly better off contradicting that the agent was correctly

solving the idealized consumer problem. Thus, the size of any minimal δtG-grid+2 ≤ N

is an upper bound on the number of elements in the consumption set.

Lemma 2. There is an upper bound U such that for all i ∈ I utility that any agent
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can receive at any solution to the the agent’s idealized consumer problem is less than

U .

Proof/

by Assumption C: For all i ∈ I, hi is continuous and there exists an upper bound

B such that for any consumption vector (x, y) that includes some good g for which

xg > B, it holds that: ∂h(x)/∂xg < V . Thus, choosing to consume more B of any

produced good in exchange for V per unit of additional consumption would lower an

agent’s utility. By Lemma 1, there is an upper bound on the number of goods that

an agent will have in his demand set. Thus, each agent will consume at most a finite

amount of a finite number of goods. As a result, we can restrict the domain of the

idealized consumer problems to a compact set bounded above by B and bounded below

by 0.14 Since hi is continuous in x, for any choice of N i, hi achieves a finite maximum

on this compact set. By Assumption B, V is also continuous in g. Thus, if we fix the

number of goods consumed at some N , since G is compact, the joint maximization

that chooses exactly N goods and the quantity of each has a solution. By varying N

from 0 to N , we get a set of solutions. Take the subset of these solution that give

the agent the highest utility to be set of idealized consumer demand. Since by Lemma

1, no solution to the idealized consumer problem in which the consumer is forced to

choose more than N can yield more utility, we conclude that the solution(s) to the

idealized consumer problem must exist, and the Lemma is proved for any single agent.

Now consider the set of utilities that agents get at each of these idealized consumer

demands, Since the set of all agents is compact, the maximum of these maximum utility

values is also bounded and so the Lemma is proved for the set of all agents.

These two Lemmas above show is that there is a theoretical upper bound on the

utility that any agent in the economy can obtain and that this involves the agent

14 We assume that agents can’t consume negative quantities of the produced good, although they can
consume negative quantities of the quasi-linear non-produced good.
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consuming at most a strictly bounded set of goods. Of course, it may not be feasible to

have sufficient product diversity to allow all agents to achieve this maximum, and even

if it was, the resulting allocation might or might not be measurable. The next Lemma

will show that despite this, there is a plan that allows each agent to get arbitrarily close

in expectation to his theoretical maximum utility which is feasible for a large enough

economy. Note in particular that the fact that each consumer chooses only a finite set

of goods in no way directly implies that the of goods demanded by consumers as a

whole constitute a finite set.

To see this, we consider how the planner can generate a feasible plan that approx-

imates these idealized utility levels for each agent. Define a (ǫ, R)-plan as follows:

1. ND: Let N be any minimal δ−grid of G where δ = δG and δG is associated with

ǫG = ǫ. Then the set of research and development projects undertaken, ND, is

defined as to developing each project in N a total of R separate times.15

2. N : Let {g1, . . . , gR} be the R separate tries at development in ND of any given

product in g ∈ N . Then for each g ∈ N construct N choosing a gi ∈ {g1, . . . , gR}:

with the lowest average realization of V gi and F gi : V gi+F gi

2 .

3. C: Divide the interval of agents into consecutive coalitions of agents each ǫ units

long.16 For each of these intervals, take the middle agent. Choose any one of

the idealized consumer demands for agent i, N ∗
i , x

∗
i . For each g ∈ N ∗

I , we will

say that good in ḡ ∈ N is in correspondence with good g if it is closest under d:

ĝ = argming∈N d(g, ĝ). (In the zero probability event that two goods in N are

the same distance from g choose one of them randomly.) Given this, define N i

to be the set of goods in N that are in correspondence with the goods in N ∗
i .

17

15 In other words, take R separate draws from the cost distribution for each good in the δ−grid N . If
one prefers not to allow reinventing the wheel, one can develop new projects in an arbitrarily small

neighborhood of each good in N without affecting the argument in the next Lemma.

16 To be more precise, the first interval is [0, ǫ) the second is [ǫ, 2ǫ), etc.. If the set of agents divides
evenly into ǫ sized intervals, the last interval is closed and includes agent I. Otherwise the last interval
is a closed interval of size less than ǫ but that also includes agent I.

17 Intuitively, N i chooses a demand set with goods as close as possible to the idealized demand set. If
the δ−grid is coarse, then some goods in N i chooses a demand set with goods as close as possible
to the idealized demand set. If the δ−grid is coarse, then some goods in N∗

i
may not have a close
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Having established the demand set for the middle agent of each interval, we now

set the demand set of every agent j who shares the interval with agent i shares to

be the same: N j = N ∗
i . Finally, C, the indicator function for which agents are

consuming which produced goods, is just constructed to reflect these demand sets

over intervals consumers.

4. X: For each agent i in the middle of an interval we set xi as follows. For every

ĝ ∈ N , set xg
i to equal to the sum of the consumption levels of each of the goods

g ∈ N that ĝ is in correspondence with. (again, for a fine grid, the correspondence

will be one-to-one). As above, set the consumption levels of each agent j who

shares the interval with i to be the same xj = xi. Finally, X, the produced

good consumption mapping, is constructed to reflect these intervals of identical

consumption levels.

5. Y: For each agent i in the middle of an interval, set

yi = ωi −
RND +

∑
g F

g

I
−

∑

g∈N i

V gxg
i − tNi.

That is, his endowment, minus his average share of the total of the development

and fixed production costs in the plan, minus the variable cost of his produced

goods consumption, minus the attention cost of having a consumption set of size

Ni. In addition for every agent j who shares the interval with agent i, let

yj = ωj−
RND +

∑
g F

g

I
−

∑

g∈N j

V gxg
j−tNj ≡ ωj−

RND +
∑

g F
g

I
−

∑

g∈N i

V gxg
i−tNi.

Thus, the consumption of the non-produced goods for agents in a given interval

differs only by the difference in their initial endowment of the good. Finally, Y , the

non-produced good consumption mapping, is constructed to reflect these intervals

of identical consumption levels.

approximation and so they are “doubled-up” with a single good in N i. If the grid if fine enough, the
correspondence will be one-to-one since we know the goods in the idealize demand set can be too close
together by Assumption B.
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Lemma 3. Any (ǫ, R)-plan is feasible.

Proof/

1. ND: As we discussed above, a minimal δ-grid exists as described, and given this,

it is clearly feasible to make R development attempts at each good in this grid.

2. N : Since there are R attempts to develop each product, there are a finite set of

pairs of realized (V gi , F gi). Thus, choosing the realization with the lowest average

value is well defined (flip a coin in the event of zero probability tie). N is therefore

well defined.

3. C: Dividing the interval of agents into disjoint segments of length ǫ and then

choosing the middle agent in each segment is feasible and well-defined. The set

of idealized demands is non-empty, and so it possible to choose one of these and

then set each agent in any given interval to have the same demand set as the

middle agent. Then C(i) takes values 1 or 0 over the finite set of goods in N and

maintains these same values over the (measurable) ǫ intervals of agents. Thus,

C(i) is a simple (step) function and is therefore measurable.

4. X: As above, xj is constant over each of the ǫ-intervals of agents and thus, it

defines a bounded step function which is therefore measurable.

5. Y : For every agent in a given ǫ interval:

yj = ωj −
RND +

∑
g F

g

I
−

∑

g∈N i

V gxg
i − tNi

Where i is the middle agent of the interval. By assumption, Ω is a measurable

function. Subtracting a constant,
RND+

∑
g
F g

I leaves resulting function also mea-

surable. The key point, however, is that
∑

g∈N i
V gxg

i − tNi is constant over the ǫ

interval of agents and changes only across these intervals. Thus, again, it is a sim-

ple (step) function and is therefore measurable. Subtracting a measurable function

from a measurable function leaves a measurable function. Thus, the consumption

function is measurable.

The last step is to show the plan satisfies material balance. Rearranging this for
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a generic agent i:

xi +
RND +

∑
g F

g

I
+

∑

g∈N i

V gygi + tNi = ωi

Integrating over I we find: ∫
xidi =

∫
X(i)di

∫
RND

I
di = D × | ND |

∫ ∑
g F

g

I
di =

∑

g∈N

F g

∫ ∑

g∈N i

V gxg
i di =

∑

g∈N

V g

∫
Xg(i)

∫
tNidi =

∑

g∈N

t× C(g, i)di

Thus,

∫
Y (i)di+

∑

g∈N

(
F g + V g

∫
Xg(i)di

)
+

∑

g∈N

t× C(g, i)di−D × | ND | ≤

∫
Ω(i)di

Our next Lemma show that the there is a feasible plan in the class described above

that allows each agent to get a utility level that is arbitrarily close to his ideal utility

as the economy gets large.

Lemma 4. For any γ > 0 there exists a (ǫ, R)-plan such that for a large enough

population, each agent in I receives within γ of the utility he would get at an idealized

demand.

Proof/

Consider an agent i who is in the middle of one of the intervals for some (ǫ, R)-plan.

There are three things that might prevent him from getting his idealized utility:
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1. It may be that he is forced to consume a set of goods from the δ−grid are slightly

less desired than the goods in his idealized demand.

2. It may be that he pays V g > V per unit of some goods he consumes.

3. It will be the case that his share of fixed and development costs is positive and

thus he will receive this much less non-produced good, ceteris paribus

We consider each in turn. First, if ǫ is small, then the corresponding δ−grid

is fine. Moreover, as ǫ heads to zero, goods become available that are arbitrarily

close utility substitutes for the goods in his idealized demand set in utility terms by

Assumption B. Thus, losses from the first source can be made arbitrarily small by

choosing a small enough ǫ. Second, by increasing the number of development efforts

for each good in the δ−grid, the variable cost for each good can be driven arbitrarily

close to its minimum in expectation since by Assumption D, every outcome has positive

probability of occurring. Thus, by increasing R sufficiently, V g and F g can be driven

as close as one likes to their idealized minimums and thus, per capita losses from this

source to below any γ > 0. Third, having chosen ǫ and R to reduce per capita losses

as much as one chooses, fix these and consider an increase in population size I. Since

these number of goods is now fixed, the sum of total development and fixed production

costs are also fixed. Then if the population gets large enough, the per capital share can

be driven arbitrarily close to zero.

We conclude in the limit all agents will be able to consume an almost idea set

of goods, pay almost the least per unit for the goods he consumes that is physically

possible, and also pays almost no per capita fixed and development costs if the economy

is large enough.

Putting this together, it is almost immediate that the welfare value of product

diversity diminish to zero as the number of products increase. In other words, agents

eventually become satiated in product diversity just as do in individual products.

Theorem 1. (Enough is enough) The per capita benefits of having greater product

22



diversity diminishes to zero for any economy.

Proof/

From Lemma 4, we know see that we can can get to within any γ of the idealized

utility level of every agent for a large enough economy while producing N goods or

fewer. Thus, no matter how much the economy continues to grow, at best, increasing

the product set adds at most γ per capita utility. On the other hand, for any given

economy of fixed size, increasing the number of goods eventually adds more to per

capita development and fixed production costs than it does to utility. We conclude

that for any economy, enough is enough

We conclude this section by showing the implications of these results for interna-

tional trade. Consider two parallel idential economies and assume there are iceberg

costs of m ∈ (0, 1) such at only a fraction of m of exported goods arrive at their

destination.

Theorem 2. It is never per-capita utility improving for a positive fraction of agents

to consume any imports as both economies get arbitrarily large.

Proof/

Suppose at a proportion P of the first county consumes a positive amount of an

imported good. Then for any ǫ > 0 there would be some good g ∈ G such that a

positive fraction of agents in the first county consumes a positive amount goods that

are within an ǫ-ball of g since G is compact. (Of course, it does not have to be the same

g’s as the economies grow.) Note that the smallest price that the second country could

sell any of these goods in the ǫ-ball of g is
V
m since this is the marginal cost when they

arrive in the first country. This is strictly larger than V . Thus, if enough agents in the

first country are consuming goods in an ǫ-ball of g, then it becomes socially optimal to

undertake enough development efforts to lower the price below the costs of imports and

share the costs of development and the fixed costs of production over the arbitrarily

large group that consumes these imports close to g. Since g is a close substitute, is
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cheaper on the margin, and contributes arbitrarily little to average shares of fixed cost,

it would crowd out the imports.

5. A Remark on Product Innovation

There are two key modelling assumptions that drive our findings. First, is the

inclusion of a tractions actions cost for adding goods to one’s demand set. Economically,

this implies that agents will choose at most a strictly bounded set of goods to consume,

and certainly won’t choose to consume all produced goods if the set of such goods

is large. This prevents agents from gaining unbounded utility by the act choosing to

consume ever smaller amounts of ever increasing numbers of goods (taking advantage

of the fact that marginal utility of goods goes to infinity as consumption goes to zero

in the Dixit-Stiglitz/Melitz formulations.) This seem both intuitively appealing and

clearly borne out by the evidence we see in the real world.

The second assumption is a bit more subtle, but brings up some interesting ques-

tions. Note that while we assumed very little structure on the space of potential

products G, we did assume it was compact. This means there is a natural limit on

the how well off an agent can be no matter how closely the produced products match

his ideal goods (at least under the assumptions that close products are similar and

that we have limits of the number of goods we can consume). One can readily see why

“enough is enough” in this sort of innovation environment. If the innovation space were

unbounded, on the other hand, one could invent an infinite number of products that

were very different from one another and so did not have close substitutes. In this case,

there could indeed be unbounded per capita benefits from product diversity (although,

even in this case, there is no theoretical requirement that taste for product diversity

are insatiable, not to mention little empirical evidence that this should be the case in
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the real world).

Let us therefore consider what taking the bounds off the innovation space might

mean. One approach is the product quality ladder type innovation structure with

new products potentially being unboundedly good. This has an odd implication, how-

ever: in such an environment, agents should get happier and happier as time goes

on. We should have been despondent Hittites, miserable subjects of the Roman Em-

pire, unhappy Renaissance men, grumpy Victorians, reasonably content cold warriors

and happy Yuppies. Are we really happier as a result of the Internet, email, instant

messaging and cell phones than we were 20 years ago? If this seems unlikely going

backwards, it seems even more unlikely going forwards. Do we expect that increased

product diversity and innovation is really the path to Nirvana?18

This leads to a puzzle. If we don’t think that we can innovate our way to ultimate

bliss, then we should model the innovation space as bounded and conclude that we are

eventually satiated in product diversity? How then do we explain all the effort that

goes into product development and the ready markets that these new products seem to

find? What this suggests to us is that the creation of new products, in fact, deprecates

the value of existing products. For example, users only realize how lame their current

iPhone is when they see the newest model. Up until this point, they imagined they

had the best phone in the world, but now they see it for the sad piece of half-baked

technology that it really is. In a formal sense, we assumed in both of our models

that agents drew utility parameters for new goods once and for all. This discussion,

on the other hand, would suggest that old goods have their initial draw systematically

decreased in the presence of new goods. Of course, in such an environment, firms would

profit from developing new goods since optimizing agents would choose the buy these

new goods in preference to old ones.

Interestingly, the idea that new goods deprecate old goods does not suggest that

18 We should note that even the quality ladder case, our results would still hold if there was an upper
bound on the level of innovation in any given period since this would bound the innovation space each
period implying the bounded product diversity was sufficient. See Grossman and Helpman (1991) and
references therein.
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increased product innovation and diversity is welfare improving. In fact, agents are no

better off when they become disillusioned with their current consumption bundle and

substitute into new goods. For example, it may very well be the case that iPhone users

would be better off if Apple slowed down the pace new product release. Since consumers

are not made better off, innovation in fact may be a waste of a wastes resources that uses

up a great many talented and creative people who could be otherwise better employed.

Thus, much of technological and product innovation might better be thought of

as “fashion”. Fashion is an example of innovation for its own sake. We are perfectly

happy wearing this year’s fashions and if they were the same next year, we would be

no less happy. However, if a new fashion takes over, we feel silly in our out-of-date

clothes and have to spend resources on getting new things. Thus, the change of fashion

costs resources both on the development side and on the consumer side as items are

replaced before they wear out, but no net improvement in consumer welfare results.

On the other hand, innovations that result in permanent increase in the satisfaction

of Maslow’s hierarchy of basic needs19 such as cures for infectious diseases, democratic

forms of government, more productive crops, and so on, may not be deprecated by

newer innovations.

6. Conclusion

In this paper have attempted to understand what a Dixit-Stiglitz economy in which

the number of products is endogenously determined and potentially unbounded would

look like as the population of agents gets large. Our major conclusion is that agents

would eventually limit the number of goods they consumed in positive amounts to a

strictly bounded subset of all the products offered by firms. This is in contrast to

the Dixit-Stiglitz approach which assumes that all agents consume at least some of all

19 Physiological needs, Safety needs, Love and belonging, Esteem, Self-actualization, Self-transcendence.
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goods produced. This in turn forces us to be more explicit about the characteristics of

potential goods since agents would have to decide which goods to add to their demand

sets.

Based on this, we constructed a continuum economy that reflects what we would

expect to see in a large finite economy with endogenous product innovation. Our major

results are that no matter how large the economy, almost all the benefits of product

diversity can be realized by developing a finite set of goods. In other words, agents

become satiated in product diversity. This in turn implies that in the presence of

iceberg costs, trade diminishes to zero as economies become large. This is in sharp

contrast to the results obtained by Melitz and we have tried to create a convincing

case that the standard results must be seen as artifacts of the underlying mathematical

structure of the model (in particular, the embedded assumption at all agents consume

some all each of the infinite number of goods produced by firms) that are difficult to

motivate economically.

At a more technical level, this work suggests that efforts to build tractable algebraic

models to understand trade at the cost of making firms into price-takers either by direct

assumption or by assuming that there are an infinite number of firms in equilibrium

may result in misleading conclusions. In fact, gains from trade (at least when there

is no other exogenous heterogeneity over firms) generally come only when there are a

small number of products in a sector and so consumers see true benefits from increasing

the product mix. This is exactly when firms would not be price-takers.

Our conclusion is therefore that a desire for product diversity is simply not a

sufficient foundation upon which one should build a rationalization for trade.

Having said this, trade is clearly important. The model suggests that reasons for

trade are actually more classical:

1. Trade should take place when fixed costs are large compared to the size of the

economy. Consider aircraft. Fixed costs of development and setting up production

lines are so large, that we only have a very few producers of large commercial

aircraft. Most counties import such aircraft. We have perhaps a hundred or so
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car manufactures in the world, but evidently, the five or ten producers of cars

in even the largest country are not able to provide sufficient product diversity to

foreclose welfare enhancing trade. Thus, our point is that while a desire from

product diversity does in fact motivate trade, this desire is ultimately bounded.

Thus, it should only be economically relevant when fixed costs are sufficiently high

in comparison to the market demand that only a relatively few firms can produce

in the product category in equilibrium.

2. Trade should take place when there are differences in abilities. Many French cheese

and wine producers are relatively small, and there are many thousands of wine and

cheese produces in most large countries. However, we still trade wine and cheese

with the French. In the model, this could be explained by the French having a

monopoly over part of the innovation space. That is, for technological reasons,

there is a region of G that can only be produced in France. If Americans have

preferences that make it optimal for some goods g in this region to be added to

their demands sets, they can only import these goods from France. Obviously,

on the other hand, if American producers could make almost perfect substitutes,

it would be irrational to pay the iceberg costs of shipping the French products

over. Of course in reality, we do see these technological specializations. The model

suggests we should expect to see trade even when there are many producers and

fixed costs are low in these cases.

3. Trade could take place if certain countries are technological leaders. If one takes

the view that (a) new innovations deprecate old ones or (b) the boundary of the

innovation space G expands each year, then countries who happened to have lower

development costs D would have a systematic advantage in bringing out new prod-

ucts. Since less technically apt countries would not innovate as much, there would

be a flow new goods from the high tech countries to the low tech countries. In

contrast, we assumed that all countries were equally able to produce new develop-

ments in our model.

4. Trade should take place when there are differences in endowments. China has
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cheap labor due to its factor endowments. As a result, the assumption that each

country is drawing from the same fixed and variable cost distribution for new

innovations is not empirically correct. Even though we have the technology to

produce any of the manufactured goods that China sends us, China can produce

these at a sufficiently lower price that it can overcome the iceberg costs. Resources

may also provide literal monopoly or oligopoly positions in exports. Only a few

countries can export diamonds or uranium. Formally, one would model this as

certain countries having exclusive abilities to produce goods in certain regions of

G.
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