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Abstract

We study dynamic mean-variance optimization problems with multiple priors.
We introduce two types of multiple priors, the priors for expected returns and
the priors for covariances. Our framework suggests that the global minimum-
variance portfolio is optimal when the investor strongly doubts the correctness
of the estimated expected returns, and the equally weighted portfolio is optimal
when the investor strongly doubts the correctness of the estimated covariances.
From the back tests, we find that for some data sets, the strategy that invests in
the global minimum-variance portfolio or the equally weighted portfolio consider-
ing the market condition is more efficient than the other mean-variance efficient
portfolios.
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1 Introduction

The mean-variance analysis proposed by Markowitz (1952) and developed by Tobin (1958) and
Merton (1972) tells us that the tangency portfolio combined with the risk-free asset is mean-
variance efficient, which means that it delivers the highest Sharpe ratio among all portfolios.
However, it is not always efficient in practice. For example, Jagannathan and Ma (2003)
mention that the global minimum-variance portfolio delivers as large an out-of-sample Sharpe
ratio as the other efficient portfolios when the estimated expected returns are used. DeMiguel,
Garlappi, and Uppal (2009b) report that in their back tests, the equally weighted portfolio
(1/N portfolio) often has a higher Sharpe ratio than other optimal portfolios including the
tangency portfolio.

Probable explanations of these practical pitfalls are difficulties in estimating expected
returns and sensitivity of the tangency portfolio to the expected returns. Merton (1980)
reports that the estimation of expected returns is more difficult than that of a covariance
matrix of returns. Best and Grauer (1991) show that the mean-variance efficient portfolios
are very sensitive to the values of the expected returns. Therefore, the estimation errors
of expected returns have a large impact on optimal portfolio selections. Consequently, in
practice, the global minimum-variance portfolio, which is not mean-variance efficient in theory,
and the equally weighted portfolio, which seems to be naive, can become more efficient than
the mean-variance efficient portfolios.

In this paper, we construct plausible mean-variance optimization problems with multiple
priors and show that in limiting cases, the solutions to these problems include the equally
weighted portfolio and the global minimum-variance portfolio. The mean-variance problems
with multiple priors are robust to estimation errors of moments of asset returns. We consider
two-dimensional multiple priors: the priors for expected returns and the priors for a covari-
ance matrix of returns. In our framework, the naive and inefficient strategies such as the
equally weighted portfolio and the global minimum-variance portfolio are characterized by an
investor’s suspicion of the estimated parameters. If an investor strongly doubts the estimated
expected returns, her optimal portfolio becomes similar to the global minimum-variance port-
folio. In contrast to that, it becomes similar to the equally weighted portfolio if an investor
strongly doubts the estimated covariances.

Moreover, our framework is based on dynamic optimization problems and allows depen-
dency among the asset returns over time. More specifically, the market model in our framework
is the Markovian market model where a Markov process affects the distribution of returns.
This includes various return models such as the factor pricing models (e.g., capital asset
pricing model (CAPM) by Sharpe (1964) and the Fama-French three factor model by Fama
and French (1993)), the Markov regime switching models (e.g., Hamilton (1989) and Ang
and Bekaert (2002)) and so on. Furthermore, the dynamic approach justifies the investment
strategies which seem myopic. For example, the strategy investing in the global minimum-
variance portfolio during economic booming and investing in the equally weighted portfolio
during economic recession can be justified by our framework.

In order to investigate the effects of the estimation errors and study the efficiency of the
optimal portfolio in our framework, we conduct back tests using various data sets. Similar
to previous research, our back tests demonstrate that the global minimum-variance portfolio
is sometimes more efficient than the tangency portfolio. On the other hand, the investment
strategy that invests in the equally weighted portfolio during the economic booming and
the global minimum-variance portfolio during the economic recession is sometimes the most
efficient in all the portfolios. This strategy seems to be naive. However, since it is characterized
by the limiting cases in our framework, the reason why the investor chooses it is because of
the strong suspicion of the estimated parameters.

In the investment theory, the various methods have been proposed to deal with the esti-
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mation errors. They are classified into two major approaches: the Bayesian approach and the
non-Bayesian approach. In this paper, we adopt the non-Bayesian approach, specifically, the
max-min approach; maximizing an objective function with respect to portfolios after mini-
mizing the objective function with respect to priors of return’s distribution. The max-min
problem is popular when dealing with the multiple prior optimization. Goldfarb and Iyengar
(2003) solve the mean-variance portfolio selections with multiple priors under the factor pric-
ing model. Garlappi, Uppal, and Wang (2007) characterize multiple priors for the expected
returns by the confidence interval around the estimated expected returns and find that their
multiple-priors optimal portfolios have high Sharpe ratios in their back tests. The max-min
approach is economically axiomatized by Gilboa and Schmeidler (1989) in order to describe
the ambiguity aversion of investors illustrated by Ellsberg (1961).

In addition, we use one concept from the Bayesian approach. The Bayesian approach
is based on the Bayesian statistics, e.g., shrinkage estimators (Jobson and Korkie (1980)
and Jorion (1986)), the Black-Litterman model (Black and Litterman (1990)) and the other
methods such as Pástor and Stambaugh (2000). Ledoit and Wolf (2003) propose the shrinkage
estimator to estimate a covariance matrix of asset returns when facing the small sample
problem that is when the number of assets is larger than the number of observations. To
compute the shrinkage estimator, they minimize the Frobenius norm of estimated errors of
the covariance matrix. Using the idea of Ledoit and Wolf (2003), we introduce the Frobenius
norm of estimation errors of a covariance matrix in order to deal with multiple priors.

The results obtained by the mean-variance optimization constraining portfolio norms are
similar to the results by our framework. The mean-variance optimization constraining port-
folio norms is proposed by DeMiguel, Garlappi, Nogales, and Uppal (2009a). Especially, their
2-norm-constrained portfolio is basically the same as the one of our limiting cases. The dif-
ferences between our model and the one in DeMiguel et al. (2009a) are investment horizon
and problem formulation. DeMiguel et al. (2009a) consider static portfolio selections such as

min
u
u′Σ̂u subject to u′u ≤ k,

where u is a portfolio vector and u′ is its transpose. Σ̂ is an estimated covariance matrix.
k represents the upper bound of the constraint. DeMiguel et al. (2009a) solve the above
static minimum-variance problem since it is free from the problem of time-inconsistency1.
The optimal 2-norm-constrained portfolio is based on the covariance estimator of Ledoit and
Wolf (2004). If the upper boundary of the constraint is the reciprocal of the number of assets,
then the optimal portfolio becomes the equally weighted portfolio.

In contrast to the above problem, we consider the mean-variance-style objective function
such that

Eθ,V

[
T−1∑
t=0

δt
(
Eθ,V [Xt+1|FR,F

t ]− γ̂t
2Xt

Varθ,V (Xt+1|FR,F
t )

)]
,

where Xt is a wealth of the investor at time t and FR,F
t is the information of the investor

at time t. γ̂t/Xt represents the trade-off between the expected return and associated risks.
The superscripts θ and V express multiple priors and δ is a constant discount rate. Hence,
this objective function is an expected value of discounted sum of objectives in conditional
mean-variance problems. The above objective function is proposed by Chen, Li, and Zhao
(2014) to avoid the problem of time-inconsistency. Chen et al. (2014) consider this objective
function with a unique prior, but we consider the objective function with multiple priors.

Although there are several differences, the results of Pflug, Pichler, and Wozabal (2012)
are essentially the same as our results. Pflug et al. (2012) characterize a degree of ambiguity

1The standard dynamic programming procedure can not be applied to the simple mean-variance
optimization. See Li and Ng (2000) for more details.
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as the Kantorovich metric, and show that for various objective functions including a mean-
standard-deviation objective function and for arbitrary distributions of asset returns, the
investor chooses the equally weighted portfolio under high model ambiguity. In contrast
to Pflug et al. (2012), we focus on mean-variance objective functions and Markovian return
models. This allows us to use more simple and clear degrees of ambiguity than the Kantorovich
metric, that is, we use a confidence interval around the estimated expected return vector and
a relative error of the estimated covariance matrix. Furthermore, our optimization problems
are dynamic optimization problems, whereas optimization problems in Pflug et al. (2012)
are static optimization problems. Therefore, our models have different implications from the
model in Pflug et al. (2012).

The rest of this paper is organized as follows. Section 2 formulates and solves the dynamic
mean-variance optimization problem with multiple priors. Section 3 investigates limiting
behaviors of the solutions. Section 4 conducts back tests and reports their results. Section
5 is the concluding section. The most proofs of theorems, lemmas and propositions in this
paper are in Appendix.

2 Mean-Variance Portfolio Selections with Multiple

Priors in a Markovian Market

First, we introduce the following notations.

• Rd, the d-dimensional Euclidean space. Specifically, we write R := R1 and R+ := {x ∈
R | x ≥ 0}.

• Rm,n, a set of m× n matrices.

• x′, the transpose of a vector or matrix x.

• 0d, the d-dimensional real-valued vector whose all elements are 0.

• 1d, the d-dimensional real-valued vector whose all elements are 1.

• Id, the d-dimensional identity matrix.

• 1lA(ω), an indicator function. If ω ∈ A, then 1lA(ω) = 1. If ω /∈ A, then 1lA(ω) = 0.

• (x)+ := max{x, 0} for all x ∈ R.

• ∥x∥, a general expression of norms. Specifically, ∥x∥ is the Euclidean norm of x ∈ Rd
and ∥A∥ is the Frobenius norm of A ∈ Rm×n.

Let (Ω,F ,P) be a probability space. We consider optimal portfolio selections of an investor
during T periods. There are one risk-free asset and d risky assets in the financial market.
Moreover, we assume that a sequence of RK-valued random vectors, denoted by (Ft)

T
t=0,

influences distributions of the return vectors of the risky assets: The return vector of the
risky assets at time t, denoted by Rt, satisfies

Rt = µ(Ft) + σ(Ft)ϵt, t ≥ 0,

where (ϵt)
T
t=1 is a sequence of mutually independent and d-dimensional standard normal ran-

dom vectors, and µ : RK → Rd and σ : RK → Rd×d are measurable functions. Furthermore,
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we assume that Ft and ϵt are mutually independent for each t = 1, . . . , T . Then, the condi-
tional expectation and variance of Rt given by Ft are

E[Rt | Ft] = µ(Ft),

Var(Rt | Ft) = σ(Ft)(σ(Ft))
′,

for all t ≥ 1. Hence, the conditional mean and variance of the risky assets’ returns are
driven by the movement of (Ft)

T
t=0. For convenience, we write R0 = 0d. The risk-free rate

is a constant over time and it is denoted by rf , and (Ret )
T
t=1 is the excess return process,

Ret = Rt − rf1d.
Denote by FR,F = (FR,F

t )Tt=0 and FF = (FF
t )

T
t=0 the filtrations generated by (Rt, Ft)

T
t=0

and (Ft)
T
t=0, respectively. We assume that an investor can observe the value of Ft and Rt at

each t ≥ 0, so her information at time t is represented by FR,F
t . In addition, we assume the

following:

Assumption 1 The random process (Ft)
T
t=0 is a time-homogeneous Markov process with

respect to FR,F .

Assumption 1 is important for our optimization. Many return models satisfy this assump-
tion.

Example 2

1. Factor pricing models. Suppose that (Ft)
T
t=0 satisfies Assumption 1. Let µ(F ) = rf1d+

BF and σ(F ) = σ, where B ∈ Rd,K and σ ∈ Rd,d are constant matrices. Then, the
return process can be expressed as

Rt = rf1d +BFt + σϵt, t ≥ 1.

The above return process is the one of factor pricing models such as the capital asset
pricing model (CAPM) and the Fama-French three factor model.

2. Stochastic volatility models. Suppose that K = d and that (Ft)
T
t=0 is specified by

log(Ft) = m+B(log(Ft−1)−m) + ηt, t ≥ 1,

where m ∈ Rd is a constant vector and B ∈ Rd,d is a constant diagonal matrix. (ηt)
T
t=1

is a sequence of d-dimensional i.i.d. random vectors that are independent of (ϵt)
T
t=1.

The return process is defined as

Rt = µ+ diag(
√
Ft)Cϵt, t ≥ 1,

where CC ′ is a constant correlation matrix. Then, (Ft)
T
t=0 satisfies Assumption 1.

3. Markov regime-switching models. Suppose that (Ft)
T
t=0 is a K-states,

time-homogeneous Markov chain and that µ and σ are specified by

µ(Ft) = µi, σ(Ft) = σi, if Ft is ith state.

In addition, (Ft)
T
t=0 and (ϵt)

T
t=1 are mutually independent. Then, (Ft)

T
t=0 satisfies As-

sumption 1.
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In usual portfolio optimization, researchers assume that an investor knows the conditional
mean µ(Ft) and variance σ(Ft)(σ(Ft))

′, but, the investor needs to estimate the moments in
practice. In the robust optimization literature, researchers take into account the estimation
error of these moments. Similar to the literature, we introduce two statistical error compo-
nents. Let (θt)

T−1
t=0 be a Rd-valued random process of errors of mean and let (Vt)

T−1
t=0 be a

Rd,d-valued process of errors of variance. The one-period-ahead conditional mean and vari-
ance with respect to the probability measure representing the investor’s belief, denoted by
Pθ,V , can be expressed as

Eθ,V [Rt+1|FR,F
t ] = E[Rt+1|FR,F

t ] + θt, Varθ,V (Rt+1|FR,F
t ) = Var(Rt+1|FR,F

t ) + Vt, t ≥ 0.

Hence, θt and Vt can be regarded as statistical errors of conditional mean and variance given
FR,F
t at each t. The assumptions regarding (θt)

T−1
t=0 and (Vt)

T−1
t=0 are

Assumption 3

1. For each t, θt and Vt are FR,F
t -measurable.

2. For each t, Var(Rt+1|FR,F
t )+Vt and σ(Ft+1)(σ(Ft+1))

′+Vt are positive-definite matrices.

From the definitions of (θt)
T−1
t=0 and (Vt)

T−1
t=0 , Assumption 3 is natural.

The important technical issue is whether the probability measure Pθ,V exists or not. To
construct the probability measure Pθ,V , we introduce the random variable,

Zt =

t∏
s=0

ζs, t ≥ 0,

where

ζt+1 =

√
det(σ(Ft+1)(σ(Ft+1))′)

det(σ(Ft+1)(σ(Ft+1))′ + Vt)

× exp

{
−1

2
θ′t

(
σ(Ft+1)(σ(Ft+1))

′ + Vt

)−1
θt + θ′t

(
σ(Ft+1)(σ(Ft+1))

′ + Vt

)−1
σ(Ft+1)ϵt+1

+
1

2
ϵ′t+1

(
Id − (σ(Ft+1))

′
(
σ(Ft+1)(σ(Ft+1))

′ + Vt

)−1
σ(Ft+1)

)
ϵt+1

}
, t ≥ 1

and ζ0 = 1. Then, the following lemma holds.

Lemma 4 Under Assumptions 1 and 3, there exists a probability measure Pθ,V , such that

Pθ,V (A) = E[1lAZT ], A ∈ FR,F
T .

Under Pθ,V ,

Eθ,V [Rt+1|FR,F
t ] = E[Rt+1|FR,F

t ] + θt,

Varθ,V (Rt+1|FR,F
t ) = Var(Rt+1|FR,F

t ) + Vt,

for all t ≥ 0. Furthermore, the conditional distribution of Ft+1 given FR,F
t under Pθ,V is the

same as the conditional distribution of Ft+1 given FR,F
t under P.
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The proof of Lemma 4 is in Section A.1. Since (Ft)
T
t=0 is the time-homogeneous Markov

process with respect to FR,F , we can express the conditional mean and variance of Rt+1 as
functions depending on Ft, that is,

m(F ) := E
[
Rt+1

∣∣∣Ft = F
]
= E

[
Rt+1

∣∣∣FR,F
t

]
,

A(F ) := Var(Rt+1

∣∣∣Ft = F ) = Var(Rt+1

∣∣∣FR,F
t ),

for all t ≥ 0. We denote the conditional expected excess return by me(F ) = m(F )− rf1d.
Now, let us formulate the optimization problem of the investor. Let (Xt)

T
t=0 be a wealth

process of the investor. We assume that Xt satisfies a self-financing constraint, that is,

Xt+1 =
(
(1 + rf) + (Ret+1)

′ut

)
Xt, t ≥ 0,

where (ut)
T−1
t=0 is a sequence of d-dimensional portfolio vectors for risky assets. For each ut,

the ith element of ut represents the weight of the wealth invested in the ith risky asset. The
investor buys or sells Xt(1 − (1d)

′ut) dollar’s risk-free asset at each t ≥ 0. The investor’s
objective function is

Eθ,V

[
T−1∑
t=0

δt
(
Eθ,V [Xt+1|FR,F

t ]− γ̂t
2Xt

Varθ,V (Xt+1|FR,F
t )

)]
, (2.1)

where γ̂ := (γ̂t)
T−1
t=0 is a positive and FF -adapted process which represents the investor’s

trade-off between the expected return and associated risks. We emphasize that γ̂ is not only
FR,F -adapted, but also FF -adapted. The FF -adaptedness of γ̂ is important in the derivation
of the explicit form of the value function.

The trade-off parameter is divided by Xt whereas in the other standard problem, it is not
divided. This parameterization is used by Björk, Murgoci, and Zhou (2014). They provide
two natural interpretations of the parameterization. One is an adjustment of units. The unit
of the conditional expected wealth is (dollar), whereas the unit of the conditional variance is
(dollar)2. So the variance needs to be divided by wealth in order to measure the objective
function in dollars. Another interpretation is to measure the objective function by the rate
of return. We replace the wealth in the objective by the gross return of the wealth, namely,
we consider

Eθ,V
[
Xt+1

Xt

∣∣∣FR,F
t

]
− γ̂t

2
Varθ,V

(
Xt+1

Xt

∣∣∣FR,F
t

)
=

1

Xt

{
Eθ,V [Xt+1|FR,F

t ]− γ̂t
2Xt

Varθ,V (Xt+1|FR,F
t )

}
.

Then, Björk et al. (2014) argue that the equilibrium in the above objective is the same as
that in the following objective,

Eθ,V [Xt+1|FR,F
t ]− γ̂t

2Xt
Varθ,V (Xt+1|FR,F

t ).

However, in our settings, the optimal portfolios are different between these two objectives.
Our settings, therefore, should be interpreted as the adjustment of units.

We can also interpret our objective function as an approximation of a certainty equivalent
of a CRRA utility. Let

ut(x) :=

 x1−γ̂t − 1

1− γ̂t
, if γ̂t ̸= 1,

log x, if γ̂t = 1,
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where γ̂t > 0 is the constant relative risk aversion coefficient at time t. Let us denote by ct(X)
the certainty equivalent of a random variable X under the probability measure Pθ,V , that is

ct(X) := (ut)
−1
(
Eθ,V [ut(X) | FR,F

t ]
)
,

where (ut)
−1 is the functional inverse of ut. Then, it is well known that ct(X) can be approx-

imated as follows.

ct(Xt+1) ≈ Eθ,V [Xt+1 | FR,F
t ] +

1

2

u′′t (E
θ,V [Xt+1 | FR,F

t ])

u′t(E
θ,V [Xt+1 | FR,F

t ])
Varθ,V (Xt+1 | FR,F

t ),

where u′t and u
′′
t are the first and the second derivatives of ut, respectively. Now, we assume

Xt ≈ Eθ,V [Xt+1 | FR,F
t ]. Then, since ut is a CRRA utility, we have

u′′t (E
θ,V [Xt+1 | FR,F

t ])

u′t(E
θ,V [Xt+1 | FR,F

t ])
= − γ̂t

Eθ,V [Xt+1 | FR,F
t ]

≈ − γ̂t
Xt
.

Therefore, we have

ct(Xt+1) ≈ Eθ,V [Xt+1 | FR,F
t ]− γ̂t

2Xt
Varθ,V (Xt+1 | FR,F

t ).

Hence, the expectation of the discounted sum of the certainty equivalents can be approximated
as follows:

Eθ,V

[
T−1∑
t=0

δtct(Xt+1)

]
≈ Eθ,V

[
T−1∑
t=0

δt
(
Eθ,V [Xt+1|FR,F

t ]− γ̂t
2Xt

Varθ,V (Xt+1|FR,F
t )

)]
.

The above approximation coincides with our objective function (2.1). Furthermore, the time
varying γ̂ implies that the relative risk aversion coefficient varies over time.

Note that, we assume that Xt is almost surely strictly positive for all t ≥ 0. Strictly
speaking, it does not hold when permitting short selling, whereas it holds if short selling is
not allowed. Nevertheless, we assume the strict positivity of Xt in all cases for mathematical
convenience. Furthermore, the division of the trade-off parameter by Xt is a crucial assump-
tion for the derivation of the explicit solution to our problem. Without it, we can not derive
the explicit solution. We again refer to this assumption in the problem without the risk-free
asset.

By the Markov property of (Ft)
T
t=0, the objective under Pθ,V can be expressed as

Eθ,V

[
T−1∑
t=0

δt
(
Eθ,V [Xt+1|FR,F

t ]− γ̂t
2Xt

Varθ,V (Xt+1|FR,F
t )

)]

= Eθ,V

[
T−1∑
t=0

δtXtct(Ft, θt, Vt, ut)

]
,

where ct : RK × Rd × Rd,d × Rd → R is a measurable function such that

ct(F, θ, V, u) = 1 + rf +
(
me(F ) + θ

)′
u− γ̂t

2
u′(A(F ) + V )u.

Now, we construct the optimization problem with multiple priors. The investor selects
the portfolio maximizing the expected utility of the worst case. This means that the investor
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faces on the following maximization problem:

VT (x, f) = max
(ut)

T−1
t=0 ∈Au

T

min
(θt,Vt)

T−1
t=0 ∈Aθ,V

T

Eθ,V

[
T−1∑
t=0

δtXtct(Ft, θt, Vt, ut)

]
subject to Xt+1 =

(
1 + rf + (Ret+1)

′ut

)
Xt, t ≥ 0, (2.2)

X0 = x, F0 = f,

where Au
T is a set of admissible portfolios and Aθ,V

T is a set of admissible errors, (θt)
T−1
t=0 and

(Vt)
T−1
t=0 . The set of admissible portfolios can be expressed as

Au
T =

{
u = (ut)

T−1
t=0 | u is a Rd-valued and FR,F -adapted process.

}
.

So, the investor is permitted to short sell. We later analyze the case when the investor is
prohibited from short selling.

The set of admissible errors is characterized by two inequalities. For all (θt, Vt)
T−1
t=0 ∈ Aθ,V

T ,
(θt)

T−1
t=0 is a Rd-valued process and (Vt)

T−1
t=0 is an Rd×d-valued process. Furthermore, they

satisfy Assumption 3 and

(ηθt )
2 ≥ θ′t

(
A(Ft) + Vt

)−1
θt, (2.3)

(ηVt )
2tr((A(Ft))

2) ≥ tr(V 2
t ), (2.4)

where (ηθt )
T−1
t=0 and (ηVt )

T−1
t=0 are positive FF -adopted processes and tr(A) is the trace of matrix

A.
The inequality (2.3) represents a confidence interval in statistics. This idea is introduced

by Garlappi et al. (2007). We can express θ′t(A(Ft) + Vt)
−1θt as

θ′t

(
Varθ,V (Rt+1|FR,F

t )
)−1

θt =(
E[Rt+1|FR,F

t ]− Eθ,V [Rt+1|FR,F
t ]

)′(
Varθ,V (Rt+1|FR,F

t )
)−1(

E[Rt+1|FR,F
t ]− Eθ,V [Rt+1|FR,F

t ]
)
,

so θ′t(A(Ft) + Vt)
−1θt is the F statistic of the estimated means in the null hypothesis of

E[Rt+1|FR,F
t ] = Eθ,V [Rt+1|FR,F

t ].
Garlappi et al. (2007) characterize this constraint of (θt)

T−1
t=0 as the confidence interval

of the estimated mean vector. Their discussion is justified if the return vectors of the risky
assets are i.i.d.. However, the return vectors in our model are not i.i.d. in general. Therefore,
our constraint (2.3) does not represent the confidence interval. Since the financial models are
usually estimated by using the maximum likelihood methods, one should use the inverse of the
information matrix as the covariance matrix in our constraint (2.3) in order to characterize
this constraint as the confidence interval. However, in this paper, we use this constraint,
similar to Garlappi et al. (2007), to reduce the mathematical complexity.

The inequality (2.4) can be expressed as

ηVt ≥ tr(V 2
t )

tr((A(Ft))2)
=

∥Varθ,V (Rt+1|FR,F
t )−Var(Rt+1|FR,F

t )∥2

∥Var(Rt+1|FR,F
t )∥2

,

for all t ≥ 0. Therefore, (ηVt )
T−1
t=0 represents the upper boundary of the ratio of the least square

error to the conditional variance. Ledoit and Wolf (2003) consider the shrinkage estimator
minimizing the following objective:

min
α

tr
(
(Σ̂(α)− Σ)2

)
= min

α
∥Σ̂(α)− Σ∥2,
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where Σ is an actual covariance matrix of returns and Σ̂(α) is a shrunk estimated covariance
matrix depending on the parameter α. We use the above objective in the inequality (2.4).
Therefore, the inequality (2.4) represents the upper boundary of the objective in Ledoit and
Wolf (2003).

As in the case of a unique prior, we can apply the dynamic programming procedure to
the optimization problem (2.2).

Theorem 5 Let (Y T
t )T−1

t=0 be a sequence of random variables, such that

Y T
T−1 = max

uT−1∈Rd
min

(θT−1,VT−1)∈Aθ,V
T |T−1

T−1

{cT−1(FT−1, θT−1, VT−1, uT−1)} ,

Y T
t = max

ut∈Rd
min

(θt,Vt)Aθ,V
T |tt

{
ct(Ft, θt, Vt, ut) + δ Eθ,V

[
Y T
t+1(1 + rf + (Ret+1)

′ut)
∣∣∣ FR,S

t

]}
,

for all 0 ≤ t ≤ T − 2, where Aθ,V
T |tt is a set of t-th elements in Aθ,V

T . Then, the above random
sequence exists, and

VT (x, f) = E
[
Y T
0 | F0 = f

]
x, x ∈ R, f ∈ RK .

Furthermore, the optimal portfolio process (u∗t )
T−1
t=0 derived by the above dynamic program-

ming is time-consistent.

The explicit solution is provided by the following proposition.

Proposition 6 Let

Y T
T = 0,

me
t = E

[
(1 + δY T

t+1)(µ(Ft+1)− rf1d)|FR,F
t

]
, get = 1 + δ E

[
Y T
t+1|F

R,F
t

]
,

aet = (me
t )

′
(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
me
t ,

for all 0 ≤ t ≤ T − 1. Then, (Y T
t )T−1

t=0 in Theorem 5 can be expressed as

Y T
t = (1 + rf)g

e
t +

((
√
aet − |get |ηθt )+)2

2γ̂t
,

and the optimal portfolio is

u∗t =
1

γ̂t

(
1− |get |ηθt√

aet

)+ (
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
me
t . (2.5)

The proofs of Theorem 5 and Proposition 6 are in Section A.2. By the construction,
(Y T
t )T−1

t=0 is FF -adapted. Furthermore, if γ̂t, η
θ
t and ηVt depend only on the value of Ft for all

0 ≤ t ≤ T − 1, Y T
t also depends only on the value of Ft. Therefore, we can easily compute it

numerically using the Markov property of (Ft)
T
t=0.

The optimal portfolio (2.5) is similar to the ambiguity averse minimum-variance portfolio
by Pınar (2014). However, the multiple priors for mean and variance affects the portfolio (2.5)
whereas the ambiguity averse minimum-variance portfolio is only affected by the multiple
priors for mean. Therefore, the ambiguity averse minimum-variance portfolio is a special case
of our portfolios.

Note that, we obtain similar results to Proposition 6 even if rf varies over time. Let rf,t+1

be a time-varying risk-free rate at time t+ 1 such that

rf,t+1 = h(Ft), t ≥ 0,

10



where h is a measurable function from RK onto R. The reason why the risk-free rate at
time t+ 1 depends on the value of Ft is that the risk-free rate needs to be determined before
investment decision. Then, the following portfolio uTV ∗

t is optimal.

uTV ∗
t =

1

γ̂t

(
1− |gTV et |ηθt√

aTV et

)+ (
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
mTV e
t ,

where

Y TV T
T = 0, mTV e

t = E
[
(1 + δY TV T

t+1 )(µ(Ft+1)− h(Ft)1d)|FR,F
t

]
,

gTV et = 1 + δ E
[
Y TV T
t+1 |FR,F

t

]
, aTV et = (mTV e

t )′
(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
mTV e
t ,

Y TV T
t = (1 + h(Ft))g

TV e
t +

((
√
aTV et − |gTV et |ηθt )+)2

2γ̂t
.

It is clear that Y TV T
t is FR,F

t -measurable for all t ≥ 0. In addition, uTV ∗ is admissible. The
proof is similar to that of Proposition 6, so we omit it. The above result indicates that if the
movement of rf,t is independent of ϵt, then the optimal portfolio with the constant risk-free
rate can be naturally extended into the optimal portfolio with the time-varying risk-free rate.

We next consider an optimization problem with multiple priors without the risk-free asset.
In this case, the investor’s wealth updating formula is

Xt+1 =
(
1 + (Rt+1)

′ut

)
Xt, 0 ≤ t ≤ T − 1,

where ut satisfies 1
′
dut = 1. The objective can be expressed as

Eθ,V

[
T−1∑
t=0

δt
(
Eθ,V [Xt+1|FR,F

t ]− γ̂t
2Xt

Varθ,V (Xt+1|FR,F
t )

)]

= Eθ,V

[
T−1∑
t=0

δtXtĉt(Ft, θt, Vt, ut)

]
,

where ĉt : RK × Rd × Rd,d × Rd → R is a measurable function such that

ĉt(F, θ, V, u) = 1 +
(
m(F ) + θ

)′
u− γ̂t

2
u′(A(F ) + V )u.

Hence, the objective without the risk-free asset has the same form as the objective with the
risk-free asset. This implies that Theorem 5 can be applied to the problem without the
risk-free asset.

The optimization problem without the risk-free asset is formulated as

V worf
T (x, f) = max

(ut)
T−1
t=0 ∈Ãu

T

min
(θt,Vt)

T−1
t=0 ∈Aθ,V

T

Eθ,V

[
T−1∑
t=0

δtXtĉt(Ft, θt, Vt, ut)

]
subject to Xt+1 =

(
1 + (Rt+1)

′ut

)
Xt, t ≥ 0, (2.6)

X0 = x, F0 = f,

where the set of admissible portfolios Ãu
T is

Ãu
T =

{
u = (ut)

T−1
t=0 | u is a Rd-valued and FR,F -adapted process and 1′dut = 1

}
.

The following proposition provides the optimal portfolios and the value functions.
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Proposition 7 For all 0 ≤ t ≤ T − 1, let

Ŷ T
T = 0,

gt = 1 + δ E[Ŷ T
t+1 | F

R,F
t ], mt = E

[
(1 + δŶ T

t+1)µ(Ft+1) | FR,F
t

]
,

aworft = m′
t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
mt, cworft = m′

t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
1d,

bworft = 1′d

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
1d, dworft = aworft bworft − (cworft )2,

Ŷ T
t = gt +

cworft − (γ̂t + |gt|ηθt /ψ∗
t )

bworft

+
γ̂t
2
(ψ∗

t )
2,

where ψ∗
t is a unique positive solution of the polynomial equation.

bworft (ψ∗
t )

2 =
dworft

(γ̂t + |gt|ηθt /ψ∗
t )

2
+ 1. (2.7)

Then, the value function is

V worf
T (x, f) = E[Ŷ T

0 | F0 = f ]x, (x, f) ∈ R+ × RK ,

and the time-consistent optimal portfolio is

u∗t =
1

γ̂t + |gt|ηθt /ψ∗
t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
(
mt −

cworft − (γ̂t + |gt|ηθt /ψ∗
t )

bworft

1d

)
,

for all 0 ≤ t ≤ T − 1.

The proof of Proposition 7 is in Section A.3. The equation (2.7) is essentially the same
as the equation (A11) in Garlappi et al. (2007), so it must have a unique positive solution by
Garlappi et al. (2007). We give the details of the proofs of the existence of the unique positive
solution to the equation (2.7) in Section A.3.

The main difference between Garlappi et al. (2007) and our model is the covariance matrix.
The optimal solution in Garlappi et al. (2007) can be regarded as the case when ηVt is zero in
our solution. In our case, the multiple priors for covariance affects the optimal portfolio.

The division of γ̂t by Xt has an important role in the problem without the risk-free
asset. Without this division, we can not derive the explicit solution since the solution of the
polynomial (2.7) depends on the value of Xt. This implies that the t-step value function Ŷ T

t ,
also depends on the value of Xt. Then, it is difficult to compute the conditional expected
value of Ŷ T

t given FR,F
t−1 under the probability measure Pθ,V . Hence, the trade-off parameter’s

division by the wealth is crucial.

Now we introduce a short-selling constraint. Let Ãu
+T be a set of admissible portfolios

with a short-selling constraint such that

Ãu
+T =

{
u = (ut)

T−1
t=0 | u is a Rd-valued and FR,F -adapted process, 1′dut = 1 and ut ∈ Rd+

}
.

Then, the dynamic optimization problem with a short-selling constraint can be expressed as

V worf
+T (x, f) = max

(ut)
T−1
t=0 ∈Ãu

+T

min
(θt,Vt)

T−1
t=0 ∈Aθ,V

T

Eθ,V

[
T−1∑
t=0

δtXtĉt(Ft, θt, Vt, ut)

]
subject to Xt+1 =

(
1 + (Rt+1)

′ut

)
Xt, t ≥ 0, (2.8)

X0 = x, F0 = f.

Then, the following proposition holds.
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Proposition 8 For all 0 ≤ t ≤ T − 1, let

Ŷ +T
T = 0,

g+t = 1 + δ E[Ŷ +T
t+1 | FR,F

t ], m+
t = E

[
(1 + δŶ +T

t+1 )µ(Ft+1) | FR,F
t

]
,

Ŷ +T
t = max

ut∈C+
min

(θt,Vt)∈Aθ,V
T |tt

{
g+t +

(
m+
t + g+t θt

)′
ut −

γ̂t
2
u′t

(
A(Ft) + Vt

)
ut

}
,

where C+ is a set of portfolios such that

C+ =
{
ϕ ∈ Rd+

∣∣∣ 1 = 1′dϕ.
}
.

Then, the value function is

V worf
+T (x, f) = E[Ŷ +T

0 | F0 = f ]x,

and the optimal portfolio at time t is

u∗t = arg max
ut∈C+

min
(θt,Vt)∈Aθ,V

T |tt

{
g+t +

(
m+
t + g+t θt

)′
ut −

γ̂t
2
u′t

(
A(Ft) + Vt

)
ut

}
.

The proof of Proposition 8 is in Section A.3. The t stage problem,

max
ut∈C+

min
(θt,Vt)∈Aθ,V

T |tt

{
g+t +

(
m+
t + g+t θt

)′
ut −

γ̂t
2
u′t

(
A(Ft) + Vt

)
ut

}
,

can be rewritten as follows,

max
ut∈C+

min
(θt,Vt)∈Aθ,V

T |tt

{
g+t +

(
m+
t + g+t θt

)′
ut −

γ̂t
2
u′t

(
A(Ft) + Vt

)
ut

}
=

max
ut∈C+

{
g+t + (m+

t )
′ut −

γ̂t
2
u′t

(
A(Ft) + ηt∥A(Ft)∥Id

)
ut − |g+t |ηθt

√
u′t

(
A(Ft) + ηt∥A(Ft)∥Id

)
ut

}
.

Therefore, the solution to the above problem exists since the above objective is continuous
in ut.

3 Limiting Behaviors

In this section, we study limiting behaviors of optimal portfolios. We have postulated that
the parameters (γ̂t)

T−1
t=0 , (η

θ
t )
T−1
t=0 , and (ηVt )

T−1
t=0 are non-negative. We therefore consider the

behaviors of the optimal portfolios when these parameters go to infinity.
We first consider the optimal portfolio with the risk-free asset. By Proposition 6, the

optimal portfolio with the risk-free asset is

u∗t =
1

γ̂t

(
1− |get |ηθt√

aet

)+ (
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
me
t ,

for all t ≥ 0. Then, me
t and get are determined independently of the values of γ̂t, η

θ
t and ηVt .

aet can be expressed as

aet = (me
t )

′
(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
me
t

=
1

ηVt
(me

t )
′
( 1

ηVt
A(Ft) + ∥A(Ft)∥Id

)−1
me
t ,
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therefore, aet → 0 as ηVt → ∞. This implies that for any fixed γ̂t and η
θ
t ,

lim
ηVt →∞

u∗t = 0d.

So, if the investor has absolutely no confidence in the estimated conditional variance, she quits
investing in the risky assets. Similarly, if ηθt → ∞, then

lim
ηθt→∞

(
1− |get |ηθt√

aet

)+

= 0

for any fixed ηVt . Therefore, u∗t converges to 0d when ηθt tends to infinity. These behaviors
are natural since the investor with strong doubts of the correctnesses of the risky assets’
parameters prefers investing in the risk-free asset which yields a deterministic return rf . Thus,
the effects of multiple priors are similar to the risk-averse behavior if the risk-free asset is
present. However, with the absence of risk-free asset, limiting portfolios are two famous
portfolios, namely, the global minimum-variance portfolio and the equally weighted portfolio.

Proposition 9

1. With the risk-free asset. If γ̂t, η
θ
t or ηVt tends to infinity, then the investor invests all

wealth in the risk-free asset.

2. Without the risk-free asset.

(a) If γ̂t or η
θ
t tends to infinity and if ηVt is fixed, then the investor invests in the global

minimum-variance portfolio under Pθ,V , that is

lim
ηθt or γ̂t→∞

u∗t =
1

1′d

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
1d

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
1d,

when permitting short selling. When short selling is not allowed, then the optimal
portfolio again converges to the global minimum-variance portfolio.

lim
ηθt→∞

u∗t = u+GMV
t := arg min

u∈C+

{
u′
(
A(Ft) + ηVt ∥A(Ft)∥Id

)
u
}
.

(b) If ηVt tends to infinity, then the investor invests in the equally weighted portfolio
whether short selling is allowed or not, that is,

lim
ηVt →∞

u∗t =
1

d
1d.

Proof . By Proposition 7, the optimal portfolio without the risk-free asset is

u∗t =
1

γ̂t + |gt|ηθt /ψ∗
t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
(
mt −

cworft − (γ̂t + |gt|ηθt /ψ∗
t )

bworft

1d

)
,

where

aworft = m′
t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
mt, cworft = m′

t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
1d,

bworft = 1′d

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
1d, dworft = aworft bworft − (cworft )2,
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and ψ∗
t is the unique solution of the following quartic equation,

bworft (ψ∗
t )

2 =
dworft

(γ̂t + |gt|ηθt /ψ∗
t )

2
+ 1.

Similar to the case with the risk-free asset, mt and gt are determined independently of the
values of γ̂t, η

θ
t and ηVt , so we can regard them as constants. To study the limiting behavior

of u∗t , it is important to use the quartic equation for ψ∗
t .

The quartic equation can be transformed as follows:(
γ̂t +

|gt|ηθt
ψ∗
t

)2

=
dworft

bworft (ψ∗
t )

2 − 1
. (3.1)

The benefit of the above expression is that it separates the terms depending on ηθt and ηVt .
In addition, (

γ̂t +
|gt|ηθt
ψ∗
t

)2

=
dworft

bworft (ψ∗
t )

2 − 1
≥ γ̂2t > 0, (3.2)

for all γ̂t, η
θ
t , and η

V
t . For any fixed γ̂t and η

V
t , two limits of the equation (3.1) as ηθt → ∞

can be expected. One is some positive constant C > 0. Then, we have

lim
ηθt→∞

(
γ̂t +

|gt|ηθt
ψ∗
t

)2

= lim
ηθt→∞

dworft

bworft (ψ∗
t )

2 − 1
= C.

The right equality follows that
lim
ηθt→∞

ψ∗
t = C1

for some constant C1 > 0. However, this implies

lim
ηθt→∞

(
γ̂t +

|gt|ηθt
ψ∗
t

)2

= ∞.

Hence it is a contradiction. Therefore, the equation (3.1) diverges when ηθt tends to infinity.
Indeed,

lim
ηθt→∞

dworft

bworft (ψ∗
t )

2 − 1
= ∞

implies that (ψ∗
t )

2 → 1/bworft . Then,

lim
ηθt→∞

(
γ̂t +

|gt|ηθt
ψ∗
t

)2

= ∞.

This is consistent. Therefore, the limiting portfolio with respect to ηθt is

lim
ηθt→∞

u∗t =
1

bworft

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
1d.

This limiting portfolio is the global minimum-variance portfolio under Pθ,V .
We consider the limiting behavior with respect to ηVt . d

worf
t and bworft can be expressed

as

dworft =
1

(ηVt )
2
dηt , lim

ηVt →∞
dηt = d0 > 0,

bworft =
1

ηVt
bηt , lim

ηVt →∞
bηt = b0 > 0.
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Then, the RHS in the equation (3.1) becomes

dworft

bworft (ψ∗
t )

2 − 1
=

dηt

bηt η
V
t

(
(ψ∗

t )
2 − ηVt /b

η
t

) .
We first assume that the LHS in the equation (3.1) diverges, that is,

lim
ηVt →∞

(
γ̂t +

|gt|ηθt
ψ∗
t

)2

= ∞.

This implies that ψ∗
t converges to 0 when ηVt → ∞. However, for the RHS in the equation

(3.1),

lim
ηVt →∞

dηt

bηt η
V
t

(
(ψ∗

t )
2 − ηVt /b

η
t

) = 0.

This is a contradiction. It follows that there exists some positive constant C2 > 0 such that

lim
ηVt →∞

dηt

bηt η
V
t

(
(ψ∗

t )
2 − ηVt /b

η
t

) = C2.

Then, ηVt

(
(ψ∗

t )
2 − ηVt /b

η
t

)
→ C3 for some positive constant C3 > 0 as ηVt → ∞. This implies

that ψ∗
t diverges. Then the LHS in the equation (3.1) also converges to γ̂2t , so it is consistent

with our expectation.
By the definition, it holds that

lim
ηVt →∞

cworft

bworft

= C4,

for some constant C4. Furthermore, we have

lim
ηVt →∞

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
x = 0d,

for any x ∈ Rd. Moreover, γ̂t + |gt|ηθt /ψ∗
t converges to γ̂t as η

V
t → ∞. Hence,

lim
ηVt →∞

1

γ̂t + |gt|ηθt /ψ∗
t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
(
mt −

cworft

bworft

1d

)
= 0d.

On the other hand,

lim
ηVt →∞

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
1d

bworft

= lim
ηVt →∞

(
A(Ft)/η

V
t + ∥A(Ft)∥Id

)−1
1d

1′d

(
A(Ft)/ηVt + ∥A(Ft)∥Id

)−1
1d

=
1

d
1d.

Finally, it holds that

lim
ηVt →∞

u∗t =
1

d
1d.

Hence, the limiting portfolio as ηVt → ∞ is the equally weighted portfolio.
In the case when short selling is not allowed, it holds that u∗t → 1d/d as ηVt → ∞ since

1d/d is an interior point of C+. When ηθt → ∞,

lim
ηθt→∞

u∗t = u+GMV
t = arg min

u∈C+

{
u′
(
A(Ft) + ηVt ∥A(Ft)∥Id

)
u
}
,
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since the objective function is proportional to

1

ηθt
(m+

t )
′ut −

γ̂t

2ηθt
u′t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)
ut − |g+t |

√
u′t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)
ut

and the effects of the first two terms become small when ηθt becomes large. 2

Interestingly, the optimal portfolio u∗t also converges to the equally weighted portfolio
when ηVt → ∞ and ηθt = 0. This means that the investor chooses the equally weighted
portfolio under the strong uncertainty for variance even if she believes that the errors of
the estimated conditional expected returns do not exist. Therefore, we conclude that the
uncertainty about variances has a stronger impact on the investor’s portfolio selection than
the uncertainty about means.

However, the above result slightly differs from natural intuition. The readers may think
that the investor tends to choose the asset having the highest expected return if the degree
of suspicion for variances ηVt , is sufficiently large. This question can be resolved through the
inequality constraint (2.3). If ηVt is sufficiently large, then the error of variance Vt, is also
large. This implies that

θ′t

(
A(Ft) + Vt

)−1
θt

is very close to 0. Then, the mean errors θt in the investor’s belief can take an arbitrary value
if ηV → ∞. Therefore, the investor’s worst scenario is that the means take large negative
values which are the same across all risky assets. Hence, the investor chooses the equally
weighted portfolio if ηV → ∞.

Without the risk-free asset, the limiting case ηθt → ∞ is the same as the special case of
the 2-norm-constrained optimal portfolio in DeMiguel et al. (2009a). However, our framework
admits dynamic changes of covariance, so the conditional covariance matrix appears in the
limiting portfolio, whereas the unconditional covariance matrix appears in DeMiguel et al.
(2009a) since they consider the static optimization.

Unfortunately, without the risk-free asset, the limiting strategies are not applicable straight-
forwardly since the value functions diverge. These limiting portfolios are only admissible in
the initial period of the investment horizon. However, if ηθt and ηVt are sufficiently large, then
the optimal portfolios are very similar to the limiting portfolios, so we can use the optimal
portfolios with large ηθt and ηVt as proxies of the limiting portfolios. In Section 4, we study
the cases of large ηθt and ηVt .

Remark 10 As mentioned below, in a limiting case, Pflug et al. (2012) reach essentially the
same conclusion as us, although there are several differences. Pflug et al. (2012) show that as
a model uncertainty measured by the Kantorovich metric increases, an optimal portfolio in
a mean-standard-deviation optimization problem converges to the equally weighted portfolio.
Specifically, Pflug et al. (2012) consider the following problem:2

max
u

min
Q: d2(P,Q)≤κ

{
EQ[X]− γ

2

√
VarQ(X)

}
,

subject to X = R′u, (3.3)

1 = 1′du,

where d2 is the Kantorovich metric with order 2, and R is a risky assets’ return vector. γ is a
non-negative trade-off parameter between returns and risks. EQ and VarQ are expectation and

2We modify the original problem in Pflug et al. (2012) for this to take the same form as in this
paper. It can be easily seen that the problem (3.3) is equivalent to the original problem in Pflug et al.
(2012).
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variance operators under a probability measure Q, respectively. κ is a non-negative constant
that represents a degree of uncertainty. Pflug et al. (2012) show that the solution to the
problem (3.3) converges to the equally weighted portfolio as κ→ ∞.

One of the differences between our model and the model in Pflug et al. (2012) is the
measure of uncertainty. Pflug et al. (2012) adopts the Kantorovich metric, while it is a math-
ematically sophisticated concept of a distance among probability measures, it is usually hard
to compute, and it is not usually used in practice. In contrast, our measures of uncertainty
are a confidence interval around means and a relative error of covariances, which are widely
used in practice and easy to compute.

Another difference between our model and the model in Pflug et al. (2012) is the objective
function. Let us assume T = 1 in our model, so we consider a static problem. In order to
apply the approach of Pflug et al. (2012) to our objective function, we need to replace the
term of the standard deviation in (3.3) to the variance, that is

max
u

min
Q: d2(P,Q)≤κ

{
EQ[X]− γ

2
VarQ(X)

}
,

subject to X = R′u, (3.4)

1 = 1′du.

However, since the objective function in the problem (3.4) does not satisfy the assumptions in
Proposition 1 in Pflug et al. (2012), we can not use the results of Pflug et al. (2012). Therefore,
the solution to the problem (3.4) may not converge to the equally weighted portfolio. For
details about this discussion, we also refer to Wozabal (2014).

Considering a unique prior case (i.e., κ = 0), we can easily show that the solution to the
problem (3.3) is proportional to the solution to the problem (3.4). However, the trade-off
parameter γ has different implications in these problems. As seen in Section 2, in our model,
we can regard γ as a coefficient of (absolute) risk aversion. On the other hand, economic
implication of γ in the problem (3.3) is not clear.

Finally, we adopt dynamic mean-variance optimization, whereas the model in Pflug et al.
(2012) is static. Therefore, our model allows an investment strategy that changes portfolios
in reaction to the state variable Ft. In Section 4, we will see that this investment strategy
often performs well in practice.

4 Optimality of Naive Investment Strategies in Back

Tests

In this section, we conduct back tests of dynamic optimization with multiple priors. We use
the following three data sets.

1. International Equity Indexes. The four MSCI indexes: US, Japan, UK, and Ger-
many. Each index is month-end US-dollar valued. The data source is the Thomson
Reuters Datastream.

2. Industry Indexes. The five monthly returns of industry indexes in the US stock
market: Consumer, Manufacture, HiTechnology, Health, and Others. The data source
is the Kenneth French’s web site.

3. Size- and Value-Sorted Portfolios. The six monthly returns of the 2×3 size- and
book-to-market-sorted portfolios in the US stock market by Fama and French (1993).
The data source is the Kenneth French’s web site.
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We also use monthly returns of 90-day US treasury bill from the Thomson Reuters Datastream
as risk-free rates. Each dataset consists of monthly returns from January 1975 to December
2014. In order to focus on the diversification within the risky assets, we consider the asset
allocations without the risk-free asset and compare out-of-sample Sharpe ratios.

4.1 Methodology of the Back Tests

In each dataset, we assume that the return vector is modeled by a two-state, recursive and
time-homogeneous Markov regime-switching model, such that

Rt+1 = µ(Ft+1) + σ(Ft+1)ϵt+1, t ≥ 0,

where (Ft)
T
t=0 is a two-state, recursive and time-homogeneous Markov chain. (Ft)

T
t=0 and

(ϵt)
T
t=1 are mutually independent. The transition probability matrix of (Ft)

T
t=0 is constant

over time by the time-homogeneity of (Ft)
T
t=0. This model satisfies Assumption 1.

We assume that one of the states of Ft is a “good state” and another state is a “bad state”.
Whether the market condition is good or bad is determined by the values of conditional means
and variances of the return vectors. Consider the state in which more than half of means and
reciprocals of variances are larger than those in another state. We call this state the “good
state” and call the other state the “bad state”. If these values are the same, as the good state
we choose the state in which the sum of the marginal conditional means is larger than that
in the other state.

We consider two types of investors. The first type assumes that the returns of the indexes
are not regime switching. This type of investor always considers the mean and variance of the
returns are constants. We call this type “IID”. The second type assumes that the returns are
driven by the Markov chain (Ft)

T
t=0. Hence, this type of investor assumes that the conditional

mean and variance of the returns vary over the time. We call this type “RS”. The IID and
RS investors compute their portfolios using the dynamic optimization without the risk-free
asset proposed in Propositions 7 and 8.

As for the preference parameters, γ̂t and δ are constant over time and states. We set γ̂t = 1
and δ = 0.99. To study the effect of the multiple priors, we consider six different values of
(ηθt = 0, 1, 2, 3, 4, 5) and five different values of (ηVt = 0.0, 0.5, 1.0, 3.0, 5.0). These parameters
are fixed over time and states. Furthermore, we also consider two different cases: the one
in which short selling is permitted and the one in which it is not permitted. Therefore, we
compute 6×5×2 portfolios for each investor type. The large ηθt and η

V
t represent strong degrees

of suspicion of investors, so we can compare the investors with different levels of suspicion. As
benchmarks, we also consider the equally weighted portfolio (EW), the portfolio maximizing
the single-period empirical Sharpe ratio (max SR), and the single-period global minimum-
variance portfolio (GMV). In addition, we use the value-weighted portfolio (VW) as one of
the benchmarks for the industry indexes and the size- and value-sorted portfolios data set3.
Note that the IID investor’s max SR at time t maximizes the following objective function:

fIID(u) :=
µ′u− rf,t√

u′Σu
,

where µ and Σ are sample mean and variance of returns and rf,t is the risk-free rate at time
t. On the other hand, the RS investor’s max SR at time t with the state Ft = i maximizes
the following objective function,

fRS(u) :=
µ′iu− rf,t√
u′(σiσ′i)u

,

3Unfortunately, we can not obtain the data of the market values of the US dollar-based MSCI
indexes. So, we compute the value-weighted portfolio only for the abovementioned two data sets

19



where µi and σiσ
′
i are estimated mean and variance of returns at state i. By the above

definition, max SR delivers the largest Sharpe ratio without estimation errors.
Furthermore, we consider the following six extreme strategies. In these six strategies,

ηθt and ηVt take different values in the different states of Ft. The first strategy is “GMV
in the good state and EW in the bad state” (GMV-EW). Under this strategy, the investor
invests in the global minimum-variance portfolio in the state of good market condition and
in the equally weighted portfolio in the state of bad market condition. This strategy can be
interpreted as the optimal portfolio when ηVt = 0 and ηθt tends to infinity in the good state
and when ηVt tends to infinity in the bad state. The second strategy is “EW in the good
state and No Error in the bad state” (EW-NE). Under this strategy, the investor invests in
the equally weighted portfolio in the good state and in the optimal portfolio of Proposition
7 and 8 with ηθt = ηVt = 0 in the bad state. This strategy can be interpreted as the optimal
portfolio when ηVt = 0 and ηθt tends to infinity in the good state and when ηθt and ηVt are
0 in the bad state. The third strategy is “GMV in the good state and No Error in the bad
state” (GMV-NE). Under this strategy, the investor invests in the global minimum-variance
portfolio in the good state and in the optimal portfolio with ηθt = ηVt = 0 in the bad state.
This strategy can be interpreted as the optimal portfolio when ηVt = 0 and ηθt tends to infinity
in the good state and when ηθt and ηVt are 0 in the bad state. The rest of the strategies are
the reverse strategies of the above three strategies “EW in the good state and GMV in the
bad state” (EW-GMV), “No Error in the good state and EW in the bad state” (NE-EW),
and “No Error in the good state and GMV in the bad state” (NE-GMV). The abbreviations
and the six extreme strategies are summarized in Table 1.

In the back tests, each investor needs to estimate the distribution parameters from the
data. The rolling window of estimation is fixed to 240 months. At each time, the IID investor
computes the sample mean and variance of the data over the past 240 months from current
time. Similarly, the RS investor estimates the distribution parameters using the data over
the past 240 months from current time. The RS investor estimates the parameters by the
EM algorithm proposed by Hamilton (1990). At the time when t months have passed after
the start of investment, the investors compute the optimal plans of the portfolios for 240− t
periods and invest in their optimal portfolios in the initial period. For example, suppose that
the investors would like to decide the portfolios in January 2000. They first compute the
optimal portfolio plans for 180 months, from January 2000 to December 2014. Then, they
invest in the portfolios in the initial period in January 2000.

However, the RS investors can not determine their portfolios since the state variable F in
actual data is not observable. To determine their portfolios, they regard the state having the
highest conditional probability as the current state, that is, the current state at time t is the
following it,

it = arg max
i∈{1,2}

P(Ft is in the i th state. | R1, R2, . . . , Rt),

where Rs is the return vector of the indexes at time s = 1, . . . , t.
The optimality of the portfolios derived in Proposition 7 and 8 are not guaranteed in the

above rolling-window approach. However, in general, investors usually choose their portfolios
based on the latest information. Moreover, the existing literature (e.g., Garlappi et al. (2007)
and DeMiguel et al. (2009b)) adopts the rolling-window approach. For these reasons, we also
use this approach.

4.2 Results of the Back Tests

Tables 2, 3, and 4 display the out-of-sample Sharpe ratios obtained from the back tests. In
all data sets, the extreme strategies tend to deliver larger Sharpe ratios.
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In the international diversification (Table 2), max SR has larger Sharpe ratios than the
other typical portfolios, GMV and EW, in all cases (whether the investor type is IID or RS
and with or without permitting short selling). When permitting short selling, max SR of the
IID investor has the largest Sharpe ratio (0.1014) except for the extreme strategies. However,
the IID investor’s optimal portfolio with ηθt = 0.0 and ηVt = 5.0 when not permitting short
selling delivers the largest Sharpe ratio (0.1081) among all portfolios. Also, the Sharpe ratios
when short selling is not permitted tend to be larger than those when it is permitted. This
is consistent with the well-known results of Jagannathan and Ma (2003), which states that a
short-selling constraint can improve the investment performance.

According to Table 2, the two extreme strategies, GMV-EW and GMV-NE, have good
performances whether short selling is permitted or not. GMV-EW with short selling deliv-
ers the largest Sharpe ratio (0.1032) among the portfolios with short selling. On the other
hand, GMV-NE without short selling has the second largest Sharpe ration (0.1078) among all
portfolios. Furthermore, the Sharpe ratios of GMV-EW without short selling and GMV-NE
with short selling, 0.0922 and 0.0891 respectively, are not small. Among the typical portfolios
(max SR, GMV, and EW) and the typical extreme strategies (GMV-EW and EW-GMV),
GMV-EW when permitting short selling has the largest Sharpe ratio. Taking into account
the simplicity of computation, GMV-EW when permitting short selling works effectively.

Table 3 reports the results of the industry indexes data set. According to Table 3, GMV
has larger Sharpe ratio than max SR, EW and VW in all cases. Precisely, the IID investor’s
GMV with short selling has the largest Sharpe ratio among all portfolios. Among portfolios
without short selling, the RS investor’s GMV has the largest Sharpe ratio. However, the two
extreme strategies, GMV-EW and EW-GMV, are not so bad either. Both of GMV-EW and
EW-GMV defeat max SR, EW, and VW regardless of whether short selling is permitted or
not. Comparing GMV-EW and EW-GMV, EW-GMV performs better than GMV-EW. When
short selling is permitted, the Sharpe ratio of GMV-EW is 0.2234, whereas the Sharpe ratio of
EW-GMV is 0.2564. Without short selling, the Sharpe ratio of GMV-EW is 0.2281, whereas
the Sharpe ratio of EW-GMV is 0.2473.

Table 4 reports the results of the size- and value-sorted portfolios data set. The IID
investor’s optimal portfolio with ηθt = 1.0 and ηV = 0.0 when permitting short selling has the
largest Sharpe ratio (0.3406) among all portfolios. On the other hand, similar to the industry
indexes data set, GMV has a larger Sharpe ratio than max SR, EW, and VW in all cases.
Furthermore, regardless of whether permitting short selling or not, GMV-EW defeats max
SR, EW, VW, and GMV, except for the IID investor’s GMV. Precisely, GMV-EW has the
largest Sharpe ratio (0.2336) among portfolios without short selling.

In summary, GMV-EW and GMV tend to perform well in all data sets. DeMiguel et al.
(2009b) report relatively good performances of GMV, so our results are consistent with their
results. Unlike DeMiguel et al. (2009b), EW is less efficient in our data sets. However, GMV-
EW delivers larger Sharpe ratio in the international indexes data set when short selling is
permitted and in the size- and value-sorted portfolios data set when short selling is not per-
mitted. Furthermore, GMV-EW defeats max SR in the industry indexes data set regardless of
whether permitting short selling or not. Therefore, EW is efficient under particular situations
and GMV-EW effectively uses the efficiency of EW.

Note that the IID investor’s max SRs deliver larger Sharpe ratios than the RS investor’s
max SRs in all cases. One explanation of this result is the difference between the objective
functions. The RS investor’s max SR maximizes the conditional Sharpe ratio whereas the IID
investor’s max SR maximizes the unconditional Sharpe ratio. Since our back tests compute
out-of-sample Shape ratios, which are sample analogs of the unconditional Sharpe ratio, it is
not surprising that the IID investor’s max SRs perform better than the RS investor’s max
SRs.
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As seen in Section 3, the extreme strategies can not be justified by our framework since
the value functions also diverge. However, optimal portfolios with sufficiently large ηθt and ηVt
will work as extreme strategies. We show behaviors of the optimal portfolios with sufficiently
large ηθt and ηVt .

We consider the following metrics from the optimal portfolios of EW and GMV:

∥u∗t ∥GMV := ∥u∗t − uGMV
t ∥, ∥u∗t ∥EW := ∥u∗t − 1d/d∥,

where u∗t is the optimal portfolio at time t. These metrics represent the root square errors
from EW and GMV, so we call these the portfolio errors from EW and GMV. Figure 1 shows
the portfolio errors of the international indexes data set from EW and GMV in the case when
short selling is permitted. From the upper figures in Figure 1, we see that the high ηθt reduces
the portfolio errors from GMV for both IID and RS investors. Similarly, the lower figures in
Figure 1 show that the high ηVt reduces the portfolio errors from EW for the both investors4.
This observation is consistent with our theoretical results in Section 3.

Figure 1 suggests that the optimal portfolios with sufficiently large ηθt and ηVt can be
good proxies for the extreme strategies. We try to approximate GMV-EW and EW-GMV
by these optimal portfolios. We denote these approximated portfolios by mGMV-EW and
mEW-GMV. The first letter m means mimicking extreme strategy.

Table 5 reports the Sharpe ratios of the optimal portfolios with sufficiently large ηθt and η
V
t .

The second, third, fourth, and fifth columns are the specific values of ηθt and ηVt of the mim-
icking strategies. In Table 5, the averages of the root square errors of the mimicking strategies
from the (original) extreme strategies are sufficiently small in all the data sets. This implies
that the mimicking strategies are good proxies for the extreme strategies. Consequently, the
mimicking strategies’ Sharpe ratios are close to the original extreme strategies’ Sharpe ratios.
Hence, we conclude that the investors can asymptotically justify the extreme strategies and
exploit the portfolio selections that are extremely robust to the estimation errors.

GMV-EW and GMV-EW are very simple strategies, which means investing in the global
minimum-variance portfolio or the equally weighted portfolio with respect to the market
condition. These strategies seem to be naive and ad hoc, but they are one of the results of the
plausible portfolio optimization; For GMV-EW, the investor assumes that the estimates of
the conditional mean in economic booming and the conditional variance in recession are not
credible at all, whereas for EW-GMV, she assumes that the estimated variances in economic
booming and the estimated means in recession are not credible. Therefore, the investor
chooses GMV-EW or EW-GMV as the extremely robust portfolio to estimation errors.

5 Conclusion

In this paper, we derive the optimal portfolios in the dynamic mean-variance problems with
multiple priors. Furthermore, we show that the optimal portfolios include the equally weighted
portfolio and the global minimum-variance portfolio in the limiting cases.

In the back tests, we find that the extreme strategies, especially GMV-EW tends to be
relatively mean-variance efficient in the various data sets. In addition, the portfolios with
sufficiently large ηθt and ηVt can be good proxies for the extreme strategies. Therefore, we
can mathematically justify the extreme strategies although the extreme strategies seem to be
naive; the reason why the investors choose the extreme strategies is that the investors have
strong suspicion of the estimated expected return and covariance.

4In the lower figures in Figure 1, we fix ηθt = 5. Since the portfolio errors from EW with ηθt = 1 is
larger than those with ηθt = 5, we do not report the results of ηθt = 1
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Our analysis has an important implication about asset pricing. As seen above, the stan-
dard mean-variance analysis does not work in practice, neither does the capital asset pricing
model. However, according to our framework, two mean-variance inefficient in theory, and
naive portfolios, the global minimum portfolio and the equally weighted portfolio, can be justi-
fied as rational selections of the investors. Thus, it is possible that the two portfolios develop
asset pricing models. Then, our framework can be used to analyze the rational reasoning
behind the investors’ choices of these portfolios.

A Appendix

A.1 Proof of Lemma 4

Proof of Lemma 4. We first prove that

E
[
exp{u′Rt+1}ζt+1|FR,F

t , Ft+1

]
= exp

{
u′
(
µ(Ft+1) + θt

)
+

1

2
u′(σ(Ft+1)(σ(Ft+1))

′ + Vt)u

}
(A.1)

for all t ≥ 0 and u ∈ Rd. To simplify the notations, we write µt+1 = µ(Ft+1) and σt+1 =
σ(Ft+1). For any fixed constant vector u ∈ Rd, we have

E
[
exp{u′Rt+1}ζt+1|FR,F

t , Ft+1

]
=

∫
Rd

1

(2π)d/2
1√

det(σt+1σ′t+1 + Vt)
exp

{
−1

2
θ′t

(
σt+1σ

′
t+1 + Vt

)−1
θt + u′µt+1

+
((
σt+1σ

′
t+1 + Vt

)−1
θt + u

)′
σt+1ϵt+1 +

1

2
ϵ′t+1

(
Id − σ′t+1

(
σt+1σ

′
t+1 + Vt

)−1
σt+1

)
ϵt+1

−1

2
ϵ′t+1ϵt+1

}
dϵt+1

= exp

{
u′(µt+1 + θt) +

1

2
u′
(
σt+1σ

′
t+1 + Vt

)
u

}
×
∫
Rd

1

(2π)d/2
1√

det(σt+1σ′t+1 + Vt)

× exp

{
−1

2

(
σt+1ϵt+1 −meant+1

)′(
σt+1σ

′
t+1 + Vt

)−1(
σt+1ϵt+1 −meant+1

)}
dϵt+1,

where meant+1 = θt +
(
σt+1σ

′
t+1 + Vt

)
u. Then, the above integral is equal to 1 and the

equation (A.1) holds.
If u = 0d, we have

E
[
ζt+1|FR,F

t , Ft+1

]
= E

[
exp{0′dRt+1}ζt+1|FR,F

t , Ft+1

]
= 1.

Then, the process (Zt)
T
t=0 is a martingale with respect to FR,F since

E
[
Zt+1

∣∣∣FR,F
t

]
= E

[
ZtE

[
ζt+1

∣∣∣FR,F
t , Ft+1

] ∣∣∣FR,F
t

]
= Zt,

for all t ≥ 0. Moreover, E[Zt] = E[Z0] = 1. These equalities imply that we can define the
probability measure Pθ,V such that

Pθ,V (A) = E[1lAZT ], A ∈ FR,F
T .

23



Let
√
−1 be an imaginary unit. For any fixed u ∈ RK , by the Bayes rule, it holds that

Eθ,V
[
exp{

√
−1u′Ft+1}

∣∣∣FR,F
t

]
= E

[
exp{

√
−1u′Ft+1}ζt+1

∣∣∣FR,F
t

]
= E

[
exp{

√
−1u′Ft+1}E

[
ζt+1

∣∣∣FR,F
t , Ft+1

] ∣∣∣FR,F
t

]
= E

[
exp{

√
−1u′Ft+1}

∣∣∣FR,F
t

]
.

This implies that the conditional distribution of Ft+1 given FR,F
t under Pθ,V is the same as

the conditional distribution of Ft+1 given FR,F
t under P. It follows that

Eθ,V
[
Rt+1

∣∣∣FR,F
t

]
= Eθ,V

[
Eθ,V

[
Rt+1

∣∣∣FR,F
t , Ft+1

] ∣∣∣FR,F
t

]
= Eθ,V

[
µ(Ft+1)

∣∣∣FR,F
t

]
+ θt = E

[
µ(Ft+1)

∣∣∣FR,F
t

]
+ θt

= E
[
Rt+1

∣∣∣FR,F
t

]
+ θt,

for all t ≥ 0. Similarly, it holds that

Varθ,V (Rt+1|FR,F
t ) = Varθ,V (Eθ,V [Rt+1|FR,F

t , Ft+1]|FR,F
t )

+ Eθ,V [Varθ,V (Rt+1|FR,F
t , Ft+1)|FR,F

t ]

= Varθ,V (µ(Ft+1)|FR,F
t ) + Eθ,V [σ(Ft+1)(σ(Ft+1))

′|FR,F
t ] + Vt

= Var(µ(Ft+1)|FR,F
t ) + E[σ(Ft+1)(σ(Ft+1))

′|FR,F
t ] + Vt

= Var(Rt+1|FR,F
t ) + Vt,

for all t ≥ 0. 2

A.2 Proofs of Theorem 5 and Proposition 6

To prove Theorem 5, we need to show two lemmas. The objective function in the problem
(2.2) can be written as

Eθ,V

[
T−1∑
t=0

δtXtct(Ft, θt, Vt, ut)

]
= E

[
T−1∑
t=0

δtXtct(Ft, θt, Vt, ut)Zt

]

= E

[
T−1∑
t=0

δtXtct(Ft, θt, Vt, ut)

t∏
s=0

ζs

]
.

Let ρt be a mapping such that

ρt(W ) = δ E
[
Wζt+1

∣∣∣ FR,S
t

]
, 0 ≤ t ≤ T − 1.

Then, we can express the objective as

JT (x, f, θ, V, u) := Eθ,V

[
T−1∑
t=0

δtXtct(Ft, θt, Vt, ut)

]
= xc0(f, θ0, V0, u0) + ρ0

(
X1c1(F1, θ1, V1, u1) + ρ1

(
· · ·

+ ρT−2

(
XT−1cT−1(FT−1, θT−1, VT−1, uT−1)

)
· · ·
))
,
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for all u ∈ Au
T and (θ, V ) = (θt, Vt)

T−1
t=0 ∈ Aθ,V

T , where X0 = x and F0 = f . The above
recursive structure is important for the optimization. To simplify the notations, we write

cu,θ,Vt = Xtct(Ft, θt, Vt, ut), 0 ≤ t ≤ T − 1.

We define ρt,r−1 as

ρt,r−1(Wt, . . . ,Wr) =Wt + ρt

(
Wt+1 + ρt+1

(
· · ·+ ρr−1(Wr)

))
.

Then, for all u ∈ Au
T and (θ, V ) ∈ Aθ,V , we have

JT (x, f, θ, V, u) = ρ0,t−1

(
cu,θ,V0 , . . . , cu,θ,Vt−1 , ρt,T−2

(
cu,θ,Vt , . . . , cu,θ,Vt−2 , cu,θ,VT−1

))
,

for all 0 ≤ t ≤ T − 1. We first prove that the order of the minimization with respect to (θ, V )
can be exchangeable. The proof of the following lemma is essentially the same as the proof
of Lemma 1 in Chen et al. (2014).

Lemma 11 Fix any u ∈ Au
T . Then, it holds that
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(θr,Vr)
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t
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,

(A.2)

for all 0 ≤ t ≤ s ≤ T − 1, where Aθ,V
T |rt is a set of (θs, Vs)

r
s=t which are components of

(θ, V ) ∈ Aθ,V
T from the time t to r.

Proof . Fix any u ∈ Au
T , x ∈ R and f ∈ RK . Fix any 0 ≤ t ≤ s ≤ T − 1. We define (θ̃, Ṽ ) as
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T−1
r=s ∈ arg min

(θr,Vr)
T−1
r=s ∈Aθ,V

T |T−1
s

ρs,T−2

(
cu,θ,Vs , . . . , cu,θ,VT−2 , c

u,θ,V
T−1

)
.

Then, for every (θ, V ) ∈ Aθ,V
T , it holds that

ρs,T−2

(
cu,θ,Vs , . . . , cu,θ,VT−2 , c

u,θ,V
T−1

)
≥ ρs,T−2

(
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)
≤ ρt,s−1

(
Wt, . . . ,Ws−1,W

′
)
,

if Ws ≤W ′. Therefore, we have

ρt,T−1(c
u,θ,V
t , . . . , cu,θ,VT−1 ) ≥ ρt,s−1

(
cu,θ,Vt , . . . , cu,θ,Vs−1 , ρs,T−2

(
cu,θ̃,Ṽs , . . . , cu,θ̃,ṼT−2 , c

u,θ̃,Ṽ
T−1

))
.

Minimizing the above inequality, we obtain

min
(θr,Vr)

T−1
r=t ∈Aθ,V

T |T−1
t

ρt,T−1(c
u,θ,V
t , . . . , cu,θ,VT−1 )

≥ min
(θr,Vr)

s−1
r=t∈A

θ,V
T |s−1

t

ρt,s−1

(
cu,θ,Vt , . . . , cu,θ,Vs−1 , ρs,T−2

(
cu,θ̃,Ṽs , . . . , cu,θ̃,ṼT−2 , c

u,θ̃,Ṽ
T−1

))
= min

(θr,Vr)
s−1
r=t∈A

θ,V
T |s−1

t

ρt,s−1

(
cu,θ,Vt , . . . , cu,θ,Vs−1 , min

(θr,Vr)
T−1
r=s ∈Aθ,V

T |T−1
s

ρs,T−2

(
cu,θ,Vs , . . . , cu,θ,VT−1

))
.
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We denote by (θ̂, V̂ ) the following minimizer:

(θ̂, V̂ ) := (θ̂r, V̂r)
s−1
r=t ∈ arg min

(θr,Vr)
s−1
r=t∈Aθ,V

T |s−1
t

ρt,s−1

(
cu,θ,Vt , . . . , cu,θ,Vs−1 , ρs,T−2

(
cu,θ̃,Ṽs , . . . , cu,θ̃,ṼT−1

))
.

Then, (θ, V ) := ((θ̂tV̂t), . . . , (θ̂s−1, V̂s−1), (θ̃s, Ṽs), . . . , (θ̃T−1, ṼT−1)) is in Aθ,V
T |T−1

t . It follows
that

min
(θr,Vr)

T−1
r=t ∈Aθ,V

T |T−1
t

ρt,T−1(c
u,θ,V
t , . . . , cu,θ,VT−1 )

≤ ρt,T−1(c
u,θ,V
t , . . . , cu,θ,VT−1 ) = ρt,s−1

(
cu,θ̂,V̂t , . . . , cu,θ̂,V̂s−1 , ρs,T−2

(
cu,θ̃,Ṽs , . . . , cu,θ̃,ṼT−2 , c

u,θ̃,Ṽ
T−1

))
= min

(θr,Vr)
s−1
r=t∈A

θ,V
T |s−1

t

ρt,s−1

(
cu,θ,Vt , . . . , cu,θ,Vs−1 , min

(θr,Vr)
T−1
r=s ∈Aθ,V

T |T−1
s

ρs,T−2

(
cu,θ,Vs , . . . , cu,θ,VT−1

))
.

Therefore, we can conclude that the equality (A.2) holds. 2

By Lemma 11, we can minimize the objective function with respect to (θ, V ), iteratively.
Let

ρT−1(uT−1) = min
(θT−1,VT−1)∈Aθ,V

T |T−1
T−1

cu,θ,VT−1 ,

ρt(W,ut) = min
(θt,Vt)∈Aθ,V

T |tt

{
cu,θ,Vt + δ E

[
Wζt+1|FR,F

t

]}
, 0 ≤ t ≤ T − 2,

ρt,s−1(W, (ur)
s−1
r=t ) = ρt(ρt+1(· · · , ρs−1(W,us−1) · · · , ut+1), ut)

Then, by Lemma 11, we derive that

J∗
T (x, f, u) := min

(θ,V )∈Aθ,V
T

JT (x, f, θ, V, u) = ρ0,T−1(ρT−1(uT−1), (ut)
T−2
t=0 ),

for all u = (ut)
T−1
t=0 ∈ Au

T .
The investor needs to maximize J∗

T (x, f, u) over u ∈ Au
T . In the proof of Lemma 11, the

monotonicity of ρt plays a key role in the exchangeability of the minimization with respect
to (θ, V ). Similarly, the monotonicity of ρt is important to the the order of the maximization
with respect to u. ρt satisfies the monotonicity, that is, for all y ∈ Rd and 0 ≤ t ≤ T − 1,
ρt(W, y) ≤ ρt(W

′, y) holds if W ≤W ′. This implies that for any u ∈ Au
T ,

ρt,r−1(Wr, (us)
r−1
s=t ) ≤ ρt,r−1(W

′, (us)
r−1
s=t ),

if Wr ≤W ′. Therefore, using the same argument as in Lemma 11, we can prove the following
lemma.

Lemma 12 For all 0 ≤ t ≤ s ≤ T − 1, it holds that

max
(ur)

T−1
r=t ∈Au

T |T−1
t

ρt,T−1(ρT−1(uT−1), (ur)
T−2
r=t )

= max
(ur)

s−1
r=t∈Au

T |s−1
t

ρt,s−1

(
max

(ur)
T−1
r=s ∈Au

T |T−1
s

ρs,T−2

(
ρT−1(uT−1), (ur)

T−2
r=s

)
, (ur)

s−1
r=t

)
,

where Au
T |rt is a set of (us)

r
s=t which are components of u ∈ Au

T from the time t to r.

26



Using Lemma 12, the dynamic programming of the multiple priors optimization can be
justified. Now, we prove Theorem 5 and Proposition 6.

Proof of Theorem 5 and Proposition 6. Consider the time T − 1 problem

max
uT−1∈Au

T |T−1
T−1

ρT−1(uT−1)

= max
uT−1∈Au

T |T−1
T−1

min
(θT−1,VT−1)∈Aθ,V

T |T−1
T−1

cu,θ,VT−1

= max
uT−1∈Au

T |T−1
T−1

min
(θT−1,VT−1)∈Aθ,V

T |T−1
T−1

XT−1cT−1(FT−1, θT−1, VT−1, uT−1)

= max
uT−1∈Au

T |T−1
T−1

min
(θT−1,VT−1)∈Aθ,V

T |T−1
T−1

XT−1

{
1 + rf + (me(FT−1) + θT−1)

′uT−1

− γ̂T−1

2
u′T−1

(
A(FT−1) + VT−1

)
uT−1

}
. (A.3)

Then, the minimization problem in the problem (A.3) is reduced to the following problem,

min
(θT−1,VT−1)∈Aθ,V

T |T−1
T−1

{
θ′T−1uT−1 −

γ̂T−1

2
u′T−1VT−1uT−1

}
. (A.4)

The Lagrange function of the problem (A.4) is

Lθ,V = θ′T−1uT−1 −
γ̂T−1

2
u′T−1VT−1uT−1 − λθ

(
(ηθT−1)

2 − θ′T−1(A(FT−1) + VT−1)
−1θT−1

)
− λV

(
(ηVT−1)

2∥A(FT−1)∥2 − ∥VT−1∥2
)
,

where λθ and λV are Lagrange multipliers. We first consider the case when uT−1 ̸= 0d. The
first order condition for θT−1 is

uT−1 + 2λθ(A(FT−1) + VT−1)
−1θT−1 = 0d.

Hence, we have

θT−1 = − 1

2λθ
(A(FT−1) + VT−1)uT−1.

Since the constraint for θT−1 is binded, it holds that

(ηθT−1)
2 = θ′T−1(A(FT−1) + VT−1)

−1θT−1 =
1

4λ2θ
u′T−1(A(FT−1) + VT−1)uT−1.

Hence,

λθ =
1

2ηθT−1

√
u′T−1(A(FT−1) + VT−1)uT−1,

and

θT−1 = −
ηθT−1√

u′T−1(A(FT−1) + VT−1)uT−1

(A(FT−1) + VT−1)uT−1.

We denote the i× jth element of VT−1 by vi,jT−1. Then, the first order condition for vi,jT−1 is

− γ̂T−1u
i
T−1u

j
T−1 + 4λV v

i,j
T−1

= tr
{
(A(FT−1) + VT−1)

−1θT−1θ
′
T−1(A(FT−1) + VT−1)

−1N i,j
}
, if i ̸= j,

− γ̂T−1

2
(uiT−1)

2 + 2λV v
i,j
T−1

= tr
{
(A(FT−1) + VT−1)

−1θT−1θ
′
T−1(A(FT−1) + VT−1)

−1N i,i
}
, if i = j,
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where N i,j is a d-dimensional matrix whose i× jth element and j× ith element are 1 and the
other elements are zero. Substituting θT−1 into (A(FT−1)+VT−1)

−1θT−1θ
′
T−1(A(FT−1)+VT−1)

−1,
we have

(A(FT−1) + VT−1)
−1θT−1θ

′
T−1(A(FT−1) + VT−1)

−1

=
(ηθT−1)

2

u′T−1(A(FT−1) + VT−1)uT−1
uT−1u

′
T−1.

Hence, it holds that

tr
{
(A(FT−1) + VT−1)

−1θT−1θ
′
T−1(A(FT−1) + VT−1)

−1N i,j
}

=


2(ηθT−1)

2

u′T−1(A(FT−1)+VT−1)uT−1
uiT−1u

j
T−1, if i ̸= j

(ηθT−1)
2

u′T−1(A(FT−1)+VT−1)uT−1
(uiT−1)

2, if i = j

It follows that

−γ̂T−1u
i
T−1u

j
T−1 + 4λV v

i,j
T−1 =

2(ηθT−1)
2

u′T−1(A(FT−1) + VT−1)uT−1
uiT−1u

j
T−1,

for all i and j. Using the matrix notation, we have

−γ̂T−1uT−1u
′
T−1 + 4λV VT−1 =

2(ηθT−1)
2

u′T−1(A(FT−1) + VT−1)uT−1
uT−1u

′
T−1.

Hence,

VT−1 =
1

4λV

(
γ̂T−1 +

2(ηθT−1)
2

u′T−1(A(FT−1) + VT−1)uT−1

)
uT−1u

′
T−1.

Since the constraint for VT−1 is also binded, it holds that

(ηVT−1)
2∥A(FT−1)∥2

= ∥VT−1∥2 =
1

16λ2V

(
γ̂T−1 +

2(ηθT−1)
2

u′T−1(A(FT−1) + VT−1)uT−1

)2

∥uT−1∥4.

Therefore, the Lagrange multiplier λV is

λV =
1

4ηVT−1∥A(FT−1)∥

(
γ̂T−1 +

2(ηθT−1)
2

u′T−1(A(FT−1) + VT−1)uT−1

)
∥uT−1∥2.

Hence, we have

VT−1 =
ηVT−1∥A(FT−1)∥

∥uT−1∥2
uT−1u

′
T−1.

Then,
(A(FT−1) + VT−1)uT−1 = (A(FT−1) + ηVT−1∥A(FT−1)∥Id)uT−1

and

θT−1 = −
ηθT−1(A(FT−1) + ηVT−1∥A(FT−1)∥Id)uT−1√
u′T−1(A(FT−1) + ηVT−1∥A(FT−1)∥Id)uT−1

.

If uT−1 = 0d, then every (θT−1, VT−1) ∈ Aθ,V
T |T−1

T−1 is a solution. In this case, we choose

θT−1 = 0d and VT−1 = Od as the solution. In all cases, (θT−1, VT−1) is in Aθ,V
T |T−1

T−1.
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Substituting θT−1 and VT−1 into the original time T − 1 optimization problem (A.3), we
obtain

max
uT−1∈Au

T |T−1
T−1

XT−1

{
1 + rf + (me(FT−1))

′uT−1

− γ̂T−1

2
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1 (A.5)

−ηθT−1

√
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

}
.

We first consider the following case.

aeT−1 := (me(FT−1))
′
(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)−1
me(FT−1) > (ηθT−1)

2. (A.6)

The first order condition of this problem (A.5) is

me(FT−1)−

(
γ̂T−1 +

ηθT−1

ψT−1

)(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1 = 0d,

where

ψT−1 =

√
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1.

Hence, we have

uT−1 =

(
γ̂T−1 +

ηθT−1

ψT−1

)−1 (
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)−1
me(FT−1).

Furthermore, we also have

ψ2
T−1 = u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

=

(
γ̂T−1 +

ηθT−1

ψT−1

)−2

aeT−1.

Thus, we obtain the following quadratic equation for ψT−1.

γ̂2T−1ψ
2
T−1 + 2γ̂T−1η

θ
T−1ψT−1 + (ηθT−1)

2 − aeT−1 = 0.

By the inequality (A.6), the above equation has a unique positive solution such that

ψT−1 =

√
aeT−1 − ηθT−1

γ̂T−1
.

Hence, the optimal portfolio at time T − 1 is

uT−1 =
1

γ̂T−1

(
1−

ηθT−1√
aeT−1

)(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)−1
me(FT−1).

Let KT−1 = A(FT−1) + ηVT−1∥A(FT−1)∥Id. If the inequality (A.6) does not hold, then the
Cauchy-Schwartz inequality leads to

ηθT−1

√
u′T−1KT−1uT−1 ≥

√
aeT−1

√
u′T−1KT−1uT−1

=
√

(me(FT−1))′K
−1
T−1m

e(FT−1)
√
u′T−1KT−1(KT−1)−1KT−1uT−1

≥
∣∣∣(me(FT−1))

′(KT−1)
−1KT−1uT−1

∣∣∣ = ∣∣∣(me(FT−1))
′uT−1

∣∣∣.
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Hence,

max
uT−1∈Au

T |T−1
T−1

XT−1

{
1 + rf + (me(FT−1))

′uT−1

− γ̂T−1

2
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

−ηθT−1

√
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

}
≤ max

uT−1∈Au
T |T−1

T−1

XT−1

{
1 + rf + (me(FT−1))

′uT−1 −
∣∣∣(me(FT−1))

′uT−1

∣∣∣}
The solution of the later problem is an arbitrarily vector uT−1 ∈ Au

T |
T−1
T−1, such that (me(FT−1))

′uT−1 ≥
0. We choose uT−1 = 0d, and then the optimal value of the later problem becomes XT−1(1 +
rf). Moreover, we have

1 + rf + (me(FT−1))
′uT−1 −

γ̂T−1

2
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

− ηθT−1

√
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

= 1 + rf ,

if uT−1 = 0d. Therefore, uT−1 = 0d is also a solution of the former problem.
In each case, we can express the optimal portfolio at time T − 1 as

uT−1 =
1

γ̂T−1

(
1−

ηθT−1√
aeT−1

)+ (
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)−1
me(FT−1).

It is clear that uT−1 ∈ Au
T |
T−1
T−1. In addition, the value function is

max
uT−1∈Au

T |TT
ρT−1(uT−1) = Y T

T−1XT−1

Y T
T−1 = max

uT−1∈Rd
min

(θT−1,VT−1)∈Aθ,V
T |T−1

T−1

{cT−1(FT−1, θT−1, VT−1, uT−1)}

= 1 + rf +

(
(
√
aeT−1 − ηθT−1)

+
)2

2γ̂T−1
.

By the definition, Y T
T−1 is FF

T−1-measurable.

Now, we assume that

max
(ur)

T−1
r=t+1∈Au

T |T−1
t+1

min
(θr,Vr)

T−1
r=t+1∈A

θ,V
T |T−1

t+1

ρt+1,T−1(c
u,θ,V
t+1 , . . . , cu,θ,VT−1 ) = Y T

t+1Xt+1,

for some 0 ≤ t ≤ T − 2. Then, we have

Eθ,V [Y T
t+1Xt+1|FR,F

t ]

= Eθ,V [Y T
t+1(1 + rf + (Ret+1)

′ut)Xt|FR,F
t ]

= (1 + rf) E
θ,V [Y T

t+1|F
R,F
t ]Xt +

(
Eθ,V [Y T

t+1Rt+1|FR,F
t ]

)′
utXt

= (1 + rf) E[Y
T
t+1|F

R,F
t ]Xt +

(
E[Y T

t+1µ
e(Ft+1)|FR,F

t ] + E[Y T
t+1|F

R,F
t ]θt

)′
utXt,
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where we have used Lemma 4 and FF
t+1-measurability of Y T

t+1. Therefore, the objective in the
time t problem is

cu,θ,Vt + δEθ,V [Y T
t+1Xt+1|FR,F

t ] = Xt

{
(1 + rf)g

e
t + (me

t + get θt)
′ut −

γ̂t
2
u′t(At + Vt)ut

}
.

Hence, the objective function in the time t problem has the same form as the objective function
in the problem (A.3). Therefore, the error of the conditional mean is

θt = −sgn(get )η
θ
t (A(Ft) + ηVt ∥A(Ft)∥Id)ut√

u′t(A(Ft) + ηVt ∥A(Ft)∥Id)ut
,

where sgn is a sign function such that

sgn(x) =


1, if x > 0,
−1, if x < 0,
0, if x = 0.

The error of the conditional variance is

Vt =
ηVt ∥A(Ft)∥

∥ut∥2
utu

′
t.

The optimal portfolio at time t is

ut =
1

γ̂t

(
1− |get |ηθt√

aet

)+ (
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
me
t .

It is clear that ut ∈ Au
T |tt and (θt, Vt) ∈ Aθ,V

T |tt. The value function is

Y T
t Xt = max

(ur)
T−1
r=t ∈Au

T |T−1
t

min
(θr,Vr)

T−1
r=t ∈Aθ,V

T |T−1
t

ρt,T−1(c
u,θ,V
t , . . . , cu,θ,VT−1 ),

Y T
t = (1 + rf)g

e
t +

(
(
√
aet − |get |ηθt )+

)2
2γ̂t

.

By construction, Y T
t is FF

t -measurable.

For any 0 ≤ t ≤ T − 1, by the mathematical induction, the value function at time t can
be expressed as

Y T
t Xt = max

(ur)
T−1
r=t ∈Au

T |T−1
t

min
(θr,Vr)

T−1
r=t ∈Aθ,V

T |T−1
t

ρt,T−1(c
u,θ,V
t , . . . , cu,θ,VT−1 ),

where

Y T
t = (1 + rf)g

e
t +

(
(
√
aet − |get |ηθt )+

)2
2γ̂t

.

The optimal portfolio at time t is

u∗t =
1

γ̂t

(
1− |get |ηθt√

aet

)+ (
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
me
t .

Also, it is obvious that the optimal (u∗t )
T−1
t=0 is time-consistent. 2
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A.3 Proofs of Proposition 7 and 8

Proof of Proposition 7. By Theorem 5, we can use the following dynamic programming
procedure.

Ŷ T
T−1 = max

uT−1∈Ãu
T |T−1

T−1

min
(θT−1,VT−1)∈Aθ,V

T |T−1
T−1

{ĉT−1(FT−1, θT−1, VT−1, uT−1)} ,

Ŷ T
t = max

ut∈Ãu
T |tt

min
(θt,Vt)Aθ,V

T |tt

{
ĉt(Ft, θt, Vt, ut) + δ Eθ,V

[
Y T
t+1(1 + (Rt+1)

′ut)
∣∣∣ FR,S

t

]}
.

Consider the time T − 1 problem.

Ŷ T
T−1 = max

uT−1∈Ãu
T |T−1

T−1

min
(θT−1,VT−1)∈Aθ,V

T |T−1
T−1

{
1 + (m(FT−1) + θT−1)

′uT−1

− γ̂T−1

2
u′T−1

(
A(FT−1) + VT−1

)
uT−1

}
. (A.7)

The inner minimization problem in the problem (A.7) can be reduced to the following:

min
(θT−1,VT−1)∈Aθ,V

T |T−1
T−1

{
θ′T−1uT−1 −

γ̂T−1

2
u′T−1VT−1uT−1

}
.

The above problem is the same as the problem (A.4) in the proof of Theorem 5. Therefore,
the solutions are

θT−1 = −
ηθT−1(A(FT−1) + ηVT−1∥A(FT−1)∥Id)uT−1√
u′T−1(A(FT−1) + ηVT−1∥A(FT−1)∥Id)uT−1

,

VT−1 =
ηVT−1∥A(FT−1)∥

∥uT−1∥2
uT−1u

′
T−1.

Unlike Theorem 5, we do not need to consider the case uT−1 = 0d since 0d /∈ Ãu
T |
T−1
T−1.

Therefore, the time T − 1 problem is

Ŷ T
T−1 = max

uT−1∈Ãu
T |T−1

T−1

{
1 + (m(FT−1))

′uT−1 −
γ̂T−1

2
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

−ηθT−1

√
u′T−1(A(FT−1) + ηVT−1∥A(FT−1)∥Id)uT−1

}
.

The Lagrange function of the above problem is

Lu = 1 + (m(FT−1))
′uT−1 −

γ̂T−1

2
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

− ηθT−1

√
u′T−1(A(FT−1) + ηVT−1∥A(FT−1)∥Id)uT−1 + λu(1− 1′duT−1),

where λu is the Lagrange multiplier. The first order condition is

m(FT−1)− λu1d −

(
γ̂T−1 +

ηθT−1

ψ∗
T−1

)(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1 = 0d,

where

ψ∗
T−1 =

√
u′T−1(A(FT−1) + ηVT−1∥A(FT−1)∥Id)uT−1.
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Hence,

uT−1 =

(
γ̂T−1 +

ηθT−1

ψ∗
T−1

)−1 (
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)−1(
m(FT−1)− λu1d

)
.

Since the constraint is binded, we have

1 = 1′duT−1 =

(
γ̂T−1 +

ηθT−1

ψ∗
T−1

)−1 (
cworfT−1 − λub

worf
T−1

)
.

Therefore, we obtain

λu =
1

bworfT−1

(
cworfT−1 −

(
γ̂T−1 +

ηθT−1

ψ∗
T−1

))
.

The optimal portfolio is

uT−1 =
1

γ̂T−1 + ηθT−1/ψ
∗
T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)−1

×

(
m(FT−1)−

cworfT−1 − (γ̂T−1 + ηθT−1/ψ
∗
T−1)

bworfT−1

1d

)
.

Then,

bworfT−1 (ψ
∗
T−1)

2

= bworfT−1 u
′
T−1(A(FT−1) + ηVT−1∥A(FT−1)∥Id)uT−1

=
bworfT−1(

γ̂T−1 +
ηθT−1

ψ∗
T−1

)2
aworfT−1 − 2

cworfT−1 −
(
γ̂T−1 +

ηθT−1

ψ∗
T−1

)
bworfT−1

cworfT−1 +

(
cworfT−1 −

(
γ̂T−1 +

ηθT−1

ψ∗
T−1

))2
bworfT−1



=
bworfT−1(

γ̂T−1 +
ηθT−1

ψ∗
T−1

)2
aworfT−1 −

(cworfT−1 )
2

bworfT−1

+

(
γ̂T−1 +

ηθT−1

ψ∗
T−1

)2
bworfT−1


=
aworfT−1 b

worf
T−1 − (cworfT−1 )

2(
γ̂T−1 +

ηθT−1

ψ∗
T−1

)2 + 1 =
dworfT−1(

γ̂T−1 +
ηθT−1

ψ∗
T−1

)2 + 1.

Therefore, we can consider the following polynomial equation for ψ∗
T−1:

bworfT−1 (ψ
∗
T−1)

2 =
dworfT−1(

γ̂T−1 + ηθT−1/ψ
∗
T−1

)2 + 1. (A.8)

Expanding it, we obtain

q(ψ∗
T−1) := bworfT−1 γ̂

2
T−1(ψ

∗
T−1)

4 + 2bworfT−1 γ̂T−1η
θ
T−1(ψ

∗
T−1)

3

+
(
bworfT−1 (η

θ
T−1)

2 − (dworfT−1 + γ̂2T−1)
)
(ψ∗

T−1)
2 (A.9)

− 2γ̂T−1η
θ
T−1ψ

∗
T−1 − (ηθT−1)

2 = 0.

The equation q(ψ∗
T−1) = 0 is essentially the same as the equation (A11) in Garlappi et al.

(2007), therefore it has a unique positive solution by the discussion in Garlappi et al. (2007).
We show the existence of the unique positive solution to the equation (A.9). Since the equation
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(A.9) is a quartic equation, it has four solutions. Since q(0) = −(ηθT−1)
2 < 0 and bworfT−1 γ̂

2
T−1 >

0, the equation (A.9) has at least two real solutions: the one is a positive solution and the one
is a negative solution. We show that the positive solution is unique. Consider the following
quadratic equation.

d2q(ψ∗
T−1)

d(ψ∗
T−1)

2
= 12bworfT−1 γ̂

2
T−1(ψ

∗
T−1)

2 + 12bworfT−1 γ̂T−1η
θ
T−1ψ

∗
T−1

+ 2
(
bworfT−1 (η

θ
T−1)

2 − (dworfT−1 + γ̂2T−1)
)
= 0. (A.10)

The discriminant of the quadratic equation (A.10) is

D = 36(bworfT−1 )
2γ̂2T−1(η

θ
T−1)

2 − 24bworfT−1 γ̂
2
T−1

(
bworfT−1 (η

θ
T−1)

2 − (dworfT−1 + γ̂2T−1)
)

= 12(bworfT−1 )
2γ̂2T−1(η

θ
T−1)

2 + 24bworfT−1 γ̂
2
T−1(d

worf
T−1 + γ̂2T−1) > 0.

Hence, the equation (A.10) has two real solutions. Moreover, we have

d2q(ψ∗
T−1)

d(ψ∗
T−1)

2
= 12bworfT−1 γ̂

2
T−1

(
ψ∗
T−1 +

ηθT−1

2γ̂T−1

)2

−
(
bworfT−1 (η

θ
T−1)

2 + dworfT−1 + γ̂2T−1

)
.

Since ηθT−1/(2γ̂T−1) > 0, the equation (A.10) has at least one negative solution. Next, consider
the first derivative of q such that

dq(ψ∗
T−1)

dψ∗
T−1

= 4bworfT−1 γ̂
2
T−1(ψ

∗
T−1)

3 + 6bworfT−1 γ̂T−1ηT−1(ψ
∗
T−1)

2

+ 2
(
bworfT−1 (η

θ
T−1)

2 − (dworfT−1 + γ̂2T−1)
)
ψ∗
T−1 − 2γ̂T−1η

θ
T−1 = 0. (A.11)

Then, the cubic equation (A.11) has at least one positive solution since 4bworfT−1 γ̂
2
T−1 > 0 and

−2γ̂T−1η
θ
T−1 < 0. However, since the equation (A.10) has at least one negative solution, we

conclude that the equation (A.11) has a unique positive solution. Now, let us consider the

quartic equation (A.9) again. Since q(0) = −(ηθT−1)
2 < 0 and bworfT−1 γ̂

2
T−1 > 0 hold, and since

the equation (A.11) has a unique positive solution, the equation (A.9) has at most one local
minimum on ψ∗

T−1 > 0. Furthermore, we also have

dq(ψ∗
T−1)

dψ∗
T−1

∣∣∣
ψ∗
T−1=0

= −2γ̂T−1η
θ
T−1 < 0.

These facts imply that the equation (A.9) has only one positive solution. Therefore, the
positive solution of the equation (A.9) is unique. We also write ψ∗

T−1 as the positive solution
of the equation (A.9). Then, the optimal portfolio is

uT−1 =
1

γ̂T−1 + ηθT−1/ψ
∗
T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)−1

×

(
m(FT−1)−

cworfT−1 − (γ̂T−1 + ηθT−1/ψ
∗
T−1)

bworfT−1

1d

)

=
1

γ̂T−1 + |gT−1|ηθT−1/ψ
∗
T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)−1

×

(
mT−1 −

cworfT−1 − (γ̂T−1 + |gT−1|ηθT−1/ψ
∗
T−1)

bworfT−1

1d

)
,
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where we have used gT−1 = 1 and mT−1 = m(FT−1). Since the coefficients of the quartic
equation (A.9) are FR,F

T−1-measurable, its solution ψ∗
T−1 is also FR,F

T−1-measurable. Therefore,

uT−1 is FR,F
T−1-measurable. The value function at time T − 1 is

Ŷ TT−1 = 1 + (m(FT−1))
′uT−1 −

γ̂T−1

2
(ψ∗
T−1)

2 − ηθT−1ψ
∗
T−1

= gT−1 +
1

γ̂T−1 + |gT−1|ηθT−1/ψ
∗
T−1

(
aworfT−1 −

cworfT−1 −
(
γ̂T−1 + |gT−1|ηθT−1/ψ

∗
T−1

)
bworfT−1

cworfT−1

)

− γ̂T−1

2
(ψ∗
T−1)

2 − |gT−1|ηθT−1ψ
∗
T−1

= gT−1 +
cworfT−1

bworfT−1

+
dworfT−1

bworfT−1 (γ̂T−1 + |gT−1|ηθT−1/ψ
∗
T−1)

− γ̂T−1

2
(ψ∗
T−1)

2 − |gT−1|ηθT−1ψ
∗
T−1,

where we have used gT−1 = 1. Using the equation (A.8), we have

dworfT−1

bworfT−1 (γ̂T−1 + |gT−1|ηθT−1/ψ
∗
T−1)

− γ̂T−1

2
(ψ∗

T−1)
2 − |gT−1|ηθT−1ψ

∗
T−1

=

(
(ψ∗

T−1)
2 − 1

bworfT−1

)(
γ̂T−1 +

|gT−1|ηθT−1

ψ∗
T−1

)
−

(
γ̂T−1 +

|gT−1|ηθT−1

ψ∗
T−1

)
(ψ∗

T−1)
2

+
γ̂T−1

2
(ψ∗

T−1)
2

= −
γ̂T−1 + |gT−1|ηθT−1/ψ

∗
T−1

bworfT−1

+
γ̂T−1

2
(ψ∗

T−1)
2.

Hence, the value function is

Ŷ T
T−1 = gT−1 +

cworfT−1 −
(
γ̂T−1 + |gT−1|ηθT−1/ψ

∗
T−1

)
bworfT−1

+
γ̂T−1

2
(ψ∗

T−1)
2

and it is FF
T−1-measurable.

Now, we assume that Ŷ T
t+1 is FF

t+1-measurable for some 0 ≤ t ≤ T − 2. Then, we have

ĉt(Ft, θt, Vt, ut) + δ Eθ,V
[
Y T
t+1(1 + (Rt+1)

′ut)
∣∣∣ FR,S

t

]
= gt + (mt + gtθt)

′ut −
γ̂t
2
u′t

(
A(Ft) + Vt

)
ut.

Then, the minimization problem for (θt, Vt) can be reduced to

min
(θt,Vt)∈Aθ,V

T |tt

{
gtθ

′
tut −

γ̂t
2
u′tVtut

}
.

Similarly to the time T − 1 problem, the solution of the above problem is

θt = −sgn(gt)η
θ
t (A(Ft) + ηVt ∥A(Ft)∥Id)ut√

u′t(A(Ft) + ηVt ∥A(Ft)∥Id)ut
,

Vt =
ηVt ∥A(Ft)∥

∥ut∥2
utu

′
t.
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Therefore, the maximization problem for ut is

max
ut∈ÃT |tt

{
gt +m′

tut −
γ̂t
2
u′t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)
ut

−|gt|ηθt

√
u′t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)
ut

}
.

Since the above problem has the same form as the time T − 1 problem, the optimal portfolio
is

ut =
1

γ̂t + |gt|ηθt /ψ∗
t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)−1
(
mt −

cworft − (γ̂t + |gt|ηθt /ψ∗
t )

bworft

1d

)
,

where ψ∗
t is the unique positive solution of the following quartic equation:

bworft (ψ∗
t )

2 =
dworft

(γ̂t + |gt|ηθt /ψ∗
t )

2
+ 1.

The value function is

Ŷ T
t = gt +

cworft − (γ̂t + |gt|ηθt /ψ∗
t )

bworft

+
γ̂t
2
(ψ∗

t )
2,

and it is FF
t -measurable.

By the mathematical induction, we therefore conclude that the optimal portfolio and that
the value function is determined as in Proposition 7. 2

Proof of Proposition 8. In this case, we can also apply the dynamic programming procedure.
Consider the time T − 1 problem,

Ŷ +T
T−1

= max
uT−1∈Ãu

+T |T−1
T−1

min
(θT−1,VT−1)∈Aθ,V

T |T−1
T−1

{
1 +

(
m(FT−1) + θT−1

)′
uT−1

− γ̂T−1

2
u′T−1

(
A(FT−1) + VT−1

)
uT−1

}
.

Since g+T−1 = 1 and m+
T−1 = m(FT−1) by the definition, the objective function of the time

T − 1 problem can be expressed as

g+T−1 +
(
m+
T−1 + g+T−1θT−1

)′
uT−1 −

γ̂T−1

2
u′T−1

(
A(FT−1) + VT−1

)
uT−1.

Hence, it suffices to consider the following optimization problem.

max
uT−1∈Ãu

+T |T−1
T−1

min
(θT−1,VT−1)∈Aθ,V

T |T−1
T−1

{
g+T−1 +

(
m+
T−1 + g+T−1θT−1

)′
uT−1

− γ̂T−1

2
u′T−1

(
A(FT−1) + VT−1

)
uT−1

}
.

Solving the inner minimization problem, we can express the above problem as

max
uT−1∈Ãu

+T |T−1
T−1

{
g+T−1 + (m+

T−1)
′uT−1 −

γ̂T−1

2
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

−|g+T−1|η
θ
T−1

√
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

}
. (A.12)
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Now, we consider the auxiliary problem of (A.12), whose feasible set of portfolios is C+. If we
regard C+ as a correspondence from RK to Rd, then its graph is

Gr(C+) := {(f, ϕ) ∈ RK × Rd | ϕ ∈ C+} = RK × C+.

It is clear that Gr(C+) is a Borel subset on RK × Rd. This implies that C+ is Borel mea-
surable. Furthermore, the objective function of the problem (A.12) is continuous in uT−1

and also FF
T−1-measurable for any fixed uT−1. Moreover, C+ is a non-empty compact subset

of Rd endowed with the Euclidean topology. Hence, by the measurable selection theorem
(see Appendix D in Hernández-Lerma and Lasserre (1996)), there exists an FF

T−1-measurable

random vector u∗T−1 ∈ C+ such that

g+T−1 + (m+
T−1)

′u∗T−1 −
γ̂T−1

2
(u∗T−1)

′
(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
u∗T−1

− |g+T−1|η
θ
T−1

√
(u∗T−1)

′
(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
u∗T−1

= max
uT−1∈C+

{
g+T−1 + (m+

T−1)
′uT−1 −

γ̂T−1

2
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

−|g+T−1|η
θ
T−1

√
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

}
.

Moreover, since u∗T−1 ∈ Ãu
+T |

T−1
T−1 and Ãu

+T |
T−1
T−1 ⊆ C+, we conclude that

g+T−1 + (m+
T−1)

′u∗T−1 −
γ̂T−1

2
(u∗T−1)

′
(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
u∗T−1

− |g+T−1|η
θ
T−1

√
(u∗T−1)

′
(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
u∗T−1

= max
uT−1∈Ãu

+T |T−1
T−1

{
g+T−1 + (m+

T−1)
′uT−1 −

γ̂T−1

2
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

−|g+T−1|η
θ
T−1

√
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

}

= max
uT−1∈C+

{
g+T−1 + (m+

T−1)
′uT−1 −

γ̂T−1

2
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

−|g+T−1|η
θ
T−1

√
u′T−1

(
A(FT−1) + ηVT−1∥A(FT−1)∥Id

)
uT−1

}
= Ŷ +T

T−1.

This implies that u∗T−1 is the maximizer of the problem (A.12). Moreover, Ŷ +T
T−1 is FF

T−1-
measurable by the measurable selection theorem.

Now, we hypothesize that at some time t+1, 0 ≤ t+1 ≤ T − 1, Ŷ +T
t+1 is FS

t+1-measurable.
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Then, we have

Ŷ +T
t := max

ut∈Ãu
+T |tt

min
(θt,Vt)∈Aθ,V

T |tt

{
1 + (m(Ft) + θt)

′ut −
γ̂t
2
u′t

(
A(Ft) + Vt

)
ut

+δ Eθ,V
[
Ŷ +T
t+1 | FR,F

t

]}
= max

ut∈Ãu
+T |tt

min
(θt,Vt)∈Aθ,V

T |tt

{
g+t +

(
m+
t + g+t θt

)′
ut −

γ̂t
2
u′t

(
A(Ft) + Vt

)
ut

}
= max

ut∈Âu
+T |tt

{
g+t + (m+

t )
′ut −

γ̂t
2
u′t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)
ut

−|g+t |ηθt

√
u′t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)
ut

}
. (A.13)

The problem (A.13) has the same form as the problem (A.12), and m+
t , g

+
t , γ̂t, A(Ft), η

θ
t and

ηVt are FF
t -measurable. Therefore, we can use the measurable selection theorem in the same

manner as we did in the case of the problem (A.12). By the measurable selection theorem,
there exists an FF

t -measurable random vector u∗t ∈ C+ such that

g+t + (m+
t )

′u∗t −
γ̂t
2
(u∗t )

′
(
A(Ft) + ηVt ∥A(Ft)∥Id

)
u∗t

− |g+t |ηθt

√
(u∗t )

′
(
A(Ft) + ηVt ∥A(Ft)∥Id

)
u∗t

= max
ut∈Ãu

+T |tt

{
g+t + (m+

t )
′ut −

γ̂t
2
u′t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)
ut

−|g+t |ηθt

√
u′t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)
ut

}

= max
ut∈C+

{
g+t + (m+

t )
′ut −

γ̂t
2
u′t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)
ut

−|g+t |ηθt

√
u′t

(
A(Ft) + ηVt ∥A(Ft)∥Id

)
ut

}
= Ŷ +T

t .

Moreover, Ŷ +T
t is FF

t -measurable.
By the mathematical induction, Ŷ +T

t is FF
t -measurable for all 0 ≤ t ≤ T − 1. Therefore,

the value function of the original optimization problem is

V worf
+T (x, f) = E[Ŷ +T

t | F0 = f ]x,

and the optimal portfolio at time t is u∗t . 2
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Table 1. The Abbreviations of Typical Portfolios and Six Extreme Strate-
gies. Panel A displays the abbreviations of typical portfolios, and Panel B displays the details

concerning the extreme strategies. The first column in Panel B lists the abbreviations of the

extreme strategies. The second and third columns represent portfolios in different states. The

forth and fifth columns display behaviors of parameters which justify the extreme strategies.

Panel A
Abbreviation Portfolio

max SR The portfolio maximizing the empirical Sharpe ratio
GMV The single-period global minimum-variance portfolio
EW The equally weighted portfolio
VW The value-weighted portfolio

NE (No Error) The no error portfolio (always ηθt = ηVt = 0)

Panel B

Abbreviation
Portfolio Parameters

Good State Bad State Good State Bad State
GMV-EW GMV EW ηVt = 0 and ηθt → ∞ ηVt → ∞
EW-NE EW No Error ηVt → ∞ ηθt = ηVt = 0
GMV-NE GMV No Error ηVt = 0 and ηθt → ∞ ηθt = ηVt = 0
EW-GMV EW GMV ηVt → ∞ ηVt = 0 and ηθt → ∞
NE-EW No Error EW ηθt = ηVt = 0 ηVt → ∞
NE-GMV No Error GMV ηθt = ηVt = 0 ηVt = 0 and ηθt → ∞
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Table 2. International Diversification (d = 4). This table reports the Sharpe ratios of

various strategies obtained from the back test of the international asset allocations. “IID” represents

the investor who believes that the number of market states is 1. “RS” represents the investor who

believes that the number of market states is 2. The abbreviations of portfolios are listed in Table 1.

In the case of ηθt = 0 with short selling, we can not compute the optimal portfolios since they diverge.

Therefore, we use the portfolios of ηθt = 1 and ηVt = 0 as the No Error portfolios in the extreme

strategies.

Short selling is permitted.

IID
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.1014 0.0 - 0.0954 0.0941 0.0936 0.0934 0.0933 0.0927

0.5 - 0.0878 0.0872 0.0869 0.0868 0.0867 0.0864
ηVt 1.0 - 0.0849 0.0843 0.0842 0.0841 0.0840 0.0838

3.0 - 0.0818 0.0815 0.0814 0.0814 0.0813 0.0812
5.0 - 0.0810 0.0808 0.0807 0.0807 0.0807 0.0806

RS
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.0889 0.0 - 0.0837 0.0855 0.0859 0.0860 0.0861 0.0863

0.5 - 0.0856 0.0852 0.0850 0.0849 0.0849 0.0847
ηVt 1.0 - 0.0835 0.0831 0.0830 0.0829 0.0829 0.0827

3.0 - 0.0813 0.0811 0.0810 0.0809 0.0809 0.0808
5.0 - 0.0808 0.0805 0.0805 0.0804 0.0804 0.0803

Short selling is not permitted.

IID
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.1014 0.0 0.1025 0.1028 0.1021 0.1018 0.1017 0.1016 0.1012

0.5 0.0896 0.0878 0.0872 0.0869 0.0868 0.0867 0.0864
ηVt 1.0 0.1078 0.0849 0.0843 0.0842 0.0841 0.0840 0.0838

3.0 0.1019 0.0818 0.0815 0.0814 0.0814 0.0813 0.0812
5.0 0.1081 0.0810 0.0808 0.0807 0.0807 0.0807 0.0806

RS
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.0889 0.0 0.0597 0.0973 0.0952 0.0942 0.0937 0.0934 0.0920

0.5 0.0674 0.0856 0.0852 0.0850 0.0849 0.0849 0.0847
ηVt 1.0 0.0583 0.0835 0.0831 0.0830 0.0829 0.0829 0.0827

3.0 0.0577 0.0813 0.0811 0.0810 0.0809 0.0809 0.0808
5.0 0.0570 0.0808 0.0805 0.0805 0.0804 0.0804 0.0803

EW Extreme Strategies
0.0795 Short selling is permitted. Short selling is not permitted.

GMV-EW EW-NE GMV-NE GMV-EW EW-NE GMV-NE
0.1032 0.0664 0.0891 0.0922 0.0949 0.1078

EW-GMV NE-EW NE-GMV EW-GMV NE-EW NE-GMV
0.0636 0.0976 0.0809 0.0783 0.0457 0.0433
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Table 3. Diversification across Industries (d = 5). This table reports the Sharpe

ratios of various strategies obtained from the back test of the asset allocations across industries. “IID”

represents the investor who believes that the number of market states is 1. “RS” represents the investor

who believes that the number of market states is 2. The abbreviations of portfolios are listed in Table

1. In the case of ηθt = 0 with short selling, we can not compute the optimal portfolios since they

diverge. Therefore, we use the portfolios of ηθt = 1 and ηVt = 0 as the No Error portfolios in the

extreme strategies.

Short selling is permitted.

IID
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.2210 0.0 - 0.2732 0.2791 0.2808 0.2817 0.2821 0.2839

0.5 - 0.2213 0.2220 0.2222 0.2224 0.2224 0.2227
ηVt 1.0 - 0.2165 0.2169 0.2170 0.2171 0.2171 0.2173

3.0 - 0.2127 0.2129 0.2129 0.2130 0.2130 0.2131
5.0 - 0.2119 0.2120 0.2121 0.2121 0.2121 0.2121

RS
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.1968 0.0 - 0.1912 0.2524 0.2601 0.2632 0.2649 0.2707

0.5 - 0.2238 0.2269 0.2278 0.2283 0.2286 0.2297
ηVt 1.0 - 0.2181 0.2202 0.2209 0.2212 0.2214 0.2222

3.0 - 0.2129 0.2141 0.2145 0.2147 0.2148 0.2153
5.0 - 0.2118 0.2127 0.2130 0.2131 0.2132 0.2136

Short selling is not permitted.

IID
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.2210 0.0 0.1822 0.2496 0.2547 0.2561 0.2570 0.2576 0.2596

0.5 0.1643 0.2213 0.2220 0.2222 0.2224 0.2224 0.2227
ηVt 1.0 0.1724 0.2165 0.2169 0.2170 0.2171 0.2171 0.2173

3.0 0.1783 0.2127 0.2129 0.2129 0.2130 0.2130 0.2131
5.0 0.1487 0.2119 0.2120 0.2121 0.2121 0.2121 0.2121

RS
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.1968 0.0 0.0660 0.2394 0.2502 0.2543 0.2573 0.2592 0.2664

0.5 0.0796 0.2239 0.2269 0.2278 0.2283 0.2286 0.2297
ηVt 1.0 0.0769 0.2181 0.2202 0.2209 0.2212 0.2214 0.2222

3.0 0.0653 0.2129 0.2141 0.2145 0.2147 0.2148 0.2153
5.0 0.0841 0.2118 0.2127 0.2130 0.2131 0.2132 0.2136

EW Extreme Strategies
0.0795 Short selling is permitted. Short selling is not permitted.

GMV-EW EW-NE GMV-NE GMV-EW EW-NE GMV-NE
VW 0.2234 0.2457 0.2592 0.2281 0.1199 0.1344
0.1825 EW-GMV NE-EW NE-GMV EW-GMV NE-EW NE-GMV

0.2564 0.1657 0.1964 0.2473 0.1410 0.1678
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Table 4. Diversification among Sizes and Values (d = 6). This table reports the

Sharpe ratios of various strategies obtained from the back test of the asset allocations among the 2×3

size- and book-to-market-sorted portfolios by Fama and French (1993). “IID” represents the investor

who believes that the number of market states is 1. “RS” represents the investor who believes that

the number of market states is 2. The abbreviations of portfolios are listed in Table 1. In the case of

ηθt = 0 with short selling, we can not compute the optimal portfolios since they diverge. Therefore, we

use the portfolios of ηθt = 1 and ηVt = 0 as the No Error portfolios in the extreme strategies.

Short selling is permitted.

IID
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.2139 0.0 - 0.3406 0.3293 0.3243 0.3215 0.3197 0.3122

0.5 - 0.2237 0.2228 0.2224 0.2223 0.2222 0.2218
ηVt 1.0 - 0.2176 0.2170 0.2168 0.2167 0.2166 0.2164

3.0 - 0.2126 0.2123 0.2122 0.2122 0.2121 0.2120
5.0 - 0.2115 0.2113 0.2112 0.2111 0.2111 0.2110

RS
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.2081 0.0 - 0.2389 0.2473 0.2486 0.2489 0.2491 0.2488

0.5 - 0.2184 0.2195 0.2198 0.2200 0.2200 0.2203
ηVt 1.0 - 0.2147 0.2154 0.2156 0.2157 0.2158 0.2160

3.0 - 0.2113 0.2117 0.2118 0.2119 0.2119 0.2120
5.0 - 0.2105 0.2108 0.2109 0.2109 0.2110 0.2110

Short selling is not permitted.

IID
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.2139 0.0 0.2202 0.2260 0.2263 0.2255 0.2253 0.2257 0.2256

0.5 0.2289 0.2237 0.2228 0.2224 0.2223 0.2222 0.2218
ηVt 1.0 0.2207 0.2176 0.2170 0.2168 0.2167 0.2166 0.2164

3.0 0.2271 0.2126 0.2123 0.2122 0.2122 0.2121 0.2120
5.0 0.2291 0.2115 0.2113 0.2112 0.2111 0.2111 0.2110

RS
ηθt GMV

max SR 0.0 1.0 2.0 3.0 4.0 5.0 ∞
0.2081 0.0 0.1791 0.2101 0.2133 0.2146 0.2155 0.2158 0.2175

0.5 0.1874 0.2184 0.2195 0.2198 0.2199 0.2200 0.2203
ηVt 1.0 0.1949 0.2147 0.2154 0.2156 0.2157 0.2158 0.2160

3.0 0.1856 0.2113 0.2117 0.2118 0.2119 0.2119 0.2120
5.0 0.1999 0.2105 0.2108 0.2109 0.2109 0.2110 0.2110

EW Extreme Strategies
0.0795 Short selling is permitted. Short selling is not permitted.

GMV-EW EW-NE GMV-NE GMV-EW EW-NE GMV-NE
VW 0.2763 0.1697 0.2281 0.2336 0.1790 0.1979
0.2010 EW-GMV NE-EW NE-GMV EW-GMV NE-EW NE-GMV

0.1876 0.2861 0.2592 0.1939 0.2069 0.1920
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Table 5. The Results of the Mimicking Strategies’ Sharpe Ratios Obtained
from the Back Tests. The second and third columns display parameters in the good state,

and the fourth and fifth columns display parameters in the bad state. The sixth column shows

whether short selling is permitted or not. The seventh column reports the Sharpe ratios of the

mimicking extreme strategies. The eighth column reports the Sharpe ratios of the original

extreme strategies. The ninth column reports the average root square errors between the

original extreme strategies and the mimicking strategies. The extreme strategies are listed in

Table 1.

International Indexes
Good State Bad State

Short Selling Sharpe Ratio
Original

Ave. RSE
ηθt ηVt ηθt ηVt Sharpe Ratio

mGMV-EW 30 0 10 5
Yes 0.1038 0.1032 0.0116
No 0.0929 0.0922 0.0102

mEW-GMV 10 5 30 0
Yes 0.0640 0.0636 0.0116
No 0.0788 0.0783 0.0112

Industry Indexes
Good State Bad State

Short Selling Sharpe Ratio
Original

Ave. RSE
ηθt ηVt ηθt ηVt Sharpe Ratio

mGMV-EW 30 0 10 5
Yes 0.2252 0.2234 0.0134
No 0.2303 0.2281 0.0089

mEW-GMV 10 5 30 0
Yes 0.2567 0.2564 0.0095
No 0.2470 0.2473 0.0079

Size- and Value-Sorted Portfolios
Good State Bad State

Short Selling Sharpe Ratio
Original

Ave. RSE
ηθt ηVt ηθt ηVt Sharpe Ratio

mGMV-EW 30 0 10 5
Yes 0.2776 0.2763 0.0248
No 0.2343 0.2336 0.0118

mEW-GMV 10 5 30 0
Yes 0.1882 0.1876 0.0199
No 0.1945 0.1939 0.0117
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Figure 1. Portfolio Errors of International Indexes Data Set When Short
Selling Is Permitted. The following four figures display portfolio errors ∥u∗t ∥GMV and

∥u∗t ∥EW at each time t. The upper two figures show the portfolio errors from GMV, ∥u∗t ∥GMV ,

with ηVt = 0. The lower two figures represent the portfolio errors from EW, ∥u∗t ∥EW , with

ηθt = 5. The left two figures represent the portfolio errors of the IID investor and the right

two figures show those of the RS investor.
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