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GREEN POLICIES CAN HARM THE ENVIRONMENT:
A DYNAMIC MODEL WITH SUPPLY-SIDE CONSIDERATIONS

Abstract: This paper shows that green policies can harm the environment. In particular,

it is demostrated that subsidies for biofuel production will generate supply-side effects by

fossil fuel producers that could more than offset the substitution to biofuels, resulting in a

higher path of accumulated carbon dioxide emissions in the short term and medium term

(and possibly also in the long run). Analytical results are derived and numerical simulations

show that, under a wide range of parameter values, biofuel subsidies will lead to a more

rapid extraction profile, bringing climate change damages closer to the present.

JEL-Classification: Q54, Q42, Q30
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1 Introduction

Biofuels are widely regarded as a means to reduce greenhouse gas (GHG) emissions

because they have the potential, relative to the fossil fuels they replace, to reduce GHG

emissions. Consequently, biofuel subsidies have been promoted because of their potential

environmental benefits (Hill et al. 2006). In 2006, in selected OECD countries, the total

level of government support for biofuels exceeded $10 billion (Steenblik, 2007). This is despite

the fact that, one, a first-best instrument to control GHG emissions would be to establish a

carbon tax or an equivalent cap-and-trade scheme and, two, biofuels production is blamed

for some of the recent increases in prices of a number of food staples (FAO 2008).

Until very recently the supply-side dynamics of biofuel subsidies and their effects on inter-

temporal extraction of fossil fuels have been ignored. The presumption has been that by

increasing the supply of a readily-available substitute this would lower the price of fossil fuels,

thereby lowering the incentive to extract.1 However, if fossil fuel resource owners optimally

extract their reserves and expect on-going or increased subsidies for biofuel production then

they may increase their current levels of extraction.2 It is even possible that this indirect

supply-side effect may overwhelm the direct substitution effect from fossil fuels to biofuels

and increase GHG emissions leading to a Green Paradox (Sinn, 2008b). However, this would

depend, among other factors, on the magnitude of the direct reduction in GHG emissions

that arises from biofuel-fossil fuel substitution.3

The possibility that adverse supply side effects may arise has been identified by Sinn

(2008a) in the case of carbon taxes. Sinn’s view is supported by Hoel (2008) using a model

of investment in a backstop technology, and extends earlier work on the optimal trend of fossil

fuel taxation (Sinclair 1992, Ulph and Ulph 1994). We show that this line of argument is

1A secondary argument is that with increased production of biofuels, technological progress will lower
costs of production due to learning by doing.

2This is similar to the insights of Long and Sinn (1985) who investigate how extractive firms respond to
anticipation of future tax changes.

3The extent to which direct biofuel-fossil fuel substitution reduces GHG emissions is a matter of some
debate. An authoritative study on this issue indicates that with direct substitution there would be a reduction
in GHG emissions of 12% for ethanol and 41% for biodiesel (Hill et al. 2006).
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equally valid in the context of biofuels subsidies. In other words, policies designed to reduce

GHG emissions by subsidizing biofuel production may increase fossil fuel production in the

short term and medium term, resulting in a higher time path of accumulated emissions at all

points of time until the resource exhaustion date, which is brought closer to the present. We

define such an outcome as a Weak Green Paradox.4 In turn, increased fossil fuel consumption

may raise atmospheric GHG concentration levels that would depend on many factors such as

future technological change that may affect extraction costs, the reductions in GHG emissions

from biofuel-fossil fuel direct substitution, and the effects of GHG concentration levels on

the rate of carbon decay in the atmosphere. We define this second outcome as a Strict Green

Paradox.5

In this paper we develop formal models to study the conditions under which the Weak

Green Paradox would (or would not) hold in the context of the direct subsidization of biofuels

production (such as in the US). The models are easily extended to the case of quantitative

regulations that ensure minimum levels of biofuel consumption (such as in the EU). Our

analysis focuses on the supply response of fossil fuel producers, and the resulting general

equilibrium changes in price paths and quantity paths.

In the simplest case where the supply curve of biofuels is upward sloping, and where

biofuels are a perfect substitute for fossil fuels, at any given price of energy a subsidy on

biofuel production will shift the biofuel supply curve to the right, resulting in a lower demand

for fossil fuels. However, the equilibrium price path of energy is not given, because suppliers

of fossil fuels will react to the biofuel subsidies. Thus, as soon as a credible time path in

terms of the subsidy rate is announced or deduced, fossil fuel producers should adjust their

output paths. Depending on supply and demand elasticities, this may induce increased fossil
4In a recent paper, Reyer Gerlagh (2010) gave a somewhat different definition of the Weak Green Paradox:

it is said to hold iff the initial extraction rate rises in response to a fall in the marginal cost of a backstop
technology. Ploeg and Withagen (2010) make a distinction between low-cost backstop technology (which
leads to non-exhaustion of oil) and high-cost ones. They show that the Green Paradox is not possible in the
former case, and exists in the latter case.

5Some scientists have argued that accumulated emissions, as distinct from concentration levels, are more
robust predictors of climate change damages. See Allen et al. (2009). We thank Chuck Mason for pointing
this out.
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fuel production.

We first investigate the possible effects of biofuel subsidies on the time path of fossil

fuel extraction.6 In this approach, consumption of fossil fuels is equal to extraction from an

aggregate stock of fossil-fuel resource, R. If biofuel subsidies have the effect of hastening the

exhaustion of the stock R (i.e., shifting extraction of fossil fuels to the present), this allows

for the possibility of a Weak Green Paradox which arises when fossil fuel production more

than offsets the direct substitution to biofuels. We examine separately the cases of linear

and non-linear demand, and extraction costs that depend on the remaining reserves.

In addition to analytical results, we provide numerical simulations of the effects on fossil

fuel production from biofuels subsidies under a range of parameter values. We also present

a set of sufficient conditions for fossil fuel production to increase in the presence of biofuel

subsidies, and sufficient conditions when it fails to hold. Overall, our findings indicate that

biofuel subsidies could increase fossil fuel production in the foreseeable future and, thus,

result in a Weak Green Paradox.

2 Weak Green Paradox: competitive extraction

This section presents a model of energy demand in a perfectly competitive world, and shows

that increased fossil fuel production can more than offset substitution to biofuels due to

subsidies for biofuel production.

In our model, there are two consumption goods: a numeraire good (say, leisure) and a

manufactured good. The latter good uses fuels as an input. The demand for the manufac-

tured good gives rise to the demand for fuels. Assume there are two types of fuels: fossil

fuels and biofuels. For simplicity, we assume they are perfect substitutes.

Let Pt denote the market price of fuels at time t. The present moment is t = 0. Assume
6There are a number of studies of biofuel subsidies (e.g. Chakravorty et al., 2009, Bahel Marrouch, 2009)

and but they do not focus on the effect of subsidies on the date of exhaustion of the fossil-fuel stock.
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that the world economy’s demand for fuels is

Edt = D(Pt)

where D′(.) < 0.

Assume that biofuel producers receive a constant ad valorem subsidy rate θ ≥ 0, i.e. for

each unit they sell, they receive (1+θ)Pt. Let z ≡ 1+θ ≥ 1. We call z the “subsidy factor”,

where z = 1 indicates that the subsidy rate is zero. Let Bt denote the quantity of biofuels

supplied. The supply function of biofuels is

Bt = SB(zPt)

where we assume S ′B > 0 and SB(0) = g ≥ 0.

At time t = 0, there is a fixed aggregate stock of fossil fuels, R. The suppliers of fossil

fuels are far-sighted and perfectly competitive extractive firms. They perfectly forecast the

equilibrium price path P (t) which they take as given. We assume that the marginal cost

of extraction is a constant c ≥ 0. If extraction rates are strictly positive over some time

interval [0, T ] then, by Hotelling’s Rule,7 the “net price” (i.e. price minus extraction cost)

Pt − c must rise at a rate equal to the rate of interest, i.e.

Ṗt
Pt − c

= r for t ∈ [0, T ] . (1)

The demand for fossil fuels is defined as the difference between the demand for fuels and

the supply of biofuels:

Df (P ; z) ≡ D(P )− SB(zP ) (2)

We call Df (P ; z) the residual demand function. Given z, there is a unique price P such that

the supply of biofuels just matches the demand for fuels. The price P is implicitly defined

by

D(P )− SB(zP ) = 0 (3)

7See Gaudet (2007) for a survey of theoretical and empirical studies on Hotelling’s Rule.
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Clearly, P (t) cannot rise above P . We call P “the choke price for fossil fuels”. Notice that

P depends on the subsidy factor z. A higher z implies a lower P . For ease of reference, we

state this result as Fact 1:

Fact 1: P = P (z) and its derivative is given by

dP

dz
= −

∂Df (P ,;z)
∂z

∂Df (P ,;z)
∂P

=
PS ′B

(
zP
)

D′(P )− zS ′B
(
zP
) < 0 (4)

Market equilibrium requires that the stock of fossil fuels be exhausted exactly at the

(endogenously determined) time T when P reaches P .Wewill show below how the exhaustion

date T and the initial price P0 depend on the subsidy factor z. In what follows, we assume

that P > c. By definition, the price of fuels at the exhaustion time T is equal to the the

choke price for fossil fuels, P :

PT = P

From Hotelling’s Rule, the present value of the net price is the same for all t ∈ [0, T ]:

(Pt − c)e−rt = (P − c)e−rT for all t ≤ T

i.e., for all t ≤ T ,

Pt = c+ (P − c)er(t−T ) = c+
[
P (z)− c

]
er(t−T ) ≡ φ(P (z), t, T ) (5)

Note that the function φ(P (z), t, T ) has the following properties:

∂φ(P (z), t, T )

∂T
= −r

[
P (z)− c

]
er(t−T ) = −r(Pt − c) < 0 (6)

and
∂φ(P , t, T )

∂P
= er(t−T ) > 0 (7)

To determine T , we use the equilibrium condition that total demand for fossil fuels over the

time interval [0, T ] is exactly equal to the initial stock R :

∫ T

0

Df (Pt; z)dt = R (8)
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where Pt is given by e.g. (5). In other words, the following equation uniquely determines

the resource-exhaustion date T :
∫ T

0

Df (φ(P (z), t, T ); z)dt = R (9)

We seek the answer to the following question: does an increase in the subsidy factor z

bring the exhaustion time T closer to the present? If the answer is “yes”, then we say that

the Weak Green Paradox is confirmed. As a first step, let us state a useful Lemma:

Lemma 1: An increase in the subsidy factor z will bring the resource-exhaustion date

T closer to the present if and only if
∫ T

0

[
∂Df

∂Pt

∂φ

∂P

dP

dz
+

∂Df

∂z

]
dt > 0 (10)

Proof: Let

G(T, z, R) ≡
∫ T

0

Df (φ(P (z), t, T ); z)dt−R (11)

The equilibrium condition that the stock of resources is exhausted at time T , i.e. G(T, z, R) =

0, implicitly determines T as a function of z. The derivative dT/dz is given by

dT

dz
= −

∂G(T,z,R)
∂z

∂G(T,z,R)
∂T

(12)

where
∂G(T, z;R)

∂T
= Df (φ(P (z), T, T ); z) +

∫ T

0

∂Df

∂φ

∂φ

∂T
dt > 0 (13)

and
∂G(T, z;R)

∂z
=

∫ T

0

[
∂Df

∂Pt

∂φ

∂P

dP

dz
+

∂Df

∂z

]
dt (14)

!

In general, the sign of the right-hand side of equation (14) is uncertain. Let us consider

a few special cases.

2.1 Weak Green Orthodox: linear demand

Let us consider the special case where the fuel demand function D(.) is linear,

D(p) = a− bP, a > 0, b > 0
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and the biofuel supply function is

SB(zP ) = g + β(zP )µ, β > 0, µ > 0

where g is a constant. Then the demand function for fossil fuels is

Df (P ; z) ≡ a− bP − g − β(zP )µ

The “fossil fuel choke price” P (z) is implicitly defined by

a− bP − g − β(zP )µ = 0

Thus
dP

dz
= − µβzµ−1(P )µ

b+ µβzµ(P )µ−1
< 0

The integrand in equation (10) is

∂Df

∂pt

∂φ

∂P

dP

dz
+

∂Df

∂z
=
[
b+ µβzµ(Pt)

µ−1] er(t−T ) µβzµ−1(P )µ

b+ µβzµ(P )µ−1
− µβzµ−1(Pt)µ (15)

If µ = 1, this integrand expression reduces to

∂Df

∂pt

∂φ

∂P

dP

dz
+

∂Df

∂z
= β

[
Per(t−T ) − Pt

]

which is equal to

−βc
[
1− e−r(T−t)

]
≤ 0 (16)

From Lemma 1 and equation (16), we can state a result that does not support the Weak

Green Paradox:

Proposition 1: Assume that the demand function for fuels and the supply function of

biofuels are both linear. Then under perfectly competitive extraction,

(i) if extraction costs are zero ( c = 0), an increase in the biofuel subsidy factor z will

have no effect on the date of exhaustion of the resource stock R;

(ii) if extraction costs are positive ( c > 0), an increase in the biofuel subsidy factor z

will delay the date of exhaustion of the resource stock R.
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Remark: The intuition behind Proposition is as follows. A permanent increase in biofuel

subsidies creates a first round effect of increased biofuel production at any given price. This

implies that if the price path stays unchanged, the fossil fuel stock will not be exhausted. So

the initial price must fall to stimulate demand sufficiently to clear the market. This tends

to reduce the supply of biofuels (an induced effect). At the lower initial price, the initial

demand for energy is higher than in the no-subsidy scenario, and some of this demand is met

by biofuel production, while the remaining demand is met by fossil fuel extraction. When

c = 0 and the demand and supply are linear, the fall in the initial price is just sufficient for

the flow demand for fossil fuels to be restored to the level that prevails in the no-subsidy

scenario. When c > 0, the Hotelling price path is less steep, so there is less biofuel expansion

induced over time along the equilibrium path. Therefore the force behind the Green Paradox

is attenuated by much more.

2.2 Weak Green Paradox: non-linear demand

An unattractive feature of the linear demand specification is that the demand for fuels

becomes zero at some finite price. Many people would argue that the demand for fuels is

always positive at any finite price. Let us consider the case where the demand for fuels is of

the form

Ed = (P + δ)−ε ≡ D(P ) (17)

where δ ≥ 0 and ε > 0.

The demand function (17) may be derived from the demand for the manufactured good.

For example, suppose that to produce one unit of the manufactured good, one needs to

use one unit of fuels and one unit of labor. Let P be the price of fuels and δ be the wage

rate. Assume perfect competition and constant returns to scale in the manufactured good

industry. Then the price of the manufactured good is equal to its unit cost, which is the

sum of P and δ :

PM = P + δ
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Assume the demand for the manufactured good is

Qd = (PM)
−ε ≡ DM(PM)

where ε > 0 is the elasticity of demand for the manufactured good:

ε = −PM
Qd

(
dQd

dPM

)
> 0

By choice of units of measurement, Ed = Qd. From this we obtain the fuel demand function

(17). The elasticity of demand for fuels is denoted by η where

η ≡ − P
Ed
dEd

dP
= −(PM − δ)

Qd

(
dQd

dPM

)
= ε+

δ

Qd
dQd

dPM
(18)

Therefore η is smaller than or equal to ε, with equality holding only in the case where δ = 0.

We continue to assume that the supply function of biofuels is of the form

SB(zP ) = g + β(zP )µ, β > 0, µ > 0, z > 0 (19)

Then the (residual) demand for fossil fuels is

Df (P ; z) = (P + δ)−ε − g − β(zP )µ

and P satisfies

(P + δ)−ε − g − β(zP )µ = 0

From this, we get
dP

dz
= − βµzµ−1(P )µ

ε(P + δ)−ε−1 + µβzµ(P )µ−1
< 0

The integrand in equation (10) is

I(φ(P (z), t, T ); z) ≡ ∂Df

∂pt

∂φ

∂P

dP

dz
+

∂Df

∂z
=

er(t−T )
[
βµzµ−1(P )µ (ε(Pt + δ)−ε−1 + µβzµ(Pt)µ−1)

ε(P + δ)−ε−1 + µβzµ(P )µ−1

]
− βµzµ−1(Pt)

µ

Let us formalize our result as follows:
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Assumption A: The fuel demand function has the form (17) and the biofuel supply

function has the form (19).

Proposition 2: Under Assumption A, an increase in the subsidy factor z will bring the

exhaustion date closer to the present if and only if

∫ T

0

{
er(t−T )

[
βµzµ−1(P )µ (ε(Pt + δ)−ε−1 + µβzµ(Pt)µ−1)

ε(P + δ)−ε−1 + µβzµ(P )µ−1

]
− βµzµ−1(Pt)

µ

}
dt > 0

i.e.

βµzµ−1(P )µ
∫ T

0

{
er(t−T )

[
ε(Pt + δ)−ε−1 + µβzµ(Pt)µ−1

ε(P + δ)−ε−1 + µβzµ(P )µ−1

]
−
(
Pt
P

)µ}
dt > 0 (20)

This condition is satisfied under plausible specifications of parameter values.

Numerical examples

In our base-line scenario, the parameters are:

ε = δ = β = µ = 1, r = 0.05, c = g = 0 (21)

Let the reserve size R be large enough so that under this base-line scenario, the exhaustion

time is T = 100 years.

Then we find that, starting at the initial subsidy factor z = 1, an increase in z leads to

an earlier exhaustion time, that is,
dT

dz
= −2.09

This shows that the Weak Green Paradox holds if the reserve size is such that T = 100. Is

this result sensitive to the size of the reserve? Let us vary the reserve size so that T varies

from 50 years to 200 years. We find that dT/dz remains negative, and not far different from

−2.09. Table 1 below reports the value dT/dz for various reserve sizes (and hence various

T ).

We also consider different initial subsidy levels, and keep ε = δ = β = µ = 1, r = 0.05,

c = g = 0, T = 100. Table 2 reports the results and shows there is a Weak Green Paradox for

this set of parameter values. Keeping β = δ = µ = 1, r = 0.05, c = 0, T = 100, we can also

consider different values for demand elasticity ε of the manufactured good. These results are
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reported in Table 3. Finally, consider different values for supply elasticity of biofuels, µ. We

find that the Weak Green Paradox holds for a wide range of µ, as reported in Table 4. As

shown in this Table 4, with the exception of the first column where the supply elasticity of

biofuels is smal, an increase in the subsidy rate will hasten the exhaustion of fossil fuels.

The force behind the sensitivity to the supply elasticity µ can be explained as follows.

When the price elasticity of supply of biofuels is high, the rising price along the Hotelling

path induces strong biofuel supply expansion. Hence the demand for oil mainly decreases

later on (rather than earlier on). Then oil owners have to sell more mainly earlier on. This

works in favor of the Green Paradox.

3 Weak Green Paradox: cartel extraction

What happens if oil is supplied by a cartel that behaves like a monopolist?

We assume that the monopolist takes the subsidy factor z as a given constant. How does

an increase in z affect the extraction path?

As in Section 2, the residual demand function facing the oil producer is

Df (P ; z) ≡ D(P )− SB(zP )

The choke price for fossil fuels is P , where D(P )− SB(zP ) = 0, and P is decreasing in z, as

we have stated in Fact 1, see equation (4). We continue to assume that P is greater than

the marginal cost of extraction, c.

Let Rt denote the monopolist’s stock of reserves at time t, so that R0 = R and Ṙt = −qt

where qt is the extraction rate. We assume that the monopolist’s extraction matches the

demand for fossil fuels:

qt = Df (Pt; z)

The monopolist’s optimization problem consists of choosing a time path of price Pt ∈
[
0, P

]

and a terminal date T to maximize the present value of its stream of discounted profit:

max
T,Pt

∫ T

0

e−rt [(Pt − c)Df (Pt; z)] dt

13



subject to the constraint

Ṙt = −Df (Pt; z), R0 = R

RT ≥ 0

Denote the elasticity of the demand for fossil fuels by θt(Pt; z)

θt(Pt; z) ≡ −
Pt
Df

(
∂Df

∂Pt

)
> 0

Assumption B: The elasticity of demand for fossil fuels is (i) greater than unity for suffi-

ciently high P , and (ii) non-decreasing in P :

∂θt(Pt; z)

∂Pt
≥ 0

Let ψt denote the current-value shadow price of the stock Rt and let Ht denote the

current-value Hamiltonian. Then

Ht = (Pt − c)Df (Pt; z)− ψtDf (Pt; z)

The optimality conditions for the monopolist are8

Pt

[
1− 1

θt

]
− c− ψt = 0⇔

∂Ht
∂Pt

= 0

ψ̇t = rψt

ψT ≥ 0, RT ≥ 0, ψTRT = 0

HT = [PT − c− ψT ]Df (PT ; z) = 0

One can show that conditions imply that ψT = PT − c > 0, RT = 0, PT = P , Df (PT ; z) = 0,

and θT = ∞. In particular, we obtain the Hotelling Rule for the monopolist: the present

value of marginal profit is the same for all t ∈ [0, T ] :
[(
1− 1

θt(Pt; z)

)
Pt − c

]
=
(
P − c

)
er(t−T ) (22)

8As is well known, the monopolist always restricts supply so that θt > 1.
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Equation (22) implicitly defines the monopolist’s optimal price Pt as a function of P , z,

t and T :

Pt = φm(P (z), t, T ; z) (23)

Note that the function φm in (23) is of the same nature as the function φ in (5) but they

do not have the same functional form. Furthermore, the function φm depends on z both via

θt(Pt; z) and via P .

Example 1: Let D(P ) = a− bP and SB = g + zP, where a− g > 0. Then

θ = − P

Df

(
∂Df

∂P

)
=

(b+ z)P

(a− g − (b+ z)P )

Equation (22) reduces to

Pt =
1

2

[(
P − c

)
er(t−T ) + c+

a− g
b+ z

]
≡ φm(P (z), t, T ; z)

Returning to the general case, we make use of (23) to determine the monopolist’s optimal

exhaustion time T . It is the value of T such that total accumulated extraction equals the

initial reserve level R: ∫ T

0

Df (φ
m(P (z), t, T ; z); z)dt = R (24)

Lemma 2: An increase in the subsidy factor z will bring the monopolist’s resource-

exhaustion date T closer to the present if and only if the following integral is positive:

∫ T

0

[
∂Df

∂Pt

(
∂φm

∂P

dP

dz
+

∂φm

∂z

)
+

∂Df

∂z

]
dt (25)

Proof: Let

Gm(T, z, R) ≡
∫ T

0

Df (φ
m(P (z), t, T ); z)dt−R

The equilibrium condition that the stock of resources is exhausted at time T , i.e. G(T, z, R) =

0, implicitly determines T as a function of z. The derivative dT/dz is given by

dT

dz
= −

∂Gm(T,z,R)
∂z

∂Gm(T,z,R)
∂T

15



where
∂Gm(T, z;R)

∂T
= Df (φ

m(P (z), T, T ; z); z) +

∫ T

0

∂Df

∂φm
∂φm

∂T
dt > 0

and
∂Gm(T, z;R)

∂z
=

∫ T

0

[
∂Df

∂Pt

(
∂φm

∂P

dP

dz
+

∂φm

∂z

)
+

∂Df

∂z

]
dt (26)

!

In general, the sign of the right-hand side of equation (26) is uncertain. Thus, we consider

a few special cases.

3.1 Linear demand for fuels and linear supply of biofuels

Let D(P ) = a− bP and SB = g + zP where a− g > 0. Then

φm(P (z), t, T ; z) =
1

2

[(
P − c

)
er(t−T ) + c+

a− g
b+ z

]

and

∂Df

∂Pt

(
∂φm

∂P

dP

dz
+

∂φm

∂z

)
+

∂Df

∂z

= − c
2

(
1− e−r(T−t)

)
≤ 0

Proposition 3: Assume that the demand function for fuel and the supply function of

biofuel are both linear. Then, under monopoly extraction,

(i) if extraction costs are zero ( c = 0), an increase in the biofuel subsidy factor z will

have no effect on the date of exhaustion of the resource stock R;

(ii) if extraction costs are positive ( c > 0), an increase in the biofuel subsidy factor z

will delay the date of exhaustion of the resource stock R.

3.2 Non-linear demand

In this subsection, we consider the case where Assumption A is satisfied. In addition, assume

µ = 1 and g = 0. Then Df = (P + δ)−ε − βzP , and the elasticity of demand for fossil fuels

is

θt =
[ε(Pt + δ)−ε−1 + βz]Pt
(Pt + δ)−ε − βzPt

> 0 for Pt < P
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Note that if βz > 0 and ε ≥ 1 then θt > 1 because

θt >
εPt
Pt + δ

≥ ε

It can be verified that Assumption B is satisfied. Equation (22) becomes
{
Pt −

[ε(Pt + δ)−ε−1 + βz]Pt
ε(Pt + δ)−ε−1 + βz

− c
}
−
(
P − c

)
er(t−T ) = 0 (27)

or {
Pt −

1

θt
Pt − c

}
−
(
P − c

)
er(t−T ) = 0

Denote the right-hand side of equation (27) by F (Pt, P , t, T, z). Equation (27) yields the

implicit function Pt = φm(P (z), t, T ; z). Then

∂φm

∂P
= − ∂F/∂P

∂F/∂Pt
=

er(t−T )(
1− 1

θt

)
+ Pt

d
dPt

(
1
θt

) ≡ er(t−T )

Ωt
> 0

Furthermore,
∂φm

∂z
= − ∂F/∂z

∂F/∂Pt

where

∂F/∂z = −Pt
θ2t

(
∂θt
∂z

)
< 0

because
∂θt
∂z

=
βPt

(Df )
2

[
Df + Ptε(P + δ)−ε−1 + zPt

]
> 0

In other words, a higher biofuel subsidy increases the elasticity of demand for fossil fuels at

any given price. Consequently,

∂φm

∂z
= −

βP 2t

(θtDf)
2 [Df + Ptε(P + δ)−ε−1 + zPt]

Ωt
< 0

We can now compute the crucial expression in Lemma 2, condition (25):

∂Df

∂Pt

(
∂φm

∂P

dP

dz
+

∂φm

∂z

)
+

∂Df

∂z

=
ε (Pt + δ)−ε−1 + βz

Ωt

(
Pβer(t−T )

ε(P + δ)−ε−1 + βz
+

βP 2t
(θtDf )

2

[
Df + Ptε(P + δ)−ε−1 + zPt

]
)
− βPt
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It appears that using this expression, the integral (25) can be positive or negative, de-

pending on parameter values.

Proposition 4: Under Assumptions A and B, the Weak Green Paradox is a possibility

when fossil fuels are supplied by a cartel.

4 A Two-country Model

We now turn to the case where there are two countries with different energy policies. For

simplicity we do not consider game theoretic or food policy issues (Bandyopadhyay et al.

2009). The “home country” is the U.S. The “foreign country” is China. There is no biofuel

production in China. Assume that U.S. biofuels are not exported to China (e.g. because of

high transport costs or other barriers to trade, or because the U.S. production subsidies are

only given to domestically earmarked consumption).

Let Pt be the world price of fossil fuels. Assume that China’s inverse demand function

for fuels is

Pt = A−
1

M c
Ect

where Ect is the quantity demanded in China. Similarly, the US inverse demand function for

fuels is

Pt = A−
1

Mu
Eut

Then M c/Mu is a measure of China’s market size relative to the U.S.’s market size. By an

appropriate choice of units, we can set Mu = 1.

When the price is Pt, U.S. biofuel producers earn zPt for each unit they sell domestically,

where z is the subsidy factor. The biofuel supply function is SB = β (zP )µ and the U.S.’s

residual demand for fossil fuels is Du
f = A− P − β (zP )µ. Let P u be the solution of

A− P u − β
(
zP u

)µ
= 0 (28)

Note that
dP u
dz

= −
zµ−1

(
P u
)µ

1
βµ + z

µ
(
P u
)µ−1 < 0 (29)
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Given a positive constant subsidy factor z > 0, the world equilibrium consists of two

phases. In the first phase, fossil fuels are consumed in both the U.S. and China. This phase

ends at an endogenously determined time T u, when Pt reaches the value P u. In the second

phase, fossil fuels are only used in China, and U.S. energy demand is completely satisfied by

biofuel production. The second phase ends at time Tw, when the world price of fossil fuels

reaches the choke price A and China’s demand for fossil fuels becomes zero.

Our task is to find out how the subsidy rate z influences the two critical times T u and

Tw, and how it influences the equilibrium price path of fossil fuels, and hence the rate of

emissions of CO2 at each point of time.

Let Dw(t) be the world (US and China) demand for fossil fuels during phase I, and Dc(t)

be China’s demand for fossil fuels in phase II. Let R be the initial stock of fossil fuels.

Equilibrium requires that the total use of fossil fuels equals its stock:
∫ Tu

0

Dw(t)dt+

∫ Tw

Tu
Dc(t)dt = R (30)

We begin by evaluating the second integral on the left-hand side of (30). Assume zero

extraction cost and perfect competition. Hotelling’s Rule gives us,

Pte
−rt = P (Tu)e

−rTu = P (Tw)e−rT
w

Given that P (Tw) = A and P (Tu) = P u,

Tw − T u = 1

r
(lnA− lnP u(z)) ≡ J(z)

This indicates that the length of Phase II is an increasing function of the subsidy factor z.

dJ

dz
= − 1

rP u

(
dP u
dz

)
> 0

China’s oil consumption during Phase II is
∫ Tw

Tu
Dc(Pt)dt =M

c

∫ Tw

Tu
(A− Pt)dt =M c

∫ Tw

Tu
(A− A−r(Tw−t))dt

= AM c

{
Tw − T u − 1

r

[
1− e−r(Tw−Tu)

]}
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= AM c

{
J(z)− 1

r

[
1− e−rJ(z)

]}
≡ K(z)

It is easy to verify that K(z) is an increasing function: the higher is the biofuel subsidy

factor in the U.S., the greater is China’s total consumption in Phase II.

dK

dz
= AM c(1− e−rJ(z))dJ

dz
> 0

Let us turn to Phase I, in which fossil demands are positive in both countries. The total

accumulated consumption of fossil fuels in Phase I must equal R−K(z):
∫ Tu

0

[
Du
f (Pt) +D

c(Pt)
]
dt = R−K(z)

where

Pt = P ue
−r(Tu−t) ≡ φ(P u(z), t, T

u)

Define

G(T u, z, R) ≡
∫ Tu

0

[
Du
f (φ) +D

c(φ)
]
dt−R +K(z)

The effect of an increase in the subsidy factor z on T u is given by

dT u

dz
= − ∂G/∂z

∂G/∂T u

where

∂G/∂T u = Dc(P u) +

∫ Tu

0

[
∂Du

f

∂Pt
+

∂Dc

∂Pt

]
∂φ

∂T u
dt > 0

and

∂G/∂z =

∫ Tu

0

[
∂Du

f

∂Pt
+

∂Dc

∂Pt

]
∂φ

∂P u

dP u
dz

+
∂Du

f

∂z
dt+

dK

dz

where, using Hotelling’s Rule, the integrand can be simplified to

zµ−1µβer(t−T )
[
1 +Mc + µβzµ (Pt)

µ−1

1 + µβzµ
(
P u
)µ−1 − 1

]

which is positive if µ ) 1.

What about the effect of an increase in z on Tw?

dTw

dz
=
dT u

dz
+
dJ

dz
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This expression is negative if and only if

−
∫ Tu

0

[
∂Du

f

∂Pt
+

∂Dc

∂Pt

]
∂φ

∂P u

dP u
dz

+
∂Du

f

∂z
dt− dK

dz
+ (∂G/∂T u)

dJ

dz
< 0

i.e. iff

−
∫ Tu

0

[
∂Du

f

∂Pt
+

∂Dc

∂Pt

]
∂φ

∂P u

dP u
dz

+
∂Du

f

∂z
dt−

[
dJ

dz

] [
AM c(1− e−rJ(z))− (∂G/∂T u)

]
< 0

So, if dPudz is sufficiently large in absolute value, an increase in biofuel subsidy will bring the

resource exhaustion date closer to the present.

Proposition 5: An increase in the subsidy factor z will lengthen Phase II and may

shorten Phase I. The exhaustion date will be brought closer to the present if dPu
dz is sufficiently

large in absolute value.

Remark: From equation (29), higher values of βµ will be favorable to the Green Paradox.

5 Weak Green Paradox with stock-dependent extrac-
tion costs

We now turn to an investigation of the possibility of a Weak Green Paradox result in the

case where extraction costs are stock-dependent. In what follows, we consider a model where

extraction cost rises as the remaining stock falls. There are two possible scenarios. In the

first scenario, the marginal cost of extracting the ‘last drop of oil’, although high, is still

below the choke price for fossil fuels, and therefore all the fossil fuel stock will eventually be

exhausted. In the second scenario, the last drop of oil is prohibitively expensive to extract,

and therefore firms will abandon their deposits without exhausting them.9 We investigate

the possibility of the Weak Green Paradox in both cases.

5.1 A model of stock-dependent extraction costs

We assume that oil firms are perfectly competitive. They take the price path as given. Let

R0 = R denote the initial stock of the representative firm, and qt denote its output at t. Let
9Some authors have therefore modeled the “resource exhaustion” in the sense of an “economic abandon-

ment” of the deposit after the profitable part has been exploited (see for example Karp, 1984, Rubio and
Escriche 2001, Salo and Tahvonen, 2001, Chou and Long, 2009, Fujiwara and Long, 2009).
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Rt be the stock that remains at time t. Then Ṙt = −qt. We postulate that the total cost of

extracting qt is linear in qt for given Rt :

[
c0 + c1

(
R−Rt

)]
qt, c0 ≥ 0, c1 ≥ 0, Rt ∈

[
0, R

]
, R0 = R.

Then c0+(R−Rt)c1 is the marginal cost of extraction at time t. As the remaining stock Rt

falls, the marginal extraction cost rises. If Rt = 0, the marginal extraction cost is c0 + c1R.

Thus c0+ c1R is the marginal cost of extracting the last drop of oil, and c1 is the sensitivity

of marginal cost to the remaining stock.

It is convenient to define a new state variable, Yt, which represents accumulated extraction

from date 0 to date t :

Yt ≡ R−Rt, Y0 = 0, Ẏt = qt

Then the marginal extraction cost function may be written as C(qt, Yt) = c0 + c1Yt.

As in the earlier sections, let the demand function for fuels be Edt = D(Pt), D
′ < 0, where

Ed is the quantity of fuels demanded. Let the supply function for biofuels be Bt = SB(zPt),

S ′B > 0. Then the demand for fossil fuels falls to zero at the “fossil fuel choke price” P

defined by

D(P )− SB(zP ) = 0

Since the representative oil firm’s marginal cost is c0 + c1Yt, and Yt ≤ R, we conclude that:

(i) if c0 + c1R < P (z) then the representative firm will eventually exhaust all its stock,

(ii) if c0 + c1R > P (z), the representative firm will abandon its deposit when the reserve

level falls to some positive level RL defined by

c− c1
(
R−RL

)
= P (z), RL > 0 (31)

We will consider these two cases separately. Before doing so, let us make some clarification

about the Hotelling Rule which we will use to explore the Weak Green Paradox.
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5.2 Hotelling Rule when extraction costs are stock-dependent

What is the correct Hotelling Rule if the marginal extraction cost depends on the stock?

The answer depends on the assumption one makes about the behavior of the firms. If firms

do not “internalize” the added future cost caused by its current extraction, the present value

of net price (price minus marginal extraction cost) must be the same at any pair of dates

(t, t′)

[Pt − (c0 + c1Yt)] e−rt = [Pt′ − (c0 + c1Yt′)] e−rt
′

(32)

or

Pt − (c0 + c1Yt) = [Pt′ − (c0 + c1Yt′)] e−r(t
′−t)

Differentiating with respect to t we get

Ṗt − c1Ẏt = r [Pt′ − (c0 + c1Yt′)] e−r(t
′−t)

Taking the limit as t′ → t, we get the “non-internalized” Hotelling Rule10

Ṗt − c1Ẏt = r [Pt − (c0 + c1Yt)] (33)

On the other hands, if firms internalize the added future cost caused by its current

extraction, then the correct Hotelling Rule is the following “internalized Hotelling Rule”11

Ṗt = r [Pt − (c0 + c1Yt)] (34)

To prove that the rule (34) follows from optimizing behavior of far-sighted firms in the

absence of externalities, consider the firm’s optimization problem

max
qt,T

∫ T

0

e−rt [Pt − (c0 + c1Yt)] qtdt

10Solow and Wan (1976) considered a macro-model of resource extraction with a continuum of heteroge-
neous firms, and assumed each firm produces only at a point of time. By construction, these firms do not
internalize the added cost, since each firm’s operating life is infinitessimally small. The authors obtained a
kind of “non-internalized” evolution of price. For a discussion of Solow and Wan (1976), see Kemp and Long
(2009).
11See Gaudet (2007) for a literature review of theories and empirical tests on the Hotelling Rule.
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subject to Ẏt = qt, Y0 = 0 and YT ≤ R. Let λt be the co-state variable. The current-value

Hamiltonian is

H = Ptqt − (c0 + c1Yt)qt + λtqt

The necessary conditions include

Pt − (c0 + c1Yt) + λt = 0

λ̇t = rλt −
∂Ht
∂Yt

= rλt + c1qt

From these two equations, we obtain the “internalized Hotelling Rule”, Ṗt = r [Pt − (c0 + c1Yt)].

In what follows, we will use the internalized Hotelling Rule.

5.3 Weak Green Paradox with stock-dependent extraction costs
and finite exhaustion date

As we have stated above, if the marginal cost of extracting the last drop of oil, c0 + c1R,

is lower than the fossil fuel choke price, P (z), then the entire stock R will be exhausted at

some time T . In this case, the Weak Green Paradox is said to hold if a marginal increase in

z leads to an earlier exhaustion date.

To determine the exhaustion date T , we must solve the following system of differential

equations

Ṗt = r [Pt − (c0 + c1Yt)]

Ẏt = Df (Pt; z)

subject to three boundary conditions: Y0 = 0, YT = R, PT = P (z). Once we have found T ,

we can investigate how T responds to an increase in the biofuel subsidy.

5.3.1 The linear demand case

Suppose the demand function Df (Pt; z) is linear. Let

Df (P ; z) = a− (b+ βz)P, a > 0, b > 0, β > 0, z > 0
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Then

P (z) =
a

b+ βz

Assume a
b+βz > c0 + c1R so that the whole stock R will be exhausted in finite time.

We must analyze the system

Ṗt = r [Pt − (c0 + c1Yt)]

Ẏt = a− (b+ βz)P

subject to three boundary conditions: Y0 = 0, YT = R, PT = P (z). The Appendix gives the

solution.

In this case, we can show that the Weak Green Paradox does not hold. This is stated as

Proposition 6 below.

Proposition 6: If the demand function Df (P ; z) is linear in P , and the entire stock R

is exhausted at some time T , then

(i) an increase in the subsidy factor z will delay the exhaustion date,

(ii) higher sensitivity of extraction cost with respect to the remaining stock results in a

later exhaustion date.

Proof:

From the assumption that a
b+βz > c0 + c1R , let us define

Ỹ (z) ≡ a

c1(b+ βz)
− c0
c1
> R

In the Appendix, we show that the exhaustion date T is the unique positive solution of

the following equation
(ρ2 − ρ1)

ρ2e−ρ1T − ρ1e−ρ2T
=

(
Ỹ (z)− R

Ỹ (z)

)

where ρ1 and ρ2 are functions of z :

ρ2 =
1

2

(
r +

√
r2 + 4rc1(b+ βz)

)
> 0
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ρ1 =
1

2

(
r −

√
r2 + 4rc1(b+ βz)

)
< 0

Define

F (T, z) =
(ρ2 − ρ1)

ρ2e−ρ1T − ρ1e−ρ2T

and

G(T, z) ≡ F (T, z)−
(
Ỹ (z)− R

Ỹ (z)

)

To prove part (i), note that the effect on T of an increase in the subsidy z is

dT

dz
= −

∂G
∂z
∂G
∂T

We can show that

∂G

∂T
= − ρ1ρ2(ρ2 − ρ1)

2eρ2T
{
ρ2e

(ρ2−ρ1)T − ρ1
}2
[
eρ2T − e(2ρ2−ρ1)

]
< 0

and
∂G

∂z
=

∂F

∂z
− R

[
Ỹ (z)

]−2 dỸ
dz

> 0

since ∂F
∂z > 0.

To prove part (ii), we use dT
dc1
= −

(
∂G
∂c1

)
/
(
∂G
∂T

)
and show that

(
∂G
∂c1

)
> 0.!

As a numerical example, let a = 3, b = β = z = 1 and R = 80. We find the stock R will

be exhausted in 370 years. If the subsidy factor is z = 1.1, we find that T increases to 410

years. In this special case, the Weak Green Paradox does not hold, at least in the long run.

5.3.2 The non-linear demand case

We conclude our results with the more general case of a non-linear demand and suppose that

Df (P, z) = (P + δ)−ε − β(zP )µ

Thus P (z) is the solution of

(P + δ)−ε − β(zP )µ = 0

The system to be analyzed is as follows:

Ṗt = r [Pt − (c0 + c1Yt)]

26



Ẏt = (P + δ)−ε − β(zP )µ

subject to three boundary conditions: Y0 = 0, YT = R, PT = P (z). Unlike linear demand

case, we cannot obtain an analytical solution.

Consider an example. Let ε = µ = β = δ = 1. Then P is the solution of

1

(P + 1)
− zP = 0

At z = 1, the fossil fuel choke price is 0.618. Assuming that c0 = 0.005, c1 = 0.0001 and

R = 80, we can solve for the current oil price P (0) = 0.017, and the exhaustion date

T ) 106.9 years. These cost and oil reserve parameters imply that the current extraction

cost/price ratio is 29%. Until the extraction date, costs in this case increases slightly from

0.005 to 0.013, but the fuel price increases faster from 0.017 to 0.618, and thus the relevant

cost/price ratio at the exhaustion date is just 2%.

For fossil fuel producers to abandon extraction before reserves are exhausted, the subsidy

must satisfy:

c0 + c1R = 0.013 > P (z) or z > 153.8

Does a small increase in z lead to an increase or a decrease in T? The answer depends on

various parameters, particularly cost sensitivity or c1. Our numerical simulations show that

if extraction costs increase faster as the reserve depletes (a large value of c1), then, starting

from z = 1, a small increase in the subsidy will make oil reserves last longer (a larger T ).

On the other hand, if c1 is small enough, then an increase in the subsidy may lead to earlier

exhaustion. We illustrate this in Table 5 where the subsidy z is increased from1 to 1.2

(∆z = 0.2). Table 5 illustrates it is possible to find a large range of cases where fossil fuel

reserves are exhausted faster, and the Weak Green Paradox holds.

The findings in Table 5 do not imply the Weak Green Paradox is a general result. Indeed,

if condition (31) holds, we can show that with linear demand and a marginal extraction costs
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that increases linearly with accumulated extraction, and without technological change, fossil

fuel deposits are abandoned before exhaustion and a subsidy for biofuels production results

in a smaller overall consumption of fossil fuels. In that case, we say that the Weak Green

Paradox does not hold in the long run. However, the long run is very long (abandonment

takes place at time infinity). Thus, even when the Weak Green Paradox does not hold in

the long run, our results indicate that it can plausibly hold in the short or medium term.

The time period over which the Weak Green Paradox holds is critically important. In

terms of climate change and avoiding the severe impacts of climate change, what happens to

cumulative emissions over the next 30 years interval is critical. It is this period of time that

is likely to be the important period in terms of biofuels subsidies as we might reasonably

assume that new, carbon neutral energy technologies will become more widespread beyond

30 years. Thus, in the time periods that matter we have real cause for concern that biofuel

subsidies may actually encourage larger GHG emissions from fossil fuel combustion and

increase the likelihood of the more severe impacts of climate change.

Another relevant issue is technological change that affects extraction costs and the net

price path on non-renewables. Technological change would seem to be especially important

in terms of stock-dependent extraction costs. Positive technological change should offset the

effect of stock-dependent extraction, and may do so for a long time. The overall impact of

technological change would depend on the relative changes of z over time, on the extent to

which technological changes affect the extraction costs and the cost of biofuel production,

and the nature of stock dependent costs.

6 Concluding Remarks

We examine some possible cases under which there may be a Weak Green Paradox lurking

behind policies of biofuel subsidies whereby the supply-side response by fossil fuel producers

more than offset any gains from substitution to biofuels. Whether the Weak Green Paradox

holds or not depends on demand and supply elasticities, expected changes in subsidies,
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technological change in fossil fuel extraction and how extraction costs respond to changes in

remaining reserves.

Our results suggest that a Weak Green Paradox from biofuel subsidies is a real possibility:

policies designed to reduce GHG emissions may, perversely, hasten climate change. Further

development of our models is necessary to take into account game-theoretic issues, the effects

of technological change on extraction costs, the impacts of GHG atmospheric concentrations

and the rates of decay, and the GHG reductions from direct biofuel-fossil fuel substitution.

Nevertheless, our findings are sufficiently well developed to require, at the very least, that

policy makers carefully evaluate the supply-side effects of biofuel subsidies on the extraction

rate of fossil fuels by resource owners.
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APPENDIX

Exhaustion with stock-dependent cost and linear demand

With the linear demand Df (Pt; z) = a− (b+ βz)Pt, the fossil fuel choke price is P (z) =

a
b+βz . Assume that the marginal cost of extracting the last drop of oil is lower than the fossil

fuel choke price:

R <
a

c1(b+ βz)
− c0
c1
≡ Ỹ (z)

Consider the system

Ṗt = r [Pt − (c0 + c1Yt)] , r > 0, c0 > 0, c1 > 0

Ẏt = Df (Pt; z) = a− (b+ βz)Pt, a > 0, b > 0, β > 0, z > 0

subject to three boundary conditions: Y0 = 0, YT = R, PT = P (z).

Write the system of differential equations in matrix form:

[
Ṗ
Ṙ

]
=

[
a11 a12
a21 a22

] [
P
R

]
+

[
b1
b2

]

where a11 = r, a12 = −rc1, a21 = −(b + βz), a22 = 0, b1 = −rc0 and b2 = a.In simpler

notation,

ẇ = Aw + b

where detA =a11a22 − a12a21 = −rc1(b+ βz) < 0

A−1 =
1

−rc1(b+ βz)

[
0 rc1

b+ βz r

]

Define w̃ by

w̃ = −A−1b

Then

w̃ =

[
a

b+βz
a

(b+βz)c1
− c0

c1

]
≡
[
w̃1
w̃2

]
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Now let us define x by

x ≡ w−w̃

Let ρ1 < 0 and ρ2 > 0 be the characteristic roots,

ρ1,2=
a11 + a22 ±

√
(a11 + a22)

2 − 4 (a11a22 − a12a21)
2

=
1

2

(
r ±

√
∆
)
where ∆ ≡ r2 + 4rc1(b+ βz)

Then the general solution is

[
x1(t)
x2(t)

]
=

[
h1

− (a12)−1 (a11 − ρ1)h1

]
exp(ρ1t) +

[
h2

− (a12)−1 (a11 − ρ2)h2

]
exp(ρ2t) (35)

where h1 and h2 are constants (to be determined using boundary conditions).

Define

v1 ≡ − (a12)−1 (a11 − ρ1) =
ρ1 − r
−rc1

(36)

v2 ≡ − (a12)−1 (a11 − ρ2) =
ρ2 − r
−rc1

(37)

Setting t = T in the matrix equation (35), and noting that have x1(T ) = PT − w̃1 = 0

and x2(T ) = YT − w̃2 = R− w̃2 ≡ R− Ỹ (z), we get two equations:

0 = h1 exp(ρ1T ) + h2 exp(ρ2T ) (38)

R− Ỹ (z) = v1h1 exp(ρ1T ) + v2h2 exp(ρ2T ) (39)

Equation (38) gives

h1 = −h2 exp [(ρ2 − ρ1)T ] (40)

Substituting into equation (39) to get

R− Ỹ (z) = −v1h2 exp(ρ2T ) + v2h2 exp(ρ2T )

Therefore

h2 =
R− Ỹ (z)

(v2 − v1) exp(ρ2T )
(41)
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Setting t = 0 in the matrix equation (35), we get two equations

P0 − P (z) = h1 + h2 (42)

Y0 − Ỹ (z) = v1h1 + v2h2 (43)

Since Y0 = 0, substituting (40) and (41) into (43) we get

−Ỹ (z) = R− Ỹ (z)
(v2 − v1) exp(ρ2T )

[v2 − v1 exp [(ρ2 − ρ1)T ]]

or
(v2 − v1) exp(ρ2T )

v2 − v1 exp [(ρ2 − ρ1)T ]
=
Ỹ (z)−R
Ỹ (z)

(44)

Now, using (36), (37) and (44)

(ρ2 − ρ1) exp(ρ2T )

−ρ1 + ρ2 exp [(ρ2 − ρ1)T ]
=
Ỹ (z)−R
Ỹ (z)

Let

φ (T, z) ≡ (ρ2 − ρ1)

−ρ1 exp [−ρ2T ] + ρ2 exp [−ρ1T ]

The function φ (T, z) has the following properties: φ(0, z) = 1, ∂φ(T, z)/∂T < 0 for all T > 0,

and

lim
T→∞

φ (T, z) = 0

It follows that the equation

φ (T, z) =
Ỹ (z)−R
Ỹ (z)

has a unique solution T > 0 (which depends on z).

Numerical examples

Suppose R = 80, r = 0.05, a = 3, b = β = z = 1, c0 = 1.Let c1 = 0.001. Then

Ỹ (z) =
a

(b+ βz) c1
− c0
c1
=
1

c1

(
a

b+ βz
− c0

)
=
0.5

c1
= 500

ρ1 = −4. 950 975× 10−4

ρ2 = 5. 049 509 8× 10−2

34



The equation
(ρ2 − ρ1)

−ρ1 exp(−ρ2T ) + ρ2 exp(−ρ1T )
=
Ỹ (z)−R
Ỹ (z)

= 0.84

yields the unique solution T = 370.

Now let z increase to 1.1. Then T increases from 370 years to 410 years.

If c1 is higher, c1 = 0.002, while z = 1 and R = 80. It will take 394 years to exhaust R.

Now let z increase to 1.1. Then T increases from 394 years to 475 years.
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T 50 75 100 150 200
dT
dz −1.75 −2.04 −2.09 −2.110 −2.113

Table 1: Effect of a Biofuel Subsidy on Exhaustion Date for Different Fossil Fuel Reserve
Sizes

z 0.5 0.75 1 1.5 2
dT
dz −6.6 −3.43 −2.09 −0.99 −0.56

Table 2: Effect of a Biofuel Subsidy on Exhaustion Date for Different Initial Subsidy Levels

ε 0.1 0.5 1 2 3
dT
dz −0.35 −1.34 −2.09 −2.89 −3.32

Table 3: Effect of a Biofuel Subsidy on Exhaustion Date for Different Demand Elasticities
of the Manufactured Good

µ 0.5 0.75 1 1.5 2
dT
dz 1.45 −2.07 −2.09 −3.88 −3.75

Table 4: Effect of a Biofuel Subsidy on Exhaustion Date for Different Supply Elasticities of
Biofuel

Cost sensitiv-
ity parameter

Marginal ex-
traction cost
of the ‘last
drop’

Choke price
of fuel when
z=1.2/z=1

∆T ∆T/∆z Paradox/ No
Paradox

0 0.005 0.54/0.618 -0.270 -1.35 Paradox
0.0001 0.013 0.54/0.618 -0.176 -0.88 Paradox
0.0002 0.021 0.54/0.618 -0.077 -0.39 Paradox
0.0003 0.029 0.54/0.618 0.025 +0.13 No Paradox
0.0005 0.045 0.54/0.618 0.244 +1.22 No Paradox

Table 5: Parameter Values for the Weak Green Paradox
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