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Abstract

This study statistically confirms the change of correlations across industries in
the United States equities market in the financial crisis of 2007–2008. We use the
regime-switching framework to identify the phenomenon and to study whether
investors can use information about the structural change effectively in facing
another crisis of that magnitude. To capture the irreversible structural change in
the financial crisis and to separate it from the recurring boom–recession switches,
we introduce two Markov chains and succeed in identifying these two different
market movements. Our simulations of asset allocation demonstrate that the
informed investor who knows the timing of the structural change can outperform
uninformed investors from the viewpoint of mean-variance efficiency. However,
our simulations also show that if the investor only assumes the possibility of the
structural change and does not know its timing, then the result is not the same,
which reveals the difficulty in detecting when the change actually occurs.
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1 Introduction

The global financial crisis in 2008 shows the importance of understanding correlations of
financial instruments. During the catastrophic shock, prices of financial assets are reported
to have moved together; correlations of asset returns, including those traditionally considered
weak, rapidly increased. This phenomenon causes significant impacts on derivatives prices
and hence, on risk management. Accordingly, as part of post-crisis study, there has been an
increasing body of literature about measuring and managing correlation risk. To name just a
few, Driessen, Maenhout and Vilkov (2009) study whether exposure to marketwide correlation
shocks affects expected option returns, and Buraschi, Porchia and Trojani (2010) propose a
new optimal portfolio choice model by allowing correlation across industries to be stochastic.
Driessen et al. (2009) find that assets sensitive to higher marketwide correlations earn negative
excess returns. Given the above studies, this study has two aims: the first is to identify the
irreversible structural change in correlations across industries’ returns in the United States
(US) equities market, and the second is to test whether the information regarding a structural
change can be effective in an investment decision.

As for the first goal, we note that the abovementioned studies suggest that the correlations
among the returns of the financial instruments change after the global financial crisis. Since the
global financial crisis started from the US, we focus on the equities market there. To capture
the correlation changes, we use the Markov regime-switching model introduced by Hamilton
(1989) in financial economics. More specifically, we propose a regime-switching model with
two (mutually independent) Markov chains: one reversible and the other irreversible. The
latter chain is used in an attempt to separate the possibly irreversible structural change in
correlations from the ordinary regime switching induced by bull and bear markets.

Our empirical findings include (1) the reversible chain captures the shifts of the mean
and variance of the individual industry indexes, which alone cannot explain the change in the
correlation structure among the industries, (2) the irreversible change is estimated to have
occurred between August 2007 and October 2007, which roughly coincides with the period
when the financial crisis was becoming obviously imminent, and (3) there is clear evidence
that the correlation across industries increased after that period. These results confirm our
perceptions that the financial crisis in 2007–2008 changed the market structure.

As for the second goal, we test whether investors can use information of the structural
change effectively in facing a crisis of comparable magnitude to the collapse in 2007–2008.
To answer this question, we conduct Monte Carlo simulations of asset allocations. In our
simulations, we set investors to optimize their mean-variance criteria since the real-life measure
of investment efficiency is usually based on the mean-variance preference. Our hypothetical
investors are characterized by their information levels, depending on which models they believe
and how much information they have about regimes and correlations. If their performances
are different, then the difference represents the benefits or costs of the information regarding
regimes and structure.

By the simulations, we first confirm that the information about market regimes and struc-
ture is valuable: the informed investor who knows the true market model achieves better
performance than less informed investors. The sample standard deviations of the informed
investor’s global minimum variance portfolio is the lowest of all the investment strategies. The
sample Sharpe ratios of the informed investor’s tangency portfolio is the greatest of all the
investment strategies. Next, we conduct the test in the setting in which investors do not know
the distribution parameters and current regimes and structure. Thus, they need to estimate
repeatedly the distribution parameters and current regimes and structure at each time period.
In contrast to the first test, the portfolios of the investor who believes in both reversible and
irreversible chains underperformed in terms of both the standard deviation of the minimum
variance portfolio and the Sharpe ratio of the tangency portfolio. To explain why this oc-
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curred, we measure the estimation errors of the timing of the structural change. They show
that the investors do not always react correctly to the movement of structure. To investigate
further whether the failure of the second test is caused by regime-switching estimation, we
conduct Monte Carlo simulations based on the regime-switching models without structural
changes. Nevertheless, we find that the uninformed investor achieves the best performance of
all investor types. In this respect, Guidolin and Ria (2011) report that from the viewpoint
of the Sharpe ratio, investors using the regime-switching models do not always outperform
investors using other models. This is consistent with our results.

The rest of this section is devoted to a literature review related to our study. There
is a large number of studies on the correlation in international stock markets. For example,
Berben and Jansen (2005) investigate the correlations of international stock markets by fitting
smooth transition generalized autoregressive heteroskedasticity (GARCH) models to weekly
return data. They report correlations among the German, United Kingdom (UK), and US
stock markets doubled in the period 1980–2000. However, the correlations between Japan
and other markets did not change significantly in this period. Their results indicate that the
continuous change in correlations can occur whereas our result shows that a drastic change
in correlations occurred in the US equities market. Other studies include Karolyi and Stulz
(1996), Ramchand and Susmel (1998), Das and Uppal (2004), and Bekaert, Hodrick and
Zhang (2009).

The regime-switching model is introduced by Hamilton (1989) to capture sudden changes
in economic time-series data. In the line of empirical studies, the literature using recur-
sive regime-switching models suggests the existence of these two kinds of sources for changes
of the market conditions, namely, recursive regime shifts and an irreversible change. Ang
and Bekaert (2002) use a regime-switching model to identify recursive regime shifts in the
international financial market. They succeed in reproducing the asymmetric correlation pat-
terns reported by Longin and Solnik (2001). Okimoto (2008) develops the model of Ang and
Bekaert (2002) and finds non-linear and asymmetric dependence patterns of financial assets
in the market. Pettenuzzo and Timmermann (2011) find irreversible structural changes in the
US financial market using the irreversible regime-switching model. Our analysis integrates
these two types of regime-switching models.

The literature also reports the positive values of regime information. Ang and Bekaert
(2002) simulate the economic effects of observable regime switching with the CRRA (constant
relative risk aversion) utility. Their study of simulation using empirically estimated param-
eters indicates that there is a positive economic value when an investor takes into account
regime switching in the international equities market. Guidolin and Timmermann (2007) ex-
tend Ang and Bekaert (2002) under unobservable regime switching in the US financial market.
They report the existence of a positive economic value in the unobservable regime-switching
market. Guidolin and Timmermann (2008a) consider the optimization problem of the higher-
order preference, such as skewness and kurtosis. Tu (2010) applies the Bayesian approach to
the mean-variance optimization problem. Other examples include Guidolin and Timmermann
(2008b), Pettenuzzo and Timmermann (2011), and Guidolin and Ria (2011).

The advantage of using the regime-switching model includes that it may capture some
moment properties, frequently observed in real markets, such as auto-correlation, volatility
clustering, asymmetric correlation, non-normal skewness, and kurtosis (e.g., Timmermann
(2000)). To study the effects of these properties in investment, many studies consider dy-
namic portfolio selections with regime switching. In theoretical approaches, Yin and Zhou
(2004) study the discrete-time, finite horizon mean-variance preference optimization problem
under the observable regime-switching settings. Honda (2003) considers the continuous-time
consumption and investment problem with the power utility under the unobservable regime
switching. However, since the settings in the abovementioned theoretical literature do not
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precisely match the settings in our simulations, so we use the one-period optimal portfolio.
The rest of this paper is organized as follows: Section 2 introduces our regime-switching

model. Section 3 presents estimation methodology and results. The latter part consists of
the following: first, we test if the reversible Markov chain captures a stationary component of
asset returns; then, we estimate whether and when the irreversible structural change occurred.
Given the estimated timing of the structural change, we compare means and covariance before
and after the structural change. Section 4 shows the results of the asset allocation problem
using the Monte Carlo simulation. Section 5 concludes, and some technicalities about the
estimation procedure, data details, and model specification are provided in the Appendix.

2 Models

We consider a discrete-time, finite horizon regime-switching model, where t varies from 0 to T
with T > 0 fixed. Let (Ω,F ,P) be a complete probability space, which hosts a coupled Markov
chain Z = (Zt)

T
t=0 that explains regime switch and some stochastic process that drives the

log-return process Y := (Yt)
T
t=0. The variable Zt indicates a regime at time t and we assume

that an evolution of regime Z is described by a couple of two independent Markov chains
(St)

T
t=0 and (Dt)

T
t=0, so that we denote Z = (S,D).

The first component (St)
T
t=0 captures a reversible transition in the regimes of asset returns.

We assume that S is a stationary Markov chain with two regimes {0, 1} and the time-invariant
transition probability matrix

P :=

(
P(St+1 = 0|St = 0) P(St+1 = 1|St = 0)
P(St+1 = 0|St = 1) P(St+1 = 1|St = 1)

)
=

(
p00 1− p00

1− p11 p11

)
,

where p00 and p11 are constant parameters to be estimated.
The second component (Dt)

T
t=0 captures an irreversible structural change in the asset

returns. In particular, we assume that the structural change can occur only once. This can
be modeled via a Markov chain consisting of two regimes {0, 1}, where Dt = 0 represents the
regime before a structural change occurs and Dt = 1 represents the regime after the structural
change. Accordingly, the transition probability matrix of D is time invariant and defined by

Q :=

(
P(Dt+1 = 0|Dt = 0) P(Dt+1 = 1|Dt = 0)
P(Dt+1 = 0|Dt = 1) P(Dt+1 = 1|Dt = 1)

)
=

(
q00 1− q00
0 1

)
,

where q00 is a constant parameter to be estimated. By construction, D0 = 0 and Dt cannot
return to regime 0 once Dt moves, at some time t, to regime 1. Furthermore, for comparison,
we also consider the model without any structural change, which is done by setting q00 = 1.
Note that in this case, the model reduces to a conventional regime-switching model with
Markov chain S. Hereafter, the model constrained with q00 = 1 is denoted by “Model S2”
and the model without any constraint is denoted by “Model S2D2.”

The process Y is a vector of log returns of N -industry stock indexes defined by

Yt = µZt +Σ
1/2
Zt

et,

where, for each t ≥ 0, µZt is the N -dimensional vector, Σ
1/2
Zt

is the N × N matrix, which

satisfies Σ
1/2
Zt

(Σ
1/2
Zt

)⊤ = ΣZt , and (et)
T
t=0 is an N -dimensional identically and independent

distributed (i.i.d.) standard normal vector. The mean and covariance of process (Yt)
T
t=1 are

affected by the regime described by (Zt)
T
t=1 in the following way:

µZt =

1∑
s=0

1∑
d=0

1{St = s,Dt = d}µs,d, ΣZt =

1∑
s=0

1∑
d=0

1{St = s,Dt = d}Σs,d
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where µs,d (s = 0, 1, d = 0, 1) is a constant N -dimensional vector and Σs,d (s = 0, 1, d = 0, 1)
is an N ×N constant positive definite symmetric matrix.

By this formulation, the conditional mean and covariance of Yt given Zt are

E(Yt|Zt) = µZt , Var(Yt|Zt) = ΣZt .

Accordingly, the distribution of Yt given Zt is

Yt|Zt ∼ N(µZt ,ΣZt)

where N(A,B) is the normal distribution with mean A and covariance B.
The marginal conditional distribution is

Y j
t |Zt ∼ N(µj

Zt
, (σj

Zt
)2), j = 1, . . . , N

where µj
z and (σj

z)2 are the jth component of µZt and the j× jth-element of ΣZt , respectively.
The standard assumptions about the dependence structure of the model are as follows:

Assumption 2.1 Let Ft := σ{Ys : 0 ≤ s ≤ t} be the σ-algebra generated by the log-return
process Y .

(i) Su and Dv are independent for any pair of u and v; 0 ≤ u, v ≤ T .

(ii) For any t ≥ 0, given St, St+1 is independent of Ft, and given Dt, Dt+1 is independent
of Ft.

We employ these assumptions in estimation; see Section 3 and the Appendix.

3 Estimation

3.1 Data

We estimate the models of Section 2 using monthly industry indexes. All the data are obtained
from the “Thomson Reuters Datastream.” We use the indexes of Standard & Poor’s 500 sector
total return indexes classified into 10 industries, following the Global Industry Classification
Standard. They are the total return indexes calculated by the data source. Before estimation,
we divide them to into six large groups and integrate indexes in each group1. How we integrate
them is outlined in Appendix 6.2. We pick out the monthly data of the integrated indexes
from the daily data and compute their monthly log-returns. Consequently, we obtain the
monthly data of six large sector indexes. The monthly log-returns of the integrated indexes
covered from February 1995 to December 2011, so it have a total of 203 data points. Table
1 shows the acronyms of the industries and the correspondence of the acronyms to the group
of integration.

1The estimation using the original 10 indexes is very difficult because the 10-index model has many
parameters. Their number is 263 when estimating our main model, whereas the number of parameters
in the 6-index model is 111; 263 is much greater than the length of available monthly data. Thus, we
integrate the index to reduce the parameters.
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3.2 Method

By using the log return process Y of the integrate sector indexes, we estimate the two unknown
components of the model. The first component is an evolution of the regimes, in which we
can estimate only the probability of being at particular regimes of Z = (S,D). The second
component is the mean vector µZt and covariance matrix ΣZt , which are distinct for each
regime. We jointly estimate these components based on an iteration method. In particular,
we use the expectation-maximization (EM) algorithm, as introduced by Dempster, Laird and
Rubin (1977), after suitably making it fit our framework. By construction, the initial state
is Z0 = (0, 0) or Z0 = (1, 0), and we denote by ρs the initial marginal probability of being at
regime s, that is, P(S0 = s).

Recall that (Ft)
T
t=0 is the information of observable process (Yt)

T
t=0 up to time t and let

Θ(k) be the candidate of parameters P,Q, µs,d, (s, d = 0, 1), Σs,d, (s.d = 0, 1), and ρs, (s = 0, 1)
in the kth iteration of the EM algorithm. Following Hamilton (1990), the updating formulae
for our model parameters in the (k + 1)th iteration are

µ
(k+1)
s,d =

∑T
t=0 YtP(St = s,Dt = d|FT ; Θ

(k))∑T
t=0 P(St = s,Dt = d|FT ; Θ(k))

Σ
(k+1)
s,d =

∑T
t=0(Yt − µ

(k+1)
s,d )(Yt − µ

(k+1)
s,d )⊤P(St = s,Dt = d|FT ; Θ

(k))∑T
t=0 P(St = s,Dt = d|FT ; Θ(k))

p(k+1)
ss =

∑T
t=1 P(St = s, St−1 = s|FT ; Θ

(k))∑T
t=1 P(St−1 = s|FT ; Θ(k))

q
(k+1)
00 =

∑T
t=1 P(Dt = 0, Dt−1 = 0|FT ; Θ

(k))∑T
t=1 P(Dt−1 = 0|FT ; Θ(k))

ρ(k+1)
s = P(S0 = s) = P(S0 = s|FT ; Θ

(k)) s = 0, 1, d = 0, 1,

where P( · | · ,Θ(k)) is the probability calculated under the parameter set Θ(k). Hamilton
(1990) shows if we repeat updating the parameters using these formulae, then the sequence of
the parameters obtained by this algorithm converges, as k → ∞, to the maximum likelihood
estimators. The EM algorithm is based on the following probabilities of being at a particular
regime:

P(St = s,Dt = d|FT ; Θ
(k))

P(St = s, St−1 = ŝ|FT ; Θ
(k))

P(Dt = d,Dt−1 = d̂|FT ; Θ
(k))

P(S0 = s|FT ; Θ
(k)),

which we estimate by the method Kim (1994) proposed. For the detail of the derivation, see
the Appendix.

3.3 Results

The objective of this subsection is to investigate whether and when an irreversible structural
change occurred and how it affected a stationary component of asset returns. In particular,
we want to see how the irreversible change, if it exists, altered the correlation structure of
asset returns.
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3.3.1 Identifying the Markov chains (S, D)

We first want to test whether a two-state reversible regime-switching model reasonably cap-
tures a stationary component of asset returns.

The first figure in Figure 1 shows both National Bureau of Economic Research (NBER)
recession dates (shaded regions) and the probability of being at regime St = 0 estimated by
Model S2 (without a structural change). On the other hand, the second figure in Figure
1 replaces the latter probability with the one estimated by Model S2D2 (with a structural
change) and adds the probability of being at regime Dt = 0. Both figures indicate nearly
identical probability of the recursive state variable, which supports our assumption that the
irreversible structural change in asset returns occurs independently of the stationary and re-
versible transition in asset returns. Furthermore, we conduct the Carrasco, Hu and Ploberger
(2014) test (hereafter the CHP test) used widely for detecting the existence of Markov switch-
ing2. The result is reported in Table 2, where the test is performed sector by sector. The
test statistics exceed 1% critical value except for the energy industry (ENE), so that the data
indicate the existence of Markov switching structure. Given the above results, our two-state
regime-switching model seems to capture a stationary component of asset returns.

Figure 1 also identifies a relationship between regime St and the economic environment
in the US. Although regime St = 0 in Model S2 and regime St = 0 in Model S2D2 do not
necessarily represent a period of the economic boom, the estimated probabilities of being at
these regimes and a boom period in the US economy almost coincide after 2005. This suggests
that the asset returns depend on the economic environment. Therefore, for simplicity, we call
St = 0 a boom regime and St = 1 a recession regime.

Next, we estimate whether and when the irreversible structural change occurred. Table 3
shows the Akaike information criterion (AIC) statistics for the model with and without the ir-
reversible structural change. These statistics imply that the model with the irreversible struc-
tural change fits the data better than the model without the irreversible structural change.
Moreover, the AIC of Model S2D2 is lowest in our examined models (see Appendix 6.3).
Thus, the data suggest the existence of the irreversible structural change.

In terms of the timing of the irreversible structural change, the dashed line in the second
figure of Figure 1 reports the estimated probability of being at regime Dt = 0. The result
implies that the irreversible structural change occurred between August 2007 and October
2007. This roughly corresponds to a period at the start of the financial crisis. Thus, the
estimated irreversible structural change corresponds to the financial crisis.

To identify the abovementioned irreversible structural change, it is crucial to estimate the
model by jointly using multi-sector returns. To observe this further, we report, in Figure 2,
the probability of being at regime Dt = 0 obtained by estimating the model consisting of
single-sector returns.

Although all the sector returns imply that the probability of being at regime Dt = 0
started to decline soon after the beginning of the data, the probability declined gradually.
This means that we cannot infer the exact timing of the irreversible structural change via
single-sector data. On the contrary, in our multi-sector estimation (see the second figure in
Figure 1 again), the probability of being at regime Dt = 0 declined dramatically from 1 to 0
in a single period. This confirms that the multi-sector estimation is a key to infer the timing
of the irreversible structural change.

2The CHP test is developed by Carrasco et al. (2014). The null hypothesis of this test is that a
time series is not Markov switching.
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3.3.2 Impacts of structural change on means and covariance

Table 4 summarizes means and volatilities of each sector returns for each regime of Models
S2 and S2D2. We confirm that at the boom regime St = 0, means are relatively higher than
the recession regime St = 1. Moreover, volatilities are higher in the recession regime than
the boom regime. These relationships of parameters are consistent with the meanings of St

explained in the previous subsection, that is, a business cycle.
To confirm this conjecture, we test the null hypothesis that means and volatilities in

the boom regime are equal to those in the recession regime. These tests are the standard
Wald-type tests for maximum likelihood estimators. As shown in Panel A of Table 5, we
reject the null hypotheses at the 1% significant level except for a few tests. These results are
statistical evidence that the reversible variable S captures booms and recessions in the US
stock market. Similarly, the results of tests among different values of S in Model S2 (Panel
C) show significant differences, although these results are weaker than in Model S2D2.

On the other hand, Panel B in Table 5 shows the results of tests whose hypotheses are
that means and volatilities before the irreversible structural change are equal to those after
the irreversible structural change. Contrary to the results with equality across different S,
the significant difference of parameters across different D are not always found. In particular,
the hypotheses that assume equality of means across different values of D in the boom regime
(S = 0) are not rejected at the 10% significance level. Although the means in the boom
regime, except for the consumer goods industry (CG), increase when the structural change
occurs (see Table 4); however, these increases are not significant.

By contrast, the irreversible structural change has a stronger effect on the correlation
structure across sector returns, which is summarized in Table 8. The full correlation coeffi-
cients are reported in Tables 6 and 7.

We test whether the recursive regime and structural change have increased or decreased
correlations. In Model S2D2 of Table 8, many pairs among the indexes after the structural
change are more strongly correlated than before the change in each recursive regime. In the
boom regime S = 0, 13 pairs (87%) after the change became more strongly correlated than
that before, whereas 11 pairs (73%) after the change became more strongly correlated than
that before in the recession regime S = 1. By contrast, a clear relationship of the correlations
between the different S is not found compared to that between the different D. These results
imply that the structural change variable D affects the structure of correlations.

Furthermore, we examine the hypothesis testings for whether the correlation structure
changes across the two regimes. As with the tests of means and volatilities, these tests
are the Wald-type test. First, we consider the hypothesis testings that test the equality
of correlations before and after the structural change. In the boom regime, the significant
increases of the correlations between before and after the structural change are found in 11
pairs (73%) at the critical level 10%. However, only four pairs (27%) in the recession regime
increase their correlations significantly when the structural change occurs, and three pairs
(20%) of correlations in the same regime after the change are significantly lower than that
before the change. Therefore, the structural change affects correlations in the boom regime
more strongly than correlations in the recession regime.

Second, we consider the hypothesis testings that test the equality of correlations between
the boom regime and the recession regime. Before the change, the correlations of 4 out of
15 pairs among the indexes in the recession regime are significantly higher than those in the
boom regime at the 10% critical level, and no pair in the boom regime is found to be more
significantly correlated than in the recession regime. This result implies higher correlation in
the recession regime than in the boom regime before the structural change. On the contrary,
after the change, 10 pairs (67%) are more strongly correlated in the boom regime than in the
recession regime, and the differences in 4 pairs (27%) of them are significant at the 10% level.
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However, only five pairs (33%) are more strongly correlated in the recession regime than in
the boom regime and the differences in two pairs (13%) of them are significant. This result
suggests the indexes are more strongly correlated in the boom regime than in the recession
regime after the structural change.

See Tables 9 and 10 for the hypothesis testing results on correlation coefficients before and
after the structural change, based on which we created the summary table (i.e., Table 8).

4 Asset allocation test for regime switching

To examine the effects of the information about regime switching and structural change, we
consider asset allocation problems in the regime-switching market. We consider the global
minimum variance portfolios and tangency portfolios and simulate the performances of these
portfolios by Monte Carlo simulations. In the simulations, we consider two different market
environments. One is the market in which investors know the market structure, namely,
the distribution parameters and values of state variables. Another is the market in which
investors do not know the market structure. Then, the investors need to estimate the market
structure to invest rationally. In both of the simulations, we generate simulated time-series
using the estimated parameters in Section 3. In the first simulation, we conclude that there
are statistically significant advantages of the regimes and structure’s information. However,
the second simulation reveals that these advantages vanish in more realistic settings and
indicates that there is a difficult implementation problem of regime-switching information.
In subsection 4.1, we report the first test. The results of second simulation are shown in
subsection 4.2. Subsection 4.3 checks the robustness of the results in the second subsection.

4.1 Values of information

In this subsection, there are five types of investor and we examine the performance of each
investor’s portfolio. We assume that the true market model is Model S2D2 in Section 2 with
the parameters estimated in Section 3. The first type of investor knows the true model and
true parameters, which are estimated in Section 3. She knows the true regime and structure
of the market at every time and rebalances her portfolio in response to regime switches and
structural change optimally. We call this rebalance scheme “S2D2.” The second type of
investor believes that the returns are generated by the regime-switching model based on only
the recursive Markov chain, S, that is, Model S2 in Section 2. She knows the true state St

and rebalances her portfolio in response to the regime shifts. To construct her portfolio, she
uses the Model S2’s distribution parameters estimated in Section 3. We call the second type
rebalance scheme “S2.” The third type of investor believes that the initial regime will not
change, but the structural change will occur. Therefore, she thinks the market model is Model
D2 (see Appendix 6.3). She knows only the current value of the irreversible Markov chain,
D, at each time and uses the estimated parameters of Model D2 to construct her portfolios.
We call the third type rebalance scheme “D2.” The remaining two types of investors are
used as benchmarks. The fourth investor type considers that the regimes and structure will
not change, and so, she thinks that the returns of indexes are i.i.d. Therefore, in order to
construct her portfolios, she uses the sample mean and variance of the actual data that we
used in Section 3. We call her “IID.” The fifth type of investor adopts the equally weighted
portfolio at every time, so her portfolio is always 16/6. We call this strategy “EW.”

In summary,

1. S2D2: The investor knows that the true market model is Model S2D2. She knows
the current regime and structure at each time and uses the Model S2D2’s parameters
estimated in Section 3 to construct her portfolios.
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2. S2: The investor believes that the market model is Model S2 (only recursive regime
shifts). She knows the current regime at each time and uses the parameters Model S2’s
parameters estimated in Section 3 to construct her portfolios.

3. D2: The investor believes that the market model is Model D2 (only irreversible struc-
tural change). She knows the current structure at each time and uses the parameters
Model D2’s parameters estimated in Section 6.3 to construct her portfolios.

4. IID: The investor believes that the returns of vector are i.i.d. and uses the sample mean
and variance of the actual data used in Section 3 to construct her portfolios.

5. EW: The investor always adopts the equally weighted portfolio.

Next, we consider the construction of the investors’ portfolios. We should consider the
dynamic portfolio selections based on the mean-variance criteria; however, they cannot be
implemented easily3. Therefore, we assume that in every time, the investors optimize their
1-month objectives as well as Markowitz (1952) and Merton (1972). We denote the return
vector of the type I investor at time t by RI

t . Now, we consider the five types of investor
I = S2D2, S2, D2,IID, and EW; however, the EW portfolio is 16/6, and so, we consider only
the cases of S2D2, S2, D2, and IID.

Let ϕI,t = (ϕI,t,1, · · · , ϕI,t,6)
⊤ be a portfolio of the type I investor at time t. Then, the

return of the portfolio ϕI
t is

RI
t+1 =

6∑
i=1

ϕI,t,i

(
exp

{
Y

(i)
t+1

}
− 1
)
,

where Y
(i)
t+1 is the ith component of the log-return vector Yt+1. The investors’ information

differs. We denote by FI
t the information of the type I investor. The investor chooses the two

portfolios that minimize the variance of return and that maximize the Sharpe ratio at each
time with a short-selling constraint.

The portfolio minimizing the variance at time t is the solution of the following minimization
problem.

min
ϕI,t

Var(RI
t+1|FI

t )

subject to
6∑

i=1

ϕI,t,i = 1, ϕI,t,i ≥ 0 for all i = 1, . . . , 6.

We call the solution the “global minimum variance portfolio,” according to the literature.
Furthermore, the solution of the abovementioned problem depends only on the values of St

and Dt, does not depend on their past values before time t − 1, and so, it is sufficient to
compute the four portfolios with four different values of S and D at most in order to consider
the dynamic portfolio selection.

The portfolio maximizing the Sharpe ratio at time t is the solution of the following max-
imization problem.

max
ϕI,t

E(RI
t+1|FI

t )√
Var(RI

t+1|FI
t )

subject to
6∑

i=1

ϕI,t,i = 1, ϕI,t,i ≥ 0 for all i = 1, . . . , 6,

3A straightforward multi-period, mean-variance optimization problem is time inconsistent in the
sense that the dynamic programming principle does not hold. See Li and Ng (2000).
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where we assume that the risk-free rate is 0. Similarly to the global minimum variance
portfolio, the solution of the abovementioned problem depends only on the value of St and
Dt. Therefore, we need to compute the four portfolios maximizing the Sharpe ratios the most.
We call the solution of the abovementioned problem the “tangency portfolio.”

Since the prices of indexes have the mixed log-normal distributions, the conditional ex-
pectation value of return RS2D2

t+1 of the type S2D2 investor given by St = s,Dt = d is,

E(RS2D2
t+1 |St = s,Dt = d) = ϕ⊤

S2D2,t

(
gs,d(µ,Σ)− 16

)
,

where 16 is the six-dimensional vector whose all elements are 1, and where gs,d is a R6-valued
function defined as follows,

gs,d(µ,Σ) :=
∑
s′,d′

P s,d
s′,d′

 exp{µ1
s′,d′ + σ1

s′,d′/2}
...

exp{µ6
s′,d′ + σ6

s′,d′/2}

 ,

P s,d
s′,d′ := P(S1 = s′, D1 = d′ | S0 = s,D0 = d).

µi
s′,d′ is the ith component of the vector µs′,d′ and σi

s′,d′ is the i × ith element of the matrix

Σs′,d′ . µs,d and Σs,d are defined in Section 2. The conditional variance of her return RS2D2
t+1

given by St = s,Dt = d is

Var(RS2D2
t+1 |St = s,Dt = d) = ϕ⊤

S2D2,tHs,d(µ,Σ)ϕS2D2,t,

where Hs,d is the R6×6-valued function defined as follows,

[Hs,d(µ,Σ)]i,j =
∑
s′,d′

P s,d
s′,d′ exp

{
µi
s′,d′ + µj

s′,d′ +
1

2
(σi

s′,d′ + σj
s′,d′ + σi,j

s′,d′)

}

−

∑
s′,d′

P s,d
s′,d′ exp

{
µi
s′,d′ +

1

2
σi
s′,d′

}∑
s′,d′

P s,d
s′,d′ exp

{
µj
s′,d′ +

1

2
σj
s′,d′

} ,

i, j = 1, . . . , 6.

[Hs,d(µ,Σ)]i,j is the i× jth element of the matrix Hs,d(µ,Σ) and σi,j
s′,d′ is the i× jth element

of the matrix Σs′,d′ .
The partially informed investors also consider that similar moments of returns have condi-

tioned their information. The type S2 investor uses the conditional mean E[RS2
t+1|St = s] and

variance Var(RS2
t+1|St = s) to solve the optimization problem. These moments are computed

using the estimated parameters of Model S2 in Section 3. Similarly, the type D2 investor uses
the conditional mean E[RD2

t+1|Dt = d] and variance Var(RD2
t+1|Dt = d), which are computed

using the estimated parameter of Model D2. The type IID investor uses the sample mean
and variance of the actual data as the one-step-ahead mean and variance in order to solve her
optimization problems.

Now, we estimate the performances of these portfolios. We generate the log-return pro-
cesses of Model S2D2 by the Monte Carlo method using the parameters estimated in Section
3. The rebalancing interval of the investors’ portfolios is 1 month. The investment horizons
are 140 months. We examine the simulations in the initial state S0 = 0 or 1 and the initial
structure D0 = 0 or 1. The number of trials is 10,000. Therefore, we simulate 10,000 in-
dependent data series with the 140 months. In each trial, nine sequences of the returns are
computed—the global minimum variance portfolios and tangency portfolios of S2D2, S2, D2,
and IID, and the equally weighted portfolio (EW). We compute the sample means, standard

11



deviations, skewness, kurtosis, and Sharpe ratios of those nine return sequences during 140
months in each simulation trial and measure the performances of the investment strategies by
the means of these statistics over the trials.

Tables 12 and 13 show the simulation results. The performances of the type S2D2 investor
are the best of the investors in all the initial regimes and structures. The mean of sample
standard deviations of the global minimum variance portfolio of S2D2 at each initial regime
and structure is the smallest of all the strategies and the mean of the sample Sharpe ratios of
the tangency portfolio of S2D2 is the largest of them. In each initial regime and structure, the
90% credible interval of the Sharpe ratio of the S2D2’s tangency portfolio does not overlap
the 90% credible intervals of the Sharpe ratios of other portfolios. This implies that investing
in the tangency portfolio of S2D2 is statistically significantly efficient. Furthermore, when
the initial regime and structure start at S = 0 and D = 1, the mean of the Sharpe ratios of
the S2D2’s tangency portfolios is positive, however the means of the Sharpe ratios of other
portfolios are negative. When the initial regime and structure start at S = 1 and D = 1, all of
the means of the Sharpe ratios of the tangency portfolios are negative, and so, these Sharpe
ratios may not represent the efficiency of the investment performances. However, since the
mean of S2D2’s tangency portfolio is the highest and the standard deviation is the smallest
of the tangency portfolios, we can conclude that the tangency portfolio of S2D2 is the most
effective portfolio among them. These results indicate that the knowledge of the actual market
model and the values of state variables brings a positive effect in investment.

Next, we consider whether the regimes or the structures are important for investment.
Tables 12 and 13 report that the investment strategies based on D2 are more effective than
those based on S2. In all the initial regimes and structures, the means of the standard
deviations of the D2’s global minimum variance portfolios are smaller than those of the S2’s
portfolios and the means of the Sharpe ratios of the D2’s tangency portfolios are larger than
those of the S2’s portfolios. For instance, in the case in which the initial regime is 0 and
the initial structure is 0, the mean of the standard deviations of the D2’s global minimum
variance portfolio is 3.519, whereas the mean of the standard deviations of the S2’s global
minimum variance portfolio is 3.550. The mean of the Sharpe ratios of the D2’s tangency
portfolio is 0.235, however the mean of the Sharpe ratios of the S2’s portfolios is 0.201.
Similar results appear in the other initial regimes and structures. These results suggest that
the structural information is more important than the regime information. In addition, the
tangency portfolios of S2 and D2 underperform the IID tangency portfolios. For instance, in
the case of the initial regime 1 and structure 1, the difference of the means of the tangency
between S2 and IID is 0.731, and this is statistically significant in the sense that their 99%
credible intervals do not overlap each other. Moreover, the mean of S2 (-1.857) is smaller than
the IID (-1.126) and the standard deviation of S2 (6.178) is larger than the IID (5.187). Thus,
it is clear that the tangency portfolio of S2 is less efficient than the IID in the mean-variance
sense when the initial regime is 1 and the initial structure is 1. D2’s tangency portfolio
also is less efficient than IID in the mean-variance sense. These results suggest that the
IID investor’s tangency portfolio is more mean-variance efficient than the partially informed
investors’ tangency portfolios.

Figure 3 shows the means of the standard deviations of global minimum variance portfolios
and the Sharpe ratios of tangency portfolios. The horizontal line represents the length of
months investing portfolios. In all the initial regimes and structures, the standard deviation
of the global minimum variance portfolios of S2D2 is the smallest of the other portfolios in
the whole of the investment horizon. Similarly, the Sharpe ratio of the tangency portfolios of
S2D2 is always the highest of the other portfolios in all the initial conditions. These imply
that the advantages of full information exist at various investment horizons.

Table 14 shows the weights of the global minimum variance portfolios and tangency port-
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folios. The weight of the consumer goods industry (CG) of the type S2D2 investor’s global
minimum variance portfolio decreases after the structural change, but the type D2 investor
increases the weight of CG after the structural change and this weight is very high (more than
60%). On the other hand, the type S2D2 and S2 investors have similar tangency portfolios
before the structural change. In the boom regime, they invest their wealth mainly in the
indexes of the energy industry (ENE), CG, and the utilities industry (U). In the recession
regime, they invest almost all their wealth in ENE. However, after the structural change, the
type S2D2 investor decreases the weight of ENE and increases CG in each regime. These
portfolio differences among the investors confirm that the partially informed investors (type
S2 and D2 investors) cannot react to the change of the market condition correctly.

4.2 Rolling estimation: limitation of the regime-switching model
with the structural change

Next, we simulate the performances of the investors in the market in which they cannot
access the distribution parameters and the information of the market regimes and structure.
However, the advantages of the knowledge of the market conditions that we observed in
subsection 4.1 vanish in the test of this subsection.

As well as subsection 4.1, we consider the four investor types, namely, type S2D2, S2,
IID, and EW. However, in contrast to the settings of subsection 4.1, they do not know the
distribution parameters and the movement of the state variables, S and D. Therefore, they
apply the assumed models to the observed data repeatedly in their investment horizon to
construct their portfolios. The estimation methods are the same as those in this study (see
Section 3 and Appendix). The IID investor constructs her portfolios using the sample means
and variances of the past simulated returns. The EW investor always invests in the equally
weighted portfolio, 16/6. The type S2D2, S2, and IID investors construct the two portfolios,
the global minimum variance portfolio and the tangency portfolio. In subsection 4.1, the port-
folios depend only on the values of state variables; however, the portfolios in this simulation
vary through time, since the estimated parameters change when the investors observe the new
return data. Finally, we consider seven investment strategies, the global minimum variance
portfolios and tangency portfolios of S2D2, S2, and IID, and the equally weighted portfolio
(EW).

In summary,

1. S2D2: The investor knows that the true market model is Model S2D2. She repeatedly
estimates the Model S2D2’s parameters to construct her portfolios.

2. S2: The investor believes that the market model is Model S2 (only recursive regime
shifts). She repeatedly estimates the parameters of Model S2 to construct her portfolios.

3. IID: The investor believes that the returns of vector are i.i.d. and repeatedly computes
the sample mean and variance of the simulated sample to construct her portfolios.

4. EW: The investor always adopts the equally weighted portfolio.

Unlike the simulation in subsection 4.1, we do not consider the investor who believes
Model D2 in this simulation. This is because it is numerically difficult to compute the opti-
mal portfolios of Model D2. More specifically, we fail to compute the optimal portfolios of
Model D2 in many trials because of the singularities of the estimated variance matrixes. One
explanation is that it is rare to capture changes of market conditions in early periods since
Model D2 needs the long-run data. Furthermore, the purpose of our analysis is to investigate
the values of the information of the structural change. In this respect, the difference between
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S2D2 and S2 is more important than the difference between S2D2 and D2 since the difference
between S2D2 and S2 represents the effect of the irreversible Markov chain D. Therefore, we
omit the simulations of D2.

We simulate samples of the returns based on Model S2D2 using the parameters estimated
in Section 3. In each simulation trial, the investors do not invest in the first 60 months and
they start to invest after these months passed. However, the data in the first 60 months are
used for each investor to estimate parameters. The length of the total investment horizons is
140 months, and so, we simulate the 200-month data series of the indexes in each trial. The
investors have to estimate the market models and compute the portfolio repeatedly, and so,
this simulation is computationally intensive. Therefore, we decrease the number of simula-
tion trials to 2,000. As a result of the abovementioned simulation plan, we simulate 2,000
time series of 200 monthly return data. We compute the sample statistics of the portfolios’
returns—means, standard deviations, skewness, kurtosis, and the Sharpe ratios in each sim-
ulation trial. Therefore, we obtain the 2,000 statistics of the portfolios’ returns during 140
months and take means of these statistics over the trials. The initial regime of S is generated
randomly with its steady-state probabilities. The initial structure is D = 0.

Panel A in Table 15 shows the results of the Model S2D2 simulation. Unlike the simulation
in the case in which investors can use the information of values of the state variables, the
performance of type S2D2 is the worst of the strategies except for the EW portfolio. The
mean of the standard deviations of S2D2’s global minimum portfolios is the largest of the
global minimum variance portfolios and the mean of the Sharpe ratios of S2D2’s tangency
portfolios is the lowest of the tangency portfolios. Notable differences appear in their variances.
In both the global minimum variance portfolios and tangency portfolios, the differences of the
means of the standard deviation over the trials between S2D2 and the other models are
statistically significant in the sense that the 90% credible intervals do not overlap each other.
These results imply that there are not any advantages of knowledge of the market model
in the optimization of the mean-variance criterion, even though Ang and Bekaert (2002)
and Guidolin and Timmermann (2007) find positive economic values of knowledge in the
optimization of expected utilities.

In this simulation, the major change from subsection 4.1 is that each informed investor
estimates the parameters and states repeatedly, whereas the investors in subsection 4.1 believe
certain parameters a priori and know the current state at each time. Therefore, the estimation
errors of the parameters and the states movement exist in this simulation. It is possible
that the estimation errors cannot be ignored in the asset allocation with rolling estimation.
Indeed, Panel A in Table 15 shows that the type S2 investor who needs to estimate the
moderately complicated model underperforms the type IID investor while she outperforms the
type S2D2 investor who needs to estimate the most complicated model. Another explanation
of the disadvantage of knowledge is that the regime-switching framework will not work under
the mean-variance criterion while it works under the expected utility criterion (see Ang and
Bekaert (2002) and Guidolin and Timmermann (2007)). The rest of this subsection measures
the estimation errors and the next subsection tests whether the regime-switching frameworks
works.

To measure the degree of the estimation errors, we compute the gaps between the actual
and estimated structural changing time in the Model S2D2 simulation. As mentioned earlier
in this subsection, we fail to compute the Model D2’s portfolios in this simulation. Therefore,
it is natural to focus on the estimation error of the timing of the structural change. The type
S2D2 investor estimates the parameters and smoothed probabilities at each time. In the bth
trial, the estimated smoothed probability at time T with which the structural change had not
occurred before the time t ≤ T is denoted by pbt,T , that is,

pbt,T = P(Dt = 0 | F b
T ),
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where Fb
T is the type S2D2 investor’s information at time T in the bth trial. Let τ b be the

structural change time in bth trial. We define the mean of the smoothed probabilities around
the structural change as

pi,T =
∑

{b | τb<min{200,T}}

pb
τb+i,T

The number of elements of {b | τ b < min{200, T}}
.

If the type S2D2 investor estimates the market model correctly, it can be expected that pi,T
decreases as i increases and a large gap between p−1,T and p0,T exists.

Figure 4 displays the means of the smoothed probabilities around the structural change
in the Model S2D2 simulation. As well as our expectation, pi,T is decreasing at i and there
is a large gap between p−1,T and p0,T for all T = 100, 150, 199. However, its quantity remains
more than 0.5 after the structural change, that is, pi,T > 0.5 holds for i > 0. This means
that the estimation procedure detects the structural change after the actual structural change
occurs in most cases and that there is a limit to what the type S2D2 investor estimates as
the time of the structural change.

However, it is possible that the early structural change causes the limitation. Since the
time of structural change has a geometric distribution, the structural change tends to occur at
the early time. Thus, in most of the trials, it is possible that the S2D2 investor cannot identify
the structural change. Therefore, we condition the means of the smoothed probabilities around
the structural change to the time of the structural change. Computing them, we use only the
trials in which the structural change occurs during the periods from t = 51 to t = 150, that
is, we compute

pci,T :=
∑

{b | 51≤τb≤150}

pb
τb+i,T

The number of elements of {b | 51 ≤ τ b ≤ 150}
.

Under the condition of the timing of the structural change, the type S2D2 investor observes
many returns’ data before and after the structural change. In addition, Figure 4 shows the
changes of pci,T at T = 199. As with the unconditional case, pci,T is decreasing at i and a
large gap between i = −1 and 0 appears. Moreover, the gap of pci,T is larger than that of
the unconditional means. However, its quantity is also maintained at more than 0.5 after the
structural change. Thus, limits of estimation still exist.

4.3 Rolling estimation: limitation of regime-switching models
without a structural change

To study the other explanation, we conduct three asset allocation tests of regime-switching
models with a recursive Markov chain only. In subsection 4.2, we find that the informed
investor does not have an advantage compared to the uninformed investor from the views
of mean-variance efficiency and that it is difficult to identify the timing of the structural
change. However, it is possible that the mean-variance optimization will not work, even if
only recursive Markov chains change the market environment. Thus, we focus on the regime-
switching models with a recursive Markov chain only. We first conduct the simulation in
which the true market model is Model S2, that is, the market obeys movement of one recursive
Markov chain. To confirm robustness, we conduct two simulations under the settings of the
regime-switching model literature.

We conduct the simulation in which the simulated market model is Model S2. In the sim-
ulation of Model S2, we simulate the sample of return vectors using the estimated parameters
of Model S2, but the other settings do not change from the simulation of Model S2D2. In the
simulation of Model S2, the type S2 investor correctly understands the true market model.
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Panel B in Table 16 reports the results of the simulation of Model S2. Similar to subsection
4.2, the type S2 investor underperforms the IID investor in both the global minimum variance
portfolios and tangency portfolios. The mean of the standard deviations of S2’s global min-
imum variance portfolios is greater than the mean of the standard deviations of IID’s global
minimum variance portfolios. Moreover, the mean of the Sharpe ratios of S2’s tangency port-
folios is lower than the mean of the Sharpe ratios of IID’s tangency portfolios. Furthermore,
the 90% credible interval of the Sharpe ratios of S2’s tangency portfolios does not overlap
the 90% credible interval of the Sharpe ratios of IID’s tangency portfolios. It follows that
the difference of the Sharpe ratios between S2 and IID’s tangency portfolios is statistically
significant at the 10% significance level. However, the type S2 investor outperforms the type
S2D2 investor in this simulation.

To confirm the robustness of these results, we conduct two additional simulations using the
parameters and settings of the other literature. Using the estimation results of the regime-
switching models in Ang and Bekaert (2002) and Guidolin and Timmermann (2007), we
simulate the samples of the data process that they report. Ang and Bekaert (2002) estimate
US, UK, and German equity indexes in various models. We choose the regime-switching model
with two recursive states and simulate it. On the other hand, Guidolin and Timmermann
(2007) identify three assets in the US—a small stock index, a large stock index, and 10-year
T-bonds—as the four recursive states’ regime-switching model, and so, we simulate the time-
series using their results. In both simulations, we assume there are four types of investors,
recursive 4 states, and recursive 2 states, IID and EW. The type of 4 states (resp. 2 states)
investor believes that the number of market regimes is 4 (resp. 2). The IID investor believes
that the returns of assets are i.i.d. The EW investor always invests in the equally weighted
portfolio 16/6. As well as the former simulation, they do not know the distribution parameters
and movement of the regimes, and they estimate their believed models repeatedly. The initial
running periods are 200 months in the simulation of Ang and Bekaert (2002) and 288 months in
the simulation of Guidolin and Timmermann (2007). The investment periods are 300 months
in the simulation of Ang and Bekaert (2002) and 312 months in the simulation of Guidolin
and Timmermann (2007). To compute the tangency portfolios and the sample Sharpe ratios,
we use a positive risk-free rate in both simulations. In the simulation of Ang and Bekaert
(2002), the monthly risk-free rate is 0.0041, and the monthly risk-free rate in the simulation of
Guidolin and Timmermann (2007) is 0.0044. These risk-free rates are based on these studies.
In both of the simulations, there are 2,000 trials and the initial regime in each trial is generated
randomly with the steady probabilities.

Table.16 reports the results of the simulation based on the literature. In the case of Ang
and Bekaert (2002), the investment strategy of the global minimum variance portfolios based
on the true model (2 states) achieves the smallest mean of the standard deviation among
all the strategies, but the difference is not statistically significant. The mean of the Sharpe
ratios when the investor invests in the tangency is lower than that of the IID. In the case of
Guidolin and Timmermann (2007), both of the standard deviations of the global minimum
variance portfolios and the Sharpe ratios of the tangency portfolios are worse than the other
strategies. In both simulations, the portfolios based on the market models do not outperform
the IID portfolios in most cases.

5 Concluding remarks

In this study, we identify the change in correlation structure across industries in the US
market in the financial crisis of 2007–2008 and find limitations of the use of regime-switching
information. To capture the change in the global financial crisis, we use the regime-switching
model with both a reversible Markov chain and an irreversible Markov chain, and succeed
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in separating the two dynamics in the market, namely, the recursive regime shifts and the
irreversible structural change.

The recursive regime shifts represent the dynamics of the marginal distribution parameters
of the returns, that is, means and variances. These two recursive regimes are the boom
and recession regimes. In the boom regime, the indexes have high (conditionally) expected
returns and low volatilities, whereas they have low expected returns and high volatility in
the recession regime. Furthermore, the probability with which the market is in the recession
regime remains at a high degree at the NBER announced recession periods. By contrast, the
irreversible structural change represents the dynamics of the joint distribution parameters,
that is, correlations. Most pairs of correlations among the industries increase in each regime
after the change. The irreversible change is not found in the estimation of the time-series
of the single-industry index. Moreover, the timing of the structural change almost coincides
with the financial crisis in 2007–2008.

In the simulations of asset allocation, we find positive values for use of the regime-switching
information if the investor knows the true parameters and current states. The global minimum
variance portfolios of the informed investor achieve the smallest variance in the investors and
their tangency portfolio also achieves the highest Sharpe ratio. Moreover, these advantages
appear in the various investment horizons and initial regimes and structures. However, the
investors cannot exploit the structural change from the viewpoints of mean-variance efficiency
if they only know the kind of the true market model. The performances of the global mini-
mum portfolios and tangency portfolios of the informed investor are worse than those of the
uninformed investors.

6 Appendix

6.1 The EM algorithm

Based on Hamilton (1989) (1990) and Kim (1994), we explain the EM algorithm that we use
in this study. For notational simplicity, we consider the case of q00 = 1, so Model S2, since the
extension to the general case is straightforward. First, we introduce the full-information like-
lihood function, which means we hypothesize that we can observe unobserved variables. For
the random vectors, Y = (Y0, · · · , YT ) and S = (S0, · · · , ST ), the full-information likelihood
function is

f(Y, S; Θ) =

T∏
t=0

(
1∑

s=0

1{St = s}f(Yt|Ft−1, St = s; Θ)

)

×
T∏
t=1

(
1∑

s=0

1∑
ŝ=0

1{St = s, St−1 = ŝ}P(St = s|St−1 = ŝ)

)

×
1∑

s=0

1{S1 = s}P(S1 = s)

where Ft is the σ-algebra generated by Y up to time t and Θ is the distribution parameters
and the conditional density f(Yt|Ft−1, St = s; Θ) is

f(Yt|Ft−1, St = s; Θ) =
1√

(2π)N detΣs

exp

{
−1

2
(Yt − µs)

⊤Σ−1
s (Yt − µs)

}
.
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For the “expectation” step, we start with the initial parameter set Θ(0) to compute

Q(Θ;Θ(0)) = EΘ(0)
[log f(Y, S; Θ)|FT ]

=
T∑
t=0

1∑
s=0

P(St = s|FT ; Θ
(0)) log f(Yt|Ft−1, St = s; Θ)

+

T∑
t=1

1∑
s=0

1∑
ŝ=0

P(St = s, St−1 = ŝ|FT ; Θ
(0)) logP(St = s|St−1 = ŝ)

+

1∑
s=0

P(S1 = s|FT ; Θ
(0)) logP(S1 = s).

Next, we search the parameters maximizing Q(Θ;Θ(0)) function,

Θ(1) = argmax
Θ∈Θ

Q(Θ;Θ(0))

where Θ is the parameter space of this model. This step is the “maximization” step. We then
continue these steps from k = 1, 2, . . . .

Hamilton (1990) shows if we repeat these steps to infinity, then the sequence of the param-
eters obtained by this algorithm converges to the maximum likelihood estimators. According
to Hamilton (1990), the updating formulae of the parameters in the (k + 1)th iteration are

µ(k+1)
s =

∑T
t=0 YtP(St = s|FT ; Θ

(k))∑T
t=0 P(St = s|FT ; Θ(k))

s = 0, 1

Σ(k+1)
s =

∑T
t=0(Yt − µ

(k+1)
s )(Yt − µ

(k+1)
s )⊤P(St = s|FT ; Θ

(k))∑T
t=0 P(St = s|FT ; Θ(k))

s = 0, 1

p(k+1)
ss := P(St+1 = s|St = s; Θ(k+1)) =

∑T
t=1 P(St = s, St−1 = s|FT ; Θ

(k))∑T
t=1 P(St−1 = s|FT ; Θ(k))

s = 0, 1(6.1)

ρ(k+1)
s := P(S0 = s; Θk+1) = P(S1 = s|FT ; Θ

(k)) s = 0, 1.

These updating formulae are obtained by the first-order conditions of the maximization of
Q(Θ;Θ(0)) with respect to Θ.

By considering the formulae (6.1), we observe that we need to compute

(a) P(St = s|FT ; Θ
(k)), t = 0, · · · , T and

(b) P(St = s, St−1 = s|FT ; Θ
(k)), t = 1, · · · , T ,

which are called smoothed probabilities.
Let us suppose that we have estimated up to the kth iteration and explain how to update

to the (k + 1)th estimates. Now, we perform the following:

Forward calculation: Assume further that we have obtained P(St−1 = s|Ft−1; Θ
(k)), then we

have, for the next time step t,

(6.2) P(St = s|Ft−1; Θ
(k)) =

1∑
ŝ=0

P(St = s|St−1 = ŝ)P(St−1 = ŝ|Ft−1; Θ
(k)), s = 0, 1.
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By using this, we compute P(St = s|Ft; Θ
(k)), s = 0, 1 in the following way: By Bayes’ rule,

we obtain

P(St = s|Ft; Θ
(k)) = P(St = s|Yt,Ft−1; Θ

(k))(6.3)

=
P(Yt ∈ dy|St = s,Ft−1; Θ

(k))

P(Yt ∈ dy|Ft−1; Θ(k))
P(St = s|Ft−1; Θ

(k))

=
f(Yt|St = s,Ft−1; Θ

(k))P(St = s|Ft−1; Θ
(k))∑1

ŝ=0 f(Yt|St = ŝ,Ft−1; Θ(k))P(St = ŝ|Ft−1; Θ(k))
, s = 0, 1

where P(St = s|Ft; Θ
(k)) is called the filtered probability. As a proxy for the filtered probability

at t = 0, we use P(S0 = s; Θ(k)). We then repeat this procedure forwards up to time T . In
other words, we obtain the whole set of probabilities (6.2) and (6.3) for t = 0, . . . , T . Recall
k is still fixed.

Backward calculations: For computing (a) and (b), first we use Bayes’ rule to write

P(St = s, St+1 = ŝ|FT ; Θ
(k))

= P(St = s|St+1 = ŝ,FT ; Θ
(k))P(St+1 = ŝ|FT ; Θ

(k))

≈ P(St = s|St+1 = ŝ,Ft; Θ
(k))P(St+1 = ŝ|FT ; Θ

(k))

=
P(St+1 = ŝ|St = s,Ft; Θ

(k))P(St = s|Ft; Θ
(k))

P(St+1 = ŝ|Ft; Θ(k))
P(St+1 = ŝ|FT ; Θ

(k))

=
P(St+1 = ŝ|St = s; Θ(k))P(St = s|Ft; Θ

(k))

P(St+1 = ŝ|Ft; Θ(k))
P(St+1 = ŝ|FT ; Θ

(k))(6.4)

where in the last line we use Assumption 2.1-(ii). We compute backwards starting with
t = T −1 down to t = 0. All the probabilities in the last line are known4 and hence, we obtain

(6.5) P(St = s|FT ; Θ
(k)) =

1∑
ŝ=0

P(St = s, St+1 = ŝ|FT ; Θ
(k)).

for all t = T, · · · , 1. The resulting probabilities in (6.5) and (6.4) for t = 0, · · · , T are the
smoothed probabilities (a) and (b), respectively. Plugging (a) and (b) into the recursive for-
mulae for parameter estimation above, we have updated for the (k+1)th iteration. Note that
the smoothed probabilities, which are used in the updating formulae for parameter estima-
tion, have rich information since they estimate the probabilities of being in a certain regime
at time t by using the full observations.

6.2 Data details and integration

There are two steps to compute the integrated indexes: the first step is to compute price-
based integrated indexes, the second step is to compute total integrated indexes, that is, the
indexes, including aggregate daily dividends.

4Except for the last one, we already have the whole set of probabilities (t = 0 · · ·T ) in (6.4):

Namely, P(St+1 = ŝ|St = s; Θ(k)) is p
(k)
ss obtained in the kth iteration, and P(St = s|Ft; Θ

(k)) and
P(St+1 = ŝ|Ft; Θ

(k)) are from (6.2) and (6.3), respectively. Finally, for the last one, if we set t = T −1,
then P(ST = ŝ|FT ; Θ

(k)) is known again by (6.2). With all these, we obtain (6.5) at t = T − 1, that is,
P(ST−1 = s|FT ; Θ

(k)). This is then plugged for the next time step t = T − 2 into (6.4).
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The first step is as follows. J denotes the set of some industries, which is the group we
want to integrate. To summarize the indexes of J into one index, we compute a capitalization-
weighted average index of J, denoted by P J

t :

P J
t =

∑
j∈JM

j
t∑

j∈JAM
j
t−1

P J
t−1, t ≥ 1, P J

0 = 100,

where M j
t and AM j

t are the usual and adjusted market value of j-industry index at time t;
“adjusted” means that its variable takes into account capital actions of firms. By the data
source, the industry index P j

t is constructed as follows,

P j
t =

∑
k n

j
k,tp

j
k,t∑

k n
j
k,tp

j
k,t−1Adj

j
k,t

P j
t−1, t ≥ 1, P j

0 = 100

where nj
k,t and pjk,t are the number of shares in issue and unadjusted price of firm k, which

constitutes the j industry’s index at time t. Adjjk,t is the adjusted factor of firm k at time t.
This adjusts the capital action of firm k at time t. We define the adjusted market value of j
industry’s index as

AM j
t−1 :=

P j
t−1

P j
t

M j
t =

∑
k

nj
k,tp

j
k,t−1Adjjk,t.

Then, AM j
t−1 is the adjusted market value taking capital actions of firms into consideration.

In this manner, we compute the integrated indexes.
In the second step, we need to compute aggregate daily dividends of the industries’ indexes.

The Thomson Reuters Datastream provides a total return index in each industry. The total
return index of industry j, denoted by RIj , is defined as

RIjt = RIjt−1

P j
t

P j
t−1

(
1 +

DY j
t

100∆

)
, t ≥ 1, RIj0 = 100,

where DY j
t is the aggregate dividend yield of industry i at time t (expressed as a percentage)

and where ∆ is a certain number of days in a financial year (normally 260). By the definition
of the total index, we compute the aggregate dividend yield (expressed as a real number),

DY j
t

100
= ∆

(
RIjt

RIjt−1

P j
t−1

P j
t

− 1

)
.

The dividend yield is defined as

DY j
t

100
=

∑
k n

j
k,td

j
k,t∑

k n
j
k,tp

j
k,t

=

∑
k n

j
k,td

j
k,t

M j
t

,

where djk,t is the dividend per share of firm k at time t. Of course, firm k constitutes j
industry’s index. Therefore, the aggregate dividend of industry j at time t is

Divjt
100

= M j
t

DY j
t

100
= M j

t ∆

(
RIjt

RIjt−1

P j
t−1

P j
t

− 1

)
=
∑
k

nj
k,td

j
k,t.

The dividend yield of the industry group J at time t, denoted by DY J
t , is

DY J
t

100
=

∑
j∈JDivjt /100∑

j∈JM
j
t

=

∑
j∈J
∑

k n
j
k,td

j
k,t∑

j∈JM
j
t

.
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Finally, the total integrated index of the industry group J is

RIJt = RIJt−1

P J
t

P J
t−1

(
1 +

DY J
t

100∆

)
, t ≥ 1, RIJ0 = 100.

To confirm the validity of the abovementioned integration method, we compute the S&P
500 indexes integrating the all-sector indexes. Following the above method, we can compute
the S&P 500 index when the all-industry indexes are in one group. Our integrated indexes are
adjusted as if the initial values are the same values as the S&P 500 indexes on the initial day
(January 23, 1995). The root mean square of the difference between our integrated price index
and the S&P 500 price index is 0.366. For the total return index, the root mean square is
0.409. This indicates that the abovementioned method is a valid method to integrate different
industries’ indexes.

We compute the daily data of the integrated six indexes using the original 10 daily indexes
and extract the monthly data from these daily data. The daily data covered the period from
January 23, 1995 to December 30, 2011. Thus, the monthly data covered the period from
January 1995 to December 2011.

6.3 Specification of regime number

To determine a number of regimes, we apply some regime-switching models to the integrated
indexes. The models are as follows,

1. two recursive regimes without structural change model (Model S2),

2. two recursive regimes with once structural change model (Model S2D2),

3. three recursive regimes without structural change model (Model S3),

4. four recursive regimes without structural change model (Model S4),

5. once structural change without recursive regime model (Model D2),

6. twice structural changes without recursive regime model (Model D3),

7. two recursive state variables that have two regimes without structural change model
(Model S2S2).

The first two models are those this study is interested in. The seventh model, Model S2S2,
needs to be explained. It is regarded as the version of Model S2D2 in which D is a recursive
state variable, that is, this model allows D to change regime 0 from regime 1. Table 17 shows
the AICs of these seven models.

The AIC of Model S2D2 is lowest among the models, which justifies focus on Model S2D2.
Comparing Models S2D2 and S2S2, the difference of AIC between these models is 2, and
thus, depends only on the parameter penalties. Indeed, these two models are not different
except for numerical errors. Figure 5 shows the smoothed probabilities in each model.

The probabilities of the two models are almost the same in Figure 5. Moreover, the
root mean squares of the difference of probabilities between the two models are 1.636× 10−6

with the probability being S = 0 and 8.648 × 10−8 with the probability being D = 0. It is
interesting that Model S2S2 captures the irreversible structural change although all the state
variables in the model are reversible. This result is evidence that the irreversible structural
change occurs.
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Table. 1: Abbreviations of names of industries

Integrate group Sector Name

ENE Energy

MAT/IND
Materials

Industrials

CG

Consumer Discretionary

Consumer Staples

Health Care

FIN Financials

IT/Tel
Information and Technology

Telecoms services

U Utilities

Table. 2: The results of the Carrasco et al. (2014) test (the CHP test). We try 3000 times parametric bootstraps.

The null hypothesis is that the mean and variance do not change with the progress of time. The alternative is that they

are driven by a recursive Markov chain.

statistics 10% critical values 5% critical values 1% critical values
ENE 0.015 0.015 0.019 0.028

MAT/IND 0.035 0.015 0.018 0.028
CG 0.035 0.015 0.018 0.028
FIN 0.058 0.015 0.018 0.028

IT/Tel 0.055 0.015 0.019 0.028
U 0.039 0.015 0.019 0.028
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Table. 3: The AICs of Model S2 and Model S2D2. The AICs of the other models are in Table. 17.

Model S2 (q00 = 1) Model S2D2 (0 < q00 < 1)
AIC 6684.234 6619.640
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Table. 4: The estimated means and standard deviations of each industry returns. The first table is the estimation

result of Model S2D2. The second is the result of Model S2. µsd and σsd are the conditional mean and standard

deviation of the returns of the individual industry index in the regime s and the structure d, respectively. pss′ is the

transition probability of St from the regime s to the regime s′ and qdd′ is also the transition probability of Dt from the

structure d to d′. Numbers in parenthesis are standard errors.

Model S2D2

regimes
D = 0 D = 1

S = 0 S = 1 S = 0 S = 1

µ00 σ00 µ10 σ10 µ01 σ01 µ11 σ11

ENE
2.034 4.368 0.067 5.800 1.564 6.327 -7.187 7.496
(0.452) (0.395) (0.140) (0.620) (1.018) (0.690) (2.566) (1.127)

MAT/IND
1.577 3.255 -0.229 6.038 1.680 6.162 -9.091 7.754
(0.335) (0.226) (0.453) (0.547) (1.039) (0.631) (2.540) (0.140)

CG
1.447 2.792 -0.160 4.476 1.303 3.477 -4.218 6.084
(0.293) (0.214) (0.299) (0.452) (0.581) (0.317) (1.962) (0.227)

FIN
1.811 3.860 -0.030 7.181 0.711 7.525 -12.853 12.364
(0.416) (0.306) (0.083) (0.945) (1.268) (0.793) (3.980) (1.378)

IT/Tel
1.719 4.159 -0.853 11.019 1.404 5.548 -6.226 6.424
(0.430) (0.266) (1.457) (0.858) (0.891) (0.529) (2.051) (0.852)

U
1.492 3.325 -0.534 6.380 1.301 3.177 -5.074 5.770
(0.345) (0.252) (0.702) (0.542) (0.487) (0.366) (2.038) (0.727)

probability parameters

p00 1− p00 q00 1− q00 log likelihood
0.984 0.016 0.993 0.007
(0.001) (0.004) -3198.820

1− p11 p11 1− q11 q11
0.034 0.966 0 1

(0.004)

Model S2

regimes S = 0 S = 1
probability parameters

µ0 σ0 µ1 σ1

ENE
1.823 4.919 -0.500 6.708 p00 1− p00
(0.426) (0.379) (0.691) (0.624) 0.983 0.017

MAT/IND
1.499 4.194 -0.919 7.089 (0.012)
(0.373) (0.298) (0.837) (0.656)

CG
1.424 2.985 -0.517 4.829 1− p11 p11
(0.278) (0.183) (0.579) (0.417) 0.030 0.970

FIN
1.384 4.679 -1.291 9.595 (0.020)
(0.451) (0.323) (1.165) (0.988)

IT/Tel
1.617 4.385 -1.217 10.374 log likelihood
(0.398) (0.246) (1.189) (0.739)

U
1.487 3.229 -0.963 6.266 -3286.117
(0.285) (0.206) (0.714) (0.482)
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Table. 5: The result of the hypothesis testing: the null hypotheses are the equality of means and that of standard

deviations across the two regimes. Panel A and B are the results of tests in Model S2D2 and Panel C is that in Model

S2. The hypotheses in Panel A are same value of S but different value of D. On the other hand, the hypotheses in Panel

B are same D and different S. Rows of industries are the tests of individual industries. Rows of “All” are the tests of

which hypothesis is the equalities of parameters of all the industries. The degrees of freedom in each industries test are

1 and those in all the industries are 15. Numbers in parenthesis are probability values.

Panel A: D is the same among the hypotheses but S is different in the Model S2D2.
fixed regime before structural change (D = 0) after structural change (D = 1)

hypothesis
equal equal equal equal equal equal
means volatilities both means volatilities both

ENE
17.197 3.537 26.026 9.870 0.753 10.056
(0.000) (0.060) (0.000) (0.002) (0.386) (0.007)

MAT/IND
10.220 21.811 31.722 15.045 6.084 24.347
(0.001) (0.000) (0.000) (0.000) (0.014) (0.000)

CG
15.027 10.938 22.348 7.232 45.327 46.964
(0.000) (0.001) (0.000) (0.007) (0.000) (0.000)

FIN
18.693 11.090 27.653 10.480 9.315 13.924
(0.000) (0.001) (0.000) (0.001) (0.002) (0.001)

IT/Tel
2.827 58.729 59.086 11.284 0.732 11.481
(0.093) (0.000) (0.000) (0.001) (0.392) (0.003)

U
6.750 26.474 34.418 9.197 9.463 23.935
(0.009) (0.000) (0.000) (0.002) (0.002) (0.000)

All
37.346 96.440 138.942 50.815 74.492 140.987
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel B: S is the same among the hypotheses but D is different in the Model S2D2.
fixed regime booming regime (S = 0) recession regime (S = 1)

hypothesis
equal equal equal equal equal equal
means volatilities both means volatilities both

ENE
0.178 6.074 6.087 8.003 1.832 9.597
(0.673) (0.014) (0.048) (0.005) (0.176) (0.008)

MAT/IND
0.009 18.724 18.743 11.746 9.408 26.341
(0.926) (0.000) (0.000) (0.001) (0.002) (0.000)

CG
0.048 3.178 3.181 4.130 10.248 12.522
(0.826) (0.075) (0.204) (0.042) (0.001) (0.002)

FIN
0.669 18.501 24.050 10.282 9.952 13.869
(0.414) (0.000) (0.000) (0.001) (0.002) (0.001)

IT/Tel
0.100 5.429 5.449 4.560 13.943 24.289
(0.752) (0.020) (0.066) (0.033) (0.000) (0.000)

U
0.100 0.113 0.337 4.545 0.501 4.547
(0.751) (0.737) (0.845) (0.033) (0.479) (0.103)

All
4.333 26.082 41.806 51.338 50.097 131.850
(0.632) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel C: S = 0 vs. S = 1 in the Model S2.

hypothesis
equal equal equal equal equal equal
means volatilities both means volatilities both

ENE
8.066 5.766 12.485

FIN
4.437 22.895 23.366

(0.005) (0.016) (0.002) (0.035) (0.000) (0.000)

MAT/IND
6.772 16.142 19.838

IT/Tel
4.951 59.704 60.887

(0.009) (0.000) (0.000) (0.026) (0.000) (0.000)

CG
8.936 16.238 19.384

U
10.132 33.611 39.973

(0.003) (0.000) (0.000) (0.001) (0.000) (0.000)

All
15.796 114.514 125.268
(0.015) (0.000) (0.000)
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Table. 6: The estimated correlation coefficients in Model S2. Numbers in parenthesis are standard errors. The

summary is shown in Table. 8.

booming regime (S = 0)

ENE MAT/IND CG FIN IT/Tel U

ENE
1
-

MAT/IND
0.608 1
(0.068) -

CG
0.420 0.787 1
(0.079) (0.031) -

FIN
0.461 0.788 0.791 1
(0.086) (0.036) (0.032) -

IT/Tel
0.445 0.753 0.726 0.662 1
(0.072) (0.036) (0.042) (0.050) -

U
0.334 0.326 0.491 0.397 0.314 1
(0.074) (0.072) (0.062) (0.067) (0.080) -

recession regime (S = 1)

ENE MAT/IND CG FIN IT/Tel U

ENE
1
-

MAT/IND
0.668 1
(0.072) -

CG
0.524 0.800 1
(0.098) (0.043) -

FIN
0.491 0.804 0.805 1
(0.101) (0.040) (0.044) -

IT/Tel
0.365 0.622 0.560 0.471 1
(0.088) (0.061) (0.076) (0.068) -

U
0.652 0.458 0.361 0.359 0.143 1
(0.068) (0.100) (0.100) (0.093) (0.119) -
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Table. 8: The summary table for changes of correlations at 10% significant level. Numbers in parentheses are

percentages of all pairs.

Model S2

correlation in S = 0 < S = 1 correlation in S = 0 > S = 1
Number of changes 7 (47%) 8 (53%)

Number of significant changes 3 (20%) 1 (7%)

Model S2D2

Fix S.
S = 0 correlation in D = 0 > D = 1 correlation in D = 0 < D = 1

Number of changes 2 (13%) 13 (87%)
Number of significant changes 0 (0%) 11 (73%)

S = 1 correlation in D = 0 > D = 1 correlation in D = 0 < D = 1
Number of changes 4 (27%) 11 (73%)

Number of significant changes 3 (20%) 4 (27%)

Fix D.
D = 0 correlation in S = 0 > S = 1 correlation in S = 0 < S = 1

Number of changes 8 (53%) 7 (47%)
Number of significant changes 0 (0%) 4 (27%)

D = 1 correlation in S = 0 > S = 1 correlation in S = 0 < S = 1
Number of changes 10 (67%) 5 (33%)

Number of significant changes 4 (27%) 2 (13%)
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Table. 9: The results of the hypothesis testings in Model S2D2: the null hypothesis is the equality of correlations

between two regimes S = 0 and S = 1. Marks ∗, ∗∗, and ∗ ∗ ∗ indicate rejecting the null at significance level 10%, 5%,

and 1%, respectively. Numbers in parentheses are P-values. The summary is shown in Table. 8.

Null hypothesis: correlations are equal between S = 0 and S = 1

before structural break (D = 0)

ENE MAT/IND CG FIN IT/Tel

MAT/IND
4.458
0.035

CG
3.162∗ 8.015∗∗∗

(0.075) (0.005)

FIN
6.114∗∗ 0.639 0.267
(0.013) (0.424) (0.606)

IT/Tel
2.033 0.001 0.017 1.174
(0.154) (0.978) (0.897) (0.279)

U
11.134∗∗∗ 0.415 1.309 2.743∗ 1.502
(0.001) (0.520) (0.253) (0.098) (0.220)

all correlations are equal (df = 15) 70.494∗∗∗ (0.000)

after structural break (D = 1)

ENE MAT/IND CG FIN IT/Tel

MAT/IND
4.852∗∗

(0.028)

CG
3.217∗ 0.000
(0.073) (0.987)

FIN
9.131∗∗∗ 0.465 0.009
(0.003) (0.495) (0.923)

IT/Tel
0.008 1.096 1.611 1.072
(0.928) (0.295) (0.204) (0.300)

U
3.249∗ 0.331 0.905 0.081 0.195
(0.071) (0.565) (0.341) (0.775) (0.659)

all correlations are equal (df = 15) 29.976∗∗ (0.012)
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Table. 10: The results of the hypothesis testing in Model S2D2: the null hypothesis is the equality of correlations

between two regimes D = 0 and D = 1. Marks ∗, ∗∗, and ∗ ∗ ∗ indicate rejecting the null at significance level 10%, 5%,

and 1%, respectively. Numbers in parentheses are P-values. The summary is shown in Table. 8.

Null hypothesis: correlations are equal between D = 0 and D = 1

booming regime (S = 0)

ENE MAT/IND CG FIN IT/Tel

MAT/IND
12.323∗∗∗

(0.000)

CG
14.004∗∗∗ 8.852∗∗∗

(0.000) (0.003)

FIN
9.152∗∗∗ 6.941∗∗∗ 0.118
(0.002) (0.008) (0.731)

IT/Tel
15.775∗∗∗ 2.863∗ 5.434∗∗ 0.888
(0.000) (0.091) (0.020) (0.346)

U
0.090 2.994∗ 2.785∗ 0.097 16.936∗∗∗

(0.764) (0.084) (0.095) (0.756) (0.000)

all correlations are equal (df = 15) 54.622∗∗∗ (0.000)

recession regime (S = 1)

ENE MAT/IND CG FIN IT/Tel

MAT/IND
2.729∗

(0.099)

CG
0.848 15.766∗∗∗

(0.357) (0.000)

FIN
17.21∗∗∗ 0.100 0.161
(0.000) (0.752) (0.688)

IT/Tel
0.324 3.504∗ 3.982∗∗ 0.152
(0.569) (0.061) (0.046) (0.697)

U
11.275∗∗∗ 1.224 0.673 3.137∗ 2.483
(0.001) (0.269) (0.412) (0.077) (0.115)

all correlations are equal (df = 15) 123.992∗∗∗ (0.000)
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Table. 11: The results of the hypothesis testings in Model S2: the null hypothesis is the equality of correlations

between two regimes S = 0 and S = 1. Marks ∗, ∗∗, and ∗ ∗ ∗ indicate rejecting the null at significance level 10%, 5%,

and 1%, respectively. Numbers in parentheses are P-values. The summary is shown in Table. 8.

Null hypothesis: correlations are equal between S = 0 and S = 1

ENE MAT/IND CG FIN IT/Tel

MAT/IND
12.323∗∗∗

(0.000)

CG
14.004∗∗∗ 8.852∗∗∗

(0.000) (0.003)

FIN
9.152∗∗∗ 6.941∗∗∗ 0.118
(0.002) (0.008) (0.731)

IT/Tel
15.775∗∗∗ 2.863∗ 5.434∗∗ 0.888
(0.000) (0.091) (0.020) (0.346)

U
0.090 2.994∗ 2.785∗ 0.097 16.936∗∗∗

(0.764) (0.084) (0.095) (0.756) (0.000)

all correlations are equal (df = 15) 54.622∗∗∗ (0.000)
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Table. 12: The simulation results of the performances with various investment strategies. Numbers in parentheses

are the standard deviations of them. All of the means and the standard deviations, and their standard errors in this

table are multiplied by 100. Number of trials is 10000. Each trial has 140 observations.

Mean
Standard

Skewness Kurtosis
Sharpe

Deviation Ratio
Initial state S = 0, D = 0
Global minimum variance portfolios

S2D2
0.616 3.501 -0.329 3.559 0.237
(0.010) (0.008) (0.004) (0.009) (0.003)

S2
0.631 3.550 -0.304 3.536 0.233
(0.010) (0.008) (0.004) (0.008) (0.003)

D2
0.658 3.519 -0.314 3.558 0.245
(0.010) (0.008) (0.004) (0.009) (0.003)

IID
0.607 3.557 -0.295 3.514 0.225
(0.010) (0.008) (0.004) (0.008) (0.003)

Tangency portfolios

S2D2
0.798 3.962 -0.328 4.115 0.258
(0.010) (0.009) (0.005) (0.013) (0.003)

S2
0.495 4.386 -0.421 4.378 0.201
(0.014) (0.013) (0.006) (0.016) (0.003)

D2
0.652 3.857 -0.333 3.651 0.235
(0.011) (0.009) (0.004) (0.010) (0.003)

IID
0.681 3.832 -0.241 3.463 0.239
(0.011) (0.009) (0.003) (0.008) (0.003)

EW
0.491 4.458 -0.239 3.627 0.184
(0.014) (0.012) (0.004) (0.009) (0.003)

Initial state S = 1, D = 0
Global minimum variance portfolios

S2D2
0.313 3.717 -0.302 3.464 0.136
(0.011) (0.007) (0.003) (0.008) (0.003)

S2
0.335 3.762 -0.280 3.447 0.136
(0.010) (0.007) (0.003) (0.008) (0.003)

D2
0.363 3.737 -0.287 3.468 0.147
(0.011) (0.007) (0.003) (0.008) (0.003)

IID
0.315 3.767 -0.271 3.429 0.130
(0.011) (0.007) (0.003) (0.007) (0.003)

Tangency portfolios

S2D2
0.532 4.402 -0.264 4.045 0.163
(0.011) (0.009) (0.004) (0.011) (0.003)

S2
0.205 4.846 -0.342 4.197 0.111
(0.015) (0.012) (0.005) (0.013) (0.003)

D2
0.347 4.100 -0.298 3.535 0.141
(0.012) (0.009) (0.004) (0.008) (0.003)

IID
0.373 4.035 -0.210 3.368 0.145
(0.012) (0.008) (0.003) (0.007) (0.003)

EW
0.145 4.743 -0.197 3.510 0.092
(0.016) (0.011) (0.003) (0.008) (0.003)
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Table. 13: The simulation results of the performances with various investment strategies. Numbers in parentheses

are the standard deviations of them. All of the means and the standard deviations, and their standard errors in this

table are multiplied by 100. Number of trials is 10000. Each trial has 140 observations.

Mean
Standard

Skewness Kurtosis
Sharpe

Deviation Ratio
Initial state S = 0, D = 1
Global minimum variance portfolios

S2D2
-0.266 4.195 -0.449 3.456 -0.014
(0.013) (0.007) (0.004) (0.009) (0.003)

S2
-0.141 4.273 -0.417 3.462 0.011
(0.012) (0.007) (0.003) (0.008) (0.003)

D2
-0.170 4.227 -0.422 3.458 0.005
(0.012) (0.007) (0.003) (0.008) (0.003)

IID
-0.172 4.279 -0.408 3.434 0.004
(0.013) (0.007) (0.003) (0.008) (0.003)

Tangency portfolios

S2D2
-0.090 4.404 -0.527 3.844 0.031
(0.012) (0.009) (0.004) (0.011) (0.003)

S2
-0.752 5.453 -0.665 4.045 -0.069
(0.018) (0.013) (0.005) (0.015) (0.003)

D2
-0.353 4.712 -0.473 3.530 -0.024
(0.015) (0.009) (0.004) (0.009) (0.003)

IID
-0.254 4.882 -0.214 3.129 -0.022
(0.014) (0.006) (0.003) (0.006) (0.003)

EW
-0.787 5.857 -0.142 3.012 -0.106
(0.018) (0.007) (0.003) (0.005) (0.003)

Initial state S = 1, D = 1
Global minimum variance portfolios

S2D2
-1.079 4.582 -0.448 3.250 -0.207
(0.014) (0.006) (0.003) (0.008) (0.003)

S2
-0.903 4.659 -0.423 3.285 -0.166
(0.013) (0.006) (0.003) (0.007) (0.003)

D2
-0.935 4.609 -0.426 3.276 -0.175
(0.013) (0.006) (0.003) (0.008) (0.003)

IID
-0.943 4.658 -0.413 3.257 -0.176
(0.013) (0.006) (0.003) (0.007) (0.003)

Tangency portfolios

S2D2
-0.820 4.910 -0.533 3.649 -0.133
(0.013) (0.008) (0.004) (0.010) (0.003)

S2
-1.857 6.178 -0.656 3.751 -0.261
(0.019) (0.010) (0.004) (0.013) (0.003)

D2
-1.252 5.167 -0.478 3.329 -0.212
(0.015) (0.007) (0.003) (0.009) (0.003)

IID
-1.126 5.187 -0.216 3.007 -0.200
(0.015) (0.005) (0.002) (0.005) (0.003)

EW
-1.922 6.181 -0.122 2.896 -0.298
(0.019) (0.006) (0.003) (0.005) (0.003)
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Table. 14: The global minimum variance portfolios and tangency portfolios. Panel A shows the portfolio weight of

global minimum variance portfolio for each investor type. On the other hands, Panel B shows the portfolio weight of

tangency portfolio for each investor type.

Panel A: global minimum-variance portfolios

S2D2
S = 0, D = 0 S = 1, D = 0 S = 0, D = 1 S = 1, D = 1

ENE 0.128 0.056 0.000 0.000
MAT/IND 0.126 0.000 0.000 0.000

CG 0.472 0.694 0.401 0.357
FIN 0.000 0.000 0.000 0.000

IT/Tel 0.000 0.000 0.000 0.115
U 0.274 0.250 0.599 0.528

S2 D2
IID

S = 0 S = 1 D = 0 D = 1
ENE 0.063 0.000 0.159 0.000 0.028

MAT/IND 0.000 0.000 0.000 0.000 0.000
CG 0.547 0.694 0.600 0.635 0.654
FIN 0.000 0.000 0.000 0.000 0.000

IT/Tel 0.000 0.000 0.000 0.000 0.000
U 0.390 0.306 0.241 0.365 0.319

Panel B: tangency portfolios

S2D2
S = 0, D = 0 S = 1, D = 0 S = 0, D = 1 S = 1, D = 1

ENE 0.268 0.916 0.025 0.000
MAT/IND 0.073 0.000 0.000 0.000

CG 0.308 0.000 0.396 0.992
FIN 0.066 0.084 0.000 0.000

IT/Tel 0.061 0.000 0.000 0.008
U 0.225 0.000 0.580 0.000

S2 D2
IID

S = 0 S = 1 D = 0 D = 1
ENE 0.170 1.000 0.270 0.231 0.318

MAT/IND 0.000 0.000 0.000 0.000 0.000
CG 0.407 0.000 0.631 0.071 0.568
FIN 0.000 0.000 0.099 0.000 0.000

IT/Tel 0.035 0.000 0.000 0.000 0.000
U 0.387 0.000 0.000 0.697 0.114
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Table. 15: The simulation results of the performances with various types of investment strategies. 2000 time-series

of the indexes with 200 months are simulated. Each type investor starts to invest after 60 months passed from the

starting point. The data of the first 60 months are used only for the investors to estimate the distribution parameters in

their assumed models. After the first 60 months, the past data-windows for the investors are expanded as time passes.

This table reports the means of the statistics. All of the statistics are computed using the data of returns in each trial.

Numbers in parentheses are the standard errors. All of the means and standard deviations and their standard errors in

this table are multiplied by 100. We assume that the risk-free rate is 0.

Panel A: The actual market model is Model S2D2

Mean
Standard

Skewness Kurtosis
Sharpe

Deviation Ratio
Global minimum variance portfolios

S2D2
0.047 4.424 -0.341 3.788 0.077
(0.034) (0.022) (0.010) (0.027) (0.007)

S2
0.102 3.998 -0.357 3.539 0.096
(0.032) (0.020) (0.009) (0.021) (0.008)

IID
0.224 3.882 -0.341 3.484 0.118
(0.028) (0.018) (0.008) (0.019) (0.007)

Tangency portfolios

S2D2
0.082 5.269 -0.263 4.464 0.070
(0.035) (0.026) (0.012) (0.042) (0.007)

S2
0.083 4.920 -0.349 4.167 0.082
(0.035) (0.028) (0.011) (0.038) (0.007)

IID
0.172 4.717 -0.235 3.513 0.103
(0.034) (0.028) (0.008) (0.019) (0.007)

EW
-0.116 5.032 -0.194 3.389 0.049
(0.149) (0.102) (0.028) (0.071) (0.029)

Panel B: The actual market model is Model S2

Mean
Standard

Skewness Kurtosis
Sharpe

Deviation Ratio
Global minimum variance portfolios

S2D2
0.835 4.038 -0.137 3.794 0.230
(0.014) (0.015) (0.008) (0.023) (0.004)

S2
0.813 3.554 -0.192 3.546 0.252
(0.013) (0.012) (0.007) (0.023) (0.004)

IID/Myopic
0.801 3.503 -0.184 3.429 0.252
(0.013) (0.011) (0.006) (0.016) (0.004)

Tangency portfolios

S2D2
0.852 5.101 -0.086 4.647 0.197
(0.016) (0.025) (0.011) (0.041) (0.004)

S2
0.855 4.901 -0.146 4.716 0.215
(0.015) (0.032) (0.011) (0.043) (0.004)

IID
0.892 4.324 -0.111 3.635 0.241
(0.014) (0.026) (0.007) (0.021) (0.004)

EW
0.847 4.375 -0.143 3.568 0.217
(0.054) (0.060) (0.025) (0.067) (0.015)
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Table. 16: The simulation results of the performances based on the results of the literature. 2000-time series of the

indexes are simulated. Each type investor starts to invest after 200 months (resp. 288 months) passed from the starting

point in the simulation of Ang and Bekaert (2002) (resp. Guidolin and Timmermann (2007)). The data in the initial

runnings periods are used only for the investors to estimate the distribution parameters in their assumed model. After

the initial running months, the past data-windows for the investors are expanded as time passes. This table reports the

means of the statistics. All of the statistics are computed using the data of returns in each trial. Numbers in parentheses

are the standard errors. All of the means and standard deviations and their standard errors in this table are multiplied

by 100.

Mean
Standard

Skewness Kurtosis
Sharpe

Deviation Ratio
Simulation of Ang and Bekaert (2002)
Only 2-state recursive regime (S) model
The risk-free rate is 0.0041 (monthly rate).
Global minimum variance portfolios

4 states
0.618 4.080 -0.106 4.264 0.154
(0.015) (0.017) (0.016) (0.052) (0.004)

2 states
0.621 4.040 -0.110 4.182 0.156
(0.014) (0.017) (0.015) (0.044) (0.004)

IID
0.623 4.042 -0.109 4.150 0.156
(0.014) (0.017) (0.015) (0.042) (0.004)

Tangency portfolios

4 states
0.602 4.809 -0.034 5.444 0.129
(0.017) (0.032) (0.024) (0.101) (0.004)

2 states
0.612 4.654 -0.052 5.260 0.136
(0.017) (0.034) (0.023) (0.102) (0.004)

IID
0.621 4.307 -0.072 4.203 0.147
(0.015) (0.026) (0.016) (0.050) (0.004)

EW
0.392 4.518 -0.345 4.705 0.089
(0.016) (0.022) (0.017) (0.052) (0.004)

Simulation of Guidolin and Timmermann (2007)
Only 4-state recursive regime (S) model
The risk-free rate is 0.0044 (monthly rate).
Global minimum variance portfolios

4 states
0.357 6.728 0.550 4.710 0.052
(0.024) (0.031) (0.017) (0.069) (0.003)

2 states
0.369 6.718 0.525 4.600 0.054
(0.024) (0.030) (0.016) (0.063) (0.003)

IID
0.368 6.718 0.512 4.553 0.053
(0.024) (0.030) (0.016) (0.061) (0.003)

Tangency portfolios

4 states
1.853 13.756 0.689 5.085 0.133
(0.054) (0.111) (0.023) (0.135) (0.004)

2 states
1.876 13.622 0.643 4.678 0.136
(0.055) (0.134) (0.020) (0.102) (0.004)

IID
1.922 13.591 0.629 4.433 0.139
(0.056) (0.155) (0.018) (0.080) (0.003)

EW
0.503 9.871 0.070 3.572 0.051
(0.035) (0.033) (0.012) (0.028) (0.004)

38



Table. 17: The AICs of various models. The first row displays the AICs, which are defined as −2(log likelihood −

# of parameters), where # of parameters means a number of parameters.

Model S2 S2D2 S3 S4 D2 D3 S2S2
AIC 6684.234 6619.640 6662.203 6634.194 6778.565 6717.901 6621.640

# of parameters 56 111 87 120 55 83 112
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Figure. 1: The smoothed probabilities and the NBER recession dates. The first figure plots the smoothed probability

of Model S2. The second figure plots the smoothed probabilities of Model S2D2. In each figure, a solid line is the

probability of being at S = 0 and shadow areas are NBER recession dates. In the second figure, a dashed line is the

probability of being at D = 0.
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Figure. 2: The smoothed probability of being at Dt = 0 computed by using individual industry returns.
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Figure. 3: The standard deviations and Sharpe ratios in simulations. In computing the Sharpe ratios, we assume

that the risk-free rate equal 0.
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Figure. 4: The means of the smoothed probabilities around the structural change. Lines of the 100th, 150th and 199th

month represent the changes of the means of the smoothed probabilities around the structural change for T = 100, 150

and 199, respectively. A line of the 199th month conditioned by change time represents the means of the smoothed

probabilities around the structural change with the condition that the structural change occurs during the periods from

t = 51 to t = 150.
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Figure. 5: The smoothed probabilities and the NBER recession dates. The first figure plots the smoothed probabilities

of Model S2S2. The second figure plots the smoothed probabilities of Model S2D2. In each figure, a solid line is the

probability of being at S = 0, shadow areas are NBER recession dates and a dashed line is the probability of being at

D = 0.
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