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Abstract

In this paper, we study optimal switching problems under ambiguity. To
characterize the optimal switching under ambiguity in the finite horizon, we use
multidimensional reflected backward stochastic differential equations (multidi-
mensional RBSDEs) and show that a value function of the optimal switching
under ambiguity coincides with a solutions to multidimensional RBSDEs with
allowing negative switching costs. Furthermore, we naturally extend the finite
horizon problem to the infinite horizon problem. In some applications, we show
that ambiguity affects an optimal switching strategy with the different way to a
usual switching problem without ambiguity.

Key words: Optimal Switching, Ambiguity Aversion, Reflected Backward Stochastic Dif-
ferential Equation, Viscosity Solution.
AMS subject classifications: 60G40, 60H30.

1 Introduction

Optimal switching problems are widely used to describe many situations in finance and eco-
nomics. For example, they are applied to natural resource extractions ([4] and [3]), reversible
investments ([20]), and entry and exit decisions of firms ([8]). In plain words, the optimal
switching problems are the problems that a decision maker chooses her actions from a discrete
state space to maximize her profit (objective function).

In this paper, our aims are to construct optimal switching problems under ambiguity
and to derive general properties of solutions to these problems. A concept of ambiguity
aversion is one of prominent issues in recent finance and economics. The ambiguity aversion
(also known as the Knightian uncertainty aversion or the model uncertainty aversion) is the
behavior that an economic agent prefers avoiding the event whose occurrence probability is

∗E-mail address: sy46744@gmail.com
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unknown. [13] first provides illustrative examples of the ambiguity aversion and [14] and [27]
economically axiomatize the ambiguity aversion. After these works, [5] establish a model
of the ambiguity aversion in continuous time and [25] and [6] construct optimal stopping
problems under ambiguity.

Using a concept of the ambiguity aversion, one can describe the properties not captured
by a usual trade-off between returns and risks. Therefore, we can consider a more practi-
cal optimal switching problem. In existing literature, [16] mention that their model can be
applied to optimal switching problems under ambiguity, but, these problems are relatively
unexplored in existing literature. Therefore, it is worth studying optimal switching problems
under ambiguity.

To deal with optimal switching problems under ambiguity, we use frameworks of backward
stochastic differential equations (hereafter BSDEs). BSDEs are introduced by [2] and [22] es-
tablish a general theory of BSDEs. Many researchers (e.g., [12], [26], [5] and [6]) apply the
theory of BSDEs to various problems in finance and economics. Recently, a theory of multi-
dimensional reflected BSDEs (hereafter multidimensional RBSDEs) is developed by [16], [17]
and [15] to study the optimal switching problems. This approach makes us naturally incor-
porate ambiguity aversion into the optimal switching problems. Therefore, multidimensional
RBSDEs have an important role in this study.

In this paper, our contributions are as follows.

1. We characterize the optimal switching problems under ambiguity in both of the finite
horizon and infinite horizon using multidimensional RBSDEs.

2. We show that value functions of the optimal switching problems under ambiguity are
viscosity solutions to some system of partial differential equations.

3. Unlike existing literature, we do not assume non-negativity of switching costs.

We first define the optimal switching problems under ambiguity and characterize them using
the theory of multidimensional RBSDEs by [16]. [16] assume non-negativity of the switching
costs and this assumption has an important role in their study. However, there are optimal
switching problems that definitely need negative switching costs (i.e., positive switching ben-
efits) such as the buy low and sell high problem ([28]) and the pair-trading problem ([21]).
Therefore, we do not assume the non-negativity of the switching costs, and we need to modify
the proof of [16] to allow negative switching costs. In order to allow negative switching costs,
we add a weak assumption of the switching costs. Since existing literature usually assumes
non-negativity of switching costs (for example, [16], [17] and [15]), our results are more general
than those of the existing literature in the sense of allowing negative switching costs. Further-
more, using the results of [15], we show that value functions of the optimal switching problems
under ambiguity are viscosity solutions of some system of partial differential equations.

Moreover, we show that under some conditions, the value function in the finite horizon
problem converges to the value function in the infinite horizon. [10] studies the infinite horizon
problem using multidimensional RBSDEs under a non-negativity assumption of switching
costs, but the most of existing studies mainly focus to the finite horizon problem. Therefore,
our results may provide new insights in the optimal switching problems using multidimensional
RBSDEs.

Finally, we give some examples of optimal switching problems under ambiguity in finance.
We show that under certain conditions, the optimal switching problems under ambiguity
can be interpreted as the optimal switching problems under a certain probability measure
determined a priori. Therefore, the results of existing literature can be used to optimal
switching problems under ambiguity. However, the problems not meeting these conditions
provide more interesting results. In section 6.3, we consider the buy low and sell high problem
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under ambiguity, which does not satisfy these conditions. Our results indicate that effects
of ambiguity in this problem can not be reproduced by a simple change of the probability
measure.

The rest of this paper is organized as follows. Section 2 defines the optimal switching
problems under ambiguity in the finite horizon using the concept of multiple priors intro-
duced by [5]. Section 3 introduces multidimensional RBSDEs and proves the existence of
their solutions. Section 4 verifies that the value functions of the optimal switching problems
under ambiguity are characterized by the solutions to the multidimensional RBSDEs, and
derives the system of partial differential equations, which the value functions satisfy. Sec-
tion 5 considers the infinite horizon problem. Section 6 provides some applications of optimal
switching problems under ambiguity in finance. Lengthy proofs are in Appendix.

2 Preliminaries and Problem Formulation

Let (Ω,F ,P) be a probability space endowed with a d-dimensional Brownian motion W =
(Wt)t≥0. Let T > 0 be a finite constant time. We first consider an optimal switching problem
during [0, T ]. Let F = (Ft)t≥0 be an augmentation of the natural filtration generated by W .

We denote by α = (αt)t≥0 a control process such that

(1) αt =
∑
k≥0

ik1l[τk,τk+1)(t),

where (ik)k≥0 is a regime process taking values in a discrete state space I = {1, . . . , I}, I > 0,
and (τk)k≥0 is a non-decreasing sequence of stopping times. 1lA(x) is an indicator function
such that for a given set A,

1lA(x) =

{
1, if x ∈ A,
0, otherwise.

We suppose that each ik is Fτk -measurable. Under a control α, a decision maker chooses a
regime ik on [τk, τk+1) for all k ≥ 0. For convenience, we also write a control as a sequence of
pairs of regimes and stopping times: α = (τk, ik)k≥0.

Let X = (Xt)0≤t≤T be a d-dimensional stochastic process satisfying the following stochas-
tic differential equation (hereafter SDE):

(2) dXt = b(t,Xt, αt)dt+ σ(t,Xt, αt)dWt,

where α = (αt)0≤t≤T is a control process. b and σ are measurable functions satisfying the
following.

Hypothesis 1 b : [0, T ]× Rd × I → Rd and σ : [0, T ]× Rd × I → Rd×d satisfy the following
Lipschitz condition and quadratic growth condition:

∥b(t, x, i)− b(t, y, i)∥+ ∥σ(t, x, i)− σ(t, y, i)∥ ≤ L∥x− y∥,
∥b(t, x, i)∥2 + ∥σ(t, x, i)∥2 ≤ L2(1 + ∥x∥2),

for every t ∈ [0, T ], i ∈ I, and x, y ∈ Rd, where L is a positive constant and ∥x∥ is the Euclid
norm of x ∈ Rd.

Let Lqt (Rd) be a set of d-dimensional, q-th integrable (that is, an Lq norm on (Ω,F ,P) is
finite), and Ft-measurable random vectors. Let T T

t be a set of stopping times taking values
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in [t, T ]. Let Ĩt be a set of Ft-measurable random variables taking values in I. We define K̃q
T

and KT as follows,

K̃q
T :=

{
(ν, η, ι) | ν ∈ T T

0 , η ∈ Lqν(Rd), ι ∈ Ĩν
}
,

KT := [0, T ]× Rd × I.

By Hypothesis 1, for every (ν, η, ι) ∈ K̃2
T and progressively measurable control α starting

from αν = ι, there exists a unique strong solution to the SDE (2) on [ν, T ] starting from
Xν = η and controlled by α. We denote this controlled process by Xν,η,ι,α = (Xν,η,ι,α

s )ν≤s≤T .
Furthermore, it is well known that the moments of X is upper bounded (e.g., Corollary 2.5.12
in [19] and Theorem 5.2.9 in [18]). We shortly summarize the results of the moment estimates
of X.

Proposition 2 Under Hypothesis 1, for every q > 0, there exist constants Cq,X ≥ 1 and
Cq > 0 such that

E
[
max
t≤s≤T

∥Xt,x,i,α
s ∥q

]
≤ Cq,X(1 + ∥x∥q)eCq(T−t),

for all 0 ≤ t ≤ T, x ∈ Rd, i ∈ I and control α. Note that Cq,X and Cq do not depend on
t, T, x, i and α. Furthermore, if a constant ρ is sufficiently large such that ρ > Cq, then there
exists a positive constant C∞

q,X such that

(3) E
[
max
s≥t

e−ρs
(
1 + ∥Xt,x,i,α

s ∥q
)]

≤ C∞
q,X(1 + ∥x∥q)e−(ρ−Cq)t,

for all 0 ≤ t, x ∈ Rd, i ∈ I and control α. Note that C∞
q,X does not depend on t, x, i and α.

The proof of Proposition 2 is in appendix Appendix A. Moreover, we can easily show that the
results of Proposition 2 hold in the case when the initial time is a stopping time. For every
ν ∈ T T

0 , η ∈ L2q
ν (Rd), i ∈ I and control α, we have

E
[
max
ν≤s≤T

∥Xν,η,i,α
s ∥q

∣∣∣ Fν] ≤ Cq,X(1 + ∥η∥q)eCq(T−ν).

We first consider an optimal switching problem without ambiguity. An objective function
of the optimal switching problem without ambiguity is

(4) Jna(t, x, i, α) := E
[∫ T

t
Dt,x,i,α
s ψ(s,Xt,x,i,α

s , αs)ds

+Dt,x,i,α
T g(Xt,x,i,α

T , αT )−
∑

t≤τk≤T
Dt,x,i,α
τk

cik−1,ik(τk, X
t,x,i,α
τk

)
∣∣∣ Ft],

where ψ, g, and c are measurable functions. ψ represents running rewards for the switching
problem without ambiguity. g represents a terminal payoff. c is a switching cost function.
ci,j(t, x) represents a switching cost from regime i to j at time t and Xt = x. Dt,x,i,α is a
discount factor such that for any (t, x, i) ∈ KT and control α,

(5) Dt,x,i,α
s = exp

{
−
∫ s

t
ρ(t,Xt,x,i,α

u , αu)du

}
, s ∈ [t, T ],

where ρ(t, x, i) is a bounded measurable function. By the definition (5), we allow the discount
rate to be random and controllable. Therefore, the objective function (4) represents the
expected and discounted total profit on [t, T ].
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For all ν ∈ T T
0 and ι ∈ Ĩν , let Aι[ν, T ] be a set of controls such that

(6) Aι[ν, T ] :=

α = (αs)ν≤s≤T

∣∣∣ E
[∣∣∣∑ν≤τk≤T cik−1,ik(τk, X

ν,x,ι,α
τk )

∣∣∣2] <∞, ∀x ∈ Rd,

and αν = ι.

 .

We call a control in Aι[ν, T ] an admissible control. The optimal switching problem without
ambiguity is

(7) sup
α∈Ai[t,T ]

Jna(t, x, i, α),

for all (t, x, i) ∈ KT .
The optimal switching problems expressed as (7) are well studied in many researchers

(e.g., [3], [20], [9], and [1]). However, one of the weakness of the optimal switching problem
(7) is not to take into account ambiguity. The problem (7) assumes that the decision maker
knows the functional form of the distribution parameters b and σ a priori, whereas we do
not know them in practice. Therefore, it needs to take into account uncertainty about the
distribution of X in order to derive more useful switching strategies. Hence, we consider an
optimal switching problem under ambiguity hereafter.

We first define a set of degrees of ambiguity. For t ∈ [0, T ], let Θt be a set of d-dimensional
Ft-measurable random variables. We assume the form of Θt as follows.

Hypothesis 3

1. There exists a non-negative constant C such that

P(∥θt∥ ≤ C, ∀θt ∈ Θt, t ∈ [0, T ]) = 1.

2. Θt is convex and compact valued for all t ∈ [0, T ].

3. Θt is a progressively measurable correspondence for all t ∈ [0, T ].

4. 0 ∈ Θt dt⊗ P-a.e..

Let

Θ[t, T ] :=

{
θ = (θs)t≤t≤T

∣∣∣ θ is right-continuous with left limits and
θs ∈ Θs for all s ∈ [t, T ].

}
.

For all θ ∈ Θ[t, T ], we define a density process ζθ,t = (ζθ,ts )t≤s≤T such that

ζθ,ts := exp

{
−
∫ s

t
θ′udWu −

1

2

∫ s

t
∥θu∥2du

}
, s ∈ [t, T ],

where x′ is a transpose of a vector x ∈ Rd. By Hypothesis 3, for all θ ∈ Θ[t, T ], ζθ,t is a
martingale with respect to F. Therefore, for all θ ∈ Θ[t, T ], we can define a new probability
measure such that

PθT (A) := E[1lAζθ,tT ], A ∈ FT .

We denote by EθT the expectation operator under the probability measure PθT .
Under the probability measure PθT , by the Girsanov theorem, the SDE (2) can be expressed

as
dXt =

(
b(t,Xt, αt)− σ(t,Xt, αt)θt

)
dt+ σ(t,Xt, αt)dW

θ
t , t ∈ [0, T ],

where W θ is a d-dimensional Brownian motion under PθT . This implies that we can take
account of the ambiguity about the drift of X under PθT .
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Θ represents a set of priors of the decision maker. [5] establish a decision making problem
under ambiguity in continuous time, which means that the decision maker would like to avoid
the event whose occurrence probability is unknown. To incorporate ambiguity into an optimal
switching problem, we use the concept of [5]. In their model, the decision maker chooses
her subjective probability measure before choosing her decision as if her expected utility is
minimized. They succeed to pose such a decision making problem under Hypothesis 3. They
called Hypothesis 3 the rectangular condition.

The objective function under ambiguity is

J(t, x, i, α) := inf
θ∈Θ[t,T ]

EθT
[∫ T

t
Dt,x,i,α
s

(
ψ(s,Xt,x,i,α

s , αs)− θ′sϕ(s,X
t,x,i,α
s , αs)

)
ds

+Dt,x,i,α
T g(Xt,x,i,α

T , αT )−
∑

t≤τk≤T
Dt,x,i,α
τk

cik−1,ik(τk, X
t,x,i,α
τk

)
∣∣∣ Ft],

where ϕ is a measurable function from [0, T ] × Rd × I onto Rd. ϕ determines a running
premium for ambiguity. Our settings allow choices of ambiguity levels to affect the running
rewards through the term θ′·ϕ(·, X

t,x,i
· , α·). The optimal switching problem under ambiguity

is
sup

α∈Ai[t,T ]
J(t, x, i, α),

for all (t, x, i) ∈ KT .
Furthermore, we assume the functions, ρ, ψ, ϕ, g, and c as follows.

Hypothesis 4

1. ρ(·, ·, i) is a continuous, non-negative and upper bounded function for all i ∈ I.

2. Polynomial growth condition
ψ(·, ·, i), ϕ(·, ·, i), g(·, i) and ci,j(·, ·) are continuous for all i, j ∈ I, and ci,i(t, x) = 0 for
all (t, x, i) ∈ KT . Furthermore, there exist positive constants Cf and q such that

|ψ(t, x, i)|+ ∥ϕ(t, x, i)∥+ |g(x, i)|+ |ci,j(t, x)| ≤ Cf (1 + ∥x∥q),

for all (t, x, i, j) ∈ [0, T ]× Rd × (I)2. Without loss of generality, we assume q ≥ 1.

3. Non-free loop conditions

(a) For all finite loop (i0, i1, . . . , im) ∈ Im+1 with i0 = im and i0 ̸= i1 and for all
(t, x) ∈ [0, T ]× Rd, c satisfies

ci0,i1(t, x) + · · ·+ cim−1,im(t, x) > 0.

(b) g satisfies the following inequality,

g(x, i) ≥ max
j∈I\{i}

{g(x, j)− ci,j(T, x)},

for all (x, i) ∈ Rd × I.

4. Strong triangular condition
Let

N =

{
i ∈ I

∣∣∣ ∃j ∈ I, j ̸= i,

∫
[0,T ]×Rd

1l{ci,j(t, x) < 0}(t, x)dtdx > 0

}
,

Ci = − min
j∈I, x∈Rd, t∈[0,T ]

ci,j(t, x)

1 + ∥x∥q
, i ∈ N ,
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where q is defined in Hypothesis 4.2. Then, for all i ∈ N ,

(8) ck,j(t, x) ≤ ck,i(t, x)− Ci(1 + Cq,X(1 + ∥x∥q)eCq(T−t)),

for all t ∈ [0, T ], x ∈ Rd and (j, k) ∈ I with j ̸= i and k ̸= i, where Cq,X and Cq are
defined in Proposition 2.

Hypothesis 4.1 implies that the discount rate is upper bounded and non-negative. The
non-negativity is usual, and the assumption of upper boundedness guarantees the Lipschitz
condition of a generator in the BSDE literature. Hypothesis 4.2 and Proposition 2 guarantee
the value function of our optimal switching problem to be finite. Therefore, it is needed in
order to consider meaningful problems.

The non-free loop conditions (Hypothesis 4.3) say that whenever one first stands in some
regime (call regime A), next instantaneously goes to the other regimes, and finally goes back
to the regime A at the same time, then she has to pay a positive cost. Hence, the non-free loop
conditions exclude the possibility that one can gain a positive profit by a looping switching
strategy at the same time. If the non-free loop conditions are not postulated, then the value
function diverges as the decision maker obtains an infinitely large reward by such a looping
strategy. Since it is an arbitrage, the non-free loop conditions are natural in the optimal
switching problems.

Unlike the previous literature, we do not assume non-negativity of the cost functions.
Our specification of ambiguity allows this generalization. However, we need an additional
assumption in this case. If some cost function can take a negative value, it needs to satisfy
the strong triangular condition (Hypothesis 4.4).

The strong triangular condition means that the switching benefits are not too large to
take these benefits. Heuristically speaking, if one first stands in the regime k and if ci,j < 0,
then the cost that she goes to the regime j via the regime i is at least as large as the cost
that she directly goes to the regime j. The strong triangular condition implies the standard
triangle inequality. Indeed, by the inequality (8), we have

ck,i(t, x) + ci,j(t, x) ≥ ck,i(t, x)− Ci(1 + ∥x∥q)
≥ ck,i(t, x)− Ci(1 + Cq,X(1 + ∥x∥q)eCq(T−t)) ≥ ck,j(t, x),

for all i ∈ N , (j, k) ∈ I, (t, x) ∈ [0, T ] × Rd with k ̸= i and j ̸= i. Therefore, our triangular
condition (8) is stronger than the standard triangle inequality.

By Proposition 2 and Hypothesis 4, we can show that an expected total cost does not
diverge for every admissible control.

Proposition 5 Under Hypotheses 1 and 4,

(9) E

− ∑
t≤τk≤T

Dt,x,i,α
τk

cik−1,ik(τk, X
t,x,i,α
τk

)

 ≤ Cf (1 + Cq,X(1 + ∥x∥q)eCq(T−t)),

for all (t, x, i) ∈ KT and α = (τk, ik)k≥0 ∈ Ai[t, T ].

Proof of Proposition 5. Fix an arbitrary (t, x, i) ∈ KT and α = (τk, ik)k≥0 ∈ Ai[t, T ]. We first
prove

E

[
−

n∑
k=1

Dt,x,i,α
τk

cik−1,ik(τk, X
t,x,i,α
τk

)

]
≤ Cf (1 + Cq,X(1 + ∥x∥q)eCq(T−t)),

7



for all n ≥ 1. If P(in−1 ∈ N | Fτn−1) = 0, then cin−1,in(τn, X
t,x,i,α
τn ) ≥ 0. Hence, we have

(10) −Dt,x,i,α
τn−1

cin−2,in−1(τn−1, X
t,x,i,α
τn−1

)−Dt,x,i,α
τn cin−1,in(τn, X

t,x,i,α
τn )

≤ −Dt,x,i,α
τn−1

cin−2,in−1(τn−1, X
t,x,i,α
τn−1

).

If P(in−1 ∈ N | Fτn−1) > 0, then, by Proposition 2, we have

E
[
−Dt,x,i,α

τn−1
cin−2,in−1(τn−1, X

t,x,i,α
τn−1

)−Dt,x,i,α
τn cin−1,in(τn, X

t,x,i,α
τn )

∣∣∣ Fτn−1

]
≤ −E

[
Dt,x,i,α
τn−1

(
cin−2,in−1(τn−1, X

t,x,i,α
τn−1

)− Cin−1

(
1 + ∥Xt,x,i,α

τn ∥q
))

1l{in−1∈N}

+Dt,x,i,α
τn−1

cin−2,in−1(τn−1, X
t,x,i,α
τn−1

)1l{in−1 /∈N}

∣∣∣ Fτn−1

]
≤ −E

[
Dt,x,i,α
τn−1

(
cin−2,in−1(τn−1, X

t,x,i,α
τn−1

)

− Cin−1

(
1 + Cq,X

(
1 + ∥Xt,x,i,α

τn−1
∥q
)
eCq(T−τn−1)

))
1l{in−1∈N}

+Dt,x,i,α
τn−1

cin−2,in−1(τn−1, X
t,x,i,α
τn−1

)1l{in−1 /∈N}

∣∣∣ Fτn−1

]
.

By Hypothesis 4.4, there exists an Fτn−1-measurable random variable ĩn−1 taking values in I
such that

− E
[
Dt,x,i,α
τn−1

(
cin−2,in−1(τn−1, X

t,x,i,α
τn−1

)

− Cin−1

(
1 + Cq,X

(
1 + ∥Xt,x,i,α

τn−1
∥q
)
eCq(T−τn−1)

))
1l{in−1∈N}

∣∣∣ Fτn−1

]
≤ −E

[
Dt,x,i,α
τn−1

cin−2 ,̃in−1
(τn−1, X

t,x,i,α
τn−1

)1l{in−1∈N}

∣∣∣ Fτn−1

]
.

Hence, we obtain

E
[
−Dt,x,i,α

τn−1
cin−2,in−1(τn−1, X

t,x,i,α
τn−1

)−Dt,x,i,α
τn cin−1,in(τn, X

t,x,i,α
τn )

∣∣∣ Fτn−1

]
(11)

≤ −E
[
Dt,x,i,α
τn−1

(
cin−2 ,̃in−1

(τn−1, X
t,x,i,α
τn−1

)1l{in−1∈N}

+ cin−2,in−1(τn−1, X
t,x,i,α
τn−1

)1l{in−1 /∈N}

) ∣∣∣ Fτn−1

]
≤ −E

[
Dt,x,i,α
τn−1

cin−2,i∗n−1
(τn−1, X

t,x,i,α
τn−1

)
∣∣∣ Fτn−1

]
,

where
i∗n−1 = arg min

j∈I\{in−2}

{
cin−2,j(τn−1, X

t,x,i,α
τn−1

)
}
,

and i∗n−1 is obviously Fτn−1-measurable. Therefore, the inequalities (10) and (11) lead to

E

[
−

n∑
k=1

Dt,x,i,α
τk

cik−1,ik(τk, X
t,x,i,α
τk

)

]
≤ E

[
−Dt,x,i,α

τ1 ci,i∗1(τ1, X
t,x,i,α
τ1 )

]
≤ Cf

(
1 + E

[
∥Xt,x,i,α

τ1 ∥q
])

≤ Cf

(
1 + E

[
max
t≤s≤T

∥Xt,x,i,α
s ∥q

])
≤ Cf (1 + Cq,X(1 + ∥x∥q)eCq(T−t)).

Since α ∈ Ai[t, T ], by the Lebesgue dominated convergence theorem, we obtain the inequality
(9). 2
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Proposition 5 has an important role in our switching problem. The other studies assuming
non-negativity of switching costs naturally derive a lower boundary of the total expected costs,
that is 0. However, we do not naturally say that the total costs are non-negative since our
switching costs can take a negative value. Therefore, we need to estimate a lower boundary
of the total expected costs by Proposition 5.

Remark 6 Even if the cost functions do not satisfy the strong triangular condition, it is
possible that Proposition 5 holds. In this case, the following discussion in this paper also
holds. Essentially, we need

E

− ∑
t≤τk≤T

Dt,x,i,α
τk

cik−1,ik(τk, X
t,x,i,α
τk

)

 ≤ C(1 + ∥x∥q),

for all (t, x, i) ∈ KT and α ∈ Ai[t, T ], where C is a positive constant not depending on (t, x, i)
and α.

3 Multidimensional Reflected BSDEs

Next, we consider a representation of the objective function by BSDEs.
For all ν ∈ T T

0 , we denote by S2[ν, T ] the set of real-valued progressively measurable
processes Y such that

E

[
sup
ν≤t≤T

|Yt|2
]
<∞,

and by H2
d[ν, T ] the set of Rd-valued progressively measurable processes Z such that

E
[∫ T

ν
∥Zt∥2dt

]
<∞.

Especially, we denote by S2c [ν, T ] a set of all continuous processes in S2[ν, T ] and by K2[ν, T ]
a set of all non-decreasing processes in S2[ν, T ].

We consider the following BSDE: For given (ν, η, ι) ∈ K̃2q
T , θ ∈ Θ[ν, T ] and α ∈ Aι[ν, T ],

−dY ν,η,ι,θ,α
t =

(
ψ(t,Xν,η,ι,α

t , αt)− ρ(t,Xν,η,ι,α
t , αt)Y

ν,η,ι,θ,α
t

− θ′t

(
ϕ(t,Xν,η,ι,α

t , αt) + Zν,η,ι,θ,αt

))
dt

− (Zν,η,ι,θ,αt )′dWt − dAν,η,ι,αt , t ∈ [ν, T ],(12)

Y ν,η,ι,θ,α
T = g(Xν,η,ι,α

T , αT ), Aν,η,ι,αt =
∑

t≤τk≤T
cik−1,ik(τk, X

ν,η,ι,α
τk

), t ∈ [ν, T ],

(Y ν,η,ι,θ,α, Zν,η,ι,θ,α) ∈ S2[ν, T ]×H2
d[ν, T ].

Since g(Xν,η,ι,α
T , αT ) ∈ L2

T (R) and (ϕ(t,Xν,η,ι,α
t , αt))ν≤t≤T , (ψ(t,X

ν,η,ι,α
t , αt))ν≤t≤T ∈ H2

1[ν, T ]
and since θ and ρ are uniformly bounded by Hypotheses 1, 3 and 4, the BSDE (12) has a
unique solution in S2[ν, T ]×H2

d[ν, T ]. Furthermore, by Proposition 2.2 in [12], the solution of

the BSDE (12), also denoted by (Y ν,η,ι,θ,α
t , Zν,η,ι,θ,αt )ν≤t≤T , can be represented as the following
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form.

Y ν,η,ι,θ,α
t =

1

Dν,η,ι,α
t ζθ,νt

E
[∫ T

t
Dν,η,ι,α
s ζθ,νs

(
ψ(s,Xν,η,ι,α

s , αs)− θ′sϕ(s,X
ν,η,ι,α
s , αs)

)
ds(13)

+Dν,η,ι,α
T ζθ,νT g(Xν,η,ι,α

T , αT )−
∑

t≤τk≤T
Dν,η,ι,α
τk

ζθ,ντk cik−1,ik(τk, X
ν,η,ι,α
τk

)
∣∣∣ Ft


= EθT

[∫ T

t

Dν,η,ι,α
s

Dν,η,ι,α
t

(
ψ(s,Xν,η,ι,α

s , αs)− θ′sϕ(s,X
ν,η,ι,α
t , αs)

)
ds

+
Dν,η,ι,α
T

Dν,η,ι,α
t

g(X0,x,i,α
T , αT )−

∑
t≤τk≤T

Dν,η,ι,α
τk

Dν,η,ι,α
t

cik−1,ik(τk, X
ν,η,ι,α
τk

)
∣∣∣ Ft

 ,
where we have used the Bayes rule in the second equality.

Now, we also consider another BSDE such that

−dY ν,η,ι,α
t =

(
ψ(t,Xν,η,ι,α

t , αt)− ρ(t,Xν,η,ι,α
t , αt)Y

ν,η,ι,α
t

− max
θt∈Θt

{
θ′t

(
ϕ(t,Xν,η,ι,α

t , αt) + Zν,η,ι,αt

)})
dt

− (Zν,η,ι,αt )′dWt − dAν,η,ι,αt , t ∈ [ν, T ],(14)

Y ν,η,ι,α
T = g(Xν,η,ι,α

T , αT ), Aν,η,ι,αt =
∑

t≤τk≤T
cik−1,ik(τk, X

ν,η,ι,α
τk

), t ∈ [ν, T ],

(Y ν,η,ι,α, Zν,η,ι,α) ∈ S2[ν, T ]×H2
d[ν, T ].

The BSDE (14) also has a unique solution in S2[ν, T ]×H2
d[ν, T ]. From the comparison theorem,

the solution of the BSDE (14) is a minimum value of Y ν,η,ι,θ,α
t over θ ∈ Θ[ν, T ], that is, the

following inequality holds.

(15) Y ν,η,ι,θ,α
t ≥ Y ν,η,ι,α

t ,

P-almost surely for all t ∈ [ν, T ] and θ ∈ Θ[ν, T ].
Combining the inequality (15) with the equality (13), we deduce that

Y t,x,i,α
t = inf

θ∈Θ[t,T ]
EθT

[∫ T

t
Dt,x,i,α
s

(
ψ(s,Xt,x,i,α

s , αs)− θ′sϕ(s,X
t,x,i,α
s , αs)

)
ds

+Dt,x,i,α
T g(Xt,x,i,α

T , αT )−
∑

s≤τk≤T
Dt,x,i,α
τk

cik−1,ik(τk, X
t,x,i,α
τk

)
∣∣∣ Ft


= J(t, x, i, α),

for all (t, x, i) ∈ KT and α ∈ Ai[t, T ]. Therefore, Y t,x,i,α
t is the objective function under

ambiguity.
For the sake of brevity, we assume as follows.

Hypothesis 7 Suppose that Θt is measurable with respect to the σ-algebra generated by Xt

and αt for all t ∈ [0, T ]. We denote by Θx,i
t a Θt with Xt = x and αt = i. For all (t, x, i) ∈ KT

and z ∈ Rd, let
ς(t, x, i, z) := max

θt∈Θx,i
t

{
θ′t

(
ϕ(t, x, i) + z

)}
.

Then, suppose that ς is a deterministic and measurable function. Moreover, suppose that
ς(·, ·, i, ·) is continuous for all i ∈ I.
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By Hypothesis 3.1 and 4, ς satisfy the polynomial growth condition with respect to x and z
and the Lipschitz condition with respect to z: There exists a positive constant Cς such that

|ς(t, x, i, z)| ≤ Cς(1 + ∥x∥q + ∥z∥), |ς(t, x, i, z)− ς(t, x, i, z̃)| ≤ Cς∥z − z̃∥,

for all (t, x, i, z, z̃) ∈ KT × (Rd)2.
Under Hypothesis 7, the BSDE (14) can be expressed as

−dY ν,η,ι,α
t =

(
ψ(t,Xν,η,ι,α

t , αt)− ρ(t,Xν,η,ι,α
t , αt)Y

ν,η,ι,α
t − ς(t,Xν,η,ι,α

t , αt, Z
ν,η,ι,α
t )

)
dt

− (Zν,η,ι,αt )′dWt − dAν,η,ι,αt , t ∈ [ν, T ],(16)

Y ν,η,ι,α
T = g(Xν,η,ι,α

T , αT ), Aν,η,ι,αt =
∑

t≤τk≤T
cik−1,ik(τk, X

ν,η,ι,α
τk

), t ∈ [ν, T ],

(Y ν,η,ι,α, Zν,η,ι,α) ∈ S2[ν, T ]×H2
d[ν, T ].

Now, let us consider the multidimensional RBSDE. For given ν ∈ T T
0 and η ∈ L2q

ν (Rd)
and for all i ∈ I,

−dY ν,η,i
t =

(
ψ(t,Xν,η,i

t , i)− ρ(t,Xν,η,i
t , i)Y ν,η,i

t − ς(t,Xν,η,i
t , i, Zν,η,it )

)
dt

− (Zν,η,it )′dWt + dKν,η,i
t , t ∈ [ν, T ],

Y ν,η,i
T = g(Xν,η,i

T , i), Kν,η,i
ν = 0, Y ν,η,i

t ≥ max
j∈I\{i}

{Y ν,η,j
t − ci,j(t,X

ν,η,i
t )}, t ∈ [ν, T ],(17) ∫ T

ν

(
Y ν,η,i
t − max

j∈I\{i}
{Y ν,η,j

t − ci,j(t,X
ν,η,i
t )}

)
dKν,η,i

t = 0,

(Y ν,η,i, Zν,η,i,Kν,η,i) ∈ S2[ν, T ]×H2
d[ν, T ]×K2[ν, T ], i ∈ I,

where Xν,η,i = (Xν,η,i
t )ν≤t≤T is a strong solution to the following SDE,

(18) dXt = b(t,Xt, i)dt+ σ(t,Xt, i)dWt, t ∈ [ν, T ], Xν = η.

In the next section, we show that the solution Y t,x,i
t of the multidimensional RBSDE (17)

is a value function of the optimal switching problem under ambiguity. In this section, we first
prove the existence of solutions to the multidimensional RBSDE (17).

Theorem 8 Under Hypotheses 1, 3, 4 and 7, the multidimensional RBSDE (17) has a solu-
tion in (S2c [ν, T ]×H2

d[ν, T ]×K2[ν, T ])I for any ν ∈ T T
0 and η ∈ L2q

ν (Rd).

In the case when the switching costs are non-negative, Theorem 8 are proved by Theorem
3.2 in [16] and Theorem 2.1 in [17]. We use the strategy of the proof of Theorem 3.2 in [16], but
there is a problem for a priori estimates of Picard’s iterations of the multidimensional RBSDE
(17). [16] define the process in S2[ν, T ] that is larger than all Picard’s iterations, however, this
process may not be larger than Picard’s iterations in our problem since we allow the switching
costs to be negative. Therefore, we can not use the results of [16] straightforwardly. However,
thanks to Proposition 5, we can define the other process in S2[ν, T ] that is larger than all
Picard’s iterations in our problem.

Proof of Theorem 8. Throughout this proof, we fix an arbitrary ν ∈ T T
0 and η ∈ L2q

ν (Rd).
Step.1 Picard’s iterations. Let (Y ν,η,i,0, Zν,η,i,0) be a solution to the following BSDE.

−dY ν,η,i,0
t =

(
ψ(t,Xν,η,i

t , i)− ρ(t,Xν,η,i
t , i)Y ν,η,i,0

t − ς(t,Xν,η,i
t , i, Zν,η,i,0t )

)
dt

− (Zν,η,i,0t )′dWt, t ∈ [ν, T ],

Y ν,η,i,0
T = g(Xν,η,i

T , i), (Y ν,η,i,0, Zν,η,i,0) ∈ S2[ν, T ]×H2
d[ν, T ],
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for all i ∈ I. Then, by Hypotheses 1, 3, 4 and 7, the above BSDE has a unique solution. For
any n ≥ 1, we consider the following RBSDE recursively.

−dY ν,η,i,n
t =

(
ψ(t,Xν,η,i

t , i)− ρ(t,Xν,η,i
t , i)Y ν,η,i,n

t − ς(t,Xν,η,i
t , i, Zν,η,i,nt )

)
dt

− (Zν,η,i,nt )′dWt + dKν,η,i,n
t , t ∈ [ν, T ],

Y ν,η,i,n
T = g(Xν,η,i

T , i), Kν,η,i,n
ν = 0,

Y ν,η,i,n
t ≥ max

j∈I\{i}
{Y ν,η,j,n−1

t − ci,j(t,X
ν,η,i
t )}, t ∈ [ν, T ],(19) ∫ T

ν

(
Y ν,η,i,n
t − max

j∈I\{i}
{Y ν,η,j,n−1

t − ci,j(t,X
ν,η,i
t )}

)
dKν,η,i,n

t = 0,

(Y ν,η,i,n, Zν,η,i,n,Kν,η,i,n) ∈ S2[ν, T ]×H2
d[ν, T ]×K2[ν, T ], i ∈ I.

Under Hypotheses 1, 3, 4 and 7, by Theorem 5.2 in [11], the RBSDE (19) has a unique
solution for all n and i. Furthermore, by the comparison theorem (Theorem 4.1 in [11]), we
have Y ν,η,i,n−1

t ≤ Y ν,η,i,n
t , P-a.s. for all i and n.

Step.2 Non-ambiguity processes. Consider the following BSDE.

−dUν,η,i,0t =
(
ψ(t,Xν,η,i

t , i)− ρ(t,Xν,η,i
t , i)Uν,η,i,0t

)
dt− (V ν,η,i,0

t )′dWt, t ∈ [ν, T ],

Uν,η,i,0T = g(Xν,η,i
T , i), (Uν,η,i,0, V ν,η,i,0) ∈ S2[ν, T ]×H2

d[ν, T ], i ∈ I.

Then, the above BSDE has a unique solution. Similarly, we consider the following RBSDE
for any n ≥ 1.

−dUν,η,i,nt =
(
ψ(t,Xν,η,i

t , i)− ρ(t,Xν,η,i
t , i)Uν,η,i,nt

)
dt− (V ν,η,i,n

t )′dWt + dSν,η,i,nt , t ∈ [ν, T ],

Uν,η,i,nT = g(Xν,η,i
T , i), Sν,η,i,nν = 0,

Uν,η,i,nt ≥ max
j∈I\{i}

{Uν,η,j,n−1
t − ci,j(t,X

ν,η,i
t )}, t ∈ [ν, T ],∫ T

ν

(
Uν,η,i,nt − max

j∈I\{i}
{Uν,η,j,n−1

t − ci,j(t,X
ν,η,i
t )}

)
dSν,η,i,nt = 0,

(Uν,η,i,n, V ν,η,i,n, Sν,η,i,n) ∈ S2[ν, T ]×H2
d[ν, T ]×K2[ν, T ], i ∈ I.

Then the above RBSDE has a unique solution and we obtain that Uν,η,i,nt ≥ Uν,η,i,n−1
t , P-a.s.

for all (t, i) ∈ [ν, T ] × I and n ≥ 1 by the comparison theorem. By the definition of ς and
Hypothesis 3.4, we have

ς(t, x, i, z) ≥ 0, ∀(t, x, i, z) ∈ [0, T ]× Rd × I × Rd.

Hence, applying the comparison theorem again to Uν,η,i,nt and Y ν,η,i,n
t , we obtain that Uν,η,i,nt ≥

Y ν,η,i,n
t , P-a.s. for all (t, i) ∈ [ν, T ]× I and n ≥ 1. Furthermore, Uν,η,i,n has a Snell envelope

representation such that

Uν,η,i,nt = esssup
τ∗∈T T

t

E
[∫ τ∗

t

Dν,η,i
s

Dν,η,i
t

ψ(s,Xν,η,i
s , i)ds+

Dν,η,i
T

Dν,η,i
t

g(Xν,η,i
T , i)1l{τ∗=T}

+
Dν,η,i
τ∗

Dν,η,i
t

max
j∈I\{i}

{
Uν,η,j,n−1
τ∗ − ci,j(τ

∗, Xν,ξ,i
τ∗ )

}
1l{τ∗<T}

∣∣∣ Ft],
for all t ∈ [ν, T ] and n ≥ 1, where

Dν,η,i
t = exp

{
−
∫ t

ν
ρ(s,Xν,η,i

s , i)ds

}
, t ∈ [ν, T ].
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Step.3 A priori estimates. Fix an arbitrary t ∈ [ν, T ]. Let (τ0, i0) = (t, i) and

τk = inf

{
s ∈ [τk−1, T ]

∣∣∣ Uν,η,ik−1,n−(k−1)
τn = max

j∈I\{in−1}

{
Uν,η,j,n−kτn − cik−1,j(τk, X

ν,η,i,α
τk

)
}}

,

ik is such that U
ν,η,ik−1,n−(k−1)
τn = Uν,η,ik,n−kτn − cik−1,ik(τk, X

ν,η,i,α
τk

),

for all k = 1, . . . , n. Then, we define αn = (τk, ik)k≥0 and it holds that

Uν,η,i,nt = E
[∫ T

t
D
t,Xν,η,i

t ,i,αn

s ψ(s,Xν,η,i,αn

s , αnt )ds+D
t,Xν,η,i

t ,i,αn

T g(Xν,η,i,αn

T , αnT )

−
n∑
k=1

D
t,Xν,η,i

t ,i,αn

τk ci,j(τk, X
ν,η,i,αn

τk
)1l{τk<T}

∣∣∣ Ft],
by Proposition 2.3 in [11]. Furthermore, by the polynomial growth condition for c, it is easy
to check that αn is in Ai[ν, T ]. Thus, by Proposition 5, we have

E

[
−

n∑
k=1

D
t,Xν,η,i

t ,i,αn

τk ci,j(τk, X
ν,η,i,αn

τk
)1l{τk<T}

∣∣∣ Ft] ≤ Cf (1 + Cq,X(1 + ∥Xν,η,i
t ∥q)eC2qT ).

On the other hand, by Proposition 2, there exists a constant CT > 0 such that

E
[∫ T

t
D
t,Xν,η,i

t ,i,αn

s ψ(s,Xν,η,i,αn

s , αnt )ds+D
t,Xν,η,i

t ,i,αn

T g(Xν,η,i,αn

T , αnT )
∣∣∣ Ft]

≤ E
[∫ T

t
|ψ(s,Xν,η,i,αn

s , αnt )|ds+ |g(Xν,η,i,αn

T , αnT )|
∣∣∣ Ft]

≤ CT (1 + ∥Xν,η,i
t ∥q).

Finally, there exists a positive constant CM > 0 such that

Uν,η,i,nt = E
[∫ T

t
D
t,Xν,η,i

t ,i,αn

s ψ(s,Xν,η,i,αn

s , αnt )ds +D
t,Xν,η,i

t ,i,αn

T g(Xν,η,i,αn

T , αnT )

−
n∑
k=1

D
t,Xν,η,i

t ,i,αn

τk ci,j(τk, X
ν,η,i,αn

τk
)1l{τk<T}

∣∣∣ Ft]
≤ CM (1 + ∥Xν,η,i

t ∥q),

for all n ≥ 1. Note that CM does not depend on n and t. This implies that

Uν,η,i,nt ≤Mν,η
t := CM

1 +
∑
j∈I

∥Xν,η,j
t ∥q

 ,

for all t ∈ [ν, T ], i ∈ I and n ≥ 1. By Proposition 2, Mν,η is in S2[ν, T ]. Since Y ν,η,i,0
t ≤

Y ν,η,i,n
t ≤ Uν,η,i,nt ≤Mν,η

t for all t ∈ [ν, T ], i ∈ I and n ≥ 1 and since Y ν,η,i,0 ∈ S2[ν, T ] for all
i ∈ I, there exists a finitely positive constant Ca such that

(20)
∑
i∈I

E

[
sup
ν≤t≤T

|Y ν,η,i,n
t |2

]
≤ Ca,

for all n ≥ 0. Furthermore, by the polynomial growth condition for c, Proposition 2 and the
inequality (20), there exists a positive constant Cb such that

E

[
sup
ν≤t≤T

∣∣∣( max
j∈I\{i}

{Y ν,η,j,n−1
t − ci,j(t,X

ν,η,i
t )}

)+∣∣∣2] ≤ Cb,
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for all n ≥ 0. Hence, Proposition 3.5 in [11] leads to that there exists a finitely positive
constant Cc such that

(21) E

[
sup
ν≤t≤T

|Y ν,η,i,n
t |2 +

∫ T

ν
∥Zν,η,i,nt ∥2dt+ |Kν,η,i,n

T |2
]
≤ Cc,

for all n ≥ 0 and i ∈ I.
Step.4 The rest of this proof is exactly the same as step 3-5 in the proof of Theorem 3.2 in

[16]. Thanks to the inequality (21), we can use the monotone limit theorem by [23] and show
that a limit of (Y ν,η,i,n)n≥0 and associated processes (Zν,η,i,Kν,η,i) satisfy properties of the
solution to the multidimensional RBSDE (17). This limit, denoted by (Y ν,η,i), and (Kν,η,i)
are continuous by the non-free loop condition. By the continuity of (Y ν,η,i) and (Kν,η,i),
we conclude that a triplet (Y ν,η,i, Zν,η,i,Kν,η,i) is a S2[ν, T ]×H2

d[ν, T ]×K2[ν, T ] limit of the
sequence (Y ν,η,i,n, Zν,η,i,n,Kν,η,i,n)n≥0. 2

Remark 9 According to Corollary 3.3 in [16], the solution (Y ν,η,i) constructed in Theorem 8
is a minimum solution of the multidimensional RBSDE (17): For any solution (Ỹ ν,η,i) of the
multidimensional RBSDE (17),

Ỹ ν,η,i
t ≥ Y ν,η,i

t ,P-a.s.,

for all t ∈ [ν, T ] and i ∈ I.

Theorem 8 provides the existence of the multidimensional RBSDE (17). Other articles
prove the uniqueness of the solution after proving the existence. However, we do not prove
the uniqueness. Instead, we prove the pathwise uniqueness of the minimal solution of the
multidimensional RBSDE (17) since this is a sufficient condition for the verification of the
optimal switching problem under ambiguity.

Proposition 10 Suppose that Hypotheses 1, 3, 4 and 7 are satisfied. For any (ν, ν̃) ∈ (T T
0 )2

and η ∈ L2q
ν (Rd) such that ν ≤ ν̃ P-a.s., we consider the minimum solutions of the multidi-

mensional RBSDE (17) Y ν,η,i and Y ν̃,Xν,η,i
ν̃

,i. Then,

(22) Y ν,η,i
t = Y

ν̃,Xν,η,i
ν̃

,i
t P-a.s.,

for all i ∈ I and t ∈ [ν̃, T ].

Proof of Proposition 10. By Hypothesis 1, the SDE (18) has a strong solution for all i ∈ I.
This implies that

Xν,η,i
t = X

ν̃,Xν,η,i
ν̃

,i
t P-a.s.,

for all i ∈ I and t ∈ [ν̃, T ]. Hence, (Y ν,η,i, Zν,η,i, K̂ν,η,i = Kν,η,i−Kν,η,i
ν̃ ) satisfies the following

multidimensional RBSDE on [ν̃, T ].

−dY ν,η,i
t =

(
ψ(t,X

ν̃,Xν,η,i
ν̃

,i
t , i)− ρ(t,X

ν̃,Xν,η,i
ν̃

,i
t , i)Y ν,η,i

t

− ς(t,Xν,η,i
ν̃ , i, Zν,η,i,nt )

)
dt− (Zν,η,it )′dWt + dK̂ν,η,i

t , t ∈ [ν̃, T ],

Y ν,η,i
T = g(X

ν̃,Xν,η,i
ν̃

,i

T , i), K̂ν,η,i
ν̃ = 0,

Y ν,η,i
t ≥ max

j∈I\{i}
{Y ν,η,j

t − ci,j(t,X
ν̃,Xν,η,i

ν̃
,i

t )}, t ∈ [ν̃, T ],(23) ∫ T

ν̃

(
Y ν,η,i
t − max

j∈I\{i}
{Y ν,η,j

t − ci,j(t,X
ν̃,Xν,η,i

ν̃
,i

t )}
)
dK̂ν,η,i

t = 0,

(Y ν,η,i, Zν,η,i, K̂ν,η,i) ∈ S2[ν̃, T ]×H2
d[ν̃, T ]×K2[ν̃, T ], i ∈ I.
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Since for each i, the multidimensional RBSDE (23) is the same as the multidimensional

RBSDE (17) starting from (ν̃, Xν,η,i
ν̃ , i), it holds that Y ν,η,i

t ≥ Y
ν̃,Xν,η,i

ν̃
,i

t P-a.s. for all i ∈ I
and t ∈ [ν̃, T ] because of the minimality of Y ν̃,Xν,η,i

ν̃
,i (see Remark 9).

On the other hand, recursively applying the comparison theorem to the Picard’s iterations
of Y ν,η,i

t constructed in Theorem 8 on [ν̃, T ] leads to that

Y ν,η,i,n
t ≤ Y

ν̃,Xν,η,i
ν̃

,i
t P-a.s.,

for all n ≥ 0, i ∈ I and t ∈ [ν̃, T ]. Taking a limit of the above inequality, we obtain that

Y ν,η,i
t ≤ Y

ν̃,Xν,η,i
ν̃

,i
t for all i ∈ I and t ∈ [ν̃, T ]. Hence, the equality (22) holds. 2

4 Verification and a Viscosity Solution

In this section, we show that the minimum solution in Theorem 8 can be interpreted as the
value function of the optimal switching problem under ambiguity. Proposition 11 provides a
verification of Y . The proof of Proposition 11 is standard, so it is in appendix Appendix B.

Proposition 11 Suppose that Hypotheses 1, 3, 4 and 7 are satisfied.

1. For an arbitrary (ν, η, ι) ∈ K̃2q
T , let Y ν,η,ι be a minimum solution of the multidimensional

RBSDE (17). Then,
Y ν,η,ι
t ≥ Y ν,η,ι,α

t , ∀t ∈ [ν, T ],

for all α = (τk, ik)k≥0 ∈ Aι[ν, T ].

2. Let α∗ = (τ∗k , i
∗
k)k≥0 be a control such that (τ∗, i∗0) = (ν, ι) and that for all n ≥ 1,

τ∗n := inf

{
s ∈ [τ∗n−1, T ]

∣∣∣ Y τ∗n−1,X
∗
τ∗n−1

,i∗n−1

s = max
j∈I\{i∗n−1}

{Y
τ∗n−1,X

∗
τ∗n−1

,j

s − ci∗n−1,j
(s,X∗

s )}

}
,

i∗n is such that Y
τ∗n−1,X

∗
τ∗n−1

,i∗n−1

τ∗n
= Y

τ∗n−1,X
∗
τ∗n−1

,i∗n

τ∗n
− ci∗n−1,i

∗
n
(τ∗n, X

∗
τ∗n
),

where X∗ = Xν,η,ι,α∗
. Then, α∗ is an admissible control and

Y ν,η,ι
t = Y ν,η,ι,α∗

t , ∀t ∈ [ν, T ].

By Proposition 11, we obtain that

Y t,x,i
t = sup

α∈Ai[t,T ]
Y t,x,i,α
t = sup

α∈Ai[t,T ]
J(t, x, i, α),

for all (t, x, i) ∈ KT . Hence, Y t,x,i
t is the value function of the optimal switching problem

under ambiguity. Furthermore, α∗ defined in Proposition 11.2 is an optimal control of the
problem.

We next study a relationship between the multidimensional RBSDE (17) and partial
differential equations (hereafter PDEs). Let u : [0, T ]× Rd × I → R be a function. Consider
the following PDE,

min{−ut(t, x, i)− Liu(t, x, i)− ψ(t, x, i) + ρ(t, x, i)u(t, x, i)

+ ς(t, x, i, σ′(t, x, i)∇u(t, x, i)),(24)

u(t, x, i)− max
j∈I\{i}

{u(t, x, j)− ci,j(t, x)}} = 0, (t, x, i) ∈ KT ,

u(T, x, i) = g(x, i),

15



where ut(t, x, i) =
∂u(t,x,i)

∂t , ∇u(t, x, i) = ∂u(t,x,i)
∂x and

Lif(t, x) = (∇f(t, x))′b(t, x, i) + 1

2
tr

(
σσ′(t, x, i)

∂f(t, x)

∂x∂x′

)
.

If the PDE (24) has a classical solution, then we can easily show that this solution is a value
function of the optimal switching problem under ambiguity. However, the classical solution
does not always exist. We shall consider a more general concept of solutions, i.e., a viscosity
solution. Let C1,2([0, T ) × Rd × I) be a set of functions that are continuously differentiable
with respect to t and twice continuously differentiable with respect x on [0, T )× Rd × I.

Definition 12 (Viscosity solution)

1. Viscosity supersolution.
A lower semi-continuous function (u(·, ·, 1), . . . , u(·, ·, I)) is a viscosity supersolution of
the PDE (24) if for any (t, x, i) ∈ [0, T ) × Rd × I and any φ ∈ C1,2([0, T ) × Rd × I)
such that v(·, ·, i)− φ(·, ·, i) attains a local minimum at (t, x) for all i ∈ I,

min{−φt(t, x, i)− Liφ(t, x, i)− ψ(t, x, i) + ρ(t, x, i)u(t, x, i) + ς(t, x, i, σ′(t, x, i)∇φ(t, x, i)),
u(t, x, i)− max

j∈I\{i}
{u(t, x, j)− ci,j(t, x)}} ≥ 0,

u(T, x, i) ≥ g(x, i).

2. Viscosity subsolution.
A upper semi-continuous function (u(·, ·, 1), . . . , u(·, ·, I)) is a viscosity subsolution of
the PDE (24) if for any (t, x, i) ∈ [0, T ) × Rd × I and any φ ∈ C1,2([0, T ) × Rd × I)
such that v(·, ·, i)− φ(·, ·, i) attains a local maximum at (t, x) for all i ∈ I,

min{−φt(t, x, i)− Liφ(t, x, i)− ψ(t, x, i) + ρ(t, x, i)u(t, x, i) + ς(t, x, i, σ′(t, x, i)∇φ(t, x, i)),
u(t, x, i)− max

j∈I\{i}
{u(t, x, j)− ci,j(t, x)}} ≤ 0,

u(T, x, i) ≤ g(x, i).

3. Viscosity solution.
A locally bounded function (u(·, ·, 1), . . . , u(·, ·, I)) is a viscosity solution of the PDE (24)
if its lower semi-continuous envelope is a viscosity supersolution of the PDE (24), and
if its upper semi-continuous envelope is a viscosity subsolution of the PDE (24).

More details of the viscosity solutions are in [7]. We define a set of functions CP([0, T ]×Rd)
as follows.

CP([0, T ]× Rd) :=

f : [0, T ]× Rd → R
∣∣∣

f is jointly continuous and
there exist positive constants C and q
such that |f(t, x)| ≤ C(1 + ∥x∥q),

for all (t, x) ∈ [0, T ]× Rd.

 .

Let
v(t, x, i) := Y t,x,i

t ,

for (t, x, i) ∈ KT , where Y
t,x,i
t is a minimum solution of the multidimensional RBSDE (17).

Now, we will prove that v is a unique viscosity solution of the PDE (24) in CP([0, T ]×Rd).
[15] study the viscosity solution of the PDE similar to (24). Main differences between our
model and the model in [15] are as follows.
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1. [15] consider that a generator of RBSDE for Y i depends on the other Y j , but we consider
the case when it does not depend on the other Y j .

2. They assume that switching costs are non-negative, but we allow negative switching
costs.

3. They assume that a dynamics of the forward variable X does not depend on a control
process, but we allow the dynamics of X to depend on the control.

In fact, the results of [15] can be applied to our model. [15] prove the existence and uniqueness
of the viscosity solution without using non-negativity of the switching costs. Furthermore,
the controllability of X does not affect to their results. Hence, we can provide the existence
and uniqueness of the solution to the PDE (17) in the viscosity sense and prove that the value
function is a unique viscosity solution to (17).

Proposition 13 Suppose that Hypotheses 1, 3, 4 and 7 are satisfied. Let

v⃗ := (v(·, ·, 1), . . . , v(·, ·, I)).

Then, v⃗ is a unique viscosity solution of the PDE (24) in (CP([0, T ]× Rd))I .

Proof of Proposition 13. Let (t, x, i) ∈ KT . Let (Y t,x,i,n)n≥0 be a sequence of the Picard’s
iterations defined in Theorem 8. Then, by [12], there exists vn(·, ·, i) ∈ CP([0, T ]×Rd) for all
n ≥ 0 and i ∈ I such that

Y t,x,i,n
s = vn(t,X

t,x,i
s , i),

for all s ∈ [t, T ]. Furthermore, we define v ∈ CP([0, T ]× Rd) as

v(t, x) :=M t,x
t ,

where M t,x is defined in Theorem 8. Recall that Y t,x,i,n → Y t,x,i in the mean-square sense.
Therefore, v⃗ is a lower semi-continuous function and it satisfies the polynomial growth condi-
tion with respect to x since v0 ≤ vn ≤ v and vn ≤ vn+1 for all n ≥ 1.

On the other hand, Corollary 1 in [15] provides the continuity and uniqueness of a viscosity
solution to the PDE (17). Furthermore, by Theorem 1 in [15], v⃗ is a viscosity solution of the
PDE (17). Hence, we conclude that v⃗ is a unique viscosity solution of the PDE (17) in
(CP([0, T ]× Rd))I . 2

5 The Infinite Horizon Problem

In this section, we consider the infinite horizon optimal switching problem under ambiguity.
Let Ai[ν,∞) be a set of admissible controls like (1) but τk → ∞ P-almost surely. Furthermore,
we assume as follows.

Hypothesis 14

1. Time-homogeneity. b, σ, ψ, ϕ, ς, and c do not depend on t. There exists a positive
constant ρ such that

ρ(t, x, i) = ρ > 0,

for all (t, x, i) ∈ [0,∞) × Rd × I. Θt only depends on the values of Xt and αt. We
denote Θt with Xt = x ∈ Rd and αt = i ∈ I by Θx,i.
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2. Sufficiently large discount. ρ is sufficiently large in the following sense. There exist
constants C ≥ 0 and c∞ > 0 such that

E
[
e−ρtζθ,0t ∥Xx,i,α

t ∥q
]
≤ C(1 + ∥x∥q)e−c∞t,(25)

E
[
sup
s≥t

e−ρs∥Xx,i,α
s ∥q

]
≤ C(1 + ∥x∥q)e−c∞t,(26)

for all (t, x, i) ∈ [0,∞) × Rd × I, θ ∈ Θ[0,∞) and α ∈ Ai[0,∞), where Xx,i,α is a
solution to the SDE (2) starting at Xx,i,α

0 = x and controlled by α ∈ Ai[0,∞).

3. Polynomial growth conditions. ψ, ϕ and c are continuous and satisfy the polynomial
growth condition in Hypothesis 4.2.

4. Non-negative reward condition.

(27) ψ(x, i)− ς(x, i, 0) ≥ 0,

for all (x, i) ∈ Rd × I.

5. Temporary terminal condition. There exist polynomial growth functions g(x, 1), . . . ,
g(x, I) such that

(a)

(28) g(x, i) ≤ 0,

for all i ∈ I and x ∈ Rd;

(b)

(29) g(x, i) ≥ max
j∈I\{i}

{g(x, j)− ci,j(x)},

for all i ∈ I and x ∈ Rd;

(c)

(30) inf
θt∈Θ[T,T̃ )

E
[
e−ρT̃ ζθ,T

T̃
g(Xν,η,i

T̃
, i)

∣∣∣ FT ] ≥ e−ρT g(Xν,η,i
T , i),

for all 0 ≤ T ≤ T̃ , ν ∈ T T
0 , η ∈ L2q

ν (Rd) and i ∈ I.

6. Non-free loop condition in the infinite horizon. For all finite loop (i0, i1, . . . , im) ∈ Im+1

with i0 = im and i0 ̸= i1 and for all x ∈ Rd, c satisfies

ci0,i1(x) + · · ·+ cim−1,im(x) > 0.

7. Strong triangular condition in the infinite horizon.

ck,j(x) ≤ ck,i(x)− Ci(1 + C∞
q,X(1 + ∥x∥q)),

for all i ∈ N , (j, k) ∈ I and x ∈ Rd with j ̸= i and k ̸= j, where Ci, C
∞
q,X and q are

defined in Proposition 2 and Hypothesis 4.
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The time-homogeneity (Hypothesis 14.1) is a standard condition. With taking account of
the time-homogeneity and the Markov property of X, the starting time does not matter to
the optimal switching problem. The sufficiently large discount condition (Hypothesis 14.2) is
also standard. If it is not postulated, then the value function can diverge. Therefore, we need
this condition to consider meaningful problems. However, the condition (25) is slightly strong.
Indeed, it is sufficient to satisfy (25) with θ = 0 and (26) in order to prove the finiteness of
the value function (Proposition 15). The condition (25) is needed to prove the convergent
property of the value function from the finite horizon to the infinite horizon (Proposition 18).

Under the non-negative reward condition (Hypothesis 14.4), the rewards of the optimal
switching problem in the infinite horizon is non-negative. Indeed, by the definition of ς, we
have

ψ(Xx,i,α
t , αt)− θ′tϕ(X

x,i,α
t , αt) ≥ ψ(Xx,i,α

t , αt)− ς(Xx,i,α
t , αt, 0) ≥ 0,

for all (t, x, i) ∈ [0,∞) × Rd × I, θt ∈ Θt and α ∈ Ai[0,∞). The non-negative reward
condition guarantees that an optimal switching problem in a longer finite horizon has a large
value function. This restriction is needed to exchange the orders of taking limits of Picard’s
iterations n and time horizons T . This is slightly restrictive, however, it can be replaced to a
lower bounded condition (Remark 16).

The temporary terminal conditions (Hypothesis 14.5) are assumed for purely techni-
cal reasons. However, they are not so restrictive. If all switching costs are non-negative,
then we can choose g(x, i) = 0 for all (x, i) ∈ Rd × I satisfying all the temporary termi-
nal conditions. Once we find the constants g1, . . . , gI satisfying the inequality (29), then
g1 − maxj∈I gj , . . . , gI − maxj∈I gj satisfy all the temporary terminal conditions. If g(x, i)
satisfies the inequalities (28) and (29) and if g(·, i) is twice continuously differentiable for all
i ∈ I, then one of sufficient conditions to satisfy the inequality (30) is

(31) Lig(x, i)− ρg(x, i)− (∇g(x, i))′σ(x, i)θ ≥ 0,

for all (x, i) ∈ Rd × I and θ ∈ Θx,i. The condition (31) can be derived by applying the Ito’s
lemma to e−ρtζθt g(Xt, i). If the switching costs are constants, we can easily find the constants
satisfying the temporary terminal conditions. On the other hand, in the major applications
such as the buy low and sell high problem and the pair-trading problem, we can also find the
functions satisfying the temporary terminal conditions. The other assumptions are essentially
the same as the finite horizon problem.

The objective function in the infinite horizon is

J(x, i, α) = inf
θ∈Θ[0,∞)

E
[∫ ∞

0
e−ρtζθt

(
ψ(Xx,i,α

t , αt)− θ′tϕ(X
x,i,α
t , αt)

)
dt

−
∞∑
k=1

e−ρτkζθτkcik−1,ik(X
x,i,α
τk

)

]
,

for (x, i) ∈ Rd × I and α ∈ Ai[0,∞). The optimal switching problem under ambiguity in the
infinite horizon is

(32) v∞(x, i) := sup
α∈Ai[0,∞)

J(x, i, α),

for (x, i) ∈ Rd × I. We can easily show that v∞ is polynomial growth with respect to x.

Proposition 15 Under Hypotheses 1 and 14, there exists a positive constant C such that

0 ≤ v∞(x, i) ≤ C(1 + ∥x∥q),

for all x ∈ Rd and i ∈ I. Thus, v∞ is polynomial growth with respect to x.
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Proof of Proposition 15. It is clear that v∞ is non-negative by the non-negative reward
condition. Fix an arbitrary x ∈ Rd and i ∈ I. Then, by the polynomial growth condition of
ψ and c and the strong triangular condition, we have

J(x, i, α) ≤ E

[∫ ∞

0
e−ρtψ(Xx,i,α

t , αt)dt−
∞∑
k=1

e−ρτkcik−1,ik(X
x,i,α
τk

)

]
≤ C(1 + ∥x∥q),

for all α ∈ Ai[0,∞), where C is the positive constant not depending on x, i and α. Hence, we
obtain the desired result. 2

Remark 16 Hypothesis 14.6 (the inequality (27)) can be replaced to a lower bounded condi-
tion. We assume that there exists some constant cψ,ς such that

ψ(x, i)− ς(x, i, 0) ≥ cψ,ς ,

for all (x, i) ∈ Rd × I. Then,

J(x, i, α)−
cψ,ς
ρ

= J(x, i, α)−
∫ ∞

0
e−ρtcψ,ςdt

= inf
θ∈Θ[0,∞)

E
[∫ ∞

0
e−ρtζθt

(
ψ(Xx,i,α

t , αt)− θ′tϕ(X
x,i,α
t , αt)− cψ,ς

)
dt

−
∞∑
k=1

e−ρτkζθτkcik−1,ik(X
x,i,α
τk

)

]
,

for all (x, i) ∈ Rd × I and α ∈ Ai[0,∞). By the definition ς, we have

ψ(Xx,i,α
t , αt)− θ′tϕ(X

x,i,α
t , αt)− cψ,ς ≥ ψ(Xx,i,α

t , αt)− ς(Xx,i,α
t , αt, 0)− cψ,ς ≥ 0,

for all (t, x, i) ∈ [0,∞)×Rd×I, θt ∈ Θt and α ∈ Ai[0,∞). Hence, we can replace the original
rewards to non-negative rewards. cψ,ς may be negative, but it is finite.

Remark 17 Similarly to Remark 6, the strong triangular condition in the infinite horizon is
not necessarily needed. Instead of the strong triangular condition, it is sufficient to hold the
following inequality

E

[
−

∞∑
k=1

e−ρτkcik−1,ik(X
x,i,α
τk

)

]
≤ C(1 + ∥x∥q),

for all x ∈ Rd, i ∈ I and α ∈ Ai[0,∞), where C is a positive constant not depending on
(x, i) and α. Furthermore, if the above inequality is satisfied, then we do not also need the
inequality (26).

We consider the following multidimensional RBSDE on [ν, T ] for ν ∈ T T
0 and η ∈ L2q

ν (Rd),

−dŶ T,ν,η,i
t =

(
ψ(Xν,η,i

t , i)− ρŶ T,ν,η,i
t − ς(Xν,η,i

t , i, ẐT,ν,η,it )
)
dt

− (ẐT,ν,η,it )′dWt + dK̂T,ν,η,i, t ∈ [ν, T ],

Ŷ T,ν,η,i
T = g(Xν,η,i

T , i), K̂T,ν,η,i
ν = 0,

Ŷ T,ν,η,i
t ≥ max

j∈I\{i}

{
Ŷ T,ν,η,j
t − ci,j(X

ν,η,i
t )

}
, t ∈ [ν, T ],(33) ∫ T

0

(
Ŷ T,ν,η,i
t − max

j∈I\{i}

{
Ŷ T,ν,η,j
t − ci,j(X

ν,η,i
t )

})
dt = 0,

(Ŷ T,ν,η,i, ẐT,ν,η,i, K̂T,ν,η,i) ∈ S2[ν, T ]×H2
d[ν, T ]×K2[ν, T ], i ∈ I,

20



where g is the function satisfying the temporary terminal conditions. By Theorem 8 and
Proposition 10, there exists a unique minimum solution of the multidimensional RBSDE (33).
Now, we show that the solution to the multidimensional RBSDE (33) converges to the value
function (32) as T → ∞.

Proposition 18 Under Hypotheses 1, 3, 7 and 14, Ŷ T,ν,η,ι
t ≤ Ŷ T̃ ,ν,η,ι

t for all ν ∈ T T
0 , ν ≤

t ≤ T ≤ T̃ , η ∈ L2q
ν (Rd) and ι ∈ Ĩν . Furthermore, for all (t, x, i) ∈ [0,∞)× Rd × I,

(34) lim
T→∞

Ŷ T,t,x,i
t = v∞(x, i).

Finally, v∞(·, i) is continuous for all i ∈ I.

Since the proof of Proposition 18 is too long, we put it in appendix Appendix C.
We next study the relationships between v∞ and PDE. Consider the following PDE.

(35) min{−Liu(x, i)− ψ(x, i) + ρu(x, i) + ς(x, i, σ′(x, i)∇u(x, i)),
u(x, i)− max

j∈I\{i}
{u(x, j)− ci,j(x)}} = 0, (x, i) ∈ Rd × I,

where

Lif(x) = (∇f(x))′b(x, i) + 1

2
tr

(
σσ′(x, i)

∂f(x)

∂x∂x′

)
.

Then the following proposition holds.

Proposition 19 Under Hypotheses 1, 3, 7 and 14, v∞ is a viscosity solution of the PDE
(35).

The proof of Proposition 19 is in appendix Appendix D. By Proposition 19, we can study the
optimal switching problem under ambiguity through the PDE (35). Moreover, we can easily
show the uniqueness of the solution to the PDE (35) using the method of Proposition 3.1 in
[15], so we omit the proof of the uniqueness.

6 Financial Applications

6.1 Monotone Conditions

We first prove that under certain conditions, the optimal switching problem under ambiguity
can be interpreted as the optimal switching problem with a shift of the drift ofX not depending
on its value function. We first assume the followings.

Hypothesis 20 Monotone conditions. We assume d = 1.

1. κ-ignorance. There exist non-negative constants κ1, . . . , κI such that

Θx,i
t = [−κi, κi],

for all i ∈ I, x ∈ Rd and t ∈ [0,∞).

2. For every x, y ∈ R, X satisfies,

x ≤ y ⇒ Xt,x,i
s ≤ Xt,y,i

s , P-a.s.,

for all t, s ∈ [0, T ], i ∈ I with t ≤ s.
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3. ρ does not depend on a value of x.

4. For every (t, i) ∈ [0, T ]× I, ψ(t, ·, i) is non-decreasing.

5. ϕ(t, x, i) = 0 for every (t, x, i) ∈ KT .

6. For every i ∈ I, g(·, i) is non-decreasing.

7. For every (t, i, j) ∈ [0, T ]× (I)2, ci,j(t, ·) is non-increasing.

[5] call Hypothesis 20.1 κ-ignorance. The other conditions guarantee the monotonicity of
the value function with respect to the initial value of X. Under Hypothesis 20, we can prove
the following result.

Proposition 21 Suppose that Hypotheses 1, 3, 4, 7 and 20 are satisfied. For all (t, x, i) ∈ KT

and α ∈ Ai[t, T ], let −κXt,x,i,α be a solution to the following SDE,

d−κXt,x,i,α
s =

(
b(s,−κXt,x,i,α

s , αs)− καs |σ(s,−κXt,x,i,α
s , αs)|

)
ds+ σ(s,−κXt,x,i,α

s , αs)dWs,

−κXt,x,i,α
t = x.

Then, the value function v(t, x, i) satisfies

(36) v(t, x, i) = sup
α∈Ai[t,T ]

E
[∫ T

t

−κDt,i,α
s ψ(s,−κXt,x,i,α

s , αs)ds+
−κDt,i,α

T g(−κXt,x,i,α
T , αT )

−
∑

t≤τk≤T

−κDt,i,α
τk

cik−1,ik(τk,
−κXt,x,i,α

τk
)
∣∣∣ Ft],

where
−κDt,i,α

s = exp

{
−
∫ s

t
ρ(u, αu)du

}
, s ∈ [t, T ].

Furthermore, x→ v(t, x, i) is non-decreasing for all (t, i) ∈ [0, T ]× I.

Proof of Proposition 21. By the κ-ignorance and ϕ = 0, we have

ς(t, x, i, z) = κi|z|,

for all (t, x, i, z) ∈ KT × R. Now, fix an arbitrary t ∈ [0, T ] and x, x̃ ∈ R with x ≤ x̃. Then,
by the monotone conditions 2-6, we have

ψ(s,Xt,x,i
s , i)− ρ(s, i)y − κi|z| ≤ ψ(s,Xt,x̃,i

s , i)− ρ(s, i)y − κi|z|,(37)

g(Xt,x,i
T , i) ≤ g(Xt,x̃,i

T , i),(38)

for all (s, i, y, z) ∈ [t, T ]× I × R× R. Furthermore, by the monotone conditions 2 and 7, we
have

(39) max
j∈I\{i}

{
yj − ci,j(s,X

t,x,i
s )

}
≤ max

j∈I\{i}

{
yj − ci,j(s,X

t,x̃,i
s )

}
,

for all (s, i) ∈ [t, T ] × I and (y1, . . . , yI), (y1, . . . , yI) ∈ RI with yk ≤ yk for all k ∈ I. Let
(Y t,x,i,n)i∈I, n≥0 and (Y t,x̃,i,n)i∈I, n≥0 be the Picard’s iterations defined in Theorem 8 with
starting x and x̃, respectively. Then, by the inequalities (37) to (39), recursively applying the
comparison theorem leads to that

Y t,x,i,n
s ≤ Y t,x̃,i,n

s ,
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for all i ∈ I, s ∈ [t, T ] and n ≥ 0. Taking a limit of the above inequality, we have

(40) v(t, x, i) = Y t,x,i
t ≤ Y t,x̃,i

t = v(t, x̃, i),

for all i ∈ I. Since we arbitrarily choose t, x and x̃ with x ≤ x̃, the inequality (40) implies
that a mapping x→ v(t, x, i) is non-decreasing for all t ∈ [0, T ] and i ∈ I.

Now, let us consider the following PDE,

min{−wt(t, x, i)− L−κ,iw(t, x, i)− ψ(t, x, i) + ρ(t, i)w(t, x, i),

w(t, x, i)− max
j∈I\{i}

{w(t, x, j)− ci,j(t, x)}} = 0, (t, x, i) ∈ KT ,(41)

w(T, x, i) = g(x, i),

where

L−κ,if(t, x) = (b(t, x, i)− κi|σ(t, x, i)|)∇f(t, x) +
1

2
(σ(t, x, i))2

∂2f(t, x)

∂x2
.

The PDE (41) has a unique continuous viscosity solution. Let (t, x) ∈ [0, T ) × R and let
φ ∈ C1,2([0, T )×R×I) be a test function such that v(·, ·, i)−φ(·, ·, i) attains a local minimum
at (t, x) for all i ∈ I. Since y → v(s, y, j) is monotone non-decreasing for all (s, j) ∈ [0, T )×I,
we have ∇φ(t, x, i) ≥ 0 for all i ∈ I. Since v is the viscosity supersolution of the PDE (24)
by Proposition 13, we have

min{−φt(t, x, i)− L−κ,iφ(t, x, i)− ψ(t, x, i) + ρ(t, i)v(t, x, i),

v(t, x, i)− max
j∈I\{i}

{v(t, x, j)− ci,j(t, x)}}

= min{−φt(t, x, i)− Liφ(t, x, i)− ψ(t, x, i) + ρ(t, i)v(t, x, i) + κ|σ(t, x, i)∇φ(t, x, i)|,
v(t, x, i)− max

j∈I\{i}
{v(t, x, j)− ci,j(t, x)}} ≥ 0,

for all i ∈ I. Hence, v is a viscosity supersolution of the PDE (41). The comparison theorem
of the viscosity solutions gives v ≥ w. Using the similar argument, we also have v ≤ w. Thus,
v = w. Since a value function of the optimal switching problem in the right hand side of our
desired equality (36) is a unique viscosity solution of the PDE (41), we obtain the equality
(36). 2

In the infinite horizon case, Proposition 21 also holds under the same conditions as Hy-
pothesis 20. Proposition 21 implies that under the monotone conditions, the optimal switching
problem under ambiguity can be regarded as usual optimal switching problems. Thus, we can
use existing results in the literature of the optimal switching if the monotone conditions are
satisfied. In fact, under the monotone conditions, it is sufficient to solve the PDE (41) instead
of the PDE (24) to derive the value function.

The monotone conditions and Proposition 21 are very similar to the results of [6]. [6] study
the optimal stopping problem under ambiguity and show that if a payoff function f(t, x) is
non-decreasing in x and κ-ignorance is satisfied, then the optimal stopping problem under
ambiguity can be regarded as the standard optimal stopping problem in which the drift of
X shifts into b − κ|σ| (Theorem 4.1 in [6]). Our result implies that the optimal switching
problem under ambiguity holds the same property as the optimal stopping under ambiguity.

In sections 6.2 and 6.3, we consider two applications of the optimal switching problem
under ambiguity in finance. The first application in section 6.2 is a selection of investment
funds and it satisfies the monotone conditions. However, the second application (the buy low
and sell high problem) in section 6.3 does not satisfy the monotone conditions and it definitely
needs negative switching costs.
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6.2 Selection of Investment Funds

In this section, we consider an optimal selection of two investment funds under ambiguity in
the infinite horizon. Let d = 1 and I = {1, 2}. Assume that X satisfies the following SDE,

(42) dXt = bαtXtdt+ σαtXtdWt,

where bi ∈ R, σi > 0, i = 1, 2 are constants. The solution to the SDE (42) is

Xx,i,α
t = x exp

{∫ t

0

(
bαs −

1

2
σ2αs

)
ds+

∫ t

0
σαsdWs

}
,

for all α ∈ Ai[0,∞). Assume that ϕ = 0 and that ψ is

ψ(x) = xp, x ∈ [0,∞), 0 < p < 1.

The switching costs c1,2 and c2,1 are constants over x, and they satisfy c1,2 + c2,1 > 0. The
constant discount rate ρ, satisfies

ρ > pmax
i∈I

{
bi −

1− p

2
σ2i

}
.

The set of multiple priors is
Θx,i = [−κi, κi], κi ≥ 0,

for all x ∈ R and i ∈ I. In the above settings, an optimal switching problem of interest is

(43) v∞(x, i) = sup
α∈Ai[0,∞)

inf
θ∈Θ[0,∞)

E

[∫ ∞

0
e−ρtζθ,0t (Xx,i,α

t )pdt−
∞∑
k=1

e−ρτkζθ,0τk cik−1,ik

]
.

Since the problem (43) satisfies Hypotheses 1, 3, 7 and 14, we can use the results in section 5.
Furthermore, the problem (43) also satisfies the monotone conditions (Hypothesis 20).

Without ambiguity (i.e., κi = 0 for all i ∈ I), the problem (43) is well studied by [20]. We
shortly summarize their results as follows.

Proposition 22 (Theorem 4.1 in [20]) Let

(44) Ki =
1

ρ− bip+
1
2σ

2
i p(1− p)

,

for all i ∈ I. Let i, j ∈ I, i ̸= j.

1. If Ki = Kj, then it is always optimal to switch from regime i to j if the corresponding
switching cost is non-positive, and never optimal to switch otherwise.

2. If Kj > Ki, then the following switching strategies depending on the switching costs are
optimal.

(a) ci,j ≤ 0: it is always optimal to switch from regime i to j if one first stands in i
and it is always optimal not to switch from j to i otherwise.

(b) ci,j > 0:

i. cj,i ≥ 0: there exists x∗i ∈ [0,∞) such that if one first stands in regime i, then
it is optimal to switch from i to j whenever X exceeds x∗i . If one first stands
in regime j, then it is optimal not to switch from j to i.
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ii. cj,i < 0: there exist x∗i , x
∗
j ∈ [0,∞) with x∗j < x∗i such that if one first stands

in regime i, then it is optimal to switch from i to j whenever X exceeds x∗i
and that if one first stands in regime j, then it is optimal to switch from j to
i whenever X falls below x∗j .

For details of x∗i and x
∗
j and the functional form of the value function, we refer to [20]. By

Proposition 22, the types of the switching strategies are determined by Ki defined in (44) and
the switching costs. The most interesting case is Proposition 22.2.(b).ii in which the decision
maker continuously switches the regimes.

The problem (43) can be interpreted as an optimal selection of investment funds. An
investor chooses a fund to maximize her expected utility with multiple priors. The switching
costs are interpreted as costs or benefits in changing funds.

We now assume K2 > K1 and c1,2 > 0 > c2,1. Then, heuristically speaking, the fund
2 (regime 2) is more attractive than the fund 1 (regime 1), but one requires the positive
switching cost c1,2 to switch from the fund 1 to the fund 2. On the other hand, one gets the
switching benefit −c2,1 when switching from the fund 2 to the fund 1. We can also interpret
the fund 2 as a new fund well performing and the fund 1 as an old fund less performing. To
obtain customers, the fund 1 begins the campaign that one switching from the fund 2 to the
fund 1 obtains the benefit −c2,1. Then, the investor has a motivation switching between the
fund 1 and 2.

However, in practice, the investor may doubt the good performance of the fund 2 since
the fund 2 is new and less experienced. She therefore considers that the fund 2 has a premium
of ambiguity. Mathematically, this implies that κ2 > 0 and κ1 = 0. We now consider the case
that κ2 > 0 and κ1 = 0.

Since the problem (43) satisfies the monotone conditions, we can use the results of [20].
Let

Kκ
2 =

1

ρ− (b2 − κ2σ2)p+
1
2σ

2
2p(1− p)

> 0.

Then, we have

Kκ
2 −K1 =

pKκ
2K1

2

(
(1− p)(σ21 − σ22)− 2(b1 − b2)− 2κ2σ2

)
.

Therefore, the sign of (1−p)(σ21−σ22)−2(b1−b2)−2κ2σ2 determines the type of the switching
strategy. On the other hand, we have

K2 −K1 =
pK2K1

2

(
(1− p)(σ21 − σ22)− 2(b1 − b2)

)
> 0.

Hence, (1− p)(σ21 − σ22)− 2(b1 − b2) is positive. However, if κ2 is sufficiently large such that
(1 − p)(σ21 − σ22) − 2(b1 − b2) < 2κ2σ2, then K

κ
2 < K1. Therefore, the large ambiguity with

respect to the fund 2 can change the type of the switching strategy.
To illustrate effects of ambiguity, we conduct a numerical simulation. Let b1 = 0.03, b2 =

0.07, σ1 = 0.1, σ2 = 0.3, p = 0.5, ρ = 0.03, c1,2 = 30000, and c2,1 = −1000. Then,

K1 = 61.53846 · · · < 160 = K2.

Hence, the investor continuously switches between the fund 1 and 2 without ambiguity. On
the other hand, we have

(1− p)(σ21 − σ22)− 2(b1 − b2)

2σ2
=

1

15
= 0.0666 · · · .

Thus, if κ2 > 1/15, then the type of switching strategy changes to that one always chooses
the fund 1.
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Figure 1: The Optimal Switching Thresholds in the Selection of Investment
Funds. The vertical axis is a logarithmic scale. x∗

1 under different κ2 is plotted in the
solid line. x∗

2 under different κ2 is plotted in the dashed line.

Figure 1 displays the switching thresholds x∗1 and x∗2 with different degrees of ambiguity
κ2. If one is investing in the fund 1 at time t and if Xt ≥ x∗1, then she switches from the fund
1 to the fund 2. On the other hand, if one is investing in the fund 2 at time t and if Xt ≤ x∗2,
then she switches from the fund 2 to the fund 1.

According to Figure 1, in a higher degree of ambiguity κ2, both of the thresholds x∗1 and
x∗2 are large. This implies that if κ2 is large, then the investor investing in the fund 1 needs
sufficiently large wealth X to switch from the fund 1 to the fund 2. On the other hand, if κ2
is large, then the investor investing in the fund 2 switches to the fund 1 with smaller wealth
than that in small κ2. Each behavior is well convincing. The large ambiguity makes the fund
2 less attractive, so the investor tends to choose the fund 1.

Remark 23 If κ1 > 0, then let

Kκ
1 =

1

ρ− (b1 − κ1σ1)p+
1
2σ

2
1p(1− p)

> 0,

and

Kκ
2 −Kκ

1 =
pKκ

2K
κ
1

2

(
(1− p)(σ21 − σ22)− 2(b1 − b2)− 2(κ2σ2 − κ1σ1)

)
.

Hence, in this case, if (1− p)(σ21 − σ22)− 2(b1 − b2) < 2(κ2σ2 − κ1σ1), then K
κ
2 < Kκ

1 .

6.3 Buy Low and Sell High

Next, we consider an optimal trading (buy and sell) rule under ambiguity. Without ambiguity,
this problem in trading a mean-reverting asset is well studied by [28]. We adopt their settings
and consider an optimal trading rule under ambiguity. Let d = 1. A trader concerns with
trading of a certain asset. A cumulative log return of this asset at time t is denoted by Xt

and it satisfies the following SDE.

dXt = a(b−Xt)dt+ σdWt,(45)

where a > 0, b ∈ R and σ > 0 are constants. Therefore, the asset price at time t is given
by St = exp(Xt). We denote the solution to the SDE (45) starting from X0 = x by Xx.
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Furthermore, this asset does not have any dividend and coupon. This implies ψ = 0 and
ϕ = 0.

Let I = {1, 2}. The regime i = 1 means that the trader’s position is flat. Hence, she
wants to buy the asset at as low a price as possible. The regime i = 2 means that the trader’s
position is long. Hence, she wants to sell the asset at as high a price as possible. If the
trader goes from the regime 1 to the regime 2, in other words, if she buys the asset, then the
switching cost function is

(46) c1,2(x) = ex(1 +K),

where K ∈ (0, 1) is a constant percentage of slippage or commission per transaction. On the
other hand, if the trader goes from the regime 2 to the regime 1, in other words, if she sells
the asset, then the cost (benefit) function is

(47) c2,1(x) = −ex(1−K).

The set of multiple priors is
Θx,i = [−κ, κ], κ ≥ 0,

for all x ∈ R and i ∈ I. Therefore, we assume κ-ignorance.
The buy low and sell high problem under ambiguity can be interpreted as the following

optimal switching problem,

(48) v(x, i) = sup
α∈Ai[0,∞)

inf
θ∈Θ[0,∞)

E

[
−

∞∑
k=1

e−ρτkζθ,0τk cik−1,ik(X
x
τk
)

]
.

More directly, the problem (48) can be expressed as

v(x, 1)

= sup
α∈Ai[0,∞)

inf
θ∈Θ[0,∞)

E

[ ∞∑
k=1

(
e−ρτ2kζθ,0τ2ke

Xx
τ2k (1−K)− e−ρτ2k−1ζθ,0τ2k−1

e
Xx

τ2k−1 (1 +K)
)]

,

v(x, 2)

= sup
α∈Ai[0,∞)

inf
θ∈Θ[0,∞)

E
[
e−ρτ1ζθ,0τ1 e

Xx
τ1 (1−K)

+
∞∑
k=1

(
e−ρτ2k+1ζθ,0τ2k+1

e
Xx

τ2k+1 (1−K)− e−ρτ2kζθ,0τ2ke
Xx

τ2k (1 +K)
)]

.

The cost/benefit functions (46) and (47) do not satisfy the polynomial growth condition
and the strong triangular condition. However, changing variables from X to S, then these
functions satisfy the polynomial growth condition. Furthermore, we can easily prove Propo-
sition 5 in the problem (48) (see Lemma 4 in [28] and Remark 17 in this paper). Therefore,
we can apply the method in section 5. Note that for sufficiently large constant C ≥ 0, the
following function satisfies the temporary terminal conditions:

g(x, i) = −1l{i=1}e
x(1−K)− C.

It is easy to show that g satisfies the sufficient condition (31) for sufficiently large C.
According to Proposition 19, the value function v is a viscosity solution of the following

system of PDEs.

min{−Lv(x, 1) + ρv(x, 1) + κσ|∇v(x, 1)|, v(x, 1)− v(x, 2) + ex(1 +K)} = 0,(49)

min{−Lv(x, 2) + ρv(x, 2) + κσ|∇v(x, 2)|, v(x, 2)− v(x, 1)− ex(1−K)} = 0,(50)
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where

Lf(x) = a(b− x)∇f(x) + σ2

2

∂2f(x)

∂x2
.

Unfortunately, the problem (48) does not satisfy the monotone conditions, therefore we need
to solve the system of PDEs (49) and (50). It seems to be difficult to solve this system since
it contains the absolute values of the first derivatives of v. However, we can find a continuous
solution to the system of PDEs (49) and (50) using the smooth-fit techniques (details of the
smooth-fit techniques are in Chapter 5 in [24]).

First, let C1 be a continuation region of the regime 1 such that

C1 = (x1,∞),

for some x1. Thus, the trader in the flat position buys the asset whenever the asset price falls
below ex1 . Also let C2 be a continuation region of the regime 2 such that

C2 = (−∞, x2),

for some x2. Thus, the trader in the long position sells the asset whenever the asset price
exceeds ex2 . Naturally we impose x1 ≤ x2. We assume that

(51) ∇v(x, 1) ≤ 0, ∀x ∈ C1, and ∇v(x, 2) ≥ 0, ∀x ∈ C2.

By [28], the PDE,
−LV (x, 1) + ρV (x, 1)− κσ∇V (x, 1) = 0,

on C1 has a solution such that
V (x, 1) = C1φ1(x),

where C1, m =
√
2a/σ, and λ = ρ/a are constants, and

φ1(x) =

∫ ∞

0
tλ−1e−0.5t2+m(b+κσ/a−x)tdt,

Similarly, the PDE,
−LV (x, 2) + ρV (x, 2) + κσ∇V (x, 2) = 0,

on C2 has a solution such that
V (x, 2) = C2φ2(x),

where C2 is a constant and

φ2(x) =

∫ ∞

0
tλ−1e−0.5t2−m(b−κσ/a−x)tdt.

Now, let us guess that candidates of the solution to the PDEs (49) and (50) are

v(x, 1) =

{
V (x, 1), if x ∈ C1,
V (x, 2)− ex(1 +K), if x /∈ C1

(52)

v(x, 2) =

{
V (x, 2), if x ∈ C2,
V (x, 1) + ex(1−K), if x /∈ C2

(53)

Let

φ∗
1(x) =

∫ ∞

0
tλe−0.5t2+m(b+κσ/a−x)tdt, φ∗

2(x) =

∫ ∞

0
tλe−0.5t2−m(b−κσ/a−x)tdt.
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Then, ∇V (x, 1) = −mC1φ
∗
1(x) and ∇V (x, 2) = mC2φ

∗
2(x). Hence by the conditions (51), we

need C1 ≥ 0 and C2 ≥ 0. By the smooth-fit conditions, we need
V (x1, 1) = V (x1, 2)− ex1(1 +K),
∇V (x1, 1) = ∇V (x1, 2)− ex1(1 +K),
V (x2, 2) = V (x2, 1) + ex2(1−K),
∇V (x2, 2) = ∇V (x2, 1) + ex2(1−K),

(54)

{
v(x, 1) ≥ v(x, 2)− ex(1 +K), on (x1,∞),
v(x, 2) ≥ v(x, 1) + ex(1−K), on (−∞, x2),

(55) {
(−L+ ρ+ κσ|∇|)(V (x, 2)− ex(1 +K)) ≥ 0, on (−∞, x1),
(−L+ ρ+ κσ|∇|)(V (x, 1) + ex(1−K)) ≥ 0, on (x2,∞).

(56)

After simple algebraic computation, the equalities (54) can be expressed as(
C1

C2

)
= ex1(1 +K)

(
−φ1(x1) φ2(x1)
φ∗
1(x1) φ∗

2(x1)

)−1(
1

1/m

)
(57)

= ex2(1−K)

(
−φ1(x2) φ2(x2)
φ∗
1(x2) φ∗

2(x2)

)−1(
1

1/m

)
≥ 0.

By the definitions of v, the inequalities (55) are equivalent to

(58) V (x, 1) ≥ V (x, 2)− ex(1 +K), V (x, 2) ≥ V (x, 1) + ex(1−K),

on (x1, x2). For the first inequality of (56), we have

(−L+ ρ+ κσ|∇|)(V (x, 2)− ex(1 +K)) = (−L+ ρ+ κσ|∇|)(−ex(1 +K))

= −
(
ρ− a(b− x)− σ2

2
− κσ

)
ex(1 +K) ≥ 0

on (−∞, x1) since (−∞, x1) ⊆ C2. Thus, the condition expressed by the first inequality is
equivalent to

(59) x1 ≤
1

a

(
σ2

2
+ ab+ κσ − ρ

)
.

Similarly, the condition expressed by the second inequality of (56) is equivalent to

(60) x2 ≥
1

a

(
σ2

2
+ ab− κσ − ρ

)
.

Finally, we need

ex2(1−K) > ex1(1 +K) ⇔ x2 − x1 > log(1 +K)− log(1−K).(61)

Hence, if C1, C2, x1 and x2 satisfy the conditions (57) to (61), then the candidates of the
solutions (52) and (53) are true viscosity solutions to the system of the PDEs (49) and (50).

To illustrate effects of ambiguity, we conduct a numerical simulation. Let a = 0.8, b =
2, σ = 0.5, ρ = 0.5, and K = 0.01. The values of these parameters are the same as [28]. We
compute thresholds (x1, x2) with different degrees of ambiguity κ.

Figure 2 displays the thresholds. According to Figure 2, in a larger degree of ambiguity,
both of the optimal thresholds become small. The long position trader (that is, the initial
regime is 2) considers the worst case that the steady mean of X is smaller than that without
ambiguity. Therefore, she sells the asset at a lower price than that without ambiguity.
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Figure 2: The Optimal Switching Thresholds in the Buy Low and Sell High
Problem. x1 under different κ is plotted in the solid line. x2 under different κ is
plotted in the dashed line.

On the other hand, in the flat position case (that is, the initial regime is 1), the trader also
buys the asset at a lower price than that without ambiguity. That is because a gain of the
trader in the flat position does not realize until she sells the asset. Now, we assume that the
trader considers the case when the steady mean of X is larger than that without ambiguity.
Then, she can expect a bigger profit in her belief than that in the true probability measure.
This is a contradiction since she considers the worst case. Therefore, even if the trader has the
flat position, she considers the case that the steady mean of X is smaller than that without
ambiguity. Hence, the optimal thresholds of buying the asset under ambiguity is lower than
that without ambiguity.

[28] conduct the comparative statics with varying the steady mean of X, i.e., b. Their
results are that in a small b, both of the optimal thresholds are also small. These are similar
to the results in large ambiguity. However, the results under large ambiguity can not be
reproduced by a small b. By the equality (57) with κ = 0, the optimal thresholds under the
steady mean b are equal to the optimal thresholds under the steady mean b̃ plus b− b̃ for all
b, b̃ ∈ R if the other parameters are the same. Therefore, the optimal thresholds are linear in
the steady mean b.

On the other hand, Figure 3 displays equal differences of the optimal thresholds with
different degrees of ambiguity. According to Figure 3, the equal differences are not constant,
therefore the optimal thresholds are not linear in the degree of ambiguity κ. Our PDEs (49)
and (50) cause these non-linearities. The PDEs (49) and (50) can not be expressed as any
variational inequality of an optimal switching problem without ambiguity since these do not
satisfy the monotone conditions. Indeed, the difference x2−x1 without ambiguity is constant
over b, whereas x2 − x1 is small with large κ. Thus, the optimal switching problem under
ambiguity can generate this interesting result which can not be reproduced by the problem
without ambiguity.
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Appendix A The Moment Estimates of X

Proof of Proposition 2. Since x → ∥x∥q is twice continuously differentiable for all q ≥ 4, we
can apply the Ito’s lemma to ∥Xt,x,i,α

s ∥q. Then, for all s ∈ [t, T ], using the quadratic growth
condition for b and σ, we have

∥Xt,x,i,α
s ∥q = ∥x∥q +

∫ s

t
q∥Xt,x,i,α

r ∥q−2(Xt,x,i,α
r )′b(r,Xt,x,i,α

r , αr)dr

+
1

2

∫ s

t

(
q(q − 2)∥Xt,x,i,α

r ∥q−4∥σ′(r,Xt,x,i,α
r , αr)X

t,x,i,α
r ∥2

q∥Xt,x,i,α
r ∥q−2∥σ(r,Xt,x,i,α

r , αr)∥2
)
dr

+

∫ s

t
q∥Xt,x,i,α

r ∥q−2(Xt,x,i,α
r )′σ(r,Xt,x,i,α

r , αr)dWr

≤ ∥x∥q + Ĉq

∫ s

t

(
1 + ∥Xt,x,i,α

r ∥q
)
dr

+ q

∫ s

t
∥Xt,x,i,α

r ∥q−2(Xt,x,i,α
r )′σ(r,Xt,x,i,α

r , αr)dWr,

where Ĉq is the constant only depending on q and L. The above stochastic integral in the
right hand side is a local martingale. Hence, there exists an increasing sequence of stopping
times (τn)n≥1 such that τn → ∞ and

E[∥Xt,x,i,α
s∧τn ∥q] ≤ ∥x∥2 + ĈqE

[∫ s∧τn

t

(
1 + ∥Xt,x,i,α

r ∥q
)
dr

]
,
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for all s ∈ [t, T ] and n ≥ 1, where a ∧ b = min{a, b}. By the Fatou lemma, the monotone
convergence theorem and the continuity of Xt,x,i,α, taking a limit, we have

1 + E[∥Xt,x,i,α
s ∥q] ≤ 1 + lim inf

n→∞
E[∥Xt,x,i,α

s∧τn ∥q]

≤ 1 + ∥x∥2 + ĈqE
[∫ s

t

(
1 + ∥Xt,x,i,α

r ∥q
)
dr

]
= 1 + ∥x∥2 + Ĉq

∫ s

t
E
[
1 + ∥Xt,x,i,α

r ∥q
]
dr.

By the Gronwall lemma, we have

(62) E[∥Xt,x,i,α
s ∥q] ≤ 1 + E[∥Xt,x,i,α

s ∥q] ≤ (1 + ∥x∥q)eĈq(s−t),

for all 0 ≤ t ≤ s and x ∈ Rd. Similarly, we have

max
t≤s≤T

∥Xt,x,i,α
s ∥q ≤ ∥x∥q + Ĉq

∫ T

t

(
1 + ∥Xt,x,i,α

r ∥q
)
dr

+ q max
t≤s≤T

∫ s

t
∥Xt,x,i,α

r ∥q−2(Xt,x,i,α
r )′σ(r,Xt,x,i,α

r , αr)dWr.

By the Burkholder-Davis-Gundy inequality and Jensen inequality, we have

E
[
max
t≤s≤T

∫ s

t
∥Xt,x,i,α

r ∥q−2(Xt,x,i,α
r )′σ(r,Xt,x,i,α

r , αr)dWr

]
≤ E

[(∫ T

t
∥Xt,x,i,α

r ∥2q−4∥σ′(r,Xt,x,i,α
r , αr)X

t,x,i,α
r ∥2dr

)1/2
]

≤ E

[(∫ T

t
∥Xt,x,i,α

r ∥2q−2∥σ(r,Xt,x,i,α
r , αr)∥2dr

)1/2
]

≤ LE

[(∫ T

t
∥Xt,x,i,α

r ∥2q−2
(
1 + ∥Xt,x,i,α

r ∥2
)
dr

)1/2
]

≤
√
2L

(∫ T

t
E
[
1 + ∥Xt,x,i,α

r ∥2q
]
dr

)1/2

.

Furthermore, using the inequality (62), we have(∫ T

t
E
[
1 + ∥Xt,x,i,α

r ∥2q
]
dr

)1/2

≤
(∫ T

t
(1 + ∥x∥2q)eĈ2q(r−t)dr

)1/2

≤ 1

Ĉ
1/2
2q

(1 + ∥x∥q)eĈ2q(T−t)/2.

Thus, we obtain

E
[
max
t≤s≤T

∥Xt,x,i,α
s ∥q

]
≤ 1 + E

[
max
t≤s≤T

∥Xt,x,i,α
s ∥q

]
≤ Cq,X(1 + ∥x∥q)eCq(T−t),

where

Cq,X = max

{
1, Ĉq,

√
2

Ĉq
qL

}
, Cq =

Ĉ2q

2
.
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If q ∈ (0, 4), then by the Jensen inequality, we have

E
[
max
t≤s≤T

∥Xt,x,i,α
s ∥q

]
= E

[(
max
t≤s≤T

∥Xt,x,i,α
s ∥4

)q/4]
≤

(
E
[
max
t≤s≤T

∥Xt,x,i,α
s ∥4

])q/4
≤ C

q/4
4,X(1 + ∥x∥4)q/4e(qC4/4)(T−t)

≤ C
q/4
4,X(1 + ∥x∥q)e(qC4/4)(T−t).

It is easy to show the inequality (3) applying the Ito’s lemma to e−ρs(1 + ∥Xt,x,i,α
s ∥q). 2

Appendix B Verification of Y

Proof of Proposition 11. Step.1 Y is at least as large as any objective function. We define a
sequence of random variables as follows.

X0 := η, Xk := X
τk−1,X

k−1,ik−1
τk , k ≥ 1.

By the definition, Xk ∈ L2q
τk(Rd) for all k. Furthermore, for all k ≥ 1 and t ∈ [τk−1, τk), the

strong uniqueness of X leads to that

(63) Xν,η,ι,α
t = X

τk−1,X
k−1,ik−1

t ,

P-almost surely.
Let N = inf{k | τk ≥ T} and τ0 = ν. By the admissibility of α = (τk, ik)k≥0, N is finite

P-almost surely. Let Z
ν,η,ι,α

be a stochastic process such that

Z
ν,η,ι,α
t =

N∑
k=1

Z
τk−1,X

k−1,ik−1

t 1l[τk−1,τk)(t), t ∈ [0, T ],(64)

Let Dk be a stochastic process on [τk−1, τk] such that

Dk
t = exp

{
−
∫ t

τk−1

ρ(s,X
τk−1,X

k−1,ik−1
s , ik−1)ds

}
, t ∈ [τk−1, τk].

By the equality (63), we have

Dν,η,ι,α
t = D1

t , t ∈ [τ0, τ1],

Dν,η,ι,α
t = Dν,η,ι,α

τk−1
Dk
t , t ∈ [τk−1, τk], k ≥ 2.

Then, for any k ≥ 1, applying the Ito’s lemma to Dk
t Y

τk−1,X
k−1,ik−1

t leads to

Y
τk−1,X

k−1,ik−1
τk−1 ≥ Dk

τk
Y
τk−1,X

k−1,ik−1
τk +

∫ τk

τk−1

Dk
s

(
ψ(s,X

τk−1,X
k−1,ik−1

s , ik−1)

− ς(s,X
τk−1,X

k−1,ik−1
s , ik−1, Z

τk−1,X
k−1,ik−1

s )
)
ds

−
∫ τk

τk−1

Dk
s (Z

τk−1,X
k−1,ik−1

s )′dWs,
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where we have used the non-negativity of Dk
t and monotonicity of K

τk−1,X
k−1,ik−1

t . Further-
more, by the pathwise uniqueness of X and Y (see Proposition 10 and (63) and (64)), we
have

Y
τk−1,X

k−1,ik−1
τk−1

≥ Dk
τk
Y
τk,X

k,ik−1
τk +

∫ τk

τk−1

Dk
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

−
∫ τk

τk−1

Dk
s (Z

ν,η,ι,α
s )′dWs.

Since each Y
τk,X

k,ik−1
τk dominates the lower barrier, we obtain

Y ν,η,ι
ν ≥ D1

τ1Y
τ1,X1,i0
τ1 +

∫ τ1

τ0

D1
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

−
∫ τ1

τ0

D1
s(Z

ν,η,ι,α
s )′dWs

≥ D1
τ1

(
Y τ1,X1,i1
τ1 − ci0,i1(τ1, X

τ1,X1,i0
τ1 )

)
+

∫ τ1

τ0

D1
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

−
∫ τ1

τ0

D1
s(Z

ν,η,ι,α
s )′dWs

= D1
τ1Y

τ1,X1,i1
τ1 −D1

τ1ci0,i1(τ1, X
ν,η,ι,α
τ1 )

+

∫ τ1

τ0

D1
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

−
∫ τ1

τ0

D1
s(Z

ν,η,ι,α
s )′dWs

≥ D1
τ1Y

τ1,X1,i1
τ2 −D1

τ1ci0,i1(τ1, X
ν,η,ι,α
τ1 )

+

∫ τ1

τ0

D1
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

+D1
τ1

∫ τ2

τ1

D2
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

−
∫ τ1

τ0

D1
s(Z

ν,η,ι,α
s )′dWs −D1

τ1

∫ τ2

τ1

D2
s(Z

ν,η,ι,α
s )′dWs

= D1
τ1Y

τ2,X2,i1
τ2 −D1

τ1ci0,i1(τ1, X
ν,η,ι,α
τ1 )

+

∫ τ2

τ0

Dν,η,ι,α
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

−
∫ τ2

τ0

Dν,η,ι,α
s (Z

ν,η,ι,α
s )′dWs,

where we have used Proposition 10 and (63). By repeating this up to n ≥ 1, we have

Y ν,η,ι
ν ≥ Dν,η,ι,α

τn Y τn,Xn,in−1
τn −

n−1∑
k=1

Dν,η,ι,α
τk

cik−1,ik(τk, X
ν,η,ι,α
τk

)

+

∫ τn

τ0

Dν,η,ι,α
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

−
∫ τn

τ0

Dν,η,ι,α
s (Z

ν,η,ι,α
s )′dWs,
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for all n. Since τn → T P-a.s. and Y ν,η,ι is continuous, taking a limit, we have

Y ν,η,ι
ν ≥ Dν,η,ι,α

T g(Xν,η,ι,α
T , αT )−

∑
ν≤τk≤T

Dν,η,ι,α
τk

cik−1,ik(τk, X
ν,η,ι,α
τk

)

+

∫ T

ν
Dν,η,ι,α
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

−
∫ T

ν
Dν,η,ι,α
s (Z

ν,η,ι,α
s )′dWs.

Similarly to the above, we have

Dν,η,ι,α
t Y ν,η,ι

t ≥ Dν,η,ι,α
T g(Xν,η,ι,α

T , αT )−
∑

t≤τk≤T
Dν,η,ι,α
τk

cik−1,ik(τk, X
ν,η,ι,α
τk

)

+

∫ T

t
Dν,η,ι,α
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

−
∫ T

t
Dν,η,ι,α
s (Z

ν,η,ι,α
s )′dWs,

for all t ∈ [ν, T ]. On the other hand, we have

Dν,η,ι,α
t Y ν,η,ι,α

t = Dν,η,ι,α
T g(Xν,η,ι,α

T , αT )−
∑

t≤τk≤T
Dν,η,ι,α
τk

cik−1,ik(τk, X
ν,η,ι,α
τk

)

+

∫ T

t
Dν,η,ι,α
s

(
ψ(s,Xν,η,ι,α

s , αs)− ς(s,Xν,η,ι,α
s , αs, Z

ν,η,ι,α
s )

)
ds

−
∫ T

t
Dν,η,ι,α
s (Zν,η,ι,αs )′dWs,

for all t ∈ [ν, T ]. Hence, it holds that

(65) Dν,η,ι,α
t

(
Y ν,η,ι
t − Y ν,η,ι,α

t

)
≥ −

∫ T

t
Dν,η,ι,α
s

(
ς(s,Xν,η,ι,α

s , αs, Z
ν,η,ι,α
s )− ς(s,Xν,η,ι,α

s , αs, Z
ν,η,ι,α
s )

)
ds

−
∫ T

t
Dν,η,ι,α
s (Z

ν,η,ι,α
s − Zν,η,ι,αs )′dWs

=

∫ T

t
Dν,η,ι,α
s ∆′

s(Z
ν,η,ι,α
s − Zν,η,ι,αs )ds−

∫ T

t
Dν,η,ι,α
s (Z

ν,η,ι,α
s − Zν,η,ι,αs )′dWs,

where (∆s)ν≤s≤T is a d-dimensional adopted process as follows: Now, we denote by xi,s the
ith component of a random vector process (xu)u≥0 at time s.

Let Z
ν,η,ι,α, i
s = (Z

ν,η,ι,α
1,s , . . . , Z

ν,η,ι,α
i−1,s , Z

ν,η,ι,α
i,s , Zν,η,ι,αi+1,s , . . . , Z

ν,η,ι,α
d,s )′ and

let Zν,η,ι,α, is = (Z
ν,η,ι,α
1,s , . . . , Z

ν,η,ι,α
i−1,s , Z

ν,η,ι,α
i,s , Zν,η,ι,αi+1,s , . . . , Z

ν,η,ι,α
d,s )′. ∆i,s is

∆i,s = − ς(s,X
ν,η,ι,α
s , αs, Z

ν,η,ι,α, i
s )− ς(s,Xν,η,ι,α

s , αs, Z
ν,η,ι,α, i
s )

Z
ν,η,ι,α
i,s − Zν,η,ι,αi,s

,

if Z
ν,η,ι,α
i,s ̸= Zν,η,ι,αi,s and ∆i,s = 0 otherwise. Then, (∆s)ν≤s≤T is uniformly bounded since

z → ς(s,Xν,η,ι,α
s , αs, z) is uniformly Lipschitz for all s. This implies that the following process,

ζ∆s = exp

{∫ s

ν
∆′
udWu −

1

2

∫ s

ν
∥∆u∥2du

}
, s ≥ ν
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is a martingale. Hence, we can define a new probability measure such that

P∆
T (A) := E[1lAζ∆T ], A ∈ FT .

Furthermore, by the Girsanov theorem, the following process,

W∆
t :=

∫ t

ν
∆sds−Wt, t ∈ [ν, T ],

is a d-dimensional Brownian motion under P∆
T . We denote by E∆

T an expectation operator
under P∆

T . Since Z
ν,η,ι,α

and Zν,η,ι,α are in H2
d[ν, T ], it holds that

E∆
T

[∫ T

ν
(Dν,η,ι,α

s )2∥Zν,η,ι,αs − Zν,η,ι,αs ∥2ds
]
<∞.

This implies that the stochastic integral∫ u

ν
Dν,η,ι,α
s (Z

ν,η,ι,α
s − Zν,η,ι,αs )′dW∆

s , u ∈ [ν, T ],

is a martingale under P∆
T . Hence, taking conditional expectation of the inequality (65) under

the probability measure P∆
T given by Ft, we obtain

Y ν,η,ι
t − Y ν,η,ι,α

t ≥ 0,

P-almost surely for all t ∈ [ν, T ].

Step.2 Optimality of Y . We first prove the admissibility of α∗. Let Z
ν,η,ι,α∗

s be a stochastic

process defined as (64). Then, by the definition α∗, K
τk−1,X

∗
τk−1

,i∗k−1
s = 0 for all k ≥ 1 and

s ∈ [τ∗k−1, τ
∗
k ]. Furthermore, it holds that

Y
τ∗k−1,X

∗
τ∗
k−1

,i∗k−1

τ∗k
= Y

τ∗k−1,X
∗
τ∗
k−1

,i∗k

τ∗k
− ci∗k−1,i

∗
k
(τ∗k , X

∗
τ∗k
),

for all k ≥ 1. Hence, the following equality holds.

Dν,η,ι,α∗

t Y ν,η,ι
t = Dν,η,ι,α∗

t∨τ∗n Y
τ∗n,X

∗
τ∗n
,i∗n−1

t∨τ∗n −
n∑
k=1

Dν,η,ι,α∗

τ∗k
ci∗k−1,i

∗
k
(τ∗k , X

∗
τ∗k
)1l[ν,τ∗k ](t)(66)

+

∫ t∨τ∗n

t
Dν,η,ι,α∗
s

(
ψ(s,X∗

s , α
∗
s)− ς(s,X∗

s , αs, Z
ν,η,ι,α∗

s )
)
ds

−
∫ t∨τ∗n

t
Dν,η,ι,α∗
s (Z

ν,η,ι,α∗

s )′dWs,

for all n ≥ 1, where a ∨ b = max{a, b}. Let N∗ = inf{k | τ∗k ≥ T} and B = {N∗ = +∞}.
Suppose that P(B) > 0. Then, as I is a finite set, there exists a finite loop i0, i1, . . . , im, i0,
i0 ∈ I, i0 ̸= i1 such that

Y
ν,η,il−1

τ∗kq+l

= Y ν,η,il
τ∗kq+l

− cil−1,il(τ
∗
kq+l

, X∗
τ∗kq+l

) on B,

for all l = 1, . . . ,m+ 1, q ≥ 0 and im+1 = i0, where (τ∗kq)q≥1 is a subsequence of (τ∗k )k≥0. Let
τ = limq→∞ τ∗kq . Then τ < T on B and

Y
ν,η,il−1

τ = Y ν,η,il
τ − cil−1,il(τ ,X

∗
τ ) on B,
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for all l = 1, . . . ,m+ 1. This implies that

m+1∑
l=1

cil−1,il(τ ,X
∗
τ ) = 0 on B,

which is contradiction to Hypothesis 4.3. Therefore, P(B) = 0 and N∗ is finite P-almost
surely. Hence, taking the limit of (66), we have

Dν,η,ι,α∗

t Y ν,η,ι
t = Dν,η,ι,α∗

T g(X∗
T , α

∗
T )−

∑
t≤τ∗k≤T

Dν,η,ι,α∗

τ∗k
ci∗k−1,i

∗
k
(τ∗k , X

∗
τ∗k
)(67)

+

∫ T

t
Dν,η,ι,α∗
s

(
ψ(s,X∗

s , α
∗
s)− ς(s,X∗

s , αs, Z
ν,η,ι,α∗

s )
)
ds

−
∫ T

t
Dν,η,ι,α∗
s (Z

ν,η,ι,α∗

s )′dWs.

Since (Y ν,η,ι, Z
ν,η,ι,α∗

) ∈ S2[ν, T ] × H2
d[ν, T ] and since Hypotheses 1, 3, 4 and 7 are satisfied,∑

ν≤τ∗k≤T
ci∗k−1,i

∗
k
(τ∗k , X

∗
τ∗k
) is quadratic integrable under P. Hence, α∗ is admissible.

We consider the solution of the BSDE (16) at (ν, η, ι, α∗),
denoted by (Y ν,η,ι,α∗

, Zν,η,ι,α
∗
). Then, combining (67) and (Y ν,η,ι,α∗

, Zν,η,ι,α
∗
), we obtain that

Dν,η,ι,α∗

t

(
Y ν,η,ι
t − Y ν,η,ι,α∗

t

)
=

∫ T

t
Dν,η,ι,α∗
s ∆′

s(Z
ν,η,ι,α∗

s − Zν,η,ι,α
∗

s )ds−
∫ T

t
Dν,η,ι,α∗
s (Z

ν,η,ι,α∗

s − Zν,η,ι,α
∗

s )′dWs,

where (∆s)0≤s≤T is the stochastic process defined in Step.1. As well as Step.1, we conclude
that

Y ν,η,ι
t = Y ν,η,ι,α∗

t ,

P-almost surely for all t ∈ [ν, T ]. 2

Appendix C Verification in the Infinite Horizon

Proof of Proposition 18. Step.1 Monotonicity of Ŷ . Fix an arbitrary 0 ≤ T ≤ T̃ , ν ∈
T T
0 and η ∈ L2q

ν (Rd). Let (Ŷ T,ν,η,i,n, ẐT,ν,η,i,n, K̂T,ν,η,i,n)n≥0 be the Picard’s iterations of

(Ŷ T,ν,η,i, ẐT,ν,η,i, K̂T,ν,η,i) constructed in Theorem 8.

Also let (Ŷ T̃ ,ν,η,i,n, Ẑ T̃ ,ν,η,i,n, K̂ T̃ ,ν,η,i,n)n≥0 be the Picard’s iterations of

(Ŷ T̃ ,ν,η,i, Ẑ T̃ ,ν,η,i, K̂ T̃ ,ν,η,i) constructed in Theorem 8. Then, by the non-negative reward con-
dition, temporary terminal condition and Proposition 2.2 in [12], we have

e−ρT Ŷ T̃ ,ν,η,i,0
T = inf

θ∈Θ[T,T̃ ]
E
[
e−ρT̃ ζθ,T

T̃
g(Xν,η,i

T̃
, i)

+

∫ T̃

T
e−ρtζθ,Tt

(
ψ(Xν,η,i

t , i)− θ′tϕ(X
ν,η,i
t , i)

)
dt

∣∣∣ FT]
≥ inf

θ∈Θ[T,T̃ ]
E
[
e−ρT̃ ζθ,T

T̃
g(Xν,η,i

T̃
, i)

∣∣∣ FT ] ≥ e−ρT g(Xν,η,i
T , i).
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Hence, Ŷ T̃ ,ν,η,i,0
T ≥ g(Xν,η,i

T , i) for all i ∈ I. On the other hand, for all i ∈ I,
(Ŷ T̃ ,ν,η,i,0
t , Ẑ T̃ ,ν,η,i,0t ) is the solution to the following BSDE on [ν, T ],

−dyt =
(
ψ(Xν,η,i

t , i)− ρyt − ς(Xν,η,i
t , i, zt)

)
dt− z′tdWt,

yT = Ŷ T̃ ,ν,η,i,0
T , (y, z) ∈ S2[ν, T ]×H2

d[ν, T ].

By the comparison theorem, Ŷ T̃ ,ν,η,i,0
t ≥ Ŷ T,ν,η,i,0

t for all t ∈ [ν, T ] and i ∈ I. Similarly, by the
non-negative reward condition, temporary terminal condition and Proposition 7.1 in [11], we
have

Ŷ T̃ ,ν,η,i,n
T ≥ g(Xν,η,i

T , i),

for all n ≥ 1. Hence, recursively applying the comparison theorem, we obtain that Ŷ T̃ ,ν,η,i,n
t ≥

Ŷ T,ν,η,i,n
t for all t ∈ [ν, T ], i ∈ I and n ≥ 1. Taking a limit, we also have Ŷ T̃ ,ν,η,i

t ≥ Ŷ T,ν,η,i
t for

all t ∈ [ν, T ] and i ∈ I.
Step.2 n-step dominated. Since T → Ŷ T,ν,η,i,n

t is increasing by Step.1 and since n →
Ŷ T,ν,η,i,n
t is also increasing, we can exchange the orders of taking the limits such that

lim
T→∞

Ŷ T,ν,η,i
t = lim

T→∞
lim
n→∞

Ŷ T,ν,η,i,n
t = lim

n→∞
lim
T→∞

Ŷ T,ν,η,i,n
t = lim

n→∞
Ŷ∞,ν,η,i,n
t ,

where
Ŷ∞,ν,η,i,n
t = lim

T→∞
Ŷ T,ν,η,i,n
t , n ≥ 1.

By Proposition 2.2 in [12] and the comparison theorem, it holds that

e−ρν Ŷ T,ν,η,i,0
ν = inf

θ∈Θ[ν,T ]
E
[
ζθ,νT e−ρT g(Xν,η,i

T , i)(68)

+

∫ T

ν
e−ρtζθ,νt

(
ψ(Xν,η,i

t , i)− θ′tϕ(X
ν,η,i
t , i)

)
dt

∣∣∣ Fν],
for all T ≥ ν. Now, we choose an arbitrary θ ∈ Θ[ν,∞). Then, by the equality (68) and the
temporary terminal condition, we have

e−ρν Ŷ T,ν,η,i,0
ν ≤ E

[∫ T

ν
e−ρtζθ,νt

(
ψ(Xν,η,i

t , i)− θ′tϕ(X
ν,η,i
t , i)

)
dt

∣∣∣ Fν] ,
for all T ≥ ν. By the Lebesgue dominated convergence theorem, we have

e−ρν Ŷ∞,ν,η,i,0
ν ≤ E

[∫ ∞

ν
e−ρtζθ,νt

(
ψ(Xν,η,i

t , i)− θ′tϕ(X
ν,η,i
t , i)

)
dt

∣∣∣ Fν] .
Since θ is arbitrary, we obtain that

e−ρν Ŷ∞,ν,η,i,0
ν ≤ inf

θ∈Θ[ν,∞)
E
[∫ ∞

ν
e−ρtζθ,νt

(
ψ(Xν,η,i

t , i)− θ′tϕ(X
ν,η,i
t , i)

)
dt

∣∣∣ Fν] .(69)

Now, we assume that for some n ≥ 1,

e−ρτ̃ Ŷ∞,τ̃ ,η̃,j,n−1
τ̃ ≤ sup

α∈Aj,n−1[τ̃ ,∞)
inf

θ∈Θ[ν,∞)
E
[∫ ∞

τ̃
e−ρtζθ,τ̃t

(
ψ(X τ̃ ,η̃,j,α

t , αt)− θ′tϕ(X
τ̃ ,η̃,j,α
t , αt)

)
dt

−
n−1∑
k=1

e−ρτkζθ,τ̃τk cik−1,ik(X
τ̃ ,η̃,j,α
τk

)
∣∣∣ Fτ̃

]
,
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where τ̃ ∈ Tν and η̃ ∈ L2q
τ̃ (Rd), and α ∈ Aj,n−1[τ̃ ,∞) is a set of the admissible controls on

[τ̃ ,∞) changing the regimes at most n − 1 times. On the other hand, by Proposition 7.1 in
[11] and the uniqueness of Ŷ , it holds that

e−ρν Ŷ T,ν,η,i,n
ν = sup

τ̃∈T T
τ

inf
θ∈Θ[ν,T ]

E
[
e−ρT ζθ,νT g(Xν,η,i

T , i)1l{τ̃=T}(70)

+ e−ρτ̃ζθ,ντ̃ max
j∈I\{i}

{
Ŷ
T,τ̃ ,Xν,η,i

τ̃
,j,n−1

τ̃ − ci,j(X
ν,η,i
τ̃ )

}
1l{τ̃<T}

+

∫ τ̃

ν
e−ρtζθ,νt

(
ψ(Xν,η,i

t , i)− θ′tϕ(X
ν,η,i
t , i)

)
dt

∣∣∣ Fν].
Let τ∗ be an optimal stopping time of the maximization problem in the right hand side of
(70). Then, by Proposition 2.3 in [11], we have

τ∗ = inf

{
t ∈ [ν, T ] | Ŷ T,t,Xν,η,i

t ,i,n
t = max

j∈I\{i}

{
Ŷ
T,t,Xν,η,i

t ,j,n−1
t − ci,j(X

ν,η,i
t )

}}
.

Hence,

e−ρT ζθ,νT g(Xν,η,i
T , i)1l{τ∗=T} + e−ρτ

∗
ζθ,ντ∗ max

j∈I\{i}

{
Ŷ
T,τ∗,Xν,η,i

τ∗ ,j,n−1

τ∗ − ci,j(X
ν,η,i
τ∗ )

}
1l{τ∗<T}

= e−ρτ
∗
ζθ,ντ∗

(
Ŷ
T,τ∗,Xν,η,i

τ∗ ,j∗,n−1

τ∗ − ci,j∗(X
ν,η,i
τ∗ )1l{τ∗<T}

)
,

where j∗ satisfies

Ŷ
T,τ∗,Xν,η,i

τ∗ ,i,n

τ∗ = Ŷ
T,τ∗,Xν,η,i

τ∗ ,j∗,n−1

τ∗ − ci,j∗(X
ν,η,i
τ∗ ),

if τ∗ < T , and j∗ = i otherwise. By the monotonicity of Ŷ , we have

Ŷ
T,τ∗,Xν,η,i

τ∗ ,j∗,n−1

τ∗ ≤ Ŷ
∞,τ∗,Xν,η,i

τ∗ ,j∗,n−1

τ∗ .

Hence, we obtain

e−ρν Ŷ T,ν,η,i,n
ν ≤ inf

θ∈Θ[0,T ]
E

[∫ τ∗

ν
e−ρtζθ,νt

(
ψ(Xν,η,i

t , i)− θ′tϕ(X
ν,η,i
t , i)

)
dt

+ e−ρτ
∗
ζθ,ντ∗ Ŷ

∞,τ∗,Xν,η,i
τ∗ ,j∗,n−1

τ∗ − e−ρτ
∗
ζθ,ντ∗ ci,j∗(X

ν,η,i
τ∗ )1l{τ∗<T}

∣∣∣ Fν]
≤ inf

θ∈Θ[ν,τ∗)
E

[∫ τ∗

ν
e−ρtζθ,νt

(
ψ(Xν,η,i

t , i)− θ′tϕ(X
ν,η,i
t , i)

)
dt

− e−ρτ
∗
ζθ,ντ∗ ci,j∗(X

ν,η,i
τ∗ )1l{τ∗<T}

+ ζθ,ντ∗ sup
α∈Aj∗,n−1[τ

∗,∞)
inf

θ∈Θ[τ∗,∞)
E
[∫ ∞

τ∗
e−ρtζθ,τ

∗

t

(
ψ(X

τ∗,Xν,η,i
τ∗ ,j∗,α

t , αt)

− θ′tϕ(X
τ∗,Xν,η,i

τ∗ ,j∗,j,α
t , αt)

)
dt

−
n−1∑
k=1

e−ρτkζθ,τ
∗

τk
cik−1,ik(X

τ∗,Xν,η,i
τ∗ ,j∗,α

τk )
∣∣∣ Fτ∗] ∣∣∣ Fν]

≤ sup
α∈Ai,n[ν,∞)

inf
θ∈Θ[ν,∞)

E
[∫ ∞

ν
e−ρtζθ,νt

(
ψ(Xν,η,i,α

t , αt)− θ′tϕ(X
ν,η,i,α
t , αt)

)
dt

−
n∑
k=1

e−ρτkζθ,ντk cik−1,ik(X
ν,η,i,α
τk

)
∣∣∣ Fν] ,
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where we have used the uniqueness of the strong solution of X. Taking a limit, we have

e−ρν Ŷ∞,ν,η,i,n
ν ≤ sup

α∈Ai,n[ν,∞)
inf

θ∈Θ[ν,∞)
E
[∫ ∞

ν
e−ρtζθ,νt

(
ψ(Xν,η,i,α

t , αt)− θ′tϕ(X
ν,η,i,α
t , αt)

)
dt

(71)

−
n∑
k=1

e−ρτkζθ,ντk cik−1,ik(X
ν,η,i,α
τk

)
∣∣∣ Fν] .

By the inequalities (69) and (71), we can prove that the inequality (71) holds for all n ≥ 1
using the induction method. Since Ai,n[t,∞) ⊆ Ai[t,∞) for all n ≥ 1, the inequality (71)
leads to

(72) lim
T→∞

Ŷ T,t,x,i
t = lim

n→∞
Ŷ∞,t,x,i,n
t ≤ v∞(x, i),

for all (t, x, i) ∈ [0,∞)× Rd × I. By the monotonicity of Ŷ and the inequality (72), we have

(73) Ŷ T,t,x,i
t ≤ v∞(x, i),

for all (t, T, x, i) ∈ [0,∞)2 × Rd × I.
Step.3 Convergence. To prove the opposite inequality of (72), we use the ϵ-optimal argu-

ment such as Corollary 2.1 in [1]. Fix any (t, x, i) ∈ [0,∞)× Rd × I. Let JT (t, x, i, α) be an
objective function in the finite horizon [0, T ]. Then, by the time-homogeneity, we have

Y T,t,x,i
t = Y T−t,0,x,i

0 ≥ JT−t(0, x, i, α),

for all 0 ≤ t ≤ T, x ∈ Rd, i ∈ I and α ∈ Ai[0, T − t]. Now, we fix an arbitrary t ≥ 0 and
x ∈ Rd. For any ϵ > 0, we choose a control αϵ = (τ ϵk, i

ϵ
k)k≥0 ∈ Ai[0,∞) such that

J(x, i, αϵ) ≥ v∞(x, i)− ϵ.

For all T ≥ t, define
αϵ,T−ts := αs, s ∈ [0, T − t].

Then, αϵ,T−t ∈ Ai[0, T − t] for all T ≥ t. For all T ≥ t, let

θT−t := arg inf
θ∈Θ[0,T−t]

E
[∫ T−t

0
e−ρsζθ,0s

(
ψ(X0,x,i,αϵ

s , αϵs)− θ′sϕ(X
0,x,i,αϵ

s , αϵs)
)
ds

−
∞∑
k=1

e−ρτ
ϵ
kζθ,0τϵk

ciϵk−1,i
ϵ
k
(X0,x,i,αϵ

τϵk
)1l{τk<T−t} + e−ρ(T−t)ζθ,0T−tg(X

0,x,i,αϵ

T−t , αϵT−t)

]
.

Also let

θ∞,T−t
s :=

{
θT−ts , if s < T − t,
0, otherwise,

for all T ≥ t. It is easy to check θ∞,T−t ∈ Θ[0,∞). Then, we have

J(x, i, αϵ)

≤ E
[∫ ∞

0
e−ρsζθ

∞,T−t,0
s

(
ψ(X0,x,i,αϵ

s , αϵs)− (θ∞,T−t
s )′ϕ(X0,x,i,αϵ

s , αϵs)
)
ds

−
∞∑
k=1

e−ρτ
ϵ
kζθ

∞,T−t,0
τϵk

ciϵk−1,i
ϵ
k
(X0,x,i,αϵ

τϵk
)

]

= JT−t(0, x, i, αϵ,T−t) + E
[
ζθ

∞,T−t,0
T−t

∫ ∞

T−t
e−ρsψ(X0,x,i,αϵ

s , αϵs)ds

−ζθ
∞,T−t,0
T−t

∞∑
k=1

e−ρτ
ϵ
kciϵk−1,i

ϵ
k
(X0,x,i,αϵ

τϵk
)1l{τϵk>T−t} − e−ρ(T−t)ζθ

∞,T−t,0
T−t g(X0,x,i,αϵ

T−t , αϵT−t)

]
,
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for all T ≥ t. By the polynomial growth condition and the strong triangular condition, we
have

E

[∫ ∞

T−t
e−ρsψ(X0,x,i,αϵ

s , αϵs)ds−
∞∑
k=1

e−ρτ
ϵ
kciϵk−1,i

ϵ
k
(X0,x,i,αϵ

τϵk
)1l{τϵk>T−t}

∣∣∣ FT−t]
≤ C1(1 + ∥X0,x,i,αϵ

T−t ∥q)e−ρ(T−t),

for all T ≥ t, where C1 is a positive constant not depending on T, t and x. Thus, we have

E
[
ζθ

∞,T−t,0
T−t

∫ ∞

T−t
e−ρsψ(X0,x,i,αϵ

s , αϵs)ds

−ζθ
∞,T−t,0
T−t

∞∑
k=1

e−ρτ
ϵ
kciϵk−1,i

ϵ
k
(X0,x,i,αϵ

τϵk
)1l{τϵk>T−t} − e−ρ(T−t)ζθ

∞,T−t,0
T−t g(X0,x,i,αϵ

T−t , αϵT−t)

]
≤ C2E

[
ζθ

∞,T−t,0
T−t

(
1 + ∥X0,x,i,αϵ

T−t ∥q
)
e−ρ(T−t)

]
≤ C3(1 + ∥x∥q)e−c∞(T−t),

for all T ≥ t, where C2, C3 and c∞ are positive constants not depending on T, t and x. This
implies that for sufficiently large T̃ , it holds that

J(x, i, αϵ) ≤ JT−t(0, x, i, αϵ,T−t) + C3(1 + ∥x∥q)e−c∞(T−t) ≤ JT−t(0, x, i, αϵ,T−t) + ϵ,(74)

for all T ≥ T̃ . Hence, we have

lim inf
T→∞

Y T,t,x,i
t ≥ lim inf

T→∞
JT−t(0, x, i, αϵ,T−t) ≥ J(x, i, αϵ)− ϵ ≥ v∞(x, i)− 2ϵ.

Since ϵ is arbitrarily chosen, we obtain

(75) lim inf
T→∞

Ŷ T,t,x,i
t ≥ v∞(x, i),

for all (t, x, i) ∈ [0,∞) × Rd × I. Thus, we obtain the desired equality (34). For all i ∈ I,
the convergence of (75) is locally uniform with respect to t and x by the inequalities (73)
and (74). Furthermore, Y T,t,x,i

t is continuous in t and x for all T ≥ 0 and i ∈ I. Therefore,
v∞(x, i) is continuous in x for all i ∈ I. 2

Appendix D A Viscosity Solution in the Infinite Hori-

zon

Proof of Proposition 19. Let vT (t, x, i) = Ŷ T,t,x,i
t for 0 ≤ t ≤ T, x ∈ Rd and i ∈ I. By the

definition, we have
vT (t, x, i) ≥ max

j∈I\{i}
{vT (t, x, j)− ci,j(x)},

for all 0 ≤ t ≤ T, x ∈ Rd and i ∈ I. Hence, taking a limit, we have

v∞(x, i) ≥ max
j∈I\{i}

{v∞(x, j)− ci,j(x)},

for all (x, i) ∈ Rd × I.
Furthermore, we can show the followings.
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Lemma 24 For all T > 0, x ∈ Rd and i ∈ I, vT (·, x, i) is non-increasing. Furthermore,
there exists a positive constant C such that

(76) |vT (t, x, i)− vT (s, x, i)| ≤ C(1 + ∥x∥q),

for all 0 ≤ s ≤ t ≤ T, x ∈ Rd and i ∈ I.

We will show Lemma 24 after the proof of Proposition 19.
Let C2(Rd) be a set of twice continuously differentiable functions from Rd onto R. Let

B(x) = {y ∈ Rd | ∥y − x∥ ≤ 1} be a unit ball on Rd centered on x. Now, let us show the
viscosity solution property of v∞.

Step.1 Viscosity subsolution. We arbitrarily choose φ ∈ C2(Rd) and x ∈ Rd such that
max{v∞(·, i)− φ} = v∞(x, i)− φ(x) = 0. Let

φ̂(x) := φ(x) + ∥x− x∥4.

Let (tk, xk) ∈ [0, k]×B(x) for all k = 1, 2, 3, . . . such that

max{vk(·, ·, i)− φ̂} = vk(tk, xk, i)− φ̂(xk).

Since vk(·, x, i) is non-increasing for all x ∈ Rd by Lemma 24, we have tk = 0 for all k. We
choose a subsequence of (xk)k≥1 which converges to some x0 ∈ Rd. For convenience, we also
denote this subsequence by (xk)k≥1. Then, since (xk)k≥1 ⊆ B(x), the Dini theorem leads to

lim
k→∞

vk(0, xk, i) = v∞(x0, i).

Thus, we have

0 ≤ v∞(x, i)− φ(x)− (v∞(x0, i)− φ(x0))

≤ lim
k→∞

(
vk(0, x, i)− φ̂(x)− (vk(0, xk, i)− φ̂(xk))− ∥xk − x∥4

)
≤ lim

k→∞

(
− ∥xk − x∥4

)
= −∥x0 − x∥4.

Hence, x0 = x.
Now, by Proposition 13, for all k ≥ 1, we have

0 ≥ −∂φ̂(xk)
∂t

− Liφ̂(xk)− ψ(xk, i) + ρvk(0, xk, i) + ς(xk, i, σ
′(xk, i)∇φ̂(xk))

= −Liφ̂(xk)− ψ(xk, i) + ρvk(0, xk, i) + ς(xk, i, σ
′(xk, i)∇φ̂(xk)).

Hence, by the Dini theorem, taking a limit of the above inequality, we have

0 ≥ −Liφ(x)− ψ(x, i) + ρv∞(x, i) + ς(x, i, σ′(x, i)∇φ(x)).

This implies that v∞ is a viscosity subsolution of the PDE (35).
Step.2 Viscosity supersolution. We arbitrarily choose φ ∈ C2(Rd) and x ∈ Rd such that

min{v∞(·, i)− φ} = v∞(x, i)− φ(x) = 0. For m = 1, 2, 3, . . . , let

φm(t, x) := φ(x)− ∥x− x∥4 − t

m

Now, fix an arbitrary m temporarily. Let (tk, xk) ∈ [0, k] × B(x) for all k = 1, 2, 3, . . . such
that

min{vk(·, ·, i)− φm} = vk(tk, xk, i)− φm(tk, xk).
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For any k ≥ 1, t ∈ [0, k] and x ∈ B(x), by Lemma 24, we have

vk(0, x, i)− φm(0, x)− (vk(t, x, i)− φm(t, x)) ≤ − t

m
+ C

(
1 + ∥x∥q

)
≤ − t

m
+ C

(
1 + max

y∈B(x)
∥y∥q

)
.

We now suppose that

(77) t > mC
(
1 + max

y∈B(x)
∥y∥q

)
.

Then,

vk(0, x, i)− φm(0, x)− (vk(t, x, i)− φm(t, x)) ≤ − t

m
+ C

(
1 + max

y∈B(x)
∥y∥q

)
< 0,

for all t satisfying the inequality (77). This implies that for sufficient large k̃, all tk with k ≥ k̃
are in the following compact subset.[

0,mC
(
1 + max

y∈B(x)
∥y∥q

)]
.

Now, we choose a subsequence of (tk, xk)k≥k̃ converging some (t0, x0). We also write this

subsequence as (tk, xk)k≥1 for convenience. Then, by the Dini theorem, we have

lim
k→∞

vk(tk, xk, i) = v∞(x0, i).

Hence, we have

0 ≤ v∞(x0, i)− φ(x0)− (v∞(x, i)− φ(x))

≤ lim
k→∞

(
vk(tk, xk, i)− φm(tk, xk)− (vk(tk, x, i)− φm(tk, x))− ∥xk − x∥4

)
≤ lim

k→∞

(
− ∥xk − x∥4

)
= −∥x0 − x∥4,

so x0 = x.
Now, by Proposition 13, we have

0 ≤ −∂φm(tk, xk)
∂t

− Liφm(tk, xk)− ψ(xk, i) + ρvk(tk, xk, i) + ς(xk, i, σ
′(xk, i)∇φm(tk, xk))

=
1

m
− Liφm(tk, xk)− ψ(xk, i) + ρvk(tk, xk, i) + ς(xk, i, σ

′(xk, i)∇φm(tk, xk)),

for all k ≥ 1. Thus, by the Dini theorem, taking a limit with respect to k, we have

0 ≤ 1

m
− Liφ(x)− ψ(x, i) + ρv∞(x, i) + ς(x, i, σ′(x, i)∇φ(x)).

Since m is arbitrarily chosen, tending m to infinity, we have

0 ≤ −Liφ(x)− ψ(x, i) + ρv∞(x, i) + ς(x, i, σ′(x, i)∇φ(x)).

This implies that v∞ is a viscosity supersolution of the PDE (35). 2
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Proof of Lemma 24. For all 0 ≤ h ≤ t ≤ T, x ∈ Rd and i ∈ I, we have

vT (t, x, i) = Ŷ T,t,x,i
t = Ŷ T−h,t−h,x,i

t−h (time-homogeneous Markov property)

≤ Ŷ T,t−h,x,i
t−h (monotonicity of Ŷ )

= vT (t− h, x, i).

Hence, vT (·, x, i) is non-increasing for all T > 0, x ∈ Rd and i ∈ I.
Now, we prove the inequality (76). Since t → vT (t, x, i) is non-increasing for all T, x and

i, it suffices to derive an upper boundary of vT (0, x, i)− vT (T, x, i). Then, by the polynomial
growth conditions for ϕ, ψ, g, and c and Propositions 2 and 5, it is easy to show that

vT (0, x, i)− vT (T, x, i) = Ŷ T,0,x,i
0 − g(x, i)

≤ sup
α∈Ai[0,T ]

inf
θ∈Θ[0,T ]

E
[∫ T

0
ζθ,0t e−ρt

(
ψ(X0,x,i,α

t , αt)− θ′tϕ(X
0,x,i,α
t , αt)

)
dt

+ζθ,0T e−ρT g(X0,x,i,α
T , i)−

∑
0≤τk≤T

ζθ,0τk e
−ρτkcik−1,ik(X

0,x,i,α
τk

)

− g(x, i)

≤ sup
α∈Ai[0,T ]

E
[
e−ρT g(X0,x,i,α

T , i)− g(x, i)

+

∫ T

0
e−ρtψ(X0,x,i,α

t , αt)dt −
∑

0≤τk≤T
e−ρτkcik−1,ik(X

0,x,i,α
τk

)


≤ C(1 + ∥x∥q),

where C is a positive constant not depending on T and x. 2
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