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AN ANALYSIS OF SIMULTANEOUS COMPANY DEFAULTS

USING A SHOT NOISE PROCESS

MASAHIKO EGAMI AND RUSUDAN KEVKHISHVILI

Abstract

During subprime mortgage crisis, it became apparent that incumbent models had underestimated

company default correlations. Complex models that attempt to incorporate default dependency are

difficult to implement in practice. On the contrary, practical models, such as One-Factor Gaussian Copula

model, greatly underestimated simultaneous default probabilities. In this article, we develop a model for

a company asset process and based on this model, we calculate simultaneous default probabilities using

option-theoretic approach. Our model focuses on one industry and includes a shot noise process in the

asset model directly. The risk factor driving the shot noise process is common to all companies in the

industry but the shot noise parameters are assumed to be company-specific; therefore, every company

responds to this common risk factor differently. Apart from the shot noise process, the asset model

includes company specific Brownian motion. Compared to commonly used geometric Brownian motion

asset model in option-theoretic approach, our model predicted higher simultaneous default probabilities

for Citigroup Inc. in 2008, and for all company combinations for the years of 2009 and 2010. Our model

is easy to implement and can be extended to analyze any finite number of companies without greatly

increasing computational difficulty.

Key words: shot noise; option-theoretic approach; asset process; simultaneous default probabilities

JEL Classification: G01, G21, G32

1 Introduction

This paper aims to calculate simultaneous default probabilities of multiple companies. Our research

is motivated by the fact that the incumbent models did not predict the default correlations in the global
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financial crisis; simultaneous default probabilities were underestimated in the structuring and pricing of

the CDO’s (collateralized debt obligations). We wish to compute default correlations more accurately to

enhance risk management quality for the portfolios of debt instruments.

We analyze company defaults through the behavior of its asset process. For this, we define default as an

event in which a company’s asset value falls below a certain level. It is highly likely that company defaults

in one industry are correlated. To incorporate this correlation into the calculation of simultaneous default

probabilities, we include a common shot noise process in each company’s asset model. In our model, each

company’s asset value is driven by the company-specific risk factor and by the shot noise process, the

latter being common for all companies and having negative effects on the asset value. The shot noise

process can be seen as an aggregation of jumps up to each point in time. The effect of jumps does not

disappear immediately but decreases gradually over time. This allows us to keep the negative effect of

external shocks for a certain period of time. We assume that the parameters of this shot noise process are

company-specific. This means that the sensitivity of each company to the jumps of the shot noise process

is different. For the computational simplicity, in this paper we will only deal with negative jumps. Our

focus is on the subprime mortgage crisis. Therefore, we will be analyzing data from 2004 to 2014.

Two things are worth noting about our model. First, it tries to capture correlation of company

defaults through the shot noise process. We use this shot noise process in an innovative way by including

it directly into the asset model. Second, our model is computationally easy to implement. Even though

sensitivity to shocks differs from company to company, the driving force of the shot noise process is

common. Therefore, by including one shot noise process in the model, we can capture the correlation

of any number of companies. As a result, adding one more company to the analysis does not increase

computational burden.

In general, there are top-down and bottom-up approaches to default correlation analysis. An example

of the top-down approach is Giesecke, Goldberg, and Ding [11]. They propose an intensity-based model

for the portfolio loss process and decompose the portfolio intensity into the sum of the intensities of the

constituents. They derive the formula for the default probability of the constituent parties as a function

of the thinning process and the portfolio intensity. Kunisch and Uhrig-Homburg [15] also take the top-

down approach but their method is based on the structural model of a firm as well. They use random

thinning to decompose economy’s intensity that is driven by macroeconomic factors into the intensities

of defaultable company subsets. For this, they define default of a company as an event in which company

asset falls at the outstanding debt level. This study employs structural framework similar to Merton [20]

and assumes that asset process follows geometric Brownian motion and assets of different companies are

correlated. Under these assumptions, they derive solution to the default probability of a certain subset,

2



and finally, they calculate thinning probabilities using these default probabilities.

Common shocks are often included in intensity-based models that belong to the bottom-up approach.

Examples of these studies are Dong, Wang, and Yuen [4], Herbertsson, Jang, and Schmidt [12], Liang

and Wang [18]. This type of studies use shocks to model default intensity processes and derive explicit

formulas for the joint probability of default. However, the feasibility of this approach in the analysis of

simultaneous defaults of more than 2 companies is not sufficiently explored. Shot noise model is also

used in insurance modeling, e.g. Schmidt [24], Jang and Dassios [13]. Another example of the bottom-up

approach is a copula model. The Gaussian copula is relatively easy to implement in practice; however,

during subprime mortgage crisis it has proved to be insufficient for analyzing multiple defaults since it

does not incorporate dependence structure among companies well enough (see e.g. Salmon [23]). Even

though there is a wide variety of choices for copula models, to our knowledge, there does not exist a good

copula model for multivariate analysis that is not too complex. An example of the copula approach that

is based on the asset process is Giesecke [10]. He describes the model where the threshold at which a firm

goes bankrupt is not publicly known because the information about firm’s liabilities is not fully disclosed.

Taking the connection of different firms into account, bond investors estimate threshold levels for firms

using available information. Then, while observing the asset dynamics and default events, they update

their estimates. This study uses copula to model the dependence structure among thresholds of different

companies. Copula of default times is modeled using asset and threshold dependence structures. Another

example is Dalla Valle et al. [2]. They employ the pair copula to model dependence structure among

current and long-term portions of the asset and debt of the company, and express the company equity as

a function of the asset and debt using pair copula. They simulate the values of equity and define default

as an event where equity is at or below zero, but they do not describe the extension of the model to

simultaneous defaults of multiple companies and its feasibility.

Finally, we give an example of the model that takes completely different approach from the ones

mentioned above. This is the study by Filiz et al. [8]. They use graphical model and construct a graph

with nodes where each node denotes a firm. They define a binary random variable for each firm that

describes default and survival and set up the formula for the joint distribution of these binary random

variables. During simulation, they estimate number of defaulted firms in each time interval, and firm

nodes are removed from graph with some probability. Under certain homogeneity assumptions, they

claim that the number of firm nodes remaining and the total number of defaulted firms follow two-state

discrete Markov chain depending only on the previous values. They derive transition probability matrix

for this Markov chain and analyze CDO pricing under this framework.

Our model belongs to the bottom-up approach. It is an improvement over the model in Lehar [17]
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that does not allow for dependency between assets of different companies. In contrast to the above

mentioned intensity-based models, our model does not use intensity but incorporates shot noise process

directly into the asset model. This is the innovative part. Also, in contrast to copula models, our model

is computationally easy to implement. In this paper, we present results about three companies. However,

this model works for any number of companies and adding a new company to the model does not increase

computational difficulty since the shot noise process is assumed to be common for all companies that

belong to that particular industry. We estimated simultaneous default probability matrices by our shot

noise model and by the model used in Lehar [17]. The important result is that our model predicted

higher default probabilities for 2008 (Citigroup Inc.), 2009, and 2010. Also, estimation and simulation

was computationally easy.

2 Methodology

2.1 Model

For an asset value process, we want to use a model that incorporates a shot noise process. To make

the model simple, we will use only one shot noise process for bad news, which means that the shot noise

process will have negative effects on the asset value. The shot noise process at time t, λt, is given by the

following equation

λt = λ0e
−δt +

Mt∑
i=1

Yie
−δ(t−Si) (1)

where λ0 is the initial value of the shot noise process, δ is the exponential decay rate, {Si}i=1,2,... are

event times of Poisson process Mt with constant rate ρ, and {Yi}i=1,2,... is a sequence of independent and

identically distributed random variables with distribution function G(y), y > 0. The Y ’s represent the

size of the shot noise jumps and are independent of Mt.

This shot noise process is used by Dassios and Jang [3]. The purpose of using this process is that it

represents jumps and the effects of jumps do not disappear immediately and remain for a certain period

of time. We will also need first and second moments of the jumps which, following Dassios and Jang [3],

are assumed to be finite.

E(Yi) = µ1 <∞ E(Y 2
i ) = µ2 <∞

Since all jumps are assumed to be positive, we will use −λt to incorporate bad news in the model below.

We assume that λ0, δ, and ρ differ among companies. We model the asset value process V by the
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combination of geometric Brownian motion and the shot noise process:

Vt = eX0+(µ− 1
2
σ2)t+σB

(1)
t −λt (2)

where Vt denotes asset value at time t, µ and σ are constant parameters, B
(1)
t is standard Brownian motion,

and X0 is some constant. We will use another standard Brownian motion B
(2)
t in the approximation of

the shot noise process. To estimate parameters, we employ the approximation of the shot noise process

introduced by Dassios and Jang [3]. For this approximation to hold, we need to assume that the event

arrival rate ρ is large enough. This means that events in this model will not be catastrophes, but rather

“common events of high frequency”(Dassios & Jang [3, p. 97]). ρ is the expected number of events that

happen during one unit of a time interval. In our estimations, one unit of the time interval is 1 month.

In this paper we will focus on one particular industry and ρ can be seen as the number of reported news

affecting that industry. Every day a lot of information is reported. Aggregating this for a month means

that ρ is quite large; therefore, our assumption is not unnatural.

Following Dassios and Jang [3], we assume that λ0 is a random variable independent of everything

else and has a stationary distribution, such that
λ0−

µ1ρ
δ√

µ2ρ
2δ

d−→ Z0 . Let Zρt =
λt−

µ1ρ
δ√

µ2ρ
2δ

. Then from Theorem

2 in Dassios and Jang [3], Zρt
d−→ Zt , where dZt = −δZtdt+

√
2δdB

(2)
t .

B
(2)
t is a standard Brownian motion and we assume B

(1)
t is independent of B

(2)
t . For simplicity, we also

assume that Z0 is constant. Zt can equivalently be written as

Zt = Z0e
−δt +

√
2δ

∫ t

0

e−δ(t−s)dB(2)
s (3)

and for t fixed, Zt follows the normal distribution. Hence, we can use λ̃t = µ1ρ
δ

+ Zt
√

µ2ρ
2δ

as Gaussian

approximation of λt. The asset value process (we will use the same notation Vt) becomes

Vt = eX0+(µ− 1
2
σ2)t+σB

(1)
t −

µ1ρ
δ
−Zt
√
µ2ρ
2δ (4)
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2.2 Dynamics of Vt under Approximation

Since Zt is a semimartingale, the dynamics of the asset process under approximation can be expressed

in the following way by Itô’s formula (see Appendix A1)

dVt = Vt(µ−
1

2
σ2)dt+ VtσdB

(1)
t +

1

2
Vtσ

2dt− Vt
√
µ2ρ

2δ
dZt +

1

2
Vt
µ2ρ

2δ
d〈Z〉t =

= Vt(µ+
1

2
µ2ρ+ δ

√
µ2ρ

2δ
Zt)dt+ VtσdB

(1)
t − Vt

√
µ2ρdB

(2)
t

For convenience, let Qt = µ + 1
2
µ2ρ + δ

√
µ2ρ
2δ
Zt. Then, the asset value process follows the differential

equation

dVt = VtQtdt+ Vt(σdB
(1)
t −

√
µ2ρdB

(2)
t ) (5)

We can prove that Vt is also a semimartingale (see Appendix A2 for a proof).

2.3 Risk-neutral Theory

2.3.1 One-dimensional Model

The asset process of the company is not observable in the market. We only know the book value of

the assets from the balance sheet. By estimating the unknown parameters (except µ1 and X0 because

estimation will be conditioned on V0) in (3), (4), we will be able to simulate the asset process. For this,

first we wish to connect company assets to its equity, since the equity value is observable. We will use

the option-theoretic approach to the equity value as in Black and Scholes [1], Merton [20], Lehar [17],

and assume that the equity Et is a call option on the company’s assets with a strike price equal to future

value of the company’s debt DT = Dte
r(T−t) where Dt is the debt of the company at time t and T is

the maturity of the option. We need to calculate the value of this call option when the underlying asset

follows (5). Lehar [17] assumes that all debt is insured (risk-free) and grows at a risk-free rate r. We will

also use this assumption for simplicity.

Throughout this paper we will be dealing with a probability space (Ω,FT ,P). T can be viewed as

any fixed point in time. We assume the filtration is generated by B
(1)
t and B

(2)
t and satisfies the usual

conditions. Consider the discounted asset value process e−rtVt where r is the constant risk-free rate.
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d(e−rtVt) = −re−rtVtdt+ e−rtdVt

= −re−rtVtdt+ e−rtVtQtdt+ e−rtVt(σdB
(1)
t −

√
µ2ρdB

(2)
t )

= e−rtVt[(−r +Qt)dt+ σdB
(1)
t −

√
µ2ρdB

(2)
t ]

The following argument is based on Shreve [25, pp. 226-228]. Let us define α1 = σ and α2 = −√µ2ρ.

Then, we have

d(e−rtVt) = e−rtVt[(−r +Qt)dt+

2∑
i=1

αidB
(i)
t ] (6)

In order to make the discounted asset value martingale, we rewrite the equation in the following way:

d(e−rtVt) = e−rtVt

2∑
i=1

αi[−θitdt+ dB
(i)
t ]

For an adapted process θit to satisfy the above equation, we need to have

2∑
i=1

αiθ
i
t = σθ1

t −
√
µ2ρθ

2
t = r −Qt

This is one equation in two unknowns; therefore, it has infinitely many solutions. We choose one of them

(no matter what we choose, the result will be the same). We let θ2
t = 1 and θ1

t =
r−Qt+

√
µ2ρ

σ
. We let

B̃it = Bit −
∫ t

0
θisds. θ

1
t and θ2

t are measurable, adapted processes. If we can show that

Ht(θ) = e
∑2
i=1

∫ t
0 θ

i
sdB

i
s−

1
2

∫ t
0 ||θs||

2ds

is a martingale, by Theorem 5.1 (Karatzas & Shreve [14, p. 191]), B̃t will be a 2-dimensional standard

Brownian motion for 0 ≤ t ≤ T on (Ω,FT ,P̃T ) where probability measure P̃T is defined as P̃T (A) =

E[1AHT (θ)] for A ∈ FT . Indeed, HT (θ) is a martingale and we have

d(e−rtVt) = e−rtVt[σdB̃
(1)
t −

√
µ2ρdB̃

(2)
t ] = e−rtVtMdW̃t

as a martingale under P̃T . Here M =
√
σ2 + µ2ρ and W̃t = σ

M
B̃

(1)
t −

√
µ2ρ

M
B̃

(2)
t is a one-dimensional

standard Brownian motion under P̃T (see Appendix A3).

From (5), we get

dVt = VtQtdt+ Vt(σdB̃
(1)
t + (r −Qt +

√
µ2ρ)dt)− Vt(

√
µ2ρdB̃

(2)
t +

√
µ2ρdt)

= Vtrdt+ Vt(σdB̃
(1)
t −

√
µ2ρdB̃

(2)
t ) = Vtrdt+ VtMdW̃t
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so that

Vt = V0e
(r− 1

2
M2)t+MW̃t (7)

where V0 = eX0−
µ1ρ
δ
−Z0

√
µ2ρ
2δ .

To calculate the price of the above mentioned call option, we will use a risk-neutral pricing formula, i.e.

we will take an expectation of the discounted option value at maturity under the risk-neutral measure.

Et = Ẽ[e−r(T−t)(VT −DT )+]

Here T denotes the maturity of the debt, Et is the equity (i.e., the price of the option written on the

value of the firm at time t) and DT works as the strike price. Observing equation (7), this calculation is

the same as in Shreve [25, pp. 219-220] and reduces to famous Black-Scholes formula for the call option

price. But in our case, in view of (7), the volatility parameter is M . Then, we have,

Et = VtN(dt)−DtN(dt −M
√

(T − t)) (8)

where

dt =
ln

Vt
Dt

+M2

2
(T−t)

M
√

(T−t)

As in Lehar [17], we also assume that T equals 1 year.

2.3.2 Multidimensional Model

We can extend our model to any m number of companies. The following argument is again based

on Shreve [25, pp. 226-228]. Let’s suppose we have a separate m asset value process for each company.

B
(i)
t i = 1, 2, ....m+ 1 is m+ 1-dimensional Brownian motion. We assume the filtration is generated by

this Brownian motion. In the similar way as (6), we have

d(e−rtV jt ) = e−rtVt[(−r +Qjt)dt+

m+1∑
i=1

αj,idB
(i)
t ] j = 1, 2, ...,m

Here Qjt denotes process Qt with parameters of j company. j company’s asset value process includes its

own Brownian motion B
(j)
t and shot-noise Brownian motion Bm+1

t . αj,i = σj if i = j. Also, αj,m+1 =√
µj2ρ

j . Otherwise, this coefficient is zero. j indices indicate that all parameters are company specific.

To make the discounted asset values martingale, we again rewrite the equation

d(e−rtV jt ) = e−rtVt

m+1∑
i=1

αj,i[−θitdt+ dB
(i)
t ]
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From this, we get
m+1∑
i=1

αj,iθ
i
t = r −Qjt

We have m equations in m+ 1 unknowns. This means there are infinitely many solutions. We choose one

of them. Again, the result will not depend on our choice.

α1,1θ
1
t + α1,m+1θ

m+1
t = r −Q1

t

α2,2θ
2
t + α2,m+1θ

m+1
t = r −Q2

t

....

αm,mθ
m
t + αm,m+1θ

m+1
t = r −Qmt

We set θm+1
t = 1. Then, we get

θjt =
r −Qjt − αj,m+1

αj,j

In ∀j Qjt , the Brownian motion is Bm+1
t . We again are allowed to change the measure (see Appendix

A4) and B̃
(i)
t =

∫ t
0
−θisds+B

(i)
t is a Brownian motion under P̃T . We get

d(e−rtV jt ) = e−rtVt

m+1∑
i=1

αj,idB̃
(i)
t

For each company, we have to estimate the parameters of the asset value process using company equity

values. For j company this time we can also combine
∑m+1
i=1 αj,idB̃

(i)
t as one Brownian motion and use

Black-Scholes equation. All calculations will be the same.

2.4 Estimation Procedure

To estimate the parameters of Vt, we use the maximum likelihood estimation technique introduced in

Duan [5], Duan [5], and Duan, Gauthier, and Simonato [7]. Given the data of the equity process E =

(Et, t = 0,∆t, 2∆t, ...n∆t), we can estimate the parameters by maximizing the following log-likelihood

function:

L(Et, t = 0,∆t, 2∆t, ...n∆t);µ, δ, µ2ρ, Z0, σ) =

−n
2

ln 2π − 1

2

n∑
k=1

ln Vark∆t −
n∑
k=1

(ln
V̂k∆t

V̂(k−1)∆t

−meank∆t)
2

2Vark∆t

−
n∑
k=1

ln V̂k∆t −
n∑
k=1

lnN(d̂k∆t) (9)
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where V̂k∆t is the unique solution to (8) and d̂k∆t is dk∆t with Vk∆t replaced by V̂k∆t . (see Appendix

A5)

meank∆t = (µ− 1

2
σ2)∆t −

√
µ2ρ

2δ
Z0e

−δk∆t(1− eδ∆t)−√µ2ρ(
1

eδ∆t
− 1)e−δ(k−1)∆t

∫ (k−1)∆t

0

eδsdB(2)
s

Vark∆t = σ2∆t +
µ2ρ

2δ
(1− e−2δ∆t)

We will be using monthly data; therefore, we set ∆t = 1
12

. The time to maturity will be assumed

as one year, i.e. T − t = 1 ∀t. The function that we will maximize to get the parameters consists of

two parts. Inside the function, V̂k∆t will be estimated by fixed-point iteration procedure from (8) using

available equity values and after that, using these estimated asset values, the log-likelihood in (9) will

be calculated. The result will be a function in the unknown five parameters and this function will be

maximized by the built-in interior-point method in Matlab. During this procedure, we will need the

values of (meank∆t) which involves values of e−δ(k−1)∆t
∫ (k−1)∆t

0
eδsdB

(2)
s . This process is not directly

observable. Therefore, we will simulate this process and use the simulated values in the calculation of

the log-likelihood. For future research, this way of estimation can be improved if we somehow infer the

values of this unobservable process from the values of V̂t. Also, if we employ an estimating procedure

during which we can use estimated new parameters at next step, updating the values of this process can

also improve the estimation.

3 Data

The data used in the estimations is obtained from Thomson Reuters Datastream and Worldscope and

is displayed in millions of units of local currency. Our focus is on the banking industry; however, the

above mentioned model can be used in the analysis of any industry. The choice of companies can be

random. We will be analyzing three companies: JPMorgan Chase & Co. (JPM), Citigroup Inc. (Citi),

and Bank of America Corporation (BAC) (see the company profiles). Market Value by Company (MVC)

from Datastream will be used as the equity data. Market Value (MV) from Datastream is the market

value of only one class of shares. MVC is the same as MV for the companies with only one listed equity

security. However, for the companies with more than one type of listed shares or unlisted shares, MVC

takes these other types of shares into consideration too. For the detailed description, refer to Datastream

Datatype Definition. For the estimation, we will be using monthly data from 2004/12/30 to 2014/12/30,

i.e. the values of the 28th or 29th days from February and the 30th day from the other months (121
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observations in total). Graph 1 displays the monthly MVC for the three companies.

Table 1: JPM Company Profile

Year 2004 2005 2006 2007 2008 2009 2010

Total Assets 1157248 1198942 1351520 1562147 2175052 2031989 2117605

Total Liabilities 1051595 1091731 1235730 1438926 2008168 1866624 1941499

ROE 5.87% 7.98% 12.96% 12.86% 3.82% 6.01% 9.69%

ROA 0.63% 0.95% 1.67% 1.35% 0.59% 0.75% 0.96%

Net Income -33.53% 89.95% 70.27% 6.38% -63.52% 109.24% 39.89%

Year 2011 2012 2013 2014

Total Assets 2265792 2359141 2415689 2572773

Total Liabilities 2082219 2155072 2204511 2341046

ROE 10.21% 10.72% 8.40% 9.75%

ROA 1.01% 1.06% 0.92% 1.00%

Net Income 10.92% 12.82% -15.26% 21.96%

From the company balance sheets, we calculated Dt for each t. We define Dt as the sum of Deposits-
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Table 2: Citi Company Profile

Year 2004 2005 2006 2007 2008 2009 2010

Total Assets 1484101 1494037 1884318 2187631 1938470 1856646 1913902

Total Liabilities 1374810 1381500 1764535 2074033 1794448 1701673 1748113

ROE 16.56% 22.33% 18.66% 3.08% -31.88% -8.28% 6.66%

ROA 1.49% 2.00% 1.73% 0.72% -0.84% 0.10% 0.98%

Net Income -4.52% 44.25% -12.41% -83.21% - - -

Year 2011 2012 2013 2014

Total Assets 1818846 1864660 1880382 1842530

Total Liabilities 1639273 1673663 1674249 1630485

ROE 6.37% 4.04% 6.88% 3.37%

ROA - 0.72% - -

Net Income 3.51% -32.22% 81.83% -46.29%

Table 3: BAC Company Profile

Year 2004 2005 2006 2007 2008 2009 2010

Total Assets 1110432 1291803 1459737 1715746 1817943 2230232 2264909

Total Liabilities 1010197 1190270 1324465 1568943 1640891 1998788 2036661

ROE 19.18% 16.35% 18.07% 10.77% 1.82% -1.33% -1.77%

ROA 1.70% 1.61% 1.87% 1.33% 0.59% 0.81% 0.30%

Net Income 30.83% 18.05% 28.35% -29.11% -73.25% 59.18% -

Year 2011 2012 2013 2014

Total Assets 2097047 2176936 2102273 2104534

Total Liabilities 1866946 1939980 1869588 1861063

ROE 0.04% 1.29% 4.61% 1.71%

ROA 0.42% 0.48% - -

Net Income - 189.69% 173.03% -57.71%
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Total, Commercial paper, Debt and equity instruments-Trading liabilities, Federal funds purchased under

repurchase agreement, other borrowed funds, and one half of Long Term Debt. This addition of one half

of the long term debt is a conventional method adopted by Moody’s KMV, a unit that offers commercial

packages of default probability. For JPM, we have all these categories available (Federal funds purchased

under repurchase agreements is displayed under the name of under repurchase agreements). However, for

the other two companies the data is not available under these names and we make small adjustments.

For Citi, we define Dt as the sum of Deposits-Total, Federal funds purchased and securities (sum

of Federal Funds Purchased, Security Sold under Repurchase Agreement, and Federal funds purchased

and securities), Commercial paper, Trading account liabilities, Short-term borrowings (sum of Short-term

borrowings and Other borrowings - Balancing value), and one half of Long-term debt. For BAC, Dt is the

sum of Deposits-Total, Federal funds purchased and securities (sum of Federal Funds Purchased, Security

Sold under Repurchase Agreement, and Federal funds purchased and securities), Trading account liabil-

ities, short term borrowings, and one half of Long term debt. Commercial paper data was not available

on the balance sheet for this company.

Deposits-Total for all companies and Long term debt for BAC are retrieved from Worldscope. The

values are restated, updated or reclassified values, i.e. the latest values available. The rest of the data is

from Reuters. This debt data is quarterly. We used interpolation to obtain the values of the debt for the

missing months. Graph 2 displays the time-series (121 observations) of the debt for all companies.
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The equity data is also available on the weekly basis. However, the most detailed debt data is quarterly.

If we try to retrieve the missing weekly points for debt, the missing points for the interpolation will be too

many. We think that if we use the weekly data, there will be a lot of uncertainties about the correctness

of the interpolated debt levels. In the case of the monthly data, we have greater confidence that the

equity and the debt values match each other at each point in time.

4 Estimation, Results, and Comparison

Since there is a possibility that parameters of the model change by time, we split the estimation period

into 2-year subperiods: 2004/12/30∼2006/12/30, 2005/12/30∼2007/12/30, 2006/12/30∼2008/12/30,

2007/12/30∼2009/12/30, 2008/12/30∼2010/12/30, 2009/12/30∼2011/12/30, 2010/12/30∼2012/12/30,

2011/12/30∼2013/12/30, 2012/12/30∼2014/12/30. For each 2-year interval, we estimated the param-

eters of our model and of the model used in Lehar [17]. We will call the latter one GBM model, since

it assumes that the asset value follows geometric Brownian motion. Thus, the difference between these

two models is that the first one incorporates the shot noise process and the second one does not. For

comparison, we report the parameter values of the two models together for each period.

Using the estimated parameters of the 2-year subinterval, we generated the asset value process for the

next year. For this, first we retrieved starting value of the asset process from the Black-Scholes equation

using the estimated variance parameter and starting from that value, we simulated the next 12 observa-

tions. For example, if we used data from 2004/12/30∼2006/12/30 to estimate parameters, we retrieved

the starting asset value using the Black-Scholes formula (8), variance, and the equity of 2006/12/30.

Finally, we compared the last simulated asset value to the debt of the company. We assume that debt

grows at the rate of 1-year treasury bill r, i.e. for comparison with assets, in our example, we used the

year-end debt level of 2006 multiplied by er, where r is the last observed treasury rate in the year of 2006.

Table 12 in Appendix B summarizes the interest rates used in the calculation of the debt. If the asset

value fell at or below the level of debt DT , we considered this as default. We simulated the paths of the

asset value process 10,000 times and counted the number of defaults.

Because we also use simulation to calculate the likelihood function value, the maximum likelihood

estimation of our model does not give only one set of parameter solution. Therefore, we did the maxi-

mization many times, i.e. under many simulated data. First, we chose those parameter vectors that do

not have σ very small compared to the one estimated in GBM model. Using these estimated parameter

vectors, we simulated the asset value process for the same 2-year period that we used in the approxima-
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tion and backed out the equity values from the Black-Scholes equation (8). Then, we compared these

equity values to the actual equity of the company. We chose the parameters that gave relatively good

approximation of the equity process. We also display the standard errors (in parenthesis) calculated by

inverting the Hessian matrix of the constrained minimization problem and taking the square root of the

diagonal elements; however, from the description of Matlab manual of the function fmincon, the reported

standard errors may not be accurate. We have also observed that the standard errors depend on the

initial values. In tables that report parameter values, “Year” indicates the year for which we did the

simulation. This means that the parameters are obtained from the previous two years. “Default” shows

the probability of defaulting at the end of the indicated year. The graphs that compare the calculated

equity values and real equity values are displayed in Appendix B.
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4.1 Results (1) 2007-2010

Table 4: Simultaneous Default Matrices

GBM Model Shot Noise Model

2007 JPM Citi BAC 2007 JPM Citi BAC

JPM 0 0 0 JPM 0 0 0

Citi 0 0 0 Citi 0 0 0

BAC 0 0 0 BAC 0 0 0

All 0 All 0

GBM Model Shot Noise Model

2008 JPM Citi BAC 2008 JPM Citi BAC

JPM 0 0 0 JPM 0 0 0

Citi 0 0.0528 0 Citi 0 0.0609 0

BAC 0 0 0 BAC 0 0 0

All 0 All 0

GBM Model Shot Noise Model

2009 JPM Citi BAC 2009 JPM Citi BAC

JPM 0.1925 0.1741 0.0489 JPM 0.3411 0.3086 0.1049

Citi 0.1741 0.9167 0.2413 Citi 0.3086 0.9194 0.2655

BAC 0.0489 0.2413 0.2565 BAC 0.1049 0.2655 0.2788

All 0.0478 All 0.0948

GBM Model Shot Noise Model

2010 JPM Citi BAC 2010 JPM Citi BAC

JPM 0.2328 0.1639 0.0487 JPM 0.3312 0.2992 0.0885

Citi 0.1639 0.7399 0.1521 Citi 0.2992 0.8882 0.2216

BAC 0.0487 0.1521 0.2132 BAC 0.0885 0.2216 0.2478

All 0.0379 All 0.0804
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Refer to Table 4 on the previous page. “All” indicates the probability that all of the three banks

default within one year. In the years of 2009 and 2010, the probabilities predicted by the shot noise

process are twice as large as those by the GBM. We can confirm this feature by also comparing the

pair-wise default probabilities. As of the goodness of fit, we review the graphs in Appendix B. In each

graph, we plot, by the dashed lines, the actual equity value, and, by the solid lines, the implied equity

value. The latter is retrieved from the asset value estimated by the shot noise model (upper panel) and

the GBM (lower panel). In the years of 2005-2006, we may say that the GBM and the shot noise model

have similar fits for JPM and Citi. In case of BAC, the shot noise model displays better fit. In 2006-2007,

the shot noise model has better fit for JPM and Citi. In case of BAC, we may say that the GBM model

has slightly better fit.

We should note that in the year of 2008, Citi has positive default probability in both models. The

corresponding equity values (based on which the default probabilities for the year 2008 are computed)

are shown in Graph 8 in Appendix B. In the case of the shot noise process, while we have reported the

parameters that provide the best fit, we encountered certain parameter sets that lead to higher default

probabilities for the year 2008. From Graph 8, we can see that towards the end the retrieved equity

has upward trend in both models. We obtained a parameter vector with small σ (around 0.01 times

the GBM σ) based on which the retrieved equity does not go upward in the end, and the gap between

actual and retrieved equities is maintained. For this parameter vector, the default probability was around

14%. A possible explanation is that although Citi’s equity price was not performing badly in the year

of 2006-2007, its asset quality has deteriorated but was not necessarily reflected in the market price of

equity. But if the shot noise process were to be used during that period, that trend could have been

detected. Note that Citi was bailed out in 2008 (see Wilchins and Stempel [27]). Compared to the model

in Lehar [17], our model does predict some kind of threat of the subprime crisis for Citi. Hence, in the

near future, we wish to enhance the accuracy of parameter estimation of the shot noise process so that

we could have more insight in what was really happening in the years of 2006-2007.

For the year of 2009, the shot noise model has better fit for JPM (Graph 5) and BAC (Graph 13).

In case of Citi, σ for the shot noise model has a tendency to be much smaller than the GBM σ (around

100 times smaller). We obtained only one parameter vector where σ was not very small, and we report

this solution (see Graph 9). Other parameter vectors where σ was very small gave different default

probabilities, some near 1 and some lower than the GBM model. For the year of 2010, again, the shot

noise process seems to give better fit (with higher joint probabilities). See Graphs 6, 10, and 14 for JPM,

Citi, and BAC, respectively.
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Table 5: Model Parameters for JPM

Year 2007 2008

Model GBM Shot Noise GBM Shot Noise

µ 0.1035 (0.0143) 0.1087 (0.0209) 0.1354 (0.0238) 0.0936 (0.0284)

σ 0.0295 (0.0039) 0.0288 (0.0042) 0.0324 (0.0044) 0.0262 (0.0042)

µ2ρ 0.0000 (0.0000) 0.0000 (0.0001)

Z0 -11.2869 (21.8202) 48.2436 (163.0164)

δ 20.0351 (3.3368) 3.8692 (1.8205)

M 0.0291 0.0266

Likelihood -252.0745 -251.5888 -257.3866 -252.5007

Default 0.0000 0.0000 0.0000 0.0000

Year 2009 2010

Model GBM Shot Noise GBM Shot Noise

µ 0.1719 (0.1208) 0.0852 (0.1052) 0.1361 (0.1510) 0.0817 (0.1370)

σ 0.1815 (0.3763) 0.1450 (0.0511) 0.2075 (0.0539) 0.1755 (0.0526)

µ2ρ 0.0225 (0.0371) 0.0378 (0.0559)

Z0 0.1396 (0.5550) 0.3237 (0.4052)

δ 6.4869 (1.0552) 17.6783 (2.5744)

M 0.2086 0.2619

Likelihood -287.9526 -287.6399 -288.4642 -287.0984

Default 0.1925 0.3411 0.2328 0.3312
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Table 6: Model Parameters for Citi

Year 2007 2008

Model GBM Shot Noise GBM Shot Noise

µ 0.1457 (0.0283) 0.1483 (0.0333) 0.1255 (0.0716) 0.0895 (0.1032)

σ 0.0399 (0.0058) 0.0393 (0.0057) 0.0994 (0.0192) 0.0940 (0.0197)

µ2ρ 0.0000 (0.0001) 0.0015 (0.0097)

Z0 -6.4542 (28.2323) 2.5004 (1.0706)

δ 18.2629 (10.1960) 7.8986 (1.0091)

M 0.0397 0.1019

Likelihood -267.1499 -266.8642 -289.3226 -289.0141

Default 0.0000 0.0000 0.0528 0.0609

Year 2009 2010

Model GBM Shot Noise GBM Shot Noise

µ -0.1069 (0.0908) -0.1068 (0.2684) -0.0979 (0.1226) -0.1895 (0.2059)

σ 0.1301 (0.0367) 0.1299 (0.0349) 0.1723 (0.0837) 0.1437 (0.1277)

µ2ρ 0.0001 (0.0001) 0.0175 (0.0611)

Z0 -17.8060 (13.1695) 1.2752 (3.1261)

δ 0.0000 (0.0097) 10.4252 (9.7605)

M 0.1301 0.1952

Likelihood -286.2191 -283.9503 -274.5238 -272.7072

Default 0.9167 0.9194 0.7399 0.8882
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Table 7: Model Parameters for BAC

Year 2007 2008

Model GBM Shot Noise GBM Shot Noise

µ 0.1360 (0.0248) 0.1052 (0.0383) 0.1029 (0.0205) 0.0556 (0.0335)

σ 0.0480 (0.0076) 0.0411 (0.0065) 0.0403 (0.0058) 0.0323 (0.0094)

µ2ρ 0.0000 (0.0002) 0.0001 (0.0007)

Z0 37.4186 (87.3341) 22.4712 (60.4543)

δ 5.9174 (3.6974) 3.4835 (1.3856)

M 0.0417 0.0342

Likelihood -269.3417 -265.8649 -267.5702 -263.3168

Default 0.0000 0.0000 0.0000 0.0000

Year 2009 2010

Model GBM Shot Noise GBM Shot Noise

µ 0.0146 (0.0466) -0.0125 (0.0665) 0.0392 (0.0788) 0.0092 0.0507

σ 0.0660 (0.0098) 0.0632 (0.0121) 0.1146 (0.1432) 0.0988 0.0238

µ2ρ 0.0004 (0.0016) 0.0014 0.0028

Z0 4.2728 (8.5715) 0.5765 0.4628

δ 7.8314 (7.7353) 21.1645 3.8815

M 0.0664 0.1058

Likelihood -279.4183 -279.0548 -280.4275 -278.4803

Default 0.2565 0.2788 0.2132 0.2478
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4.2 Results (2) 2011-2014

Table 8: Simultaneous Default Matrices

GBM Model Shot Noise Model

2011 JPM Citi BAC 2011 JPM Citi BAC

JPM 0.0579 0.0148 0.0049 JPM 0.0979 0.0425 0

Citi 0.0148 0.2473 0.0159 Citi 0.0425 0.4233 0.0001

BAC 0.0049 0.0159 0.0684 BAC 0 0.0001 0.0004

All 0.0012 All 0

GBM Model Shot Noise Model

2012 JPM Citi BAC 2012 JPM Citi BAC

JPM 0.0898 0.0274 0.0567 JPM 0.0912 0.0009 0.0130

Citi 0.0274 0.2851 0.2001 Citi 0.0009 0.0038 0.0007

BAC 0.0567 0.2001 0.6767 BAC 0.0130 0.0007 0.1249

All 0.0159 All 0.0003

GBM Model Shot Noise Model

2013 JPM Citi BAC 2013 JPM Citi BAC

JPM 0.0003 0.0001 0 JPM 0 0 0

Citi 0.0001 0.1188 0.0115 Citi 0 0.1066 0.0095

BAC 0 0.0115 0.0987 BAC 0 0.0095 0.0745

All 0 All 0

GBM Model Shot Noise Model

2014 JPM Citi BAC 2014 JPM Citi BAC

JPM 0 0 0 JPM 0 0 0

Citi 0 0.0001 0 Citi 0 0

BAC 0 0 0 BAC 0 0 0

All 0 All 0
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For the year of 2011, the default probabilities are lower than the previous year. The shot noise model

gives better fit and higher default probabilities than the GBM for JPM and Citi (see Graphs 15 and 19).

For BAC, the shot noise models gave lower default probability. From Graph 23, we may say that, in case

of BAC, the shot noise model catches upward trend in equity better than GBM for the years of 2009-2010.

We want to point out that during this time period, the actual equity of Citi and BAC drop to a very low

level and then start to increase from that point. We have already mentioned Citi’s bailout. BAC was

also subject to government bailout in early January of 2009 (see Rucker and Stempel [22]). Therefore, we

can say that the increase in the equities of these two companies is not a natural phenomenon, but rather

a result of a planned intervention.

For the year of 2012, from both models we get much higher default probability for BAC than in the

previous year. This could be linked to the financial crisis in Europe. Freed [9] discusses European crisis

and the threats that are imposed on BAC for 2012. The shot noise model gives better fit than the GBM

(see Graph 24) and lower default probability. In case of Citi, we obtain lower default probability from the

shot noise model than from the GBM. From Graph 20, we can say that the shot noise model catches the

equity trend better. For JPM, the shot noise model gives slightly better fit (see Graph 16) and slightly

higher default probability.

The probability of all three companies defaulting simultaneously goes to 0 in 2013. In 2014, default

probabilities for all company combinations go to 0. We also did the simulation for 2015. The results were

not different from 2014.
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Table 9: Model Parameters for JPM

Year 2011 2012

Model GBM Shot Noise GBM Shot Noise

µ 0.0023 (0.1464) 0.0155 (0.0421) 0.0264 (0.0490) 0.0141 (1.9828)

σ 0.0651 (0.0112) 0.0611 (0.0130) 0.0684 (0.0130) 0.0635 (0.5683)

µ2ρ 0.0001 (0.0006) 0.0004 (0.0007)

Z0 -17.4028 (38.4435) 1.4197 (6.0380)

δ 15.7057 (10.2284) 20.8445 (62.9050)

M 0.0622 0.0665

Likelihood -277.7229 -251.7737 -279.6187 -278.5857

Default 0.0579 0.0979 0.0898 0.0912

Year 2013 2014

Model GBM Shot Noise GBM Shot Noise

µ 0.0614 (0.0311) 0.0312 (0.3772) 0.0683 (0.0138) 0.0648 (0.0258)

σ 0.0440 (0.0083) 0.0334 (0.0076) 0.0342 (0.0054) 0.0136 (0.0188)

µ2ρ 0.0004 (0.0006) 0.0012 (0.0009)

Z0 9.6337 (8.1758) 3.0538 (1.4439)

δ 8.0597 (3.0248) 10.3560 (1.9054)

M 0.0392 0.0377

Likelihood -273.6271 -269.8824 -269.8306 -267.1420

Default 0.0003 0.0000 0.0000 0.0000
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Table 10: Model Parameters for Citi

Year 2011 2012

Model GBM Shot Noise GBM Shot Noise

µ 0.0794 (0.0546) 0.1663 (0.1016) 0.0126 (0.0418) -0.0412 (0.0480)

σ 0.1685 (0.0226) 0.0982 (0.0406) 0.0808 (0.0176) 0.0497 (0.0117)

µ2ρ 0.0081 (0.0153) 0.0006 (0.0015)

Z0 -8.6396 (3.5270) 17.7945 (24.4732)

δ 6.9651 (1.7011) 5.5609 (2.7909)

M 0.1332 0.0550

Likelihood -275.1723 -270.9593 -276.3922 -271.5470

Default 0.2473 0.4233 0.2851 0.0038

Year 2013 2014

Model GBM Shot Noise GBM Shot Noise

µ -0.0018 (0.3092) -0.0188 (0.3041) 0.0452 (0.0292) 0.0259 (0.0254)

σ 0.0581 (0.0405) 0.0525 (0.0509) 0.0385 (0.0066) 0.0301 (0.0055)

µ2ρ 0.0011 (0.0028) 0.0001 (0.0003)

Z0 1.9977 (0.4341) 17.1031 (21.8423)

δ 10.3581 (3.4093) 9.0585 (3.7260)

M 0.0619 0.0323

Likelihood -271.8972 -271.1865 -266.9866 -262.7237

Default 0.1188 0.1066 0.0001 0.0000
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Table 11: Model Parameters for BAC

Year 2011 2012

Model GBM Shot Noise GBM Shot Noise

µ 0.0858 (0.0957) -0.3241 (1.2216) -0.0497 (0.0522) -0.1429 (1.4609)

σ 0.1002 (0.0270) 0.0757 (0.0187) 0.0722 (0.0154) 0.0401 (0.0081)

µ2ρ 0.0004 (0.0005) 0.0002 (0.0006)

Z0 65.0639 (187.5720) 32.5817 (49.6565)

δ 0.5743 (1.6504) 4.4704 (1.7148)

M 0.0783 0.0427

Likelihood -279.0902 -264.9633 -277.3099 -269.8235

Default 0.0684 0.0004 0.6767 0.1249

Year 2013 2014

Model GBM Shot Noise GBM Shot Noise

µ 0.0113 (0.0409) 0.0014 (0.0388) 0.0557 (0.0252) 0.0090 0.2299

σ 0.0613 (0.0122) 0.0480 (0.0133) 0.0357 (0.0042) 0.0217 0.0134

µ2ρ 0.0016 (0.0022) 0.0002 0.0005

Z0 0.2613 (0.2622) 17.3249 20.2392

δ 11.0773 (0.6166) 4.0714 3.1536

M 0.0622 0.0267

Likelihood -272.8862 -270.9900 -267.2663 -259.9658

Default 0.0987 0.0745 0.0000 0.0000
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5 Conclusion

In this paper our main focus is on the simultaneous default probabilities during 2004-2010, since this

includes subprime mortgage crisis. If we look at the retrieved equity graphs, the shot noise model per-

formed better than simple GBM model for 2008 (Citi), 2009, and 2010. For 2008, we obtained higher

default probability for Citi and also, concluded that during 2006-2007 there were some warnings about

upcoming crisis for this company. For 2009, we obtained better fit with shot noise model for JPM and

BAC. For Citi, reported GBM and the shot noise fits were similar. In general, simultaneous default

probabilities were higher for shot noise model than for GBM. For 2010, shot noise model gave better

fit and higher default probabilities for all company combinations. In 2013, the probability of all three

companies defaulting at the same time goes to 0. Simultaneous default probabilities are 0 for all company

combinations in 2014 and 2015.

Looking at the retrieved equity graphs for 2007-2008 (Graphs 5 and 13) and 2008-2009 (Graphs 6, 10,

and 14), we can say that shot noise model outperforms GBM during bad economy. During the period

of upward trends in equity, we cannot say that shot noise model outperforms GBM model; however, in

some cases we get better fit from the shot noise model (see Graphs 4, 20, 23, and 26).

Our model did predict higher simultaneous default probabilities for the years of 2009 and 2010, and

this shows that GBM model underestimates default probability predictions for these years, compared to

our model. However, we still do not know to what extent the default probability estimates from our

model are close to reality. Therefore, we use market data to check form a different perspective which

model is better, GBM model or our model.

We used Senior 5 year CDS Spread Mid data from Thomson Reuters (datasource-CMA) for JPM, Citi,

and BAC. We call this data CDS spread. The data is provided in USD. Since we have been using monthly

data in our previous calculations, we will also use monthly CDS spreads. The data is available only until

2010/09/30; therefore, we have 70 monthly observations for each company starting at 2004/12/30. Figure

1 illustrates the dynamics of CDS spreads.
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Observations 25-49 are from 2006/12/30-2008/12/30. We can see that CDS spreads for Citi and BAC

increased greatly in 2009. To check the connection between CDS spreads and asset values, we first

simulated the asset processes for both models. We will illustrate this by an example. Using 2005-2006

data, we already estimated parameters and used them to predict default at the end of 2007. Rather than

predicting, we now used 2005-2006 parameters to simulate asset processes for 2005-2006. We retrieved

initial asset value from Black-Scholes equation using just variance parameter and then simulated asset

paths 50,000 times and took average. Using 2006-2007 data, we simulated asset paths for 2006-2007 in

a similar manner. We took average of asset values for overlapping periods (e.g. for the year of 2006

in this example). By putting together these paths, we obtained times series of asset values from both

models. Then, using R 3.1.3 we regressed 2004/12/30-2010/09/30 CDS spreads of each company on all

three asset time series of 2004/12/30-2010/09/30. JMPcds, Citicds, and BACcds are CDS spread data

vectors. JPMgbm, Citigbm, and BACgbm are asset vectors simulated from GBM model. JPMshotnoise,

Citishotnoise, and BACshotnoise are asset vectors simulated from our model. For each company’s CDS

spread, we did two regressions: one based on assets simulated from GBM model and another based on

assets simulated from our model. Regression equations are as follows:

JPMcds = α1JPMgbm+ β1Citigbm+ γ1BACgbm+ εJPM

JPMcds = α?1JPMshotnoise+ β?1Citishotnoise+ γ?1BACshotnoise+ ε?
JPM
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Citicds = α2JPMgbm+ β2Citigbm+ γ2BACgbm+ εCiti

Citicds = α?2JPMshotnoise+ β?2Citishotnoise+ γ?2BACshotnoise+ ε?
Citi

BACcds = α3JPMgbm+ β3Citigbm+ γ3BACgbm+ εBAC

BACcds = α?3JPMshotnoise+ β?3Citishotnoise+ γ?3BACshotnoise+ ε?
BAC

From the tables below, we can see that asset values simulated from our model are able to explain CDS

spreads better than asset values simulated from GBM model. If we use asset values from our model, more

regression parameters will be statistically significant.

Table 12: Regression Results for JPM CDS Spread

Dependent variable:

JPMcds

(1) (2)

JPMgbm 0.0003∗∗∗

(0.0001)

Citigbm 0.0001
(0.0001)

BACgbm −0.0003∗

(0.0002)

JPMshotnoise 0.001∗∗∗

(0.0001)

Citishotnoise 0.0001∗∗∗

(0.00004)

BACshotnoise −0.001∗∗∗

(0.0001)

Observations 70 70
R2 0.850 0.854
Adjusted R2 0.843 0.847
Residual Std. Error (df = 67) 29.915 29.517
F Statistic (df = 3; 67) 126.537∗∗∗ 130.582∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 13: Regression Results for Citi CDS Spread

Dependent variable:

Citicds

(1) (2)

JPMgbm 0.001∗∗

(0.0003)

Citigbm −0.0001
(0.0002)

BACgbm −0.0004
(0.0005)

JPMshotnoise 0.001∗∗∗

(0.0003)

Citishotnoise −0.0001
(0.0001)

BACshotnoise −0.001∗

(0.0004)

Observations 70 70
R2 0.793 0.797
Adjusted R2 0.784 0.788
Residual Std. Error (df = 67) 83.428 82.573
F Statistic (df = 3; 67) 85.634∗∗∗ 87.883∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 14: Regression Results for BAC CDS Spread

Dependent variable:

BACcds

(1) (2)

JPMgbm 0.0004∗∗∗

(0.0002)

Citigbm −0.00005
(0.0001)

BACgbm −0.0003
(0.0002)

JPMshotnoise 0.001∗∗∗

(0.0002)

Citishotnoise −0.00003
(0.0001)

BACshotnoise −0.0005∗∗∗

(0.0002)

Observations 70 70
R2 0.862 0.860
Adjusted R2 0.856 0.854
Residual Std. Error (df = 67) 42.242 42.644
F Statistic (df = 3; 67) 140.054∗∗∗ 137.009∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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We also display fitted CDS spread values (fitted values from above regressions) together with real

CDS spread data below. We can see that fitted values based on our model’s asset time series provide

better approximation of the real data than the values based on GBM model. It is also obvious that simple

regression model cannot explain the spike in CDS spreads in 2009. For this, we might need to consider

self-exciting processes, such as Hawkes process.
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Finally, we display DCC Garch Model’s estimates of dynamic conditional correlation between loga-

rithmic CDS spread returns. We again used R for the analysis. We first estimated VAR model (setting

type=“const”) for asset return vectors and then applied dcc.estimation function (setting model=“diagonal”)

to the residuals. We selected VAR lag order by VARselect function where we set lag.max to default value

10. We applied Garch(1,1) model to each residual vector and used those parameters as initial values for

dcc.estimation.

In case of Citi, we obtained one negative fitted CDS spread from GBM model assets; therefore, we

cannot take logarithm. Negative spread means that the fit is not good. We exclude Citi from the analysis

and focus on JPM and BAC. Lag order 1 was selected in all (real, GBM, and shot noise) cases. Figure 5

displays dynamic conditional correlations for real CDS spread returns and for the returns based on fitted

CDS spreads from GBM and our model (these are fitted values from the regression on assets that we ex-

plained above). We again see that our model provides a better approximation to the dynamic conditional

correlation of the real data.
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We can conclude that asset values simulated from our model explain characteristics of real CDS

spread data better than asset values simulated from GBM model. Therefore, we can say that our default

probability predictions are also closer to reality. For future research, we would like to expand this model

and use it in the analysis of more than three companies. We anticipate that adding additional companies

to the model will not increase computational burden since we will be using only one shot noise process.

Also, we would like to analyze simultaneous defaults in different industries. For this, we consider using

more than one shot noise model to incorporate industry dependencies in the model.
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Appendices

A Mathematical Proofs

1. Dynamics of V = (Vt)t≥0 under approximation (Section 1.2)

First, we will prove that Zt = Z0e
−δt +

√
2δ
∫ t

0
e−δ(t−s)dB

(2)
s is a semimartingale. Applying Itô’s formula

to eδtB
(2)
t , we get

eδtB
(2)
t =

∫ t

0

δeδsB(2)
s ds+

∫ t

0

eδsdB(2)
s

Multiplying both sides by e−δt, we have

B
(2)
t =

∫ t

0

δe−δ(t−s)B(2)
s ds+

∫ t

0

e−δ(t−s)dB(2)
s

−→
∫ t

0

e−δ(t−s)dB(2)
s = B

(2)
t −

∫ t

0

δe−δ(t−s)B(2)
s ds

After substituting this into the equation of Zt, we get

Zt = Z0e
−δt +

√
2δB

(2)
t −

√
2δ

∫ t

0

δe−δ(t−s)B(2)
s ds

= Z0 + (Z0e
−δt − Z0 −

√
2δ

∫ t

0

δe−δ(t−s)B(2)
s ds) +

√
2δB

(2)
t

(1)

The process inside the brackets starts at 0. For any fixed t, the integral inside the brackets is a well-

defined Lebesgue-Stietljes integral and as a function of t, it is of bounded variation (Karatzas & Shreve,

Remark 4.6(i) [14, p. 23, 150]). This means that Zt can be expressed as a sum of the initial value, the

bounded variation process and the local martingale. Hence, it is a semimartingale. Also, we have

〈Z〉t = 2δt

Next, we show the dynamics of the asset value.

Vt = eX0+(µ− 1
2
σ2)t+σB

(1)
t −

µ1ρ
δ
−Zt
√
µ2ρ
2δ

dVt = Vt(µ−
1

2
σ2)dt+ VtσdB

(1)
t +

1

2
Vtσ

2dt− Vt
√
µ2ρ

2δ
dZt +

1

2
Vt
µ2ρ

2δ
d〈Z〉t

= Vtµdt+ VtσdB
(1)
t − Vt

√
µ2ρ

2δ
(−δZtdt+

√
2δdB

(2)
t ) +

1

2
Vt
µ2ρ

2δ
2δdt

= Vt(µ+
1

2
µ2ρ+ δ

√
µ2ρ

2δ
Zt)dt+ VtσdB

(1)
t − Vt

√
µ2ρdB

(2)
t

(2)
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2. V = (Vt)t≥0 is a semimartingale (Section 1.2)

Vt = V0 +

∫ t

0

VsQsds+

∫ t

0

VsσdB
(1)
s −

∫ t

0

Vs
√
µ2ρdB

(2)
s

We are looking at time up to fixed T . The first integral is again a Lebesgue-Stieltjes integral and is a

bounded variation process. The second and third integrals are local martingales since P
[∫ T

0
V 2
s σ

2ds <∞
]

=

1 and P
[∫ T

0
V 2
s µ2ρds <∞

]
= 1. Their sum is again a local martingale. Therefore, Vt is a semimartingale

for t ∈ [0, T ].

3. The condition for measure change is satisfied (Section 1.3.1)

Ht(θ) = e
∑2
i=1

∫ t
0 θ

i
sdB

i
s−

1
2

∫ t
0 ||θs||

2ds

θ1
t =

r −Qt +
√
µ2ρ

σ

θ2
t = 1

We have to show that Novikov’s condition E
[
e

1
2

∫ T
0 ||θt||

2dt
]
<∞ is satisfied. Let K = r−µ− µ2ρ

2
+
√
µ2ρ.

1

2
||θt||2 =

(r − µ− µ2ρ
2

+
√
µ2ρ− δ

√
µ2ρ
2δ
Zt)

2

2σ2
+

1

2
=

(K − δ
√

µ2ρ
2δ
Zt)

2

2σ2
+

1

2

1

2
||θt||2 ≤

1

2
+

(|K|+ |δ
√

µ2ρ
2δ
Z0e

−δt|+ δ
√
µ2ρ|

∫ t
0
e−δ(t−s)dB

(2)
s |)2

2σ2

Now, e−δt ≤ 1 and |K| + |δ
√

µ2ρ
2δ
Z0e

−δt| ≤ |K| + |δ
√

µ2ρ
2δ
Z0| = C where C is a positive constant.

Also,

|
∫ t

0

e−δ(t−s)dB(2)
s | ≤ |

∫ t

0

1dB(2)
s | = |B

(2)
t |

So,

1

2
||θt||2 ≤

1

2
+

(C + δ
√
µ2ρ|B(2)

t |)2

2σ2

Let B∗T = sup0≤t≤T |B
(2)
t | . Using Corollary 5.14 from Karatzas and Shreve [14, p. 199], we take any

sequence that satisfies 0 = t0 < t1 < ... < tn →∞ . Now,

E

[
e

1
2

∫ tn
tn−1

||θt||2dt
]
≤ e

tn−tn−1
2 E

[
e

1
2

∫ tn
tn−1

(C+δ
√
µ2ρB

∗
T )2

σ2 dt

]
= e

tn−tn−1
2 E

[
e

1
2

(tn−tn−1)
(C+δ

√
µ2ρB

∗
T )2

σ2

]

C+δ
√
µ2ρB

(2)
t√

2σ
is a Gaussian process. For each ω, Brownian motion is continuous in t; therefore, its

maximum on [0, T ] exists. From Burkholder-Davis-Gundy inequality (Karatzas & Shreve [14, p. 166]),
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there exists some constant K 1
2

and E[sup0≤t≤T |Bt|] ≤ K 1
2

√
T .

→ sup
0≤t≤T

|
C + δ

√
µ2ρB

(2)
t√

2σ
| <∞ a.s.

Then, by Landau and Shepp [16], there exists some ε > 0, such that

E

[
e
ε

(C+δ
√
µ2ρB

∗
T )2

2σ2

]
<∞

We make the interval tn − tn−1 ∀n ≥ 1 equal to ε. Then,

E

[
e

(tn−tn−1)
(C+δ

√
µ2ρB

∗
T )2

2σ2

]
<∞ ∀n ≥ 1

This means that

E
[
e

1
2

∫ tn
tn−1 θ

2
t dt
]
<∞ ∀n ≥ 1

and from the above mentioned Corollary 5.14, we can say that Ht(θ) is a martingale.

The idea of this proof was borrowed from Nate Eldredge.

http://math.stackexchange.com/questions/133691/can-i-apply-the-girsanov-theorem-to-an-ornstein-

uhlenbeck-process accessed on 10/18/15

Because Ht(θ) is a martingale, we can change the measure and B̃t becomes 2-dimensional Brownian

motion under P̃T .

W̃t = σ
M
B̃

(1)
t −

√
µ2ρ

M
B̃

(2)
t is a martingale and its quadratic variation is t. Therefore, it is a standard

Brownian motion under P̃T .

d(e−rtVt) = e−rtVtMdW̃t and e−rtVt is a local martingale under P̃T . However, we also have

Ẽ
[
e

1
2

∫ T
0 M2dt

]
<∞

and from proposition 14.2 in Steele [26, p.241] we conclude that e−rtVt is a martingale under P̃T .

4. The condition for measure change in the multidimensional model is satisfied (Section

1.3.2) Using the above results,

1

2
||θt||2 ≤

m+1∑
j=1

[
1

2
+

(Cj + δj
√
µj2ρ

j |B(m+1)
t |)2

2(σj)2
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Let C = max
j
Cj , δ = max

j
δj , µ2ρ = max

j
µj2ρ

j , σ = min
j
σj . Then,

1

2
||θt||2 ≤ (m+ 1)[

1

2
+

(C + δ
√
µ2ρ|B(m+1)

t |)2

2σ2
]

Again, we have a Gaussian process and we can use the exactly same reasoning as in Appendix A3.

5. Derivation of the log-likelihood function (Section 1.4) The construction of the log-likelihood

function that will be used during estimation is based on the arguments in Duan [5], Duan [6], and Duan,

Gauthier, and Simonato [7]. First, we calculate E[lnVk∆t |V(k−1)∆t ] and Var[lnVk∆t |V(k−1)∆t ].

ln
Vk∆t

V(k−1)∆t

= (µ− 1

2
σ2)∆t + σ(B

(1)
k∆t
−B(1)

(k−1)∆t
)−

√
µ2ρ

2δ
(Zk∆t − Z(k−1)∆t)

Zk∆t − Z(k−1)∆t

= Z0e
−δk∆t +

√
2δe−δk∆t

∫ k∆t

0

eδsdB(2)
s − Z0e

−δ(k−1)∆t −
√

2δe−δ(k−1)∆t

∫ (k−1)∆t

0

eδsdB(2)
s

= Z0e
−δk∆t(1− eδ∆t) +

√
2δ

[
e−δk∆t

∫ k∆t

0

eδsdB(2)
s − e−δ(k−1)∆t

∫ (k−1)∆t

0

eδsdB(2)
s

]

= Z0e
−δk∆t(1− eδ∆t) +

√
2δ[

e−δk∆t

∫ (k−1)∆t

0

eδsdB(2)
s + e−δk∆t

∫ k∆t

(k−1)∆t

eδsdB(2)
s − e−δ(k−1)∆t

∫ (k−1)∆t

0

eδsdB(2)
s

]

= Z0e
−δk∆t(1− eδ∆t) +

√
2δ[

e−δk∆t

∫ k∆t

(k−1)∆t

eδsdB(2)
s +

e−δ(k−1)∆t

eδ∆t

∫ (k−1)∆t

0

eδsdB(2)
s − e−δ(k−1)∆t

∫ (k−1)∆t

0

eδsdB(2)
s

]

= Z0e
−δk∆t(1− eδ∆t) +

√
2δ

[
e−δk∆t

∫ k∆t

(k−1)∆t

eδsdB(2)
s + (

1

eδ∆t
− 1)e−δ(k−1)∆t

∫ (k−1)∆t

0

eδsdB(2)
s

]

lnVk∆t − lnV(k−1)∆t = (µ− 1

2
σ2)∆t + σ(B

(1)
k∆t
−B(1)

(k−1)∆t
)−

√
µ2ρ

2δ
Z0e

−δk∆t(1− eδ∆t)

−√µ2ρe
−δk∆t

∫ k∆t

(k−1)∆t

eδsdB(2)
s −

√
µ2ρ(

1

eδ∆t
− 1)e−δ(k−1)∆t

∫ (k−1)∆t

0

eδsdB(2)
s

Given V(k−1)∆t , lnVk∆t follows normal distribution.

E[lnVk∆t |V(k−1)∆t ] =

lnV(k−1)∆t + (µ− 1

2
σ2)∆t −

√
µ2ρ

2δ
Z0e

−δk∆t(1− eδ∆t)−√µ2ρ(
1

eδ∆t
− 1)e−δ(k−1)∆t

∫ (k−1)∆t

0

eδsdB(2)
s

39



since
∫ (k−1)∆t

0
eδsdB

(2)
s is known when we know V(k−1)∆t and E

[∫ k∆t
(k−1)∆t

eδsdB
(2)
s |V(k−1)∆t

]
= 0.

Var[lnVk∆t |V(k−1)∆t ] = σ2∆t + µ2ρe
−2δk∆tE

[
(

∫ k∆t

(k−1)∆t

eδsdB(2)
s )2|V(k−1)∆t

]

= σ2∆t + µ2ρe
−2δk∆t

∫ k∆t

(k−1)∆t

e2δsds

= σ2∆t + µ2ρe
−2δk∆t 1

2δ
(e2δk∆t − e2δ(k−1)∆t)

= σ2∆t +
µ2ρ

2δ
(1− e−2δ∆t)

Hence, conditioned on the previous observation, Vk∆t follows log-normal distribution with above param-

eters. Vk∆t is a Markov process and we have

L(Vt, t = 0,∆t, 2∆t, ...n∆t) = f(Vn∆t |V(n−1)∆t)f(V(n−1)∆t |V(n−2)∆t)....f(V∆t |V0)

where f denotes density function.

Following Duan [5], we will also drop the first observation V0 from the likelihood and use it to define the

conditional distribution of the observations to follow; therefore, the above likelihood will not include the

density of the first observation. Let

meank∆t = (µ− 1

2
σ2)∆t −

√
µ2ρ

2δ
Z0e

−δk∆t(1− eδ∆t)−√µ2ρ(
1

eδ∆t
− 1)e−δ(k−1)∆t

∫ (k−1)∆t

0

eδsdB(2)
s

Vark∆t = Var[lnVk∆t |V(k−1)∆t ]

Then, using density function of log-normal distribution,

f(Vk∆t |V(k−1)∆t) =
1√

2πVark∆tVk∆t

e
−

(ln
Vk∆t

V(k−1)∆t
−meank∆t

)2

2Vark∆t

The log-likelihood function of unobserved Vk∆t becomes

L(Vt, t = 0,∆t, 2∆t, ...n∆t) = −n
2

ln 2π − 1

2

n∑
k=1

ln Vark∆t −
n∑
k=1

(ln
Vk∆t

V(k−1)∆t
−meank∆t)

2

2Vark∆t

−
n∑
k=1

lnVk∆t

We have an element-by-element transformation from an unobserved asset sample to an observed equity

sample through equation (8) and ∂Et
∂Vt

= N(dt). Then, we can write log-likelihood function of equity as

L(Et, t = 0,∆t, 2∆t, ...n∆t);µ, δ, µ2ρ, Z0, σ) =
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−n
2

ln 2π − 1

2

n∑
k=1

ln Vark∆t −
n∑
k=1

(ln
V̂k∆t

V̂(k−1)∆t

−meank∆t)
2

2Vark∆t

−
n∑
k=1

ln V̂k∆t −
n∑
k=1

lnN(d̂k∆t)

where V̂k∆t is the unique solution to (8) and d̂k∆t is dk∆t with Vk∆t replaced by V̂k∆t .

µ2ρ will be estimated as one parameter, since we only use the product of these two parameters in the

model.

B Results

Matlab R2015a was used for all the calculations and for producing graphs.

B.1 Results (1)
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B.2 Results (2)
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Table 15: 1-Yr Risk-free Interest Rates

Simulation Year Observed Date 1-Yr Treasury Yield (%)

2007 12/29/06 5
2008 12/31/07 3.34
2009 12/31/08 0.37
2010 12/31/09 0.47
2011 12/31/10 0.29
2012 12/30/11 0.12
2013 12/31/12 0.16
2014 12/31/13 0.13
2015 12/31/14 0.25

Source: U.S. Department of the Treasury
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