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Abstract

We study the repeated Cournot duopoly with recursive utility where the
players discount gains more than losses. First, as in the standard model of
discounted utility, we confirm that the optimal punishment equilibrium has
a stick-and-carrot structure. Next, we explore its exact form in relation to
the role of the asymmetry in discounting. We find that the discount factor
used to evaluate losses controls the deterrence of a given punishment, while
the discount factor used to evaluate gains influences the enforceability of the
penalty. An increase in one of the two discount factors increases the most
collusive equilibrium profit unless full collusion is already sustainable. However,
the key to collusion is the loss discount factor: regardless of the level of the
gain discount factor, full cooperation can be achieved if the loss discount factor
is sufficiently high.
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1 Introduction

Repeated games are used to show that mutual cooperation is sustainable in nonco-

operative environments. A seminal contribution to this field by Abreu (1988) shows

that all of the pure strategy subgame perfect equilibrium outcome paths are gener-

ated by the reversion strategy profile, where any deviation is penalized by the worst

subgame perfect equilibrium called the optimal penal code. Abreu (1986) applies

the observation to the repeated Cournot oligopoly. He shows that for the symmetric

subgame perfect equilibria, the optimal penal code has a stick-and-carrot structure:

a firm deviating from a target outcome path will be penalized severely until it ac-

cepts the penalty, and all firms start playing the most cooperative equilibrium path

as compensation if the deviator accepts the penalty. This stick-and-carrot optimal

penal code can implement an outcome path that may not be sustainable under the

conventional Nash reversion strategy profile.

These results, as well as almost all well-known results in repeated games with-

out complete patience, assume that players evaluate a payoff sequence using the

discounted utility model. However, experimental studies have reported results that

seem to contradict the discounted utility model. One of these anomalies is gain/loss

asymmetry, which is a phenomenon whereby a decision maker tends to discount gains

more than he discounts losses. This anomaly was first documented by Thaler (1981)

and repeatedly confirmed in many subsequent experiments.1 However, to the best

of our knowledge, the economic implications of gain/loss asymmetry have not been

investigated in the context of repeated games.

Given the above observations, we analyze the effect of gain/loss asymmetry on

the equilibria of repeated games, particularly via the repeated Cournot duopoly.2

We focus on a version of the preference representation suggested by Wakai (2008),

which identifies a notion of intertemporal utility smoothing as a source of gain/loss

asymmetry.3 Formally, we assume that at each time t, the firms evaluate a payoff

1See Frederick, Loewenstein, and O’Donoghue (2002) for a survey of experimental studies on
gain/loss asymmetry.

2Our results can be easily extended to the Cournot oligopoly.
3Wakai (2008) shows that his notion of intertemporal utility smoothing is consistent with the

experimental result called a preference for spread, that is, a subject prefers to spread good and bad
outcomes evenly over time.
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sequence U = (u0, u1, ...) based on the following function:

Vt(U) ≡ min
{δt+τ}∞τ=1∈[δ,δ]∞

{ ∞∑
τ=0

(1− δt+τ+1)

(
τ∏

τ ′=1

δt+τ ′

)
ut+τ

}
, (1)

where δ and δ are parameters satisfying 0 < δ ≤ δ < 1. The discounted utility model

is a special case of evaluating function (1), where δ = δ.

To show how gain/loss asymmetry is incorporated into (1), we rewrite it as follows:

Vt(U) = min
δ∈[δ,δ]

[(1− δ)ut + δVt+1(U)]

= ut + δ max {Vt+1(U)− ut, 0}+ δ min {Vt+1(U)− ut, 0} .
(2)

Evaluating function (2) belongs to a class of the recursive utility suggested by Koop-

mans (1960) that describes history-independent, stationary, and dynamically consis-

tent preferences. In particular, (2) exhibits a key feature called recursive gain/loss

asymmetry : the difference between future value Vt+1(U) and current payoff ut defines

a gain or loss, and gains and losses are discounted by δ and δ, respectively. Thus,

gains are discounted more than losses. We call δ and δ the gain discount factor and

the loss discount factor, respectively, whereas the distance between δ and δ represents

a degree of gain/loss asymmetry.

Because gain/loss asymmetry is defined on the recursive preferences, we first iso-

late the characteristics of the set of pure strategy subgame perfect equilibria induced

by the general form of history-independent and stationary recursive utility. We con-

firm that the implications derived by Abreu (1986, 1988), the existence of the optimal

penal code and its stick-and-carrot structure in the Cournot duopoly, extend to the

recursive utility. Apart from recursivity that induces dynamically consistent deci-

sion, two more assumptions, monotonicity and continuity, are essential to the above

results. In particular, the continuity, which is defined on the product topology of the

compact payoff space, is crucial because it extends the notion of positive discounting

to recursive utility and allows us to establish the one-deviation property.

Having identified the above properties, we focus on the characteristics implied

by gain/loss asymmetry via the repeated Cournot duopoly. First, we show that the

deterrence of the optimal penal code used to implement the most collusive output is

measured by

δ

1− δ

1− δ

δ
.
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This ratio is one for the discounted utility model, but it exceeds one if δ and δ differ.

Thus, gain/loss asymmetry increases the level of deterrence because the firms have a

stronger incentive to avoid losses than to receive gains so that a less powerful penal

code is sufficient to implement a given level of a target payoff sequence.

Second, we examine the role of each of the discount factors separately. We show

that an increase in a discount factor, either δ or δ, results in a more collusive profit

and a stronger penalty, unless either full collusion or the minimax value is already

sustainable by an equilibrium. This generalizes the known result for the discounted

utility because an increase in either discount factor corresponds to an increase in

patience. However, the mechanism that leads to the above result depends on which

discount factor increases. The loss discount factor δ controls the deterrence of the op-

timal penal code because it evaluates the future loss invoked by the current deviation.

Thus, as δ increases, the increased fear of suffering from loss allows the same penal

code to implement a more collusive path. A higher collusive profit also implements

a severer current penalty even when δ remains unchanged. On the other hand, the

gain discount factor δ controls the enforceability of the optimal penalty because it

evaluates the future gain received as compensation for accepting the current penalty.

Thus, as δ increases, the increased anticipation of future gain allows firms to imple-

ment a severer current penalty. This severer penalty also strengthens the punishment

and therefore implements a more collusive path even when δ remains unchanged.

Third, we derive two Folk theorem–type results and confirm that the loss discount

factor δ is the key to collusion. One result is an extension of the standard Folk theorem

and states that if the loss discount factor δ is sufficiently high, firms can engage in

full cooperation by producing half of the monopoly output, regardless of the level of

δ. This happens because δ solely determines the deterrence of the Nash reversion

strategy profile, which is strong enough to implement the full cooperation if δ is

sufficiently high.

The other Folk theorem–type result is a reverse Folk theorem, which is new and

unique to evaluating function (2). This result states that as δ goes to zero, (i) the

optimal penalty converges to the Cournot equilibrium output, and (ii) the best co-

operative profit converges to the highest profit implementable by a Nash reversion

strategy profile, which is independent of δ. This occurs because for each δ, δ deter-

mines the enforceability of the optimal penalty, which becomes weaker as δ decreases.

By showing that the best cooperative profit asymptotically depends only on δ, the

reverse Folk theorem also emphasizes the key role of the loss discount factor.
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Fourth, we investigate how a stronger desire for smoothing allocations over time

affects collusion. Such a desire is expressed by increasing δ or by decreasing δ, because

the firm with evaluating function (1) dislikes the volatility involved in the payoff (or

utility) sequence more than the firm with either smaller δ or bigger δ. As we have

seen, a higher δ leads to more collusive outcomes, and a lower δ leads to less collusive

outcomes. Thus, if the former effect outweights the latter effect, a stronger desire

results in more collusive outcomes, and vice versa. This confirms that the level of the

loss discount factor δ, not the degree of gain/loss asymmetry, is a key to collusion.

We now review the related literature. As for the models of discounting that exhibit

gain/loss asymmetry, evaluating function (2) is closely related to the models suggested

by Loewenstein and Prelec (1992) and Shalev (1997). Loewenstein and Prelec (1992)

show that if a gain or a loss is defined based on a variation in a utility sequence,

gain/loss asymmetry can capture a preference for smoothing a utility distribution

over time, which is consistent with several experimental findings contradicting the

additive separability assumed in the discounted utility model. Shalev (1997) adopts

a related but different notion of utility smoothing suggested by Gilboa (1989) and

analyzes a behavior similar to loss aversion (Kahneman and Tversky (1979), Tversky

and Kahneman (1991)). However, the aforementioned models describe static choices

and, if we apply them to a dynamic setting, they generate dynamically inconsistent

decision. On the contrary, evaluating function (2) induces stationary and dynamically

consistent decision, which allows us to extend the known results for the discounted

utility to the case of gain/loss asymmetry.

This paper contributes to the literature showing that the stick-and-carrot struc-

ture of the optimal punishment, first developed by Abreu (1986) in the context

of the Cournot oligopoly with homogenous products, extends to other oligopolis-

tic environments. Those extensions include the case of imperfect price information

(Abreu, Pearce, and Stacchetti (1986)), Bertrand price competition (Häckner (1996)),

and oligopoly with differentiated products (Lambertini and Sasaki (1999)). The

idea of stick-and-carrot strategies also applies to tariff-setting trade liberalization

(Furusawa (1999)). In contrast, this paper extends to the recursive utility and pro-

vides explicit and readily testable formulae for the optimal collusion and punishments

under gain/loss asymmetry. We limit our attention to the standard Cournot model

with homogenous products, but the main insights easily apply to the frameworks of

the aforementioned papers.

Some papers study repeated games without the assumption of discounted utility.
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Chade, Prokopovych, and Smith (2008) assume that the players have β–δ preferences,

and characterize the Strotz-Pollak equilibria by Peleg and Yaari (1973). Obara and

Park (2015) extend the analysis to general discounting functions including the β–δ

ones as special cases.4 We explore the implications of general recursive utility.

In that sense, their companion paper (Obara and Park (2014)) is more closely

related to ours because it considers a class of time preferences including recursive

utilities as special cases. The authors’ results on the structure of Strotz-Pollak equi-

libria are similar to our results under recursive utility.5 The difference is that while

Obara and Park (2014) examine how the general methodology for the discounted

utility model extends to general time preferences possibly without recursive struc-

ture (under the Strotz-Pollak equilibrium concept), we focus on the case of recursive

gain/loss asymmetry and provide its implications on collusion in detail.

Kochov and Song (2015) employ the recursive utility criterion by Uzawa (1968)

and Epstein (1983), where a player’s discount factor for the next period depends on

the current period payoff. For our criterion, the discount factor also depends on the

continuation payoff from the next period on. The difference between the two models

is salient when the Uzawa-Epstein type utility has a discount factor that is decreasing

in the current period payoff. In this case, Kochov and Song (2015) show that the most

efficient equilibrium can involve intertemporal trade so that the players alternately

play different action profiles. Our model does not favor such an implication because

the players with recursive gain/loss asymmetry dislike volatility brought about by the

intertemporal trade under their equilibrium.

The paper proceeds as follows. Section 2 defines the setting of the game and

examines the behavior induced by evaluating function (2). Assuming a general form

of recursive utility, Section 3 characterizes the optimal penal code and the associated

reversion strategy profile as well as the structure of the equilibria of the repeated

Cournot duopoly. Section 4 then examines the effect of gain/loss asymmetry on the

equilibria of the repeated Cournot duopoly. Section 5 concludes the paper. All proofs

are presented in the appendices.

4The β–δ preferences are a class of the discount functions with present bias. Obara and
Park (2015) consider both the discounting functions with present bias and the functions with future
bias.

5The Strotz-Pollak equilibrium concept reduces to the standard equilibrium concept under re-
cursive utility.
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2 Model

2.1 General Setting

The stage game, denoted by G =
(
I, {Ai}Ii=1 , {ui}Ii=1

)
, is an I-player simultaneous

move game, where player i’s action space Ai is a compact topological space and player

i’s payoff function ui :
I∏

i=1

Ai → R is continuous. We define A by A ≡
I∏

i=1

Ai and use

q(t) ≡ (q
(t)
1 , ..., q

(t)
I ) ∈ A to denote a vector of actions taken at time t by all players,

where time t varies over N = {0, 1, 2, ...}. We refer to q(t) as an action profile or a

time-t action profile if we want to emphasize the time period.

We consider the supergame G∞ obtained by repeating game G infinitely often.

For each t with t > 0, let H t−1 be defined by H t−1 ≡ At, each element of which,

ht−1 ≡ (q(0), ..., q(t−1)), is a series of realized actions at all periods before period t.

We assume that H−1 ≡ A0, which consists of a single element. For each player i,

we focus on a pure strategy si, that is, a sequence of functions si ≡ {si,t}∞t=0, where

si,t : H t−1 → Ai for each t. A strategy profile s is defined by s ≡ (s1, ..., sI), and

let S be the collection of strategy profiles. We define the time-t action profile q(t)(s)

by q(t)(s) ≡ (q
(t)
1 (s), ..., q

(t)
I (s)), where q

(t)
i (s) is the time-t action taken by player i

when the players follow s. A path Q is a sequence of action profiles denoted by

Q ≡ (q(0), q(1), ...). In particular, Q(s) is the path of the strategy profile s, that

is, Q(s) ≡ (q(0)(s), q(1)(s), ...). Moreover, for any path Q ∈ (A)∞, let Ui(Q) be the

sequence of player i’s payoffs (ui(q
(0)
1 , ..., q

(0)
I ), ui(q

(1)
1 , ..., q

(1)
I ), ...) ∈ [ui (A)]∞, where

ui (A) is the range of ui.

At each time t, player i evaluates his payoff sequence Ui(Q) by a continuous and

strictly monotone function Vi,t : [ui (A)]∞ → R, where we adopt the product topology

on A∞ as well as [ui (A)]∞. Because A is compact and ui is continuous on A, it

follows from Tychonoff’s theorem that A∞ and [ui (A)]∞ are compact. Moreover, the

continuity of Vi,t implies that the image of Vi,t is compact. Given the above properties,

we assume that player i’s preferences follow the recursive utility defined by

Vi,t(Ui(Q)) = Wi(ui(q
(t)
1 , ..., q

(t)
I ), Vi,t+1(Ui(Q))), (3)

where the aggregator function Wi : ui (A) × R → R is continuous and strictly in-

creasing in both arguments. The recursive utility represents all classes of continuous

and dynamically consistent intertemporal preferences, which are history-independent,
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stationary, and monotone in payoffs.6

2.2 Example: The Repeated Cournot Duopoly

When we study the implication of gain/loss asymmetry, we use a particular example,

which is the repeated Cournot duopoly having the stage game G =
(
2, {Ai}2i=1 , {ui}2i=1

)
defined as follows. At each period t, the two firms simultaneously decide their supply,

q
(t)
1 and q

(t)
2 , of an identical product, where their production has a constant marginal

cost c > 0 and q
(t)
1 and q

(t)
2 belong to the compact subset A1 and A2 of R+, respec-

tively. We assume that A1 = A2 = [0,M ], and we will make assumptions on M later.

Let q(t) ≡ (q
(t)
1 , q

(t)
2 ) be a combination of time-t products supplied to the market by

firms 1 and 2. Firm i’s profit is computed based on the price at which the market

supply q
(t)
1 +q

(t)
2 is equal to the market demand. To derive comparable results to those

obtained by much of the applied literature on the Cournot duopoly game, we assume

that the market demand for this product is expressed by a linear inverse demand

function p : R+ → R+, that is,

p(z) =

⎧⎨
⎩

a− bz if z ≤ a

b
,

0 if z >
a

b
,

where a and b are positive real numbers satisfying a > c and [0,
a

b
] ⊂ A1. Thus, the

profit of firm i, when the market supply is q
(t)
1 + q

(t)
2 , is expressed by the function

ui(q
(t)
1 , q

(t)
2 ), where

ui(q
(t)
1 , q

(t)
2 ) ≡ p(q

(t)
1 + q

(t)
2 )q

(t)
i − cq

(t)
i .

To characterize the equilibria below, we follow Abreu (1986) and introduce a few

more notations. Let r∗(q′) be the best response profit of one firm when the opponent’s

output is q′. That is,

r∗(q′) ≡ max
q∈A1

{p(q + q′)q − cq} =

⎧⎪⎨
⎪⎩

1

b

(
a− c− bq′

2

)2

if q′ ≤ qMC ,

0 if q′ > qMC ,

where qMC is the threshold defined by

qMC ≡ a− c

b
.

6Given history independence, Vi,t depends solely on (ui(q(t)), ui(q(t+1)), ...).
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If firm j produces more than qMC , the price is forced to be below the marginal cost c.

Thus, firm i has no incentive to supply the product in the stage game G. Moreover,

we use r(q) to denote the profit of the firm when both firms produce the same level

of output q, that is, r : A1 → R that satisfies

r(q) ≡
⎧⎨
⎩

(a− c− 2bq) q if q ≤ a

2b
,

−cq if q >
a

2b
.

The above definitions also imply that (i) r∗ : A1 → R is continuous and decreasing

and (ii) r : A1 → R is continuous.

Another notation we use is qcn, which is the Cournot equilibrium quantity defined

by the output level that satisfies r∗(qcn) = r(qcn). Namely,

qcn =
a− c

3b
.

The most collusive output level, denoted by qm, is defined by

qm ≡ arg max
q∈A1

r(q) =
a− c

4b
,

which is half of the monopoly output. We can then confirm that r : A1 → R is strictly

decreasing if q > qm.

Finally, for this example, we assume that the firms have identical recursive utility.

Specifically, in (3), we have V0 ≡ V1,0 = V2,0 and W = W1 = W2. We also assume

that the largest output level M satisfies

W (r(M), V0(r(q
m), r(qm), . . . ))) < V0(0, 0, . . . ). (4)

Note that (4) implies r(M) < 0. The above inequality shows that if both firms choose

M at some period, they incur a significant loss that cannot be compensated for by

sharing monopoly profits in all subsequent periods.

2.3 Recursive Preferences Exhibiting Gain/Loss Asymmetry

We primarily consider a version of the model of utility smoothing as developed by

Wakai (2008):

Vi,t(Ui(Q)) ≡ min
{δt+τ}∞τ=1∈[δi,δi]∞

{ ∞∑
τ=0

(1− δt+τ+1)

(
τ∏

τ ′=1

δt+τ ′

)
ui(q

(t+τ))

}
(5)

= min
δ∈[δi,δi]

[(1− δ)ui(q
(t)) + δVi,t+1(Ui(Q))],

9



where δi and δi are parameters satisfying 0 < δi ≤ δi < 1. Thus, representation (5)

leads to a weighted average of a payoff sequence, where the sequence of the weights

applied depends on the nature of the payoff sequence.7 Moreover, representation (5)

is a class of the recursive utility (3) with the following aggregator function

Wi(ui(q
(t)), Vi,t+1(Ui(Q))) = min

δ∈[δi,δi]

[(1− δ)ui(q
(t)) + δVi,t+1(Ui(Q))]. (6)

Following the explanation in the introduction, we will call δi and δi the gain discount

factor and the loss discount factor, respectively, whereas the distance between δi and

δi represents the degree of gain/loss asymmetry.

The gain/loss asymmetry introduced in (5) expresses the desire to lower the volatil-

ity involved in a payoff sequence. To see this further, let U denote a sequence of

payoffs, and let u denote a sequence of a constant payoff u. Then, by following Wakai

(2008), we say that firm j is more time-variability averse than firm i if for any u and

any U ,

Vi,t(u) ≥ Vi,t(U) implies Vj,t(u) ≥ Vj,t(U),

and the latter is strict if the former is strict.

Two firms agree on the ranking of a constant payoff sequence, whereas any payoff

sequence disliked by firm i is disliked by firm j. Moreover, Wakai (2008) shows that

this relation is translated into the set inclusion, that is, firm j is more time-variability

averse than firm i if and only if

[δj , δj ] ⊇ [δi, δi], (7)

where [δi, δi] and [δj, δj ] represent sets of discount factors for Vi,t and Vj,t, respectively.

In this paper, we further extend this notion and say that firm j is strictly more time-

variability averse than firm i if (i) firm j is more time-variability averse than firm i,

and (ii) there exist u and U such that

Vi,t(u) = Vi,t(U) but Vj,t(u) > Vj,t(U).

This strict relation is equivalent to (7) with the strict inclusion.

To study the role of discount factors, we further need to introduce a comparative

notion that focuses on the degree of patience. For this purpose, let (u0, u1) denote

7It is easy to see that
∞∑

τ=0

(1− δt+τ+1)

(
τ∏

τ ′=1

δt+τ ′

)
= 1 for any t.
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a sequence of payoffs, where u0 is the payoff of the first period and u1 is a constant

continuation payoff of u1. We say that firm j is more patient than firm i if for any

sequence (u0, u1) satisfying u0 ≤ u1 and any u,

Vi,t((u0, u1)) ≥ Vi,t(u) implies Vj,t((u0, u1)) ≥ Vj,t(u),

and the latter is strict if the former is strict,

and for any sequence (u0, u1) satisfying u0 ≥ u1 and any u,

Vi,t((u0, u1)) ≤ Vi,t(u) implies Vj,t((u0, u1)) ≤ Vj,t(u),

and the latter is strict if the former is strict.

Two firms agree on the ranking of a constant payoff sequence, whereas any increasing

payoff sequence liked by firm i is liked by firm j and any decreasing payoff sequence

disliked by firm i is disliked by firm j. This relation is translated into the following

set ordering, that is, firm j is more patient than firm i if and only if

δi ≤ δj and δi ≤ δj. (8)

We also say that firm j is strictly more patient than firm i if (i) firm j is more patient

than firm i, and (ii) there exist u and (u0, u1) such that

Vi,t((u0, u1)) = Vi,t(u) but Vj,t((u0, u1)) 
= Vj,t(u).

This strict relation is equivalent to (8) with at least one strict inequality. Note that

for the discounted utility model, the condition on increasing payoff sequences implies

the condition on decreasing payoff sequences, but for evaluating function (5), one

does not imply the other.

3 Equilibria under General Recursive Utility

3.1 Penal Code and Reversion Strategy Profile

Let S∗ be the set of all pure strategy subgame perfect equilibria of G∞. We assume

that S∗ is nonempty.8 Moreover, for each i, we define vi and vi by

vi ≡ inf {Vi,0(Ui(Q(s))) |s ∈ S∗}
8A sufficient condition applied to any Wi is that the stage game G has a pure strategy Nash

equilibrium.
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and

vi ≡ sup {Vi,0(Ui(Q(s))) |s ∈ S∗} ,

where Vi,0 follows (3). The next proposition shows the existence of subgame perfect

equilibria si and si in S∗ under which player i’s payoff is vi and vi, respectively. This

result is an extension of Abreu’s (1988) Proposition 2 to the situation of recursive

utility (see Appendix A for the proof).

Proposition 1: Suppose that players evaluate payoff sequences by (3). Then, for

each i, there exist subgame perfect equilibria si and si in S∗ that satisfy Vi,0(Ui(Q(si)))

= vi and Vi,0(Ui(Q(si))) = vi, respectively.

Next, for an (I + 1)-tuple of paths (Q, Q1, . . . , QI), we define a reversion strategy

profile s(Q, Q1, . . . , QI) as follows: (i) Q is the initial ongoing path, and players play it

until some player deviates unilaterally from it, and (ii) if player j unilaterally deviates

from the current ongoing path, Qj becomes the next ongoing path, and they play it

until some player deviates unilaterally from it.9 If all the players follow this reversion

strategy profile, the path becomes Q regardless of whether it is an equilibrium. In

Appendix A, we show how to construct si and si based on the reversion strategy

profiles.

A key result of Abreu (1988) is that for the discounted utility model, any subgame

perfect equilibrium path Q is implemented as a subgame perfect equilibrium by the

reversion strategy profile s(Q, Q(s1), . . . , Q(sI)). Under the equilibrium, the ongoing

path after any player’s unilateral deviation is the player’s worst equilibrium path. The

vector (s1, ..., sI) is called an optimal penal code. This result simplifies the analysis

of subgame perfect equilibria because we can restrict our attention to the paths that

are supported by the optimal penal code. The next proposition shows that the same

simplification holds for the recursive utility (see Appendix A for the proof).

Proposition 2: Suppose that players evaluate payoff sequences by (3). Then, for

any subgame perfect equilibrium s∗ in S∗, the equilibrium path Q(s∗) can be gen-

erated as the path of the reversion strategy profile s(Q(s∗), Q(s1), ..., Q(sI)), where

s(Q(s∗), Q(s1), ..., Q(sI)) is a subgame perfect equilibrium in S∗.

9This reversion strategy profile s(Q, Q1, ..., QI) corresponds to a simple strategy profile in Abreu
(1988).
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Propositions 1 and 2 show that the nonlinearity introduced on the aggregator

function Wi does not alter the topological nature of the set of pure strategy subgame

perfect equilibria or the effectiveness of the reversion strategy profiles. Therefore,

monotonicity, continuity, and recursivity are key properties that derive these results.

Note that Wi and ui need not be identical to Wj and uj if i 
= j.

3.2 The Repeated Cournot Duopoly

For this example, we focus on a symmetric subgame perfect equilibrium of G∞. Let

Γ be the collection of all symmetric paths, and let S∗(Γ) be the collection of all

subgame perfect equilibria whose continuation paths on and off the equilibrium are

all in Γ. As shown in Lemma A.3 (see Appendix B), Propositions 1 and 2 hold for

S∗(Γ) replacing S∗. Recall that each firm evaluates a payoff sequence by the same

evaluating function V0 based on the same aggregator function W . Thus, we use

sv = (sv
1, s

v
2) and sw = (sw

1 , sw
2 ) to denote each player’s best and worst symmetric

subgame perfect equilibria in S∗(Γ), respectively. For any s∗ ∈ S∗(Γ), the reversion

strategy profile s(Q(s∗), Q(sw), Q(sw)) is a symmetric subgame perfect equilibrium.

In what follows, a symmetric subgame perfect equilibrium will be simply called

an equilibrium. The next proposition shows that the optimal penal code and the best

equilibrium satisfy a structure analogous to those of equilibria under the discounted

utility model (see Appendix B for the proof).

Proposition 3: Suppose that firms evaluate payoff sequences by the same form of

evaluating function (3).

(i) The best equilibrium path, denoted by Qv, is unique, where both firms produce

qv satisfying qm ≤ qv ≤ qcn in each period.

(ii) Let qw be the largest solution of

W (r(q), V0(Ui(Q
v))) = V0(r

∗(q), r∗(q), . . . ), (9)

and define the path Qw by Qw = ((qw, qw), (qv, qv), (qv, qv), . . . ). Then, the re-

version strategy profile s(Qw, Qw, Qw) is a worst equilibrium.

(iii) It follows that

V0(Ui(Q
v)) = V0(r(q

v), r(qv), . . . ) ≥W (r∗(qv), V0(Ui(Q
w))), (10)
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where the inequality is strict only if qv = qm. Moreover,

V0(Ui(Q
w)) = V0(r

∗(qw), r∗(qw), . . . ). (11)

Proposition 3-(i) and (ii) correspond to Abreu’s (1986) Theorem 9 and 13, re-

spectively. The results show that the best equilibrium path is constant, and there

exists a worst equilibrium with a stick-and-carrot structure. Namely, under the worst

equilibrium path, the firms first produce a penalty output (qw) and then play the

best equilibrium path (Qv) from the next period onward. Any unilateral deviation

lets them restart the path. Again, monotonicity, continuity, and recursivity are key

properties to the above result.

4 Implications from Gain/Loss Asymmetry

We study the implications from gain/loss asymmetry via the repeated Cournot duopoly.

Because we assume V0 = V1,0 = V2,0 and W = W1 = W2, we define δ ≡ δ1 = δ2 and

δ ≡ δ1 = δ2. Moreover, for any output level q, we define ←−q = (q, q). Proposition 3

implies that there uniquely exist qv and qw such that (a) any best equilibrium has the

path Qv ≡ (←−q v,←−q v, . . . ) and (b) Qw ≡ (←−q w,←−q v,←−q v, . . . ) is a worst equilibrium

path. Because these qv and qw can be considered functions of δ and δ, we analyze

their dependence on δ and δ.

Let us adopt Proposition 3 to evaluating function (5). First, the definitions of Qv

and Qw imply that V0(Ui(Q
v)) = V0

(
r(qv), r(qv), . . .

)
= r(qv) and

V0(Ui(Q
w)) = W (r(qw), V0(Ui(Q

v))) = min
δ∈[δ,δ]

[(1− δ)r(qw) + δr(qv)]

= (1− δ)r(qw) + δr(qv), (12)

where (12) follows because r(qv) ≥ r(qw). Combining this with (11), we obtain

(1− δ)r(qw) + δr(qv) = r∗(qw). (13)

Now, suppose that the full collusion is not sustainable, so that qv > qm. Then,

(10) and (11) imply

V0(Ui(Q
v)) = W (r∗(qv), V0(Ui(Q

w))) = min
δ∈[δ,δ]

[(1− δ)r∗(qv) + δr∗(qw)],

14



that is,

r(qv) = (1− δ)r∗(qv) + δr∗(qw), (14)

where (14) follows because r∗(qv) ≥ r∗(qw).

It is helpful to understand (13) and (14) in terms of the rates of substitution

between the current stage payoff and the continuation value in aggregator function

(6). Figure 1 plots two indifference curves for the case of δ > δ in the plane where

the horizontal and vertical axes measure the current stage payoff and the future

continuation value, respectively. Each indifference curve consists of two lines, whose

u

V

r(qv)

r(qv)r∗(qw)r(qw) r∗(qv)

r∗(qw)

Figure 1: The best and worst equilibria under partial collusion

kink occurs on the 45-degree line. Because the preference exhibits recursive gain/loss

asymmetry, the slope is steeper above the 45-degree line than below the line. Thus,

the indifference curves are convex toward the origin. Discounted utility is a special

case where each indifference curve consists of a single line.

The indifference curve that goes through (r(qv), r(qv)), which corresponds to the

best equilibrium path, also goes through (r∗(qv), r∗(qw)), which corresponds to the

most profitable one deviation from the best equilibrium path. The indifference be-

tween the two points is due to (14). The indifference curve that goes through

(r(qw), r(qv)), which corresponds to the worst equilibrium path, also goes through

(r∗(qw), r∗(qw)), which corresponds to the most profitable one deviation from the

worst equilibrium path. The indifference between the two points is due to (13).
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Figure 1 implicitly assumes that qv < qcn < qw (otherwise, we would have r(qv) =

r∗(qv) or r(qw) = r∗(qw)). Lemma A.5, proved in Appendix C, verifies that this is the

case for any δ ∈ (0, 1) and δ ∈ [δ, 1). Therefore, repeated interaction always enables

firms to attain some level of collusion via a nontrivial, stick-carrot punishment. Thus,

(13) and (14) imply

r(qv)− r∗(qw)

TP (qv)
=

1− δ

δ
, (15)

r(qv)− r∗(qw)

TP (qw)
=

1− δ

δ
, (16)

where TP (q) ≡ r∗(q) − r(q). TP (q) measures the size of temptation at q, or the

short-run gain from deviating to a static best response.

In (15), the denominator TP (qv) = r∗(qv) − r(qv) represents the temptation of

the firms on the best equilibrium path. The numerator is the difference between the

best and worst equilibrium payoffs, which is the size of future rewards for following

the equilibrium play. When the firms can collude only partially, they are indifferent

between the continuation strategy and the most profitable one deviation. Therefore,

(15) defines the rate of substitution of the current payment for the future reward.

Here, the rate of substitution is associated with the loss discount factor, because

the equilibrium path is constant, whereas a deviator faces a loss in the future (see

Figure 1).

Similarly, the denominator of (16) represents the temptation in the initial period

of the worst equilibrium. Here, the firms are indifferent between the equilibrium

strategy and the most profitable one deviation. Therefore, (16) defines the rate

of substitution of the current payment for the future reward. This time, the gain

discount factor determines the rate of substitution, because the equilibrium payoff

sequence exhibits gain in the future, while a deviator receives the same current and

continuation values.

Let us summarize the arguments above.

Proposition 4: Suppose that firms evaluate payoff sequences by the same evaluating

function satisfying (5). If qm < qv,

(i)
r(qv)− r∗(qw)

TP (qv)
=

1− δ

δ
and

r(qv)− r∗(qw)

TP (qw)
=

1− δ

δ
,

(ii)
TP (qv)

TP (qw)
= 1 if δ = δ, and
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(iii)
TP (qv)

TP (qw)
=

δ

1− δ

1− δ

δ
> 1 if δ < δ.

Proposition 4-(i) extends Abreu’s (1986) Theorem 15 to evaluating function (5).

In Abreu (1986), (15) and (16) are equal to
1− δ

δ
, which is evaluated by a single

discount factor δ. Proposition 4-(iii) states that the ratio of temptations at the best

and worst equilibrium paths, which we call the temptation ratio, equals the ratio of

the rates of substitution of the indifference curves. The latter measures the degree

of convexity of indifference curves, that is, the degree of gain/loss asymmetry. By

construction, it is more than one and increases as δ decreases or δ increases. This

result contrasts to Proposition 4-(ii), which shows that the temptation ratio implied

by the discounted utility model is always one. The way the temptation ratio depends

on the two discount factors suggests that the role of δ is different from that of δ. To

see this further, we conduct comparative statics based on the set of discount factors.

Let Δ and Δ′ be the sets of discount factors such that Δ ≡ [δ, δ] and Δ′ ≡ [δ′, δ
′
].10

Let qv,Δ and qw,Δ be the output levels specified in Proposition 3 under the evaluating

function with the set of discount factors Δ. Specifically, qv,Δ is the collusive output

under the best equilibrium, and qw,Δ is the penalty output in the initial period of

the worst equilibrium. We also define qv,Δ′
and qw,Δ′

similarly. We assume that the

largest output level M satisfies (4) under both Δ and Δ′.

Propositions 5 and 6 below show that except a few circumstances, if the firms

are strictly more patient, the most collusive output decreases and the penalty out-

put increases. Thus, more collusive outcomes can be sustained via severer penalty.

Proposition 6 identifies the case where strictly more patience does not change the most

collusive output or the penalty output. We start with Proposition 5 (see Appendix C

for the proof).

Proposition 5: Suppose that for each supergame G∞, firms evaluate payoff sequences

by the same evaluating function satisfying (5), where firms with Δ′ are strictly more

patient than firms with Δ. If qm < qv,Δ < qcn < qw,Δ < qMC, then qv,Δ′
< qv,Δ and

qw,Δ′
> qw,Δ. Namely, r(qv,Δ′

) > r(qv,Δ) and r∗(qw,Δ′
) < r∗(qw,Δ).

Proposition 5 shows that the best equilibrium payoff increases, and the worst

equilibrium payoff decreases as δ or δ increases. Abreu’s (1986) original result for the

10We allow the case δ = δ and/or δ′ = δ
′

so that we can also compare the results with the
discounted utility model.
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discounted utility model is a special case of Proposition 5. Note that the condition

qm < qv,Δ < qcn < qw,Δ < qMC implies that the best equilibrium does not sustain full

collusion, and the worst equilibrium does not attain the minimax value. Proposition 6

deals with the remaining case where full collusion or the minimax value is sustainable.

To understand the result of Proposition 5, we examine the effects of an increase in

δ and an increase in δ separately. Because qm < qv,Δ, (13) and (14) under Δ reduce

to

(1− δ)r∗(qv,Δ) + δr∗(qw,Δ) = r(qv,Δ), (17)

(1− δ)r(qw,Δ) + δr(qv,Δ) = r∗(qw,Δ). (18)

Suppose the loss discount factor increases to δ
′

while the gain discount factor

remains the same (δ′ = δ). As shown in Figure 2, the slope of the indifference

curves below the 45-degree line flattens. Then, (r∗(qv,Δ), r∗(qw,Δ)) is located below

the indifference curve that goes through (r(qv,Δ), r(qv,Δ)). That is,

u

V

r(qv,Δ)

r(qv,Δ)

r∗(qw,Δ)

r(qw,Δ) r∗(qv,Δ)

r∗(qw,Δ)

r∗(qv∗)

r(qv∗)

r(qv∗)

Figure 2: An increase from δ to δ
′
(less thick line); first-order effects

(1− δ
′
)r∗(qv,Δ) + δ

′
r∗(qw,Δ) < r(qv,Δ). (19)

We can also obtain (19) from (17) and δ
′
> δ.

From (18) and (19), we see that both the best and worst equilibria under Δ

continue to be equilibria under Δ′.11 More importantly, as (19) shows, the incentive

11Lemma A.6 formally proves this claim.
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condition on the best equilibrium path under Δ does not bind under Δ′. The slack

is significant because the same punishment can implement a more collusive path.

In other words, the first-order effect of an increase in the loss discount factor is to

strengthen the deterrence of a given level of punishment.

Figure 2 describes the first-order effect. Let qv∗ be the smallest q ∈ [qm, qv,Δ) such

that

(1− δ
′
)r∗(q) + δ

′
r∗(qw,Δ) ≤ r(q). (20)

Figure 2 corresponds to the case where (20) holds with equality at q = qv∗. From

this and (18), the reversion strategy profile whose target path is repeated play of

(qv∗, qv∗) and whose punishment path given any firm’s unilateral deviation is the

worst equilibrium path under Δ is an equilibrium under Δ′. Hence, a more collusive

path is implementable under Δ′. If (20) holds at q = qm, this implies qv∗ = qm and

therefore full collusion is implementable.

Next, suppose the gain discount factor increases to δ′ while the loss discount

factor remains the same (δ
′
= δ). As shown in Figure 3, the slope of the indifference

curves above the 45-degree line flattens. Then, (r(qw,Δ), r(qv,Δ)) is located above the

indifference curve that goes through (r∗(qw,Δ), r∗(qw,Δ)). That is,

(1− δ′)r(qw,Δ) + δ′r(qv,Δ) > r∗(qw,Δ). (21)

We can also obtain (21) from (18) and δ′ > δ.

From (17) and (21), both the best and worst equilibria under Δ are no longer equi-

libria under Δ′. The point is that an increase in the gain discount factor increases the

value of the payoff sequence associated with the punishment path (←−q w,Δ,←−q v,Δ,←−q v,Δ, . . . ).

Thus, this punishment path no longer deters a deviation when the firms produce the

collusive output qv,Δ. On the other hand, because the firms value future compen-

sation more, they are willing to bear severer current penalties for a given level of

future compensation. In other words, the first-order effect of an increase in δ is to

strengthen the penalty enforced by a given level of compensation.

Figure 3 indicates that there exists qw∗ > qw,Δ such that

(1− δ′)r(qw∗) + δ′r(qv,Δ) = r∗(qw∗) (22)
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r(qv,Δ)

r(qv,Δ)

r∗(qw,Δ)r(qw,Δ) r∗(qv,Δ)

r∗(qw,Δ)

r∗(qw∗)r(qw∗)

r∗(qw∗)

Figure 3: An increase from δ to δ′ (less thick line); first-order effects

holds.12 Because qw∗ > qw,Δ implies r∗(qw∗) < r∗(qw,Δ), we obtain

(1− δ)r∗(qv,Δ) + δr∗(qw∗) < r(qv,Δ) (23)

from (17) (compare “�” and “�” in Figure 3).

Let Qw∗ be the path such that both firms choose qw∗ in the initial period and choose

qv,Δ in all subsequent periods. Then, (22) and (23) imply that the reversion strategy

profile s(Qw∗, Qw∗, Qw∗) is an equilibrium under Δ′, where the value of its payoff

sequence is r∗(qw∗).13 Because r∗(q) is strictly decreasing on [0, qMC ] and qw,Δ < qMC ,

the value of this equilibrium payoff sequence is smaller than the value of the worst

equilibrium payoff sequence under Δ. Hence, a severer penalty is implementable

under Δ′.

Proposition 5 states that both a more collusive path and a severer penalty are

sustainable even when just one of the gain and loss discount factors increases. It

is the higher-order effects which account for an increase in qw when only the loss

discount factor increases, and a decrease in qv when only the gain discount factor

12As we will see in the proof of Proposition 5 (Appendix C), this is a consequence of continuity
and (4).

13Lemma A.6 formally proves this claim.
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increases. Suppose only the loss discount factor increases from δ to δ
′
. The first-

order effect of this increase verifies that r(qv,Δ′
) > r(qv,Δ). Proposition 3 applied to

recursive gain/loss asymmetry implies that qw,Δ′
is the largest q such that

r∗(q) = (1− δ)r(q) + δr(qv,Δ′
).

Because (18) implies

r∗(qw,Δ) < (1− δ)r(qw,Δ) + δr(qv,Δ′
),

comparing the above equation and inequality proves that qw,Δ′
> qw,Δ.14

Next, suppose only the gain discount factor increases from δ to δ′. This time, the

first-order effect verifies that r∗(qw∗) is the value of an equilibrium payoff sequence,

which is smaller than the value of the worst equilibrium payoff sequence under Δ.

From qm < qv,Δ and (23), there exists q ∈ (qm, qv,Δ) such that

(1− δ)r∗(q) + δr∗(qw∗) < r(q).

It follows from (22) that

(1− δ′)r(qw∗) + δ′r(q) > r∗(qw∗).

From these, we see that it is an equilibrium path for both firms to choose q in all

periods.15 This proves that qv,Δ > qv,Δ′
.

The next proposition also conducts comparative statics for the case where qv,Δ =

qm or qw,Δ ≥ qMC (see Appendix D for the proof).

Proposition 6: Suppose that for each supergame G∞, firms evaluate payoff sequences

by the same evaluating function satisfying (5), where firms with Δ′ are strictly more

patient than firms with Δ.

(i) If qv,Δ = qm, then qv,Δ′
= qm and qw,Δ′ ≥ qw,Δ. The latter inequality is strict if

and only if δ′ > δ.

(ii) If qv,Δ > qm and qw,Δ ≥ qMC (and therefore r∗(qw,Δ) = 0), then qw,Δ′
> qw,Δ

(and therefore r∗(qw,Δ′
) = 0) and qv,Δ′ ≤ qv,Δ. The latter inequality is strict if

and only if δ
′
> δ.

14Again, this is a consequence of continuity and (4).
15Lemma A.6 formally proves this claim.
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Proposition 6-(i) addresses the case where full collusion is already sustainable. The

proposition first states that more patient firms continue to engage in full collusion.

The proposition also shows that the optimal penalty can be strengthened only when

the gain discount factor increases. This follows because an increase only in the loss

discount factor cannot generate the first-order impact, that is, a reduction in the

collusive production level. Hence, a higher-order impact is absent so that the optimal

penalty also stays at the same level.16

Proposition 6-(ii) examines the case where full collusion is not sustainable but the

punishment can be made so severe that the worst equilibrium attains the minimax

values of the firms.17 The proposition first states that more patient firms continue to

punish themselves to the minimax values while the level of optimal penalty (qw,Δ′
)

increases. The proposition also shows that the most collusive output level decreases

only when the loss discount factor increases. This follows because an increase only in

the gain discount factor cannot generate the first-order impact, that is, a reduction

of the value of the worst equilibrium path. Hence, a higher-order impact is absent so

that the most collusive output also stays at the same level.

Propositions 5 and 6 are based on a lattice structure of the model. In lattice

theory, when firms with Δ′ are strictly more patient than firms with Δ, we say that

Δ′ is greater than Δ according to induced set ordering (Topkis (1998)). Therefore,

if we regard the “carrot” and “stick” actions, qv and qw, as functions of Δ, qv is

decreasing in Δ and qw is increasing in Δ, according to the induced set ordering.

So far, we have seen the following first-order effects on the levels of qv and qw:

except the cases investigated in Proposition 6, (i) an increase in δ decreases qv, and

(ii) an increase in δ increases qw. However, the higher-order effects further decrease

qv and increase qw. Thus, we next investigate the aggregate effect of a change in the

discount factor on the levels of qv and qw.

First, we introduce a few more notations. Suppose that the firms having the

evaluating function with Δ ≡ [δ, δ] lead to the equilibrium quantity qv,Δ and qw,Δ,

which, to avoid complication, are assumed to satisfy qm < qv,Δ < qcn < qw,Δ < qMC .

Treating this case as a benchmark, consider two types of strictly more patient firms:

one type of firms has the evaluating function with Δu ≡ [δ, δ
u
], where δ

u
> δ, and the

other type of firms has the evaluating function with Δd ≡ [δd, δ], where δd > δ. We

16This is the only scenario where more patience keeps everything the same.
17This is a somewhat exceptional case and never occurs if a ≤ 65c. If a > 65c, however, this

occurs under some Δ.
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assume that M is so large that (4) holds also for the evaluating functions with Δu

and Δd. Denote the counterparts of qv,Δ and qw,Δ for the two evaluating functions

by qv,Δu
, qw,Δu

, qv,Δd
, and qw,Δd

.

Second, to assess the economic impact caused by the change in qv and qw, we

translate the change in quantity to the change in temptation TP . In particular, we

introduce the following version of elasticity defined at the benchmark, that is,

εΔu ≡ TP (qv,Δu
)− TP (qv,Δ)

TP (qw,Δu)− TP (qw,Δ)

TP (qw,Δ)

TP (qv,Δ)
and εΔd ≡ TP (qv,Δd

)− TP (qv,Δ)

TP (qw,Δd)− TP (qw,Δ)

TP (qw,Δ)

TP (qv,Δ)
,

which defines a percent change in TP (qv) relative to a percent change in TP (qw).

Thus, if εΔu > εΔd for any Δu and Δd, we can deduce that an increase in δ generates

more impact on the collusive level than an increase in δ, and vice versa.

The following proposition shows that the temptation changes mainly via the chan-

nel of the first-order effect.

Proposition 7: Consider three supergames where the firms evaluate payoff sequences

by the same evaluating function satisfying (5) with Δ, Δu, or Δd defined as above.

Suppose qm < qv,Δ < qcn < qw,Δ < qMC, qm < qv,Δu
, and qm < qv,Δd

. Then, we have

(i)
TP (qv,Δu

)

TP (qw,Δu)
>

TP (qv,Δ)

TP (qw,Δ)
>

TP (qv,Δd
)

TP (qw,Δd)
,

(ii) TP (qv,Δu
) > TP (qv,Δ), TP (qv,Δd

) > TP (qv,Δ), TP (qw,Δu
) > TP (qw,Δ), TP (qw,Δd

) >

TP (qw,Δ), and

(iii) εΔu > 1 > εΔd.

Proposition 7-(i) is a direct consequence of Proposition 4-(iii), which states that

the temptation ratio is higher for firms with Δu and lower for firms with Δd than firms

with Δ. Proposition 5 and (16) also imply Proposition 7-(ii), that is, both TP (qv,Δ)

and TP (qw,Δ) increase as δ or δ increases.18 As for Proposition 7-(iii), observe that

TP (qv,Δu
)

TP (qw,Δu)
=

TP (qv,Δ) +
{
TP (qv,Δu

)− TP (qv,Δ)
}

TP (qw,Δ) + {TP (qw,Δu)− TP (qw,Δ)} ,

18Due to the assumptions on the stage-game payoffs, TP (qv,Δ) increases as qv,Δ decreases. (16)
is also rewritten as TP (qw,Δ) =

(
r(qv,Δ)− r∗(qw,Δ)

) δ
1−δ , which increases as δ or δ increases. Note

that we invoke (16) because if a > 6c, TP (q) is not increasing on [qcn, qMC ], even weakly.

23



and a similar equation holds for
TP (qv,Δd

)

TP (qw,Δd)
. Given Propositions 7-(i) and (ii), the

above equality implies that

TP (qv,Δu
)− TP (qv,Δ)

TP (qw,Δu)− TP (qw,Δ)
>

TP (qv,Δ)

TP (qw,Δ)
>

TP (qv,Δd
)− TP (qv,Δ)

TP (qw,Δd)− TP (qw,Δ)
,

which is equivalent to (iii). Thus, an increase in δ influences qv more than qw, whereas

an increase in δ influences qw more than qv.

The different roles of the discount factors become more evident when we explore

folk-theorem type results by taking a limit of δ or δ. For this analysis, we fix δ ∈ (0, 1)

and consider any evaluating function (5) whose loss discount factor is δ. We assume

that M satisfies (4) for any such evaluating function, which is equivalent to assum-

ing that (4) holds when δ = δ. As a benchmark, we also consider the discounted

utility model with δ, and let qv,N be the most collusive output level that can be sus-

tained by the Nash reversion strategy profile under this benchmark model. In other

words, qv,N maximizes r(q) under the constraint that the reversion strategy pro-

file s((←−q ,←−q , . . . ), (←−q cn,←−q cn, . . . ), (←−q cn,←−q cn, . . . )) is an equilibrium. The following

proposition examines the possible outcomes of collusion in all evaluating functions

whose loss discount factor is given (see Appendix E for the proof).

Proposition 8: Fix δ ∈ (0, 1) and M as above, and consider all supergames where

the firms evaluate payoff sequences by the same evaluating function satisfying (5)

whose loss discount factor is δ. There exists δ∗ ∈ (0, 1), which is independent of δ,

M , and the choice of δ, such that:

(i) if δ ≥ δ∗, then qv = qv,N = qm for any δ ≤ δ, and

(ii) if δ < δ∗, then qv,N > qm. Moreover, when δ approaches to zero, (a) qw ap-

proaches to qcn, and (b) qv approaches to qv,N .

Proposition 8-(i) corresponds to the folk theorem of evaluating function (5), whereas

Proposition 8-(ii) is regarded as the reverse folk theorem, which is new and unique

to evaluating function (5). To understand the above results, observe that if the loss

discount factor is δ, the most collusive output q the Nash reversion strategy profile

can implement is exactly qv,N because the incentive constraint is

(1− δ)r∗(q) + δr(qcn) ≤ r(q). (24)
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This is identical to the incentive constraint for the discounted utility model with δ.

Because the Nash reversion strategy profile is in S∗(Γ), this implies that qv,N ≥ qv.

Then, Proposition 8-(i) follows immediately because, under the discounted utility

model with δ, the Nash reversion strategy profile implements qm for any sufficiently

large δ. Thus, regardless of δ, full collusion is achieved for any sufficiently large δ.

We also provide a more intuitive explanation via Figure 4. On the indifference

curve that goes through (r(qm), r(qm)), the firms’ payoff is r(qm). The vertical line

that goes through (r∗(qm), 0) corresponds to the paths where a firm chooses the

static best response against the most collusive output qm in the initial period. By

observing the two lines, the one deviation from (qm, qm) is beneficial only when the

intersection of the two lines is located below (r∗(qm), r(qcn)) (as in the case of the

dotted line). Thus, the most collusive output sequence is attainable via the Nash

reversion strategy profile when the slope of the indifference curve below the 45-degree

line flattens (toward the direction of the solid line), that is, when the loss discount

factor δ increases.

u

V

r(qm)

r(qm) r∗(qm)

r(qcn)

Figure 4: Sustainability of full collusion

On the other hand, Proposition 8-(ii) shows that as δ approaches to zero, the best

equilibrium path converges to the best equilibrium path implementable by the Nash

reversion strategy profile if qv,N > qm. To see this result, consider the constraint (13)

for the worst equilibrium:

(1− δ)r(qw) + δr(qv) = r∗(qw).

If the firms barely evaluate future compensation, or if δ → 0, the above equation
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converges to r(qw) = r∗(qw), which is equivalent to qw = qcn.

Next, consider the constraint (14) for the best equilibrium:

(1− δ)r∗(qv) + δr∗(qw) = r(qv).

This equation shows that qv converges to qv,N if qw converges to qcn, where qv always

stays below qv,N because the Nash reversion strategy profile is in S∗(Γ). This result

contrasts with the implications from the discounted utility model, where a reduction

in the level of the discount factor makes both the best and the worst equilibrium

paths converge to the repeated play of the Cournot Nash equilibrium.

We also provide a graphical explanation via Figure 5. The indifference curve that

goes through (r∗(qw), r∗(qw)) and (r(qw), r(qv)) represents the constraint (13) satisfied

at the worst equilibrium sw. However, once δ decreases, the indifference curve that

goes through (r∗(qw), r∗(qw)) becomes steeper. This implies that sw is no longer

an equilibrium because the value of the deviation which always plays a static best

response against the other firm’s output, (r∗(qw), r∗(qw)), is higher than the value of

sw indicated by (r(qw), r(qv)). As Propositions 5 and 6 show, the worst equilibrium

shifts toward the direction of a less severe penalty, but even this penalty does not work

if δ decreases further. In the limit, the indifference curve that represents constraint

(13) will converge to the indifference curve going through (r(qcn), r(qcn)), which is

parallel to the vertical axis above the 45-degree line. At this limit, qcn becomes the

optimal penalty, and qv,N becomes the most cooperative output. Thus, qw converges

to qcn, and qv converges to qv,N .

Finally, in this section, we investigate how the level of time-variability aversion

affects the best and worst equilibria. As before, we fix Δ ≡ [δ, δ] and Δ′ ≡ [δ′, δ
′
] so

that (4) is satisfied for both Δ and Δ′. First, we examine the case that leads to clear

comparative statics results (see Appendix F for the proof).

Proposition 9: Let Δ ≡ [δ, δ] and Δ′ ≡ [δ′, δ
′
] where Δ ⊂ Δ′. Consider the two

supergames where the firms evaluate payoff sequences by the same evaluating function

satisfying (5) with Δ or Δ′. Suppose qv,Δ > qm.

(i) If qw,Δ′
= qw,Δ, then qv,Δ′

< qv,Δ.

(ii) If qv,Δ′
= qv,Δ, then qw,Δ′

< qw,Δ.

To understand Proposition 9, recall that the loss discount factor affects the level

of collusion more strongly than the gain discount factor, and the gain discount factor
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Figure 5: A reverse folk theorem

affects the level of penalty more strongly than the loss discount factor. If qw,Δ′
= qw,Δ

(part (i)), the loss discount factor increases to a greater extent than the gain discount

factor decreases with the change from Δ to Δ′. Hence, the change facilitates stronger

collusion even under the same level of punishment. If qv,Δ′
= qv,Δ > qm (part (ii)),

the gain discount factor decreases to a greater extent than the loss discount factor

increases with the change from Δ to Δ′. Hence, the change allows a less severe

punishment to implement the same level of collusion.

Proposition 9-(i) shows the case where the strictly more time-variability aversion

can facilitate stronger collusion, but the same conclusion does not always hold. Our

last proposition confirms this point, which also covers the case where Proposition 5

does not apply (see Appendix G for the proof).

Proposition 10: Let Δ ≡ [δ, δ] and Δ′ ≡ [δ′, δ
′
] where Δ ⊂ Δ′. Suppose that for

each supergame G∞, firms evaluate payoff sequences by the same evaluating function

satisfying (5) with Δ or Δ′. Suppose further that qv,Δ > qm. Then, there exists

δ
∗ ∈ (δ, 1), which depends solely on Δ, such that

(i) if δ
′ ∈ [δ, δ

∗
), there exists δ∗ ∈ (0, δ) such that qv,Δ′

> qv,Δ if δ′ < δ∗, and

(ii) if δ
′ ≥ δ

∗
, qv,Δ′

< qv,Δ.
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Proposition 10-(i) shows that strictly more time-variability averse firms may only

achieve less collusive outcomes, if the loss discount factor does not increase much

and if the gain discount factor decreases to a large extent. This is the case where

strictly more time-variability aversion prevents collusion. In contrast, Proposition 10-

(ii) shows that strictly more time-variability aversion enhances collusion if the loss

discount factor increases to a certain level regardless of the decrease in the gain

discount factor. The result is reminiscent of the folk theorem in Proposition 8-(i).

Namely, a given level of collusion is always sustainable if the firms’ loss discount factor

is sufficiently large. This reinforces our point that the loss discount factor δ is a key

to collusion.

5 Summary

This paper studied the repeated Cournot duopoly under the recursive utility that

exhibits gain/loss asymmetry. First, we found that the key results obtained for the

discounted utility are extended to the general recursive utility: The reversion strategy

profile that has the optimal penal code as the punishment can implement any of the

equilibrium paths, where the optimal penal code has the stick-and-carrot structure

in the Cournot duopoly setting. Second, we investigated the effect of the gain/loss

asymmetry on the best and worst equilibria in the repeated Cournot duopoly. We

demonstrated that an increase in the loss discount factor δ strengthens the deterrence

of the reversion strategy profile, whereas an increase in the gain discount factor δ

strengthens the enforceability of the optimal penalty. Thus, higher patience leads to

stronger cooperation and stronger punishment because it requires an increase in either

δ or δ, but a stronger desire for smoothing allocations over time does not necessarily

lead to stronger cooperation because it requires either an increase in δ or a decrease in

δ. We also introduced the reverse Folk theorem, which examines the behavior when

the gain discount factor δ approaches to zero. This theorem confirmed that the loss

discount factor δ is the key to implementing cooperative production because it defines

a lower bound of the cooperative profit via the Nash reversion strategy profile.
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Appendix A: Proofs of Propositions 1 and 2

For the proofs of Propositions 1 and 2, we introduce additional notations. Let q
(t)
−i ≡

(q
(t)
j )j �=i: this is the time-t action profile by all players except player i. We also

denote by (si, s−i) a strategy profile consisting of si and s−i, where s−i ≡ (sj)j �=i.

Moreover, for a given strategy profile s and a given history ht−1, let Q(s; ht−1) =

(q(0)(s; ht−1), q(1)(s; ht−1), . . . ) be a path such that (a) its play at time 0, 1, . . . , t− 1

coincides with ht−1, and (b) the players follow s from time t onward. Formally,

(a) (q(0)(s; ht−1), ..., q(t−1)(s; ht−1)) = ht−1, and

(b) q(τ)(s; ht−1) = (si,τ (q
(0)(s; ht−1), . . . , q(τ−1)(s; ht−1)))I

i=1 for all τ ≥ t.

Note that Q(s) = Q(s; h−1). For any t > 0, Q(s) = Q(s; ht−1) holds if and only if

ht−1 = (q(0)(s), ..., q(t−1)(s)).

Next, we introduce the following property.

Definition (one-deviation property): A strategy profile s is said to satisfy the one-

deviation property if for all t and all ht−1, no player can increase her utility by

changing her current action given the opponents’ strategies and the rest of her own

strategy.

The following lemma is the key to prove Propositions 1 and 2.

Lemma A.1: A strategy profile s is a subgame perfect equilibrium if and only if it

satisfies the one-deviation property.

Proof. The necessity of the one-deviation property follows from the definition of

the subgame perfect equilibrium.
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For the sufficiency, assume that a strategy profile s satisfies the one-deviation

property. Suppose, by way of contradiction, that s is not a subgame perfect equilib-

rium. Then, there exist time t, history ht−1, and a player i with a strategy s′i such

that

Vi,t(Ui(Q(s′i, s−i; h
t−1))) > Vi,t(Ui(Q(s; ht−1))). (25)

Given such s′i, we consider a sequence of histories {hτ}∞τ=t such that for all τ ≥ t,

hτ ≡ (q(0)(s′i, s−i; h
t−1), . . . , q(τ)(s′i, s−i; h

t−1)).

Then, it follows from the product topology adopted to (A)∞ that Q(s; hτ ) converges

to Q(s′i, s−i; h
t−1) as τ goes to infinity.

Note that Q(s; ht) is a path induced by player i’s one deviation from Q(s; ht−1).

Under the path, player i switches to s′i at time t given ht−1, and then switches back

to si from time t + 1 onward against s−i. Therefore, by the one-deviation property,

Vi,t(Ui(Q(s; ht−1))) ≥ Vi,t(Ui(Q(s; ht))).

Similarly, for any τ > t, Q(s; hτ ) is a path induced by player i’s one deviation from

Q(s; hτ−1). Namely, player i switches to s′i at time τ given hτ−1, and then switches

back to si from time τ + 1 onward against s−i. Therefore, by the one-deviation

property,

Vi,τ (Ui(Q(s; hτ−1))) ≥ Vi,τ (Ui(Q(s; hτ ))).

By repeated application of the recursive relation (3) and the strict monotonicity of

Wi in the second argument, it follows that

Vi,t(Ui(Q(s; hτ−1))) ≥ Vi,t(Ui(Q(s; hτ )))

for any τ ≥ t. It follows from iterating this relation that

Vi,t(Ui(Q(s; ht−1))) ≥ Vi,t(Ui(Q(s; hτ )))

for any τ ≥ t. Because Q(s; hτ ) converges to Q(s′i, s−i; h
t−1) as τ →∞, the continuity

of Vi,t implies

Vi,t(Ui(Q(s; ht−1))) ≥ Vi,t(Ui(Q(s′i, s−i; h
t−1))),

which contradicts (25). �
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For the argument below, we define paths Qi,∗ and Qi,# for each i as follows: Let{
Qi,k

}∞
k=1

be a sequence of subgame perfect equilibrium paths such that limk→∞ Vi,0(Ui(Q
i,k)) =

vi. Because A∞ is compact, it has a subsequence converging to Qi,∗ = (qi,∗(0), qi,∗(1), . . . )

such that Vi,0(Ui(Q
i,∗)) = vi. Similarly, let

{
Q′i,k}∞

k=1
be a sequence of subgame per-

fect equilibrium paths such that limk→∞ Vi,0(Ui(Q
′i,k)) = vi. Because A∞ is compact,

it has a subsequence converging to Qi,#, where Vi,0(Ui(Q
i,#)) = vi.

The proofs of Propositions 1 and 2 follow directly from Abreu (1988) with a minor

modification to accommodate the change in the evaluating function. In particular, the

proofs presented in Theorems 5.5 and 5.6 of Fudenberg and Tirole (1991) immediately

extend to the recursive utility. The essence of their proofs is summarized by the

following Lemma.

Lemma A.2: Let Q0,∗ = (q0,∗(0), q0,∗(1), . . . ) be a path that is the limit of a se-

quence of subgame perfect equilibrium paths. Then, the reversion strategy profile

s∗ ≡ s(Q0,∗, Q1,∗, . . . , QI,∗) is a subgame perfect equilibrium.

Proof. Suppose, by way of contradiction, s∗ is not a subgame perfect equilibrium.

From Lemma A.1, some player j has a profitable one deviation at some ht−1, where

he chooses q′j at time t. By the construction of s∗, there exists i ∈ {0, . . . , I} and

τ ≥ 0 such that

(q(t)(s∗; ht−1), q(t+1)(s∗; ht−1), . . . ) = (qi,∗(τ), qi,∗(τ+1), . . . ).

By this and history independence, it follows that

Wj(uj(q
′
j, q

i,∗(τ)
−j ), vj) > Vj,τ (Uj(Q

i,∗)).

Because Vj,τ , uj, and Wj are continuous and Qi,∗ is the limit of a sequence of sub-

game perfect equilibrium paths, there exists a subgame perfect equilibrium path

Q̂ = (q̂(0), q̂(1), . . . ) such that

Wj(uj(q
′
j, q̂

(τ)
−j ), vj) > Vj,τ (Uj(Q̂)). (26)

Because Q̂ is a subgame perfect equilibrium path, there exists another subgame per-

fect equilibrium path Q̃ such that

Wj(uj(q
′
j, q̂

(τ)
−j ), Vj,0(Uj(Q̃))) ≤ Vj,τ (Uj(Q̂)) (27)
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holds.19 By monotonicity of Wj, (26) and (27) imply Vj,0(Uj(Q̃)) < vj. This is a

contradiction against the definition of vj. �

The proofs of Propositions 1 and 2 :

For Proposition 1, the existence of si and si is a straightforward consequence of

Lemma A.2 by setting Q0,∗ = Qi,∗ and Q0,∗ = Qi,#, respectively.

As for Proposition 2, fix s∗ ∈ S∗. Clearly, Q(s∗) is the limit of the sequence of sub-

game perfect equilibrium paths, (Q(s∗), Q(s∗), . . . ). Because Q(si) = Qi,∗ for each i,

Lemma A.2 immediately proves that the reversion strategy profile s(Q(s∗), Q(s1), ..., Q(sI))

is a subgame perfect equilibrium. �

Appendix B: Proof of Proposition 3

In what follows, for any output level q, we write ←−q = (q, q).

We first show the following lemma.

Lemma A.3: Suppose that firms evaluate payoff sequences by the same evaluating

function satisfying (3). Then, Propositions 1 and 2 hold for S∗(Γ) replacing S∗.

Proof. It suffices to show that Γ is compact and S∗(Γ) is nonempty. For the first

claim, Γ is compact because it is a closed subset of compact A∞. For the second

claim, the strategy profile where the firms produce the Cournot equilibrium quantity
←−q cn at any history is a subgame perfect equilibrium that induces a symmetric path

both on and off the equilibrium. Thus, S∗(Γ) is nonempty. �

Given that sv and sw are best and worst equilibria, respectively, the next lemma

follows immediately from the definition of the stage game.

Lemma A.4: Suppose that firms evaluate payoff sequences by the same evaluating

function satisfying (3). Then,

V0(r(q
cn), r(qcn), . . . ) ≤ V0(Ui(Q(sv))) ≤ V0(r(q

m), r(qm), . . . ), and

V0(0, 0, . . . ) ≤ V0(Ui(Q(sw))) ≤ V0(r(q
cn), r(qcn), . . . ).

19By the stationarity of the action space and history-independent recursive preferences, the set of
subgame perfect equilibrium paths and the set of continuation paths of a subgame perfect equilibrium
coincide.
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The proof of (i):

Let sw be given, and consider the following system of inequalities.

V0(r(q), r(q), . . . ) ≥W (r∗(q), V0(Ui(Q(sw)))), qm ≤ q ≤ qcn. (28)

Because r∗(qcn) = r(qcn), Lemma A.4 implies that q = qcn is a solution of the system.

By continuity, the smallest solution of (28) exists, which we denote by qv.

If qv = qm, (28) implies that the reversion strategy profile s((←−q m,←−q m, . . . ), Q(sw), Q(sw))

is an equilibrium. Any path in Γ other than (←−q m,←−q m, . . . ) gives each firm a smaller

payoff than V0(r(q
m), r(qm), . . . ). Hence, the claim holds.

If qv > qm, (28) implies that the reversion strategy profile s((←−q v,←−q v, . . . ), Q(sw), Q(sw))

is an equilibrium. Next, fix Q = (q(0), q(1), . . . ) ∈ Γ such that V0(Ui(Q)) ≥ V0(r(q
v), r(qv), . . . )

and (q
(0)
1 , q

(1)
1 , . . . ) 
= (qv, qv, . . . ). For each t, define q̂

(t)
1 ≡ max{q(t)

1 , qm} and also de-

fine q̂1 = inft q̂
(t)
1 . Because of symmetry and qv > qm, q

(t)
1 < qv for some t. Therefore,

q̂
(t)
1 ∈ [qm, qv). This implies q̂1 ∈ [qm, qv), and therefore q̂1 is not a solution of (28).

Because r(q̂1) ≥ r(q̂
(t)
1 ) ≥ r(q

(t)
1 ) for any t, this implies that

Vt(Ui(Q)) ≤ V0(r(q̂1), r(q̂1), . . . ) < W (r∗(q̂1), V0(Ui(Q(sw))))

for any t. Because r∗(q(t)
1 ) ≥ r∗(q̂(t)

1 ) for any t, continuity implies

Vt(Ui(Q)) < W (r∗(q(t)
1 ), V0(Ui(Q(sw))))

for some t. Therefore, the reversion strategy profile s(Q, Q(sw), Q(sw)) is not an

equilibrium. From Lemma A.3, Q is not an equilibrium path. Hence, no equilibrium

improves the payoff of the path (←−q v,←−q v, . . . ), which establishes the claim. �

The proof of (ii):

Recall that qv is the smallest solution of (28). From part (i), we have Qv =

(←−q v,←−q v, . . . ). The proof is divided into the following three steps.

(Step 1) qw, the largest solution of (9), is well-defined.

By r(qcn) = r∗(qcn) and Lemma A.4, the left-hand side of (9) is not smaller

than its right-hand side at q = qcn. Moreover, it follows from Lemma A.4, (4), and

r∗(M) ≥ 0 that

W (r(M), V0(Ui(Q
v))) ≤W (r(M), V0(r(q

m), r(qm), . . . ))

< V0(0, 0, . . . )

≤V0(r
∗(M), r∗(M), . . . ).
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Hence, the left-hand side of (9) is smaller than its right-hand side at q = M . From

these and continuity, qw is well-defined and satisfies qw ≥ qcn. Note also that the

above argument implies

W (r(q), V0(Ui(Q
v))) < V0(r

∗(q), r∗(q), . . . ) for all q > qw. (29)

�

(Step 2) If Q = (q(0), q(1), . . . ) is a worst equilibrium path, V0(Ui(Q)) ≥ V0(r
∗(qw), r∗(qw), . . . ).

Because Q is a worst equilibrium path, the reversion strategy profile s(Q, Q, Q)

is an equilibrium. Consider a firm’s deviation where it chooses a static best response

against the opponent’s action at every history. Because any deviation makes the oppo-

nent restart Q in the next period, the payoff from this deviation is V0(r
∗(q(0)

1 ), r∗(q(0)
1 ), . . . ).

Because this deviation is not profitable,

V0(r
∗(q(0)

1 ), r∗(q(0)
1 ), . . . ) ≤V0(Ui(Q)) (30)

= W (r(q
(0)
1 ), V1(Ui(Q)))

≤W (r(q
(0)
1 ), V0(Ui(Q

v)))

holds, where the last inequality follows because Qv is the best equilibrium path. From

this and (29), we obtain q
(0)
1 ≤ qw. Because r∗ is decreasing, it follows from (30) that

V0(r
∗(qw), r∗(qw), . . . ) ≤ V0(Ui(Q)), as desired. �

(Step 3) If we define Qw ≡ (←−q w,←−q v,←−q v, . . . ), the reversion strategy profile

s(Qw, Qw, Qw) is a worst equilibrium.

From the definition of qw,

V0(Ui(Q
w)) = W (r(qw), V0(Ui(Q

v))) = V0(r
∗(qw), r∗(qw), . . . ) (31)

= W (r∗(qw), V0(r
∗(qw), r∗(qw), . . . ))

= W (r∗(qw), V0(Ui(Q
w))).

Thus, any one deviation at the initial period is not profitable. Next, consider one

deviations while Qv is played. The continuation payoff after any nontrivial one de-

viation is (31), which is, by Step 2, not greater than the worst equilibrium payoff.

Because Qv is an equilibrium path, no one deviation while it is played is profitable.

This proves that s(Qw, Qw, Qw) is an equilibrium. From Step 2 and (31), this is worst.

�

34



The proof of (iii):

The equality in (10) is an immediate consequence of part (i). The inequality in

(10) follows because qv is the smallest solution of (28), and it must hold with equality

if qv > qm. The result in part (ii) implies (11). �

Appendix C: Proof of Proposition 5

We first derive the following lemma.

Lemma A.5: Suppose that firms evaluate payoff sequences by the same evaluating

function satisfying (5). Then, qv and qw defined in Proposition 3 satisfy qm ≤ qv <

qcn < qw.

Proof. Let the preference represented by (5) be given, and define a function f by

f(q) = r(q)− (1− δ)r∗(q)− δr(qcn). (32)

Because the assumptions on the stage game payoffs imply r′(qcn) = (r∗)′(qcn) < 0, it

follows that f ′(qcn) < 0. Because f(qcn) = 0, there exists q′ < qcn such that

r(q′) > (1− δ)r∗(q′) + δr(qcn). (33)

This implies that the reversion strategy profile s((←−q ′,←−q ′, . . . ), (←−q cn,←−q cn, . . . ), (←−q cn,←−q cn, . . . ))

is an equilibrium. Therefore, qv ≤ q′ < qcn follows. It also follows that qm ≤ qv from

Proposition 3-(i). From (13), qv < qcn implies qw 
= qcn. Because we have seen that

qw ≥ qcn in the proof of Proposition 3-(ii), this proves that qw > qcn. �

The proof of Proposition 5 is based on the lemma shown below, for which we need

a few more notations introduced by Abreu (1986). For any x ≥ qm and any x ≥ x,

we define the following two paths:

Q(x) ≡ ((x, x), (x, x), . . . ), Q(x, x) ≡ ((x, x), (x, x), (x, x), . . . ).

Next, we define the following two reversion strategy profiles:

s(x, x) ≡ (Q(x, x), Q(x, x), Q(x, x)), s∗(x, x) ≡ (Q(x), Q(x, x), Q(x, x)).
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Lemma A.6: Suppose that firms evaluate payoff sequences by the same evaluating

function satisfying (5). Then, for any x ≥ qm and any x ≥ x, the reversion strategy

profiles s(x, x) and s∗(x, x) are equilibria if and only if the following two conditions

hold.

(i) (1− δ)r(x) + δr(x) ≥ r∗(x) and

(ii) r(x) ≥ (1− δ)r∗(x) + δ {(1− δ)r(x) + δr(x)}.

Proof. Fix x ≥ qm and x ≥ x. If either s(x, x) or s∗(x, x) is played, the continuation

path given any history is either Q(x, x) or Q(x). Further, any one deviation at any

history makes Q(x, x) the continuation path from the next period onward. Therefore,

a necessary and sufficient condition for both s(x, x) and s∗(x, x) to be equilibria is

V0(Ui(Q(x, x))) ≥ W (r∗(x), V0(Ui(Q(x, x)))), (34)

V0(Ui(Q(x))) ≥W (r∗(x), V0(Ui(Q(x, x)))). (35)

It follows from x ≥ x ≥ qm that r(x) ≤ r(x). Hence, (34) is equivalent to

(1− δ)r(x) + δr(x) ≥ min
δ∈[δ,δ]

[
(1− δ)r∗(x) + δ

{
(1− δ)r(x) + δr(x)

}]
,

which is further equivalent to condition (i). It also follows from r∗(x) ≥ r(x) ≥ r(x)

that r∗(x) ≥ (1− δ)r(x) + δr(x). Hence, (35) is equivalent to

r(x) ≥ (1− δ)r∗(x) + δ {(1− δ)r(x) + δr(x)} ,

which is exactly condition (ii). �

The proof of Proposition 5:

Fix Δ = [δ, δ] such that qm < qv,Δ < qcn < qw,Δ < qMC . Fix also Δ′ = [δ′, δ
′
] such

that Δ′ 
= Δ, δ ≤ δ′, and δ ≤ δ
′
.

It follows from (4) and qv,Δ > qm that

r∗(M) ≥ 0 > (1− δ′)r(M) + δ′r(qm) > (1− δ′)r(M) + δ′r(qv,Δ).

Because r(qv,Δ) > r(qw,Δ) due to qm < qv,Δ < qw,Δ, it follows from (13) and δ′ ≥ δ

that

r∗(qw,Δ) = (1− δ)r(qw,Δ) + δr(qv,Δ) ≤ (1− δ′)r(qw,Δ) + δ′r(qv,Δ),
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where the inequality is strict if δ′ > δ. From these and continuity, there exists

qw∗ ≥ qw,Δ such that

r∗(qw∗) = (1− δ′)r(qw∗) + δ′r(qv,Δ). (36)

Moreover, qw∗ > qw,Δ if δ′ > δ. For a later purpose, we note that this conclusion is

valid even if qv,Δ = qm or qw,Δ ≥ qMC .

We claim that

(1− δ
′
)r∗(qv,Δ) + δ

′ {
(1− δ′)r(qw∗) + δ′r(qv,Δ)

}
< r(qv,Δ). (37)

To see that, note that (14) can be rewritten as follows:

r(qv,Δ) = (1− δ)r∗(qv,Δ) + δr∗(qw,Δ) ≥ (1− δ
′
)r∗(qv,Δ) + δ

′
r∗(qw∗), (38)

where the inequality follows because δ
′ ≥ δ, qv,Δ < qw,Δ ≤ qw∗, and r∗ is decreasing.

Because Δ′ 
= Δ, either δ
′
> δ or δ′ > δ holds. Suppose δ

′
> δ. Then, because

qv,Δ < qw,Δ and qv,Δ < qMC imply r∗(qv,Δ) > r∗(qw,Δ), the inequality in (38) is strict.

Next, suppose δ′ > δ. Then, qw∗ > qw,Δ. This implies r∗(qw,Δ) > r∗(qw∗) because

qw,Δ < qMC . Hence, the inequality in (38) is strict. Consequently, (38) holds with

strict inequality in either case, and substituting (36) establishes (37).

From (37) and continuity, there exists x ∈ (qm, qv,Δ) such that

(1− δ
′
)r∗(x) + δ

′ {(1− δ′)r(qw∗) + δ′r(x)} < r(x).

Because (36) implies

r∗(qw∗) < (1− δ′)r(qw∗) + δ′r(x),

there exists x > qw∗ such that

(1− δ
′
)r∗(x) + δ

′ {(1− δ′)r(x) + δ′r(x)} < r(x), (39)

r∗(x) < (1− δ′)r(x) + δ′r(x). (40)

Applying Lemma A.6 to (39) and (40), we see that Q(x) is an equilibrium path

under Δ′ where the value of its payoff sequence is r(x) > r(qv,Δ). Because the value

of the best equilibrium payoff sequence under Δ′ may be greater, we conclude that

qv,Δ′
< qv,Δ.
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Recall that Proposition 3-(ii) implies in this particular environment that qw,Δ′
is

the greatest q such that

r∗(q) = (1− δ′)r(q) + δ′r(qv,Δ′
).

It follows from (36) and r(qv,Δ′
) > r(qv,Δ) that

r∗(qw∗) < (1− δ′)r(qw∗) + δ′r(qv,Δ′
),

and it follows from (4) that

r∗(M) > (1− δ′)r(M) + δ′r(qv,Δ′
).

From these and continuity, we obtain qw,Δ′
> qw∗ ≥ qw,Δ, which completes the proof.

�

Appendix D: Proof of Proposition 6

The proof follows that of Proposition 5 with a minor modification. Let us fix Δ = [δ, δ]

and Δ′ = [δ′, δ
′
] such that Δ′ 
= Δ, δ ≤ δ′, and δ ≤ δ

′
. As before, qw∗ ≥ qw,Δ satisfying

(36) exists, and the inequality is strict if δ′ > δ. Moreover, (38) also holds but not

necessarily with strict inequality.20 Substituting (36) into (38) yields

r(qv,Δ) ≥ (1− δ
′
)r∗(qv,Δ) + δ

′ {
(1− δ′)r(qw∗) + δ′r(qv,Δ)

}
. (41)

Applying Lemma A.6 to (36) and (41), we see that Q(qv,Δ) is an equilibrium path

under Δ′.

The proof of (i):

Because qv,Δ = qm in this case, we have seen that Q(qm) is an equilibrium path

under Δ′. Hence, qv,Δ′
= qm = qv,Δ.

Suppose δ′ = δ. Then, because qv,Δ′
= qv,Δ, Proposition 3-(ii) implies that qw,Δ

and qw,Δ′
are the largest solution of the same equation. Thus, it follows that qw,Δ′

=

qw,Δ, as desired. Next, suppose δ′ > δ. Then, qw∗ > qw,Δ holds. Again, Proposition 3-

(ii) implies that qw,Δ′ ≥ qw∗ > qw,Δ, as desired. �

20In the proof of Proposition 5, we derived (38) from (14), which may not hold if qv,Δ = qm. In
the case of qv,Δ = qm, we have r(qv,Δ) ≥ (1− δ)r∗(qv,Δ) + δr∗(qw,Δ), from which we obtain (38).
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The proof of (ii):

Suppose δ
′
> δ. The proof of Proposition 5 for the case of δ

′
> δ does not depend

on qw,Δ < qMC . Hence, the same proof verifies that qv,Δ′
< qv,Δ and qw,Δ′

> qw,Δ.

Next, suppose δ
′

= δ, and therefore δ′ > δ. We have seen that Q(qv,Δ) is an

equilibrium path under Δ′ so that qv,Δ′ ≤ qv,Δ. This, δ′ > δ, and (13) for Δ imply

r∗(qw,Δ) = (1− δ)r(qw,Δ) + δr(qv,Δ) < (1− δ′)r(qw,Δ) + δ′r(qv,Δ′
).

From the definition of qw,Δ′
and the routine argument based on (4) and continuity, it

follows that qw,Δ′
> qw,Δ.

Because qw,Δ′
> qw,Δ ≥ qMC in this case, r∗(qw,Δ′

) = r∗(qw,Δ) = 0. That is, the

value of the worst equilibrium payoff sequence is zero under both Δ and Δ′. Therefore,

any symmetric and constant path (←−q ,←−q , . . . ) is an equilibrium path under Δ′ if and

only if r(q) ≥ (1 − δ
′
)r∗(q). Because δ

′
= δ, this holds if and only if the same

path is an equilibrium path under Δ. Because the best equilibrium path is constant

(Proposition 3-(i)), this proves that qv,Δ′
= qv,Δ. �

Appendix E: Proof of Proposition 8

The proof of (i):

Let

δ∗ =
r∗(qm)− r(qm)

r∗(qm)− r(qcn)
,

which does not depend on δ, M , or the choice of δ. Because r∗(qm) > r(qm) > r(qcn),

we have δ∗ ∈ (0, 1). Suppose δ ≥ δ∗ and fix any evaluating function whose loss

discount factor is δ. The Nash reversion strategy profile

s((←−q m,←−q m, . . . ), (←−q cn,←−q cn, . . . ), (←−q cn,←−q cn, . . . ))

is an equilibrium because δ ≥ δ∗ implies

(1− δ)r∗(qm) + δr(qcn) ≤ r(qm). (42)

Hence, qv = qm and qv,N = qm hold. �

The proof of (ii):
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Suppose δ < δ∗. Because (42) does not hold, we have qv,N > qm. For any δ ≤ δ,

define qv,δ and qw,δ as the counterparts of qv and qw in Proposition 3 for the evaluating

function with [δ, δ].

We first show that qw,δ converges to qcn as δ goes to zero. (13) implies

(1− δ)TP (qw,δ) = δ
{
r(qv,δ)− r∗(qw,δ)

}
(43)

for any δ. Because 0 < r(qv,δ)−r∗(qw,δ) ≤ r(qm), the right-hand side of (43) converges

to zero as δ → 0. Hence, TP (qw,δ) converges to zero. Because TP (q) is continuous

and is zero only at q = qcn, this proves that qw,δ converges to qcn.

It remains to show that qv,δ converges to qv,N as δ goes to zero. By definition,

qv,N is the smallest q ∈ [qm, qcn] such that

(1− δ)r∗(q) + δr(qcn) = (1− δ)r∗(q) + δr∗(qcn) ≤ r(q). (44)

For any δ, qv,δ is the smallest q ∈ [qm, qcn] such that

(1− δ)r∗(q) + δr∗(qw,δ) ≤ r(q). (45)

Because r∗(qw,δ) ≤ r∗(qcn) for any δ, it follows that qv,δ ≤ qv,N for any δ. Moreover,

for any small ε > 0, q = qv,N − ε does not satisfy (44). Because r∗(qw,δ)→ r∗(qcn) as

δ → 0, q = qv,N − ε does not satisfy (45) for all small δ. Hence, qv,N − ε < qv,δ ≤ qv,N

for all small δ. Because ε > 0 is arbitrary, this implies that qv,δ → qv,N as δ → 0. �

Appendix F: Proof of Proposition 9

The proof of (i):

Suppose qv,Δ′ ≥ qv,Δ. Because qv,Δ′ ≥ qv,Δ > qm, Proposition 4-(iii) implies

TP (qv,Δ′
)

TP (qw,Δ′)
=

δ
′

1− δ
′ ·

1− δ′

δ′
>

δ

1− δ
· 1− δ

δ
=

TP (qv,Δ)

TP (qw,Δ)
,

where the inequality follows from Δ ⊂ Δ′. Because qw,Δ′
= qw,Δ, we have TP (qv,Δ′

) >

TP (qv,Δ). However, this implies qv,Δ′
< qv,Δ, a contradiction. �

The proof of (ii):

Suppose δ
′
> δ. Because qv,Δ′

= qv,Δ > qm, (15) holds under Δ and Δ′. Therefore,

r(qv,Δ)− r∗(qw,Δ)

TP (qv,Δ)
=

1− δ

δ
>

1− δ
′

δ
′ =

r(qv,Δ′
)− r∗(qw,Δ′

)

TP (qv,Δ′)
.
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Because qv,Δ′
= qv,Δ, we have r∗(qw,Δ′

) > r∗(qw,Δ). Hence, qw,Δ′
< qw,Δ. Next,

suppose δ
′

= δ. Then, we must have δ′ < δ. Because qv,Δ′
= qv,Δ > qm, either

Proposition 5 or 6-(ii) applies. In either case, qw,Δ′
< qw,Δ. �

Appendix G: Proof of Proposition 10

Define

δ
∗ ≡ r∗(qv,Δ)− r(qv,Δ)

r∗(qv,Δ)− r(qcn)
< 1, (46)

which depends solely on Δ. To show δ
∗

> δ, suppose, by way of contradiction, that

δ
∗ ≤ δ. Then, it follows from (46) and Lemma A.5 that

r(qv,Δ) ≥ (1− δ)r∗(qv,Δ) + δr(qcn) > (1− δ)r∗(qv,Δ) + δr(qw,Δ).

Because qv,Δ > qm, this contradicts (17).

The proof of (i):

Suppose δ
′ ∈ [δ, δ

∗
). Given (46), it follows from the continuity of r∗ that

r(qv,Δ) < (1− δ
′
)r∗(qv,Δ) + δ

′
r∗(q̂w) (47)

for some q̂w > qcn, where by (17), q̂w < qw,Δ. Choose δ∗ > 0 so that for any q ≥ q̂w,

r∗(q) > (1− δ∗)r(q) + δ∗r(qm). (48)

Note that δ∗ exists because any q ≥ q̂w satisfies q > qcn and therefore r∗(q) > r(q).

Moreover, (18) implies

r∗(qw,Δ) = (1− δ)r(qw,Δ) + δr(qv,Δ) < (1− δ)r(qw,Δ) + δr(qm).

Because (48) must be satisfied at q = qw,Δ, δ∗ < δ.

Suppose δ′ < δ∗. From (48),

r∗(q) > (1− δ′)r(q) + δ′r(qm) ≥ (1− δ′)r(q) + δ′r(qv,Δ′
)

for any q ≥ q̂w. This implies qw,Δ′
< q̂w from Proposition 3-(ii). Proposition 3-(iii)

and this imply

r(qv,Δ′
) ≥ (1− δ

′
)r∗(qv,Δ′

) + δ
′
r∗(qw,Δ′

) ≥ (1− δ
′
)r∗(qv,Δ′

) + δ
′
r∗(q̂w). (49)
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Define a function h by

h(q) = r(q)− (1− δ
′
)r∗(q)− δ

′
r∗(q̂w).

By (47) and (49), h(qv,Δ) < 0 and h(qv,Δ′
) ≥ 0. Note also that h(qcn) > 0 because

r(qcn) = r∗(qcn) > r∗(q̂w). Because h is concave on [0, qcn], these imply qv,Δ < qv,Δ′
,

as desired. �

The proof of (ii):

Suppose δ
′ ≥ δ

∗
. From the definition of δ

∗
,

r(qv,Δ) ≥ (1− δ
′
)r∗(qv,Δ) + δ

′
r(qcn) > (1− δ

′
)r∗(qv,Δ) + δ

′
r∗(qw,Δ′

),

where the inequality follows from Lemma A.5. Because qv,Δ > qm, there exists

q′ ∈ (qm, qv,Δ) such that

r(q′) ≥ (1− δ
′
)r∗(q′) + δ

′
r∗(qw,Δ′

).

This implies that (
←−
q′ ,
←−
q′ , . . . ) is an equilibrium path under Δ′, which proves that

qv,Δ′
< qv,Δ. �
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