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Abstract

This paper develops a general framework that can be used to analyze the long-
term relationship between disasters and economic growth. We first establish the
basic existence and equivalence results. We then apply the framework to an
endogenous growth model to consider the influence of disasters on the long-term
equilibrium and the transition phase. The result shows that while experiencing
disasters may lower the average growth rate of the affected countries, there exist
various channels through which the risk of disasters and long-term economic
performance are positively correlated. This finding reconciles the apparently
contradictory evidence in recent empirical studies. Our result also suggests that
care should be taken with the interpretation of disaster-driven economic growth
because many of the channels identified are accompanied by a welfare decline.
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1 Introduction

In the long run, disasters may have a positive impact on economic growth. Although
somewhat counterintuitive, that is what recent empirical findings tell us. The sem-
inal study by Skidmore and Toya (2002), for instance, finds that the frequency of
climatic disasters? is positively correlated with long-term economic growth. A higher
frequency of disasters also facilitates human capital accumulation and productivity
growth. Their results, which are based on a cross-country analysis over the period
between 1960 and 1990, provide a stark contrast to other empirical studies such as
Raddatz (2007) and Noy (2009). These studies demonstrated that the short-run eco-
nomic impacts that directly follow disasters are generally negative. More recently,
by focusing on countries’ exposure to tropical cyclones during the 1950-2008 period,
Hsiang and Jina (2014, 2015) provided evidence that national incomes decline, rela-
tive to their pre-disaster trend, and do not recover within twenty years.

Despite growing and apparently conflicting evidence of a nontrivial relationship
between disasters and economic growth, existing economic analysis omits the sys-
tematic treatment of disasters.? In particular, there is no rigorous framework available
for the commonly-used economic models. This paper fills this gap by augmenting the
standard framework of economic growth. Our analysis starts with dynamic optimiza-
tion theory, one of the most important tools in the modern economic growth literature,
and introduce the risk of disasters within a canonical discrete-time infinite-horizon op-
timization problem. We then establish a basic existence result in a fairly general form
by reformulating the stochastic optimization problem into an associated deterministic
problem. This reformulation significantly simplifies the analysis while maintaining
the generality of the problem. We believe that the strategy we developed here will
also be useful in other settings.

Equipped with this general framework, we then demonstrate how it can be used
to investigate problems of interest. For example, one suggested explanation for the
existing empirical findings is that disasters affect the relative return on capital invest-
ment (Skidmore and Toya, 2002). In turn, this explanation is based on the fact that
some types of disasters are primarily destructive to physical capital. For instance, the

damage from storms is intensive in terms of physical capital, whereas extreme temper-

'In their study, this category of disasters includes floods, cyclones, hurricanes, ice storms, snow
storms, tornadoes, typhoons, and storms.

2In the macro-finance literature, the impact of short-run macroeconomic disasters has been studied
by Barro (2006, 2009) and Gabaix (2012) among others. The focus of these studies, however, is on the
interplay between rare macroeconomic disasters and asset-pricing puzzles. Their analysis is primarily
based on variants of the endowment-economy model of Lucas (1978) and so far, disasters have not
been well incorporated into models of long-run economic growth (Barro and Ursua, 2012).
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atures or droughts have a greater effect on human capital B If the impact of disasters is
biased against physical capital, the relative return on capital investment may be tilted
in favor of human capital, which is likely to boost economic growth. In addition, if
some inefficiency remains in the economy, the destruction of physical capital itself
can improve long-term economic performance. By destroying old factories and roads,
disasters allow new and more efficient infrastructure to be built, providing an opportu-
nity for the economy to transform itself into a more productive one in the long run. We
examine these possibilities by applying our theoretical framework to an endogenous
growth model a la Lucas (1988). The existence and uniqueness of a balanced growth
path is readily established, along with the necessary and sufficient condition. We fully
characterize the long-term equilibrium as well as the transition phase.

Disasters affect the long-term performance of the economy in a number of non-
trivial ways. Our analysis shows that as long as the damage is restricted to the stock
of physical capital, the long-term growth rate is not affected at all. We regard this
result as providing theoretical support for the current empirical findings. Given that
the degradation of efficiently accumulated physical capital is, at the least, not harm-
ful, the destruction of inefficiently invested physical capital could improve the growth
rate in the long run. Moreover, even if there is no inefficiency, physically destructive
disasters can improve the economic growth rate when the economy remains in tran-
sition to the long-term equilibrium. This result captures another suggested channel
in which a change in relative return plays an important role. These features of our
model are largely consistent with existing empirical observations. However, we find
that this rate-of-return effect crucially depends on the substitutability between phys-
ical capital and effective labor. Hence, in future empirical studies, the technological
characteristics of the economy should be considered, along with the type of disaster.

In addition, our theoretical framework allows us to identify yet another possible
driver behind the supposed disaster-growth relationship, namely, the aggregate uncer-
tainty matters. If the timing of a large-scale disaster is unpredictable and uninsurable,
economic growth may be sped up, even if the damage is not biased against physical
capital. Faced with potential disasters in the future, the optimal policy requires that
the available resources should be reallocated from the accumulation of physical capital
to the development of human capital. This results from the consumption-smoothing
motive in that more frequent disasters lower the expected level of future consump-
tion. Unless consumption is highly substitutable over time, such a dismal expectation

is counteracted by investing more in human capital and saving more for future con-

3See Guha-Sapir et al. (2013) for an extensive review of different types of disasters.



Table 1: Major natural disasters in different countries (1960-2012)

Total Type (count)
United States 770 Storm (484), Flood (148), Wildfire (60)
China 664 Storm (216), Flood (206), Earthquake (121)
India 560 Flood (234), Storm (137), Epidemic (63)
Philippines 521 Storm (283), Flood (131), Landslide (30)
Indonesia 405 Flood (151), Earthquake (99), Volcanic (46)
Bangladesh 299 Storm (148), Flood (85), Epidemic (29)
Japan 228 Storm (116), Earthquake (40), Flood (35)
Mexico 216 Storm (82), Flood (57), Earthquake (27)
Australia 209 Storm (98), Flood (59), Wildfire (28)
Russia 198 Flood (69), Earthquake (28), Storm (24)
Brazil 197 Flood (114), Landslide (21), Drought (17)
Viet Nam 179 Storm (88), Flood (68), Epidemic (10)
Iran 178 Earthquake (90), Flood (66), Storm (12)

Source: EM-DAT, the OFDA/CRED International Disaster Database, Université Catholique
de Louvain, Brussels, Belgium.

sumption. This precautionary savings effect then spurs economic growth in the long
run. What is indicated by this finding is that the high economic growth rate result-
ing from disasters may only be achieved at the cost of suppressed consumption by
the present generation. Therefore, the welfare implications of the apparently positive
disaster-growth relationship should be interpreted with some caution.

Our analysis also presents a new perspective on cross-country differences in long-
run economic performance. It is widely known that economic growth rates differ
significantly across different countries.? While the observed difference is largely at-
tributed to the different levels of physical and human capital between countries, the
fundamental cause that underlies this observation is not well understood. Given the
fact that countries are exposed to different types of disasters of dissimilar frequency
(Table M), establishing the formal link between disasters and economic growth opens
up the possibility of partly explaining these cross-country differences at a fundamental
level.

The main contributions of our paper are threefold. First, we extend the general
framework of a dynamic optimization problem in such a way that the risk of disas-

ters can be taken into account. In the deterministic setting, the basic existence and

4See, for example, Acemoglu (2008) for a concise review.

4



uniqueness results have been discussed by Alvarez and Stokey (1998) and Le Van
and Morhaim (2002), among others. We take advantage of these existing results by
not directly addressing the stochastic optimization problem, but rather working with
the ‘equivalent’ deterministic problem. Once we reformulate this as a deterministic
problem, we can apply the well-established tools of deterministic optimization theory
in analyzing the solution of the stochastic problem. The strategy we employ in the
present paper, therefore, broadens the scope of dynamic optimization theory without
making the analysis unnecessarily complicated.

Second, in the endogenous growth model, we provide a full characterization of the
optimal solution and present a number of testable hypotheses using a comprehensive
comparative statics analysis. Ikefuji and Horii (2012) analyze a similar model, but
in a different context in that their focus is not on the disaster-growth relationship per
se, but rather on pollution-induced disasters and pollution control. In their analysis,
the risks of disasters are modeled as idiosyncratic shocks to capital stocks, and hence,
stochasticity is largely missing at the aggregate level. As we demonstrate in this pa-
per, an important channel of the disaster-growth interplay emerges in the presence of
aggregate uncertainty.

Third, our framework at least partially reconciles the apparently contradictory em-
pirical evidence about the disaster-growth relationship. Our result shows that while
actual experience of disasters may lower the average growth rate in the affected coun-
tries, there are various channels through which the risk of disasters and long-term
economic performance are positively correlated.y The analyses of Raddatz (2007),
Noy (2009) and Hsiang and Jina (2014, 2015) capture the impact of disaster strikes
by comparing the economic performance of affected countries against a counterfac-
tual scenario of no disaster experience. The positive correlation reported by Skidmore
and Toya (2002), on the other hand, is based on a cross-country study and, therefore,
reflects the potentially growth-enhancing effect of disaster risks.

The rest of the paper is organized as follows. Section 2 develops the general frame-
work and presents the existence and equivalence results. In Section B, we describe
how the framework can be applied to the endogenous growth model. We prove the
existence and uniqueness of the balanced growth path and discuss its properties. In

particular, we highlight the impact of disasters on the long-run growth rate. We also

> Similar to our paper, Bakkensen and Barrage (2016) analyze a growth model and note the impor-
tance of distinction between disaster strikes and risk. In many ways, their analysis is complementary
to ours. They use a particular class of stochastic growth model and characterize the behavior of de-
centralized economy in detail. Our analysis, on the other hand, centers around the general optimal
growth model where additional dimensions of the economy (such as the elasticity of substitution in the
production function) can be taken into account.



examine the economy off the balanced growth path and clarify how the transition
phase is influenced by the presence of disasters. In Section 8, we discuss robustness

of our result and possible extensions for future research. Section B concludes the

paper.

2 The model

We consider an infinite-horizon discrete-time model. Periods are indexed by t €
Zyy = {1,2,...}. By period ¢, we mean the time interval from ¢ — 1 up to t. We
describe the economy in an aggregate fashion. The set of all feasible stock paths is
characterized by transition correspondence y € I'(x), where € R’ and y € R’} are
n-dimensional vectors of capital stocks at the beginning and the end of each period,
respectively. We denote the one-period return function by R(«, y), which is weighted
over time by the discount factor 5 € (0,1). The dynamic optimization problem of
this form has been extensively studied in the literature. See Le Van (2006) for a com-
prehensive treatment. We extend this general framework by considering two distinct
aspects of disasters separately: unpredictability of disaster strikes and potential bias

against specific types of capital.

2.1 Aggregate risk

Some types of disasters catch us by surprise. They are generally unpredictable and,
once they occur, have substantial impacts on the economy through the destruction
of capital stock. To capture this feature, we introduce an aggregate risk of capital
destruction, the occurrence of which follows a Bernoulli process with probability \ €
(0,1). In order to disentangle the role of unpredictability from the role of capital-
specific bias (which we will introduce later), we assume that unpredictable disasters
destroy all types of capital by the same proportion. To be more precise, only a fraction
a € (0,1) of the capital stock survives each occurrence of disaster so that the capital
stock vector becomes ax instead of x.

A decision is made in each period after the current uncertainty is resolved. If y; is
the capital stock at the end of period ¢, for instance, the economy at the beginning of
period t 4+ 1 has ;. = Dy, where D; € {1, a} is a random variable following the
Bernoulli process. Decision making is contingent upon a realized path of disasters. We
denote the history of disasters up until period ¢t by D := (D1, Dy, ..., D) € {1, a}".

Let X be the z-projection of the effective domain of R given I'. To be more

precise, X is a subset of R" such that z € X implies R(x,y) > —oo for some
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y € I'(x). The dynamic optimization problem is then formulated as

V(z) 3:{SL}1P E | R(z,y1) + ZﬁtR(Dtyt(DFl)?ytﬂ(Dt)) (1
Yt ?il t=1
st. Y1 (DY) € T(Dyyy(D1))forall D' and t € Z .,
y1 € I'(x)

for each € X, where E is the expectation operator and we put y;(D°) := y;. This
planning problem is only meaningful if the optimal solution exists. Hence, we first
need to show that problem (II) has a solution. Nonetheless, directly working with the
stochastic optimization problem requires complicated assumptions.

To establish the existence result in a transparent fashion, we reformulate the stochas-
tic problem into a much simpler deterministic form. We can achieve this by introduc-
ing a couple of innocuous assumptions. To ease the notation, we denote the graph of
I" by

graph(I') := {(z,y) e R} xR} |y € I'(x)}. (2)

Assumption 1. I' : R = R} is nonempty-valued with I'(0) = {0}. Also, (x,y) €
graph(I") implies (v, yy) € graph(I") for any v > 0.

Assumption 2. R : graph(I') - R U {—o0} is homogeneous of degree 6 < 1.

Assumption [ requires that the graph of I' be a cone, which is consistent with many
economic models. The homogeneity requirement in Assumption 2 is also satisfied by
the commonly used class of utility functions. Under these assumptions, the stochastic

optimization problem () can be rewritten as an associated deterministic problem.

Lemma 2.1 (Value function equivalence). Under Assumptions [l and O, V' defined in
() satisfies

o0

V(z) = sup { Z B R(Ge1, Gt

t=1

Y € I'(Yr—1), o = 33} 3)

for each x € X, where
Bi=d +1—-N)5. (4)

The proof is tedious and is, therefore, relegated to Appendix [AT1l. One can intu-
itively understand this result by noticing its connection to the classic result of Yaari
(1965). Consider, for instance, an extreme case of disaster (or ‘the end of life’) such

that once it happens, the value of the return function will be O thereafter. In such

7



a case, the decision maker effectively discounts her per-period return function by
(1 — \)B ~ e *f. In other words, the effective discount rate is raised by the hazard
rate, a well-known result since Yaari (1965). In our model, Yaari’s analysis corre-
sponds to the case where @ = 0, which means that the stock of capital completely
collapses when a disaster hits the economy. Lemma P21 generalizes this well-known
result to the cases where the consequence of disasters is not necessarily catastrophic
and an incident of disaster is not a one-off event.! Our formula (@) suggests that, in
general, the effective discount rate is not only a function of the hazard rate, but also
of the magnitude of the disaster as well as the degree of homogeneity of the return
function. As we will see shortly, this fact is crucial when examining the relationship
between growth and disasters.

The equivalence result obtained in Lemma 21l makes our task significantly eas-
ier. Since the deterministic problem (B) is well understood in the literature, we can
now apply the powerful tools established in the deterministic optimization theory in
analyzing the solution of the original stochastic problem (). Our analysis hereafter is
thus primarily focused on the deterministic formulation (3). Accordingly, we say that
a path {y;}:°, is feasible from x € X if gy, € ['(g;—,) forallt € Z,, with gy = x.
Here we put tildes on the variables in order to emphasize the fact that they represent a
path in the deterministic problem, not in the original stochastic problem. We will later
discuss how the optimal paths of the two different formulations are related.

Now that the problem is given as a familiar deterministic optimization problem,
the existence result is in order. Before proving the existence of the optimal path,
we note that the effective discount factor 3 defined in (@) can be greater than unity
when 6 < 0. This does not cause a problem in the present context because, as in the
case of a homogeneous utility function, the return function is assumed to be bounded
from above when 6 is negative. With this remark in mind, we can appreciate that the

following assumptions are reminiscent of those in Le Van (2006):
Assumption 3. [’ is compact-valued and continuous.

Assumption 4. graph(I") is convex, R is smooth on the interior of graph(I"), 6 # 0,

and

(a) if 0 > 0, R(y,y’) > 0 on the interior of graph(I);

® In the field of pollution control and resource management, Yaari’s framework has been extended
in various directions. Clarke and Reed (1994), for example, considered an irreversible catastrophic
event whose hazard rate is influenced by the stock of pollution. Their model was later extended by
Tsur and Zemel (1998) to allow for multiple occurrences of an environmental event. In this literature,
the consequence of ‘disaster’ is usually modeled as a flow penalty or a sudden change of the model’s
primitives, not as a destruction of existing capital.



(b) if § < 0, R(y,y’) < 0on graph(');

(c) Riscontinuous in the extended sense, namely, if R(y, y’') = —oo, then lim,, oo R(Yn, Y,,)

—oo for any sequence {(y,,¥y,,)}n>; C graph(T') such that (y,,y,) — (y,y’)

as n — oo.
Assumption 5. For each y, € X,
(a) if 0> 0,3, B R (y,_1,y,) < oo for any feasible path from yq;
(b) if 6 < 0,3°°°, B 'R (y,_1,¥:) > —oc for some feasible path from .

Assumption 3 is standard, which ensures that the set of all feasible paths is com-
pact in the product topology. Assumption B combined with Assumption 2 imply that
R is concave on graph(T") and strictly concave on the interior of graph(I')).? With
Assumption B, the objective function in (B) is upper semicontinuous in the product

topology on the set of all feasible paths.® We now present the following basic result.

Proposition 2.1 (Policy function equivalence). Under Assumptions -3, i) there is
an optimal policy function v : X — X of the deterministic problem (B), ii) V is
homogeneous of degree 0, iii) 1 is homogeneous of degree 1, and iv) v is an optimal
policy function of the original stochastic problem (l). Conversely, v) any optimal

policy function of the stochastic problem (I)) solves the deterministic problem (B).

Proof. 1) The existence of ¢ follows from Proposition 2.2.1 of Le Van (2006). ii)
Fix x € X. Notice that for any v > 0, whenever {y,;}°, is feasible from ,
so is {y9:}2°, from yx. Hence, we must have V(yx) > ~V(x). To see the
reverse inequality, let X (x) be the set of all feasible paths starting from x. Sup-
pose, by way of contradiction, that for some v > 0, there exists {y;}°, € X (yx)
such that 3°°° 3" 'R(g,_1,9:) > 1’V (x). Then by homogeneity of R, we have
S BT R(Y 1, v ) > V(). Since {y7'9,}2, € X () by homogeneity
of I', however, this contradicts the fact that V' is the value function of (B). It follows
that V (yz) = 7V (z) for any v > 0. iii) Fix x € X and let {g;}>°, € X (x) be the
optimal path generated by 9,1 = ¢(9;) for each t. Then {~vg,}:°, is feasible from
~v for any v > 0 and

ST ROG ) =2 Y BT R G) =2V (@) = V(w),  6)
=1 t=1

"Fix z € int(graph(T')) and twice differentiate both sides of R(vz) = 7% R(z) with respect to .
Evaluated at v = 1, this yields (2, (d?R(z)/dz?) z) = 6(0 — 1)R(z) < 0, where (-, ) is the inner
product. This means that the Hessian of R is negative definite, which implies the strict concavity of R
on the interior. The concavity on the entire domain then follows from the continuity of R.

8See Lemma 2.2.1 of Le Van (2006).



where the last equality follows from result ii). This immediately implies that ¢)(yx) =
v () for any v > 0 and € X. iv) Given that V' in (B) is well defined, it satisfies
the Bellman equation

V(@) = max { R@.g9) + BV () } ©)
yel'(z)

for each € X. By Lemma 1 above, V' is also the value function of the origi-

nal stochastic problem (). This means that V' also satisfies the following Bellman

equation:
V(z) = max {R(m,y) +ﬁE[V(Dy)]}. 7)

yel'(z)

Since V' is homogeneous of degree 6,

BE[V(Dy)| = B(AV(ay) + (1 =NV (y)) = BV (y), (8)

which implies that () and (B) are equivalent for each € X. Therefore, ¢ is an
optimal policy function of () as well. v) Immediate from (B), (@), and (B). L]

This result is quite useful. It states that equivalence holds between the determinis-
tic and stochastic formulations, not only in terms of the value function, but also for the
policy function. Focusing on the optimal policy of the deterministic problem, there-
fore, proves to be sufficient for the characterization of the optimal path of the original
stochastic problem. We should mention, however, that a realization of the optimal
path in the stochastic model, which depends on the corresponding realization of dis-
aster history, does not necessarily replicate the deterministic optimal path. We will

return to this issue later.

2.2 Idiosyncratic risk

Different types of disasters may destroy different kinds of production factors. For ex-
ample, some types of disasters, such as droughts, may be particularly destructive in
terms of human capital. Others, such as storms, may be more devastating in terms of
physical capital. Since countries are exposed to different types of disasters of dissim-
ilar frequency, it should be worthwhile to investigate how potentially biased damages
of disasters affect the long-term growth rate of the economy. To this end, in addition to
the economy-wide aggregate risk of disasters introduced above, we consider a smaller
scale, idiosyncratic risk of disasters for each type of capital.

Let z; € [0, 1] be the fraction of capital i € {1,2,...,n} which survives strikes
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of small-scale disasters within each period. Since the occurrence and the magnitude
of disasters are usually uncertain, the fraction z; is a random variable at the firm or
household level. Assuming that the risk of small-scale disasters is idiosyncratic across
time and location within each economy, however, the law of large numbers suggests
that their influence at the aggregate level can be captured by the expected values (; :=
Elz] € (0,1). If 9; = (1.4, Got, - - - Uns) | is the capital stock at the end of period
t, for instance, the economy at the beginning of period ¢ + 1 has ;11 = (y; =
(G191t 2Tty - - -y Calnt) | » where € is an n X n diagonal matrix whose (i, ) element
is (; foreach s = 1,2,...,n and 0 everywhere else. This process is, at the aggregate
level, seen as deterministic. In other words, the idiosyncratic risk captures the rate-
of-return effect of disasters only, while the unpredictability of disasters is taken into
account by the aggregate risk that we discussed above.

Our problem is now reduced to the dynamic optimization problem

o

V(x) = max { Z Bt_lR(C?)t—l, Ut)

t=1

Y: € N(CYi-1), Y0 = C_l.’l;}

= max { Z Bt_lé(gt—h Ut)

t=1

Yy € f(@t—1)>ﬂ0 = C_laf}> 9)

where

R(5.9) = R(¢5,9), T(g):=T(Cy). (10)
Notice that Lemma I-1 and Proposition IZT remain valid as long as R and I satisfy
the assumptions above. Introducing the risk of disasters in this general form has at
least two advantages. First, we can see how the presence of disaster risks affects
the optimal path without specifying the structure of the economy. The aggregate risk
of disasters influences the effective discount rate through 3. The idiosyncratic (and
capital-specific) risk, in effect, alters the technology of the economy through RandT.
This mechanism is fairly general and should remain valid for a wide class of economic
models. How each channel of the disaster-economy interplay plays out, however, de-
pends on the structure of the underlying model. Second, since many of the well-known
models of economic growth can be written as (B), it is fairly straightforward to inves-
tigate how exactly the influence of disaster is translated into the equilibrium growth
rate in various growth models. In fact, we illustrate this point in the next section by

applying our framework to an endogenous growth model a la Lucas (1988).?

°In Appendix B3, we briefly lay out the continuous-time analogue of the model and show that our
findings all survive.
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3 Endogenous growth example

Lety, = (K;, H;)" be the vector of physical and human capital at the end of period t.
Denote by F(k,[) the production function of final goods, where & is the physical
capital stock at the beginning of each period and [ is effective labor. The total amount
of raw labor input is assumed to be constant and normalized to one. Denoting the
stock of human capital at the beginning of each period by h, effective labor is given by
[ = (1 —n)h, where 1 —n € [0, 1] is the fraction of raw labor used for the production
of final goods. Letting C; be consumption in period ¢, we write the accumulation

dynamics of physical capital as

with
}/t = F(kt7 (1 - nt)ht>7 (12)
where
ke == (kDK and Dy == (gD Hy (13)

are the stocks of physical and human capital at the beginning of period +.™ Here,
dk € [0, 1] represents the depreciation rate of physical capital and ((x, () represents
the expected fractions of capital surviving small-scale idiosyncratic disasters. The
production function in the human capital sector is specified as G(I) := 7!, where
[ = nh is the effective labor input and n > 0 is the productivity coefficient. The
accumulation process of end-of-period human capital is then governed by

Ht = G(’I’Ltht) + (]_ - 6H)ht
= (e + 1 —0n) h, (14)

where dy € [0, 1] is the depreciation rate of human capital. We specify the one-period
utility as
u(C) :=C?/0 (15)

for some 6 < 1. Note that 1 — 6 > 0 is the elasticity of marginal utility. In dynamic
settings, a more sensible interpretation of 6 is that 1/(1 — ) represents the elasticity

of intertemporal substitution.™ For § = 0, the utility function is specified as u(C') :=

10Recall that we use K; and H, for the end-of-period values.

Parameter @ also reflects the degree of risk aversion because the Arrow-Pratt coefficient of risk
aversion is given by v := 1 — 6. In Appendix B4, we present a model with a more general class of
utility function where risk aversion and elasticity of intertemporal substitution are disentangled. The
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In(C'), which is obtained as the limit case of (C? — 1)/, an affine transformation of
(@), for § — 0. Although Assumption [ is not satisfied by the logarithmic function,
we can apply the same equivalence result by simply setting # = 0 and hence B =4
See Appendix Bl for details.

We now consider the following stochastic optimization problem:

V(K,H):= max E

{Ceme}2,

> 6“u<ct)] (16)
t=1
subject to (I0), (I2), and (I4) and (Ko, Hy) = ((x'K, (5" H). Defining the return
function and the transition correspondence by
_ _ 0
RUSH. K, H) = (F (Cx K [1 497" (1 — 5H)]CHH9— n_H') + (1 - 6k)¢k K — K) |
(17)

and

['(K, H) ::{(K’,H’) e R

F(Cr K [L+n (1= 0m)|¢uH — 0" H') + (1 = 0 )¢r K = K' > (1 = 0g)Cr K,

(41— 0u)CuH = B > (1 6H><HH}, (18)

respectively, this problem may be written as ([l) where R = RandI' = T. Notice that
we have not specified the production function F' yet. To make the model fully consis-

tent with the above assumptions, we require £ to satisfy the following assumption:

Assumption 6. ' : R2 — R, is smooth, concave, and homogeneous of degree one
with F(0,0) =0, F, > 0, F; > 0, Fy, <0, and Fj; < 0.

It should be easy to verify that under Assumption B, the growth model at hand
satisfies Assumptions [H4. Provided that Assumption B also holds, we can apply
Proposition 1 and rewrite (If) as the deterministic growth model

o0

max > BTR(Kyy, Hioy, Ky, Hy) (19)

{(Kt7ﬁt)}?il t=1

S.t. (}N(t, f{t) S f(f(t_l, f{t—l) and (}N(o, f{()) = (gl_(lK, C;IIH)

For the sake of completeness, we provide a sufficient condition for Assumption B.

analysis there suggests that in the present context, # is best interpreted as capturing the consumption-
smoothing motive, not the risk preference.
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Assumption 7. The production function satisfies

lim Fp(k 1) < S0y 41— o) — (1 — 6x) < lim Fe(k, 1) (20)
k—o0 % k—0

forall k > Oand ! > 0.

Proposition 3.1. Under Assumptions B and [, there exists an optimal policy function
of the problem (I9) if

(Culn+1=0u)?Ma’ +1—=X)8 < 1. 21)

This policy function also solves the problem (I8).

The proof is found in Appendix B2. As we will show below, the condition () is

not only sufficient, but also necessary if the solution is to be a balanced growth path.

3.1 Linking stochastic and deterministic solutions

As mentioned earlier, our discussion revolves around the deterministic formulation
() rather than the original stochastic formulation (I6). Before presenting the analy-
sis, it will be useful if we clarify how the results of this section can be interpreted in
the stochastic formulation.

As far as the growth rate is concerned, the optimal paths of the two formulations
are identical, except for the periods when a disaster hits the economy. To see this,
let {ét, K, F[t},?il be the optimal path of consumption and capital induced by the
deterministic model and put g; := ét—i—l / C,, the gross rate of consumption growth,
for each ¢t € Z, . Since the two formulations of the model share the same policy
function, their optimal paths exactly coincide until an economy-wide unpredictable
disaster occurs. Suppose the economy then experiences a disaster at the beginning of
period t. While this affects the level of each capital available in that period, the ratio is
unaffected because (oK) /(aH,) = K,/ H,. Given that the graph of the transition cor-
respondence is a cone, this implies that the optimal path of ratio of capitals remains the
same whatever the realization { D, }?°, of the disaster history will be. Consequently,
the associated realization {C;}°, of the optimal consumption path in the stochastic
model is given by C; = Ht;:ll D, C, for each t € Z. . The stochastic consumption

growth rate is hence

Ct—l—l Ht =1 DTét+1 ~
= = === — =D 22
gt C, HtT_:ll D.C, tJt (22)
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for any {D;}°, and for each t € Z, . Therefore, in the stochastic formulation, the
optimal growth rate drops by 1 — « upon each disaster, but otherwise the growth rate

is characterized exactly as in the deterministic model.

3.2 Balanced growth path

Let us move on to the analysis of the balanced growth path. Throughout this section,
we maintain Assumptions B and [1. We also presuppose that Assumption 5 is satisfied
so that the optimal solution exists. Then it follows from a well-known procedure that

the balanced growth path is uniquely determined.

Proposition 3.2. There is a unique balanced growth path in which output, consump-
tion, and physical and human capital all grow at the same constant rate if and only if

inequality (1) holds. The associated gross growth rate is given by
~ 5 1 1
ge = (BIn +1 = 0n)¢r) ™0 = (B + 1= N+ 1=0ulCr) ™. (23)

The proof is in Appendix A73. This result suggests that () is not only sufficient,
but also necessary for the existence of the optimal solution if the solution is to be a
balanced growth path.” This finding remains valid for any production function F as
long as Assumptions B and [ are satisfied. Accordingly, we hereafter assume (211)
instead of Assumption B.

Given that the balanced growth rate g, is expressed as a function of the model’s
primitives, it is now straightforward to see how different aspects of disasters affect

economic growth in the long run. Some simple algebra reveals

5. 1 4
Ny 1-6Cy
3. 0 i1
da  1—0Xaf +1—

85. 1 g.(a?—1) _
— < fo =0. 27
h 1 faal s 1oy >0ie=0 @D

>0, (25)

£ 20020, (26)

Moreover, it is immediately clear from (Z3) that the balanced growth rate is indepen-

dent of (. Therefore, we have proven the following proposition.

12 Along the balanced growth path, we have
S B u(C) = 302 (Bl u(Ch), (24)

which is finite only if 3g¢ < 1. This inequality coincides with (ZI) because 53¢ = [(Cu[n + 1 —
§))°(Aa? +1— \)B]T7 and 6 < 1.
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Proposition 3.3. The balanced growth rate g, is increasing in (g, but is not affected by
(k. When 0 > 0, the growth rate is increasing in o and decreasing in \. Conversely,

when 6 < 0, the growth rate is decreasing in o and increasing in \.

Several remarks are in order. First, the balanced growth rate is negatively affected
by the expected damage 1 — (y of disasters on human capital. Human-targeted dis-
asters decrease the effective productivity in the human capital sector. Because human
capital is the long-term growth engine, this diminishes the balanced growth rate. This
result intuitively indicates that the balanced growth rate is likely to be smaller in a
country where human-related resources are vulnerable to disasters.

Less intuitive is the finding that as long as the damage is restricted to the stock
of physical capital, the idyosincratic risk of disasters does not affect the long-run
growth rate. One possible implication of this is that protecting human-related re-
sources against disasters is more important than physical capital protection. This is
not only from a humanitarian viewpoint, but also because we can sustain a higher
growth rate in the long run. We could also view this result as an explanation for re-
cent empirical findings. Our result is based on the optimal solution and hence is only
applicable to the case where every resource is efficiently allocated across different
sectors. However, suppose, for instance, that physical capital is inefficiently overin-
vested. Then, because the degradation of physical capital is at the least not harmful,
a higher frequency of physically destructive disasters is likely to improve the growth
rate.® This observation is largely consistent with the suggested explanation for the
empirical result of Skidmore and Toya (2002).

The role of aggregate risk is somewhat mixed. Depending on the sign of 6, the
risk of disasters can increase or decrease the long-run growth rate. This is primar-
ily because of the consumption-smoothing motive. Recall that a smaller value of 6
implies a lower elasticity of intertemporal substitution and hence facilitates savings
today if sudden declines in future consumption are expected. This precautionary sav-
ing is particularly relevant when the expected decline of future consumption is larger
(i.e., when « is smaller and X is larger). In the face of potential disasters, however,
there is another motive that discourages savings today. Saving for future consump-
tion means putting a large amount of resources at risk, which makes it reasonable to

consume more today. This makes sense, especially when the expected disasters are

13 This mechanism only works when the cause of overaccumulation of physical capital is also re-
moved by disasters. Suppose, for instance, that the government introduced a new regulation against
some externality (such as noise pollution) but the regulation only applies to newly built factories. In
such a case, destruction of old factories, which are exempt from the regulation, will eliminate the cause
of overaccumulation.
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highly destructive and the risk is evident. Hence, these distinct motives counteract
each other and the relative strength is naturally determined by #. When 6 < 0, for
instance, people are not very elastic in terms of intertemporal substitution and, as a
result, the consumption-smoothing motive dominates. This is another case in which
the long-run growth rate is positively correlated with the magnitude and frequency of
disasters.™

However, it is important to mention that the comparative statistics in terms of
a and A require careful interpretation. As stated above, the realized growth rate of
the original stochastic model will deviate from g, once a disaster hits the economy.
In other words, the direct impact of large-scale disasters is not included in g.. The
balanced growth rate responds to « and A only because disasters might happen in
the future. When an economy-wide disaster does hit the economy, the growth rate
in the following period will unambiguously decline to ag,. Even though the per-
period growth rate will eventually go back to the balanced-growth rate, the average
growth rates of those countries which actually experienced a disaster will continue to
be lower than otherwise. As a result, if the growth rate of a disaster-stricken country is
compared with a counterfactual scenario of no disaster experience, one would always
find a significantly negative impact of disaster to growth. This result at least partially
explains the recent empirical findings (Raddatz, 2007; Noy, 2009; Hsiang and Jina,
2015).

Aside from the growth rate, we are also interested in how long-run resource allo-
cation is influenced by the risk of disasters. Along the balanced growth path, the raw
labor input share 7, in the human capital sector may be written as

*

H
iy = (nCu) ™! ﬁ: —n M1 =6x) = (Ca) "G —n (1 = dm). (28)
t—1

The comparative statics on n, then directly follow from Proposition B33, except for (.
This already indicates that the long-run growth rate is adjusted through the reallocation
of raw labor. To further investigate this point, let us focus on unpredictable disasters

and suppose that the elasticity of intertemporal substitution is relatively small.™ We

14 Tt may seem strange that a larger magnitude of unpredictable disasters can increase the growth
rate, even when X is close to 1. If A = 1, a disaster occurs with certainty in every period, which can
be regarded as a form of capital depreciation. In other words, as A — 1, our disaster model converges
to the standard growth model where capital stocks depreciate by the amount of 1 — «. Because capital
depreciation always lowers the growth rate in the standard growth model, one could expect that g,
is always increasing in  when A is sufficiently close to 1. As mentioned earlier, however, g, is the
balanced growth rate in those periods when unpredictable disasters do not hit the economy. When
A =1, there is no such thing as a period with no disasters. The observed discontinuity is thus natural.

15 The influence of idiosyncratic risk in resource allocation involves more subtleties than one might

17



know from Proposition B3 that a higher frequency of unpredictable disasters will then
result in a higher economic growth rate in the long run. What is shown by (P8) is that
this is achieved by pulling raw labor out of the market and increasing the fraction of
time spent developing human capital. In other words, as long as the economy is less
elastic in terms of intertemporal substitution, the risk of disasters puts more emphasis
on human capital. We can see this most clearly if we look at the ex post composition
of physical and human capital (K/H)*, which is defined by

NS O Ut Gt T 09

(R/H)" = CuHY Cum

Here, k. is the capital-to-labor ratio in the final goods sector along the balanced growth
path, which is implicitly determined by
-y CH
Fk<l€*,1) = —(T]—i‘l—(sH)—(l—(SK) (30)
Ci
Since &, is independent of o and ), this shows that the reaction of capital composition
to unpredictable disasters is also parallel to the behavior of the balanced growth rate.
This finding is not trivial because, unlike idiosyncratic risks of disasters, the aggregate
risk of disasters affect both types of capital in the same manner.

Disasters influence not only the within-period resource allocation, but also the
intertemporal resource allocation. A variable that deserves attention in this regard is
the savings rate. Along the balanced growth path, the savings rate is given by
Cr Fos

Goomlo 2t =
Y;* CKF(H’MD

(9. = (1 = 0k)]. €10

The comparative statics of s, and g, again coincide with respect to o and A. This in-
dicates that intertemporal consumption reallocation is another major driver behind the
disaster-growth relationship. This finding is particularly important when the empiri-
cally observed correlation is interpreted. As we have seen, long-run economic growth
can be boosted by the risk of disasters. This can be a consequence of the unintended
upgrade of otherwise inefficient physical capital or the facilitation of human capital
investment. However, these explanations are only part of the story. The positive cor-
relation between growth and disasters can also follow from the precautionary saving,
which would not be necessary in the absence of potential disasters. If this is the case,

then the high economic growth rate can only be achieved at the cost of suppressed

expect. In Appendix B, we provide the comparative statics of each variable in detail.
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consumption by the present generation.

In fact, it is straightforward to see that a greater magnitude or a higher frequency
of disasters implies a lower level of welfare. In other words, the welfare implications
of disasters are unambiguously negative. An important implication of our findings is,
therefore, that disaster prevention efforts are crucial for people’s welfare, in spite of

the fact that the long-term economic growth rate may be lowered by such efforts.

3.3 Transition phase

In this section, we turn to the economy off the balanced growth path and charac-
terize its behavior. Those interesting properties we have identified in the preceding
section have particular relevance if the economy converges to the balanced growth
path. Moreover, the transition dynamics are of interest in their own right because the
economy may still be in transition to its long-run equilibrium.

To facilitate the discussion, we specify the production function to be of the con-
stant elasticity of substitution (CES) form.

Assumption 8. The production function F' is given by

o

—1

Flk,1) = (yk;”T’l r (- u)z”%) i (32)

for some v € (0,1) and o € (0,00) \ {1} such that

Cr

Vﬁ<c_(n+1—6H)—(1—5K)ifa>1 (33)
K
and
foal>g—H(7]+1—5H)_(1_6K) ifo<1. (34)
K

We hereafter replace Assumptions B and [ with Assumption B. The balanced
growth path then exists if and only if (1)) is satisfied, which we assume throughout
this section.

As the next proposition shows, the dynamics of the economy off the balanced
growth path is then characterized as a monotonic transition to the long-run equilib-

rium.

Proposition 3.4. The optimal path {§;};2, of the consumption growth rate monoton-

ically converges to the balanced growth rate g..

The proof is in Appendix [A=4. It is useful to observe that this stability result is
shared by the stochastic formulation as well. By (Z2), the stochastic growth path
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{g:}$2, is given by
gt = Dtgt Vt - Z++ (35)

for any realization {D;}?°, of disaster history. This means that g, converges to the
stochastic balanced growth rate Dg,, where D is a random variable following the
Bernoulli process. Hence, our characterization of the economy based on the deter-
ministic formulation is justified, not only along the balanced growth path, but also in
the transition phase. The convergence itself is not affected by the aggregate risk.

What then about the idiosyncratic risk? As it turns out, the potentially biased dam-
age of idiosyncratic disasters affects the speed of convergence in a nontrivial manner.
We demonstrate this fact by considering two distinct economies with different values
of (’s. Each economy, indexed by i € {A, B}, is characterized by the set of param-
eters £ = (%, 0k, 0, N\, 0, 8,m,v,0). Let {G/}°, be the path of the con-
sumption growth rate of economy :. Our interest is in which of the economies more
quickly converges to the balanced growth path when they are different with respect to
(i Ci)-

Since the balanced growth rate (Z3) depends on (j, each economy, in general,
converges to a different balanced growth rate, which we denote by g := lim; ., Gi.
To make the comparison meaningful, we restrict our attention to the pair of paths such
that g /g2 = P /g2. In other words, we see two paths as comparable as long as the
initial states of the economies have the same relative distance to their own balanced
growth path. In addition, we say that path {g/'}>°, converges faster than path {§Z}°,
if

9 /g2 =1 <8 /57 = 1] (36)

for every t > 2. We are now ready to state our final proposition.

Proposition 3.5. Assume 6x = 1 and let {§i*}2°, and {GP}>2, be two comparable

paths associated with two distinct economies 4 and EP, respectively. Suppose

(/i < CRICH (37)

Then i) {g*}22, converges faster than {gP 1}, if o > 1; ii) {GP}22, converges faster
than {G"}22, if o < 1.

The proof is in Appendix AS. For this proposition, in order to obtain a clean
result, we simply assume that physical capital fully depreciates between periods. The
full depreciation assumption is only a good approximation if the time step is taken

to be sufficiently long, say a decade or longer. Although unrealistic for a short-term
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analysis, using such a long time step would be fairly reasonable since our primary
interest is in the long-run behavior of the economy.

To fix the context, let us focus on the case where (;; = (Z so that the two
economies converge to the same balanced growth rate. Since these economies are
comparable, their initial growth rates are also identical. Then Proposition B3 shows
that an economy with a larger magnitude of physically destructive disasters converges
faster as long as the two inputs in the production function are substitutes. Suppose,
for instance, that the growth rate of an economy is initially smaller than the balanced
growth rate. In the process of transition to the balanced growth path, this economy can
achieve a higher growth rate in every period when they face a higher risk of physically
destructive disasters. This result provides yet another explanation for the observed
correlation between disaster frequency and the long-run growth rate. But yet again,
we should interpret this finding carefully because the welfare implications of disasters
are always negative.

This finding clearly demonstrates the rate-of-return effect of disasters suggested
by Skidmore and Toya (2002). Moreover, our result indicates that what also matters
is the substitutability between physical capital and effective labor in final goods pro-
duction. A greater magnitude of physically destructive disasters forces the economy
to shift the focus from physical capital to human capital. When the two inputs are
substitutes, the productivity decline from the lower level of physical capital is made
up for by the accompanying improvement in labor productivity. In this case, reallocat-
ing resources from physical to human capital will not significantly affect per-period
production. A stronger emphasis on human capital then bumps up the growth rate
during the transition phase to the long-run equilibrium. This is not possible when the
two inputs are complements. If both inputs are essential for final goods production,
the degraded physical capital cannot be easily compensated for by developing human

capital, which results in a lower growth rate along with the associated welfare loss.

4 Discussion

The analysis in the preceding section, although fairly standard, has some limitations.
One might argue, for instance, that our results are driven by the fact that the accu-
mulation of human capital is the sole engine of long-run growth, a key feature of the
Lucas model. Some of the clear-cut results, including the independence from physi-
cally destructive disasters, would not carry over to other types of growth models. In

the AK model with physical and human capital, for instance, the long-run growth rate
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depends on the equilibrium physical-to-human capital ratio, which in turn is deter-
mined by the depreciation rates of both types of capital. What then matters for the
rate-of-return effect to the long-run growth rate will be the relative magnitude of the
expected damages to each type of capital, just as is the case with our analysis of the
transition phase. The precautionary savings effect, on the other hand, will be valid in
a wide range of models. In fact, the mechanism behind this effect is well known in the
context of risky investment (Levhari and Srinivasan, 1969; Sandomo, 1970; Devereux
and Smith, 1994).

Given the importance of 6 for the precautionary savings effect, care should be
taken with the interpretation of this parameter. It is well known that in the standard
expected utility model, 6 simultaneously captures two distinct aspects of preference:
intertemporal consumption substitution and risk aversion. Depending on which aspect
of the preference is represented by 6, empirically plausible values for this parameter
will be significantly different (Vissing-Jorgensen and Attanasio, 2003; Bansal and
Yaron, 2004, Chen et al., 2013). In our model, what is crucial for the precautionary
savings effect is not risk aversion, but elasticity of intertemporal substitution. This can
be seen by extending our general framework to the recursive utility model of Epstein
and Zin (1989, 1991) and Weil (1990). Appendix B-4 describes the details of such an
extension. Applied to the endogenous growth example, the extended model yields the
balanced growth rate of the form

1

3. = (500" £ 1= N+ 1)) (38)

where v > 0 is the Arrow-Pratt coefficient of risk aversion and 1/(1 — @) is the
elasticity of intertemporal substitution. As shown in Appendix B4, the comparative
statics we presented in Proposition all survive. The precautionary savings effect
critically depends on 6, not on . Empirically, the evidence on the magnitude of
f is mixed. The best available evidence suggests that high and low elasticities of
intertemporal substitution are both possible (Hall, 1988; Vissing-Jorgensen, 2002) and
there is considerable cross-country heterogeneity in the existing estimates (Havranek,
2015).

The present paper focuses on the social planner’s problem with the aim of pro-
viding a theoretical benchmark. An obvious next step is to extend the analysis to a
decentralized economy where households and firms individually face the risk of dis-
asters. Such an extension may be conducted in line with the incomplete market models
like those developed by Aiyagari (1994), Krebs (2003), or Angeletos (2007). In fact,

that is what was pursued by Bakkensen and Barrage (2016) in the context of uninsur-
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able cyclone risks. What we call the aggregate risk in our social planner’s problem
is reinterpreted as the uninsurable investment risk from the perspective of individual
households. The impacts of disasters on the aggregate savings and growth in such a
decentralized model are similar to our result: the precautionary savings effect due to
the uninsured part of the risk and the rate-of-return effect depending on the expected
damage of disasters. Although only confirmed in a particular class of growth model,
their analysis indicates that what we found in this paper is actually a reasonable bench-

mark even in a decentralized economy.

5 Conclusion

An increasing number of empirical studies have investigated the economic conse-
quences of disasters. Based on empirical evidence, it has been argued that disas-
ters may have positive impacts on the economy in the long run. Despite its potential
importance, little is known about the formal mechanism underlying these empirical
observations. In this paper, we attempted to fill this gap by providing a general frame-
work for disaster analysis that can be used for a wide range of economic models. By
applying the framework to an endogenous growth model, we demonstrated how stan-
dard growth theory can be made consistent with these empirical findings. Likewise,
our extensive analysis of the balanced growth path, together with the characterization
of the transition phase, provided a number of novel insights.

First, if the damage is restricted to physical capital, disasters will not affect the
long-run growth rate as long as the resources are efficiently allocated. If some ineffi-
ciency remains in the economy, those disasters that primarily destroy physical capital
are likely to boost economic growth. Second, even if no inefficiency is involved, phys-
ically destructive disasters can improve the economic growth rate when the economy
is still in transition to the long-run equilibrium. This is because the associated change
in relative return forces us to put more emphasis on human capital. An important
caveat is that reallocating resources from physical to human capital may only achieve
a higher growth rate when the two inputs are sufficiently substitutable. Third, the un-
predictable nature of disasters plays an important role. Given the risk of disasters, a
precautionary policy emerges, depending on the elasticity of intertemporal substitu-
tion. Observationally, such a precautionary policy is accompanied by faster human
capital accumulation and a higher savings rate.

An important policy implication of our analysis is that the higher growth rate re-

sulting from disasters does not necessarily imply a welfare improvement. Our result
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suggests that many of the channels behind the apparently positive relationship be-
tween disasters and growth are accompanied by a welfare decline. In fact, unless it is
achieved by removing inefficiency in the economy, the welfare implication is unam-
biguously negative. Chances are that multiple channels are at work simultaneously.
Therefore, it would be interesting to test which of the possible channels identified in

this paper is a dominating factor behind the observed disaster-growth relationship.
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A Proofs of propositions

A.1 Proof of Lemma 2.1

Denote by 7(D") the probability of disaster history D’ being realized at period ¢. To

simplify the notation, define
A= HtT:1 D, and g (D') = A @ (DY) (39)

for each t € Z, and put A := 1. Using the homogeneity of the return function and

the transition correspondence, we have

Viw) = swp Rl + 30 Y 8 RD@(D) 2 (D)D)

{mt}fil t=1 Dt

T € F(:B), .’.Et+1(Dt) < F(tht(Dt71>),t € Z++}

= sup {R(az, @) + Z Z BtAfR(At_—lﬂt(Dt_l)a At_lmwl(Dt))W(Dt)

{=e}324 t=1 Dt

21 € T(@), A @y (DY) € (A @ (D)), 1 € z++}

= Ssup {3(937 y1) + Z Z BAJR(G(D ), g (DY) (DY)

{Qt}?il t=1 Dt

‘@1 € I(x), §i1(D") € T(G(D" 1)), 1 € Z++}

= swp Rl + Y 5 ARG g7 (D)

{gt}?il t=1 Dt

‘ 91 € 0(x), Y1 € (Y1), € Z++}- (40)

Notice that in the last equality, we dropped D'~!, the argument of g,. This is possible
because a realization of disasters does not affect the feasibility of each modified path
{g}:2,. Finally, observe

ZA" (D) = (A’ +1=X) Y Al 7(D) = (A’ +1 -\ (41)

Dt—1

Combining (0) and (&1) completes the proof.
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A.2  Proof of Proposition 3.1

We first show that Assumption B(a) is satisfied if (Z1) holds. To see this, suppose
6 > 0 and fix y, > 1 such that

Culn+1—=dulxa)’ B <1, 42)

which is possible as long as (ZI) holds. Let A := (gy[n+ 1 — 0y] > 0. By ([d), we
have H, < A'H, for any feasible path and

K, <Y+ (1— 5K)CKK&—1

= F(Ce K1, Cu(1—ng)Hy 1) + (1 — 05) i Ky
< F(Cx K1, AT Hp) + (1= 6k ) Ky
1

= Al {F(CKf(tfl/At-l, Ho) + (1 - 5K><Kf(tfl/f4t_l} ’ ()

where the last equality follows from the homogeneity of F'. As in Theorem 1 of Brock
and Gale (1969), we rewrite this as

K JA' < f(K,_1/A™Y Hy), (44)

where the function f is defined by

Fla; Ho) = {F(ng, Hy)+(1— 5,()@3} JA. (45)

Observe that by Assumptions B and [, f(-; Hy) has a unique fixed point Z(H,) >
0 and any sequence (z;);>o generated by the dynamical system z, 1 = f(z;; Hp)
with 2y > 0 converges to the fixed point. Combined with (B4), this implies that
limsup, ,., K;/A" < f(z(H,); Hy) = #(H,) and thus

lim sup Cy /A" < lim sup Y; /A"

t—o0 t—o0

< limsup F(Ceky /A", ) /A

t—o00

< F((xx(Ho), Ho)/A, (46)

yielding lim sup, HOO(C})V © < A. Hence, for any feasible path, there exists T, € Z |
such that
Cr < (Axa)' = (Culn+1—6nlxa)" VE>T,
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and therefore

oo ~0 Ta—1 ~ ) 0 N ot
Zﬁm% - Z Btl% n ZﬁH (Caln + 19 6] Xa) ’ @7
t=1 t=1 t=T,

where the right-hand side is finite because Y, satisfies (&2).
We shall show that () is sufficient for Assumption B(b) as well. To see this,
suppose ¢ < 0 and fix (f(o, f[o) € R, arbitrarily. Choose g such that

BV < § < Culn+1—dg), (48)

which is possible as long as (1) holds. We construct a path feasible from (f(o, f[o)
in which there exists 7;, > 1 such that from period 7; onward, Ct, f/t f(t, and }NIt all

grow at the same constant rate g. If

F(Cre, (Caln+1—0m) = g Hir/Kie) + (1= 0x)Cx > 5 (49)
for t = 1 already, then choosing
. g 1
7y = (i (- 5H)) - (50)
Ui
and
Cr = (F(Cm (Culn+1=6u) =g Hia /Kia) + (1= x)Cxe — §> K1 (51)
for all ¢ > 1 yields the desired path with 7;, = 1. If (89) is not satisfied for ¢ = 1, fix

X» such that
Crln+1—0n]

>xp > 1, (52)

which is possible since § satisfies (B8). Keep setting 72, € (0,1) and C; € (0,Y;) such

that - -
F(Cre, (1= 1) Cu(He1 /K1) (1 — ny)

F(Cre, (Caln +1—=0u) — §n " (He-1/ K1)
(7’]7’Lt + 1-— 5H)CH
g

L, (53)

> xp > 1, (54)

and (jt = ﬁt}}t until (B9) is satisfied for some ¢. This is always possible by setting n;,
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sufficiently close to 1. Then, as long as (B9) is violated, we have

& _ ~(777% +1- 5H)<H~ ] }E[t,l
Ky F(Ck, (1= ne)Cu(Hp-1/ K1) (1 = C/Yy) + (1 = 0k )Cx Ky
(e +1 —0m)Ch o,

7 F s (Caln + L= 0m) = )m (Ao / Kor)) + (1 — 00)Cxe Koy
> (nnt +1— 5H)<H ﬁtﬂ
- g K

> Xp = (55)
Since

l
lim F(1,2) = ]1613(1) Fi(k, 1) + Ilflg(l)Fl(k, Z)E

> g—H(n—Fl—éH)—(l—(SK)
Cx
= 3G — (1 b, (56)

there must exist 7, > 1 such that

F(Cr, (Caln+1—= 6] — g " Hyy—1/Kz,—1) + (1 = 6x)Ck > § (57)

Hence, choosing 7; and C’t as in (80) and (BT), respectively, for all ¢ > T}, yields the

desired path. The value of objective function associated with this path is then

T—-1 ~ 00 ~ —1 ~ ~
St—1 Cte AT—1 ot (gtCT)e St—1 Cte 5T—1 C%

E g LT —t — > - 58

15} + 6 15} 15} + 6 9(1—5§9)> oo, (58)

where the inequality follows from (ER).

A.3 Proof of Proposition

Noting that F' is homogeneous of degree one, we can write the Euler equations asso-

ciated with the deterministic problem (I9) as

B(G0)" i (Frlfey 1) + 1 — k) = 1, (59)
B30+ 1 = 6ulCuFi(Re, 1) = Fy(fp_1,1), (60)
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where g, = ét—‘,—l / C, is the consumption growth rate and &, is the capital-to-labor

ratio in the final goods sector, which is defined by

K
- nCx t _ 61)
m+1—0u|CuH; — Hip
Solving (B9) for g, yields
- =
g = (BexlPu(ie, 1) +1=0u]) (6
where &; follows the dynamical system
F(Ht,1)+1—5K—< (77+1—5H)M. (63)
C F}(Ht 1 1)
Denote by k. the interior steady state of the dynamical system (B3), namely, &, is
implicitly defined by
= oy SH
K

Under Assumptions B and [, %, exists and is unique. Let g, be the associated con-

sumption growth rate, which, by (b2) and (b4), is expressed as

= (B +1—=6ulCu)™ = (B’ +1 - N)[p+1- 5H]cﬂ)f19 . (65)

It is clear from (B2) that the optimal consumption growth rate g; is constant if
and only if k; is constant. Since &, is uniquely determined, this implies that the
balanced growth path, if any, must be unique. Let f/t*,f(;*, ﬁt* be the output, phys-
ical capital, and human capital along the steady state, respectively. Given fft* =
(kK7 F(1,1/k,), the growth rates of output and physical capital are identical. It
then follows from ([T]) that the growth rate is constant and equal to g.. Hence, the
unique balanced growth path exists if and only if we can choose a positive constant
ratio K/ /H, which ensures H ,/ H = g, at the steady state. We know from (b))
that

Ky Hiy
- = + 1—-6 Ky, 66
i CK n (CH[U ") — Ht* (66)
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which is positive along the balanced growth path if and only if

*

H 1
Culn+1—6y] > }f;j =g.= (B +1=Nn+1-0ulCu)™". (67

t

This yields the inequality (ZTI).

A.4 Proof of Proposition 3.4

Let g, := C’t+1 / ét be the growth rate of consumption and <, be the effective capital-
to-labor ratio defined by (BI). The optimal solution satisfies (B2), which means that
the behavior of g; is completely characterized by the dynamics of ;. In particular,
since F} is monotonically decreasing in k;, there is a one-to-one relationship between
g: and &;. Recall that the dynamics of &; are governed by (B3), which may now be

written as

%%ﬁ’”)lﬂ—&_(nﬂ—%)g( (é i)) . (68)

Observe that the capital-to-labor ratio k., at the unique balanced growth path is deter-

mined by

CH
3

V(F(Fa*,l) 69)

K

>0+1—5 — (1 — o)t

Combining (B8) and (B9), we have

() - () 2 () o) oo

Since F'(k, 1)/k is strictly decreasing in , this yields
Re = R = Ry S Rt (71)

which in turn implies

~ > > >
Rt = Ke = Kt = K1 = Ra (72)

It follows that for any initial value 5o > 0, the path {&;}?°, governed by (BS) mono-

tonically converges to k..
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A.5 Proof of Proposition B.5

To ease the notation, define
gi = (9:/g)7" " (73)
and G
TR
for each i € {A, B}. Observe first that path {g/}>°, converges faster than path
{gP}e2, if and only if

(74)

g — 1] < |97 — 1] (75)

for all £ > 2. By the monotonic convergence property in Proposition B4, we also have
limy o gi = 1 and
§i>1 <= g >1forallt € Z, (76)

foreachi € {A, B}.

Lemma A.1. The equation of motion for g, is given by

o

. o . 1 o=t
Giv1 = O(gp;0") = (1 + 17 (w7t (1 - — H>> (17)
(9t) °

forall t.

Proof. Observe first that (62) and (B3) imply

K} v
and 1
: » Fi(ri1) F(ri,1) \°
(Fe(Ry, 1) +1—0k) = ; = : . 79
HAED 200 = Bl 0 = Pl 7
Combining them yields
= 80
I ) o
and By Y »
(1+(1_5K)/Fk(’fiflal)) i = HLF 81)
1+ (1= 0k)/Fi(i, 1) R
forall ¢t > 1.
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Since dx = 1, (Z8) may be written as
g = (w')” F(1,1/5;) (82)

and (T)) boils down to &, , = g;&;, with which (82) implies

Gin = (v')” F(1,1/(5i7)). (83)
Solving (B2) for %} and plugging it into (83) yields (7). O]

We are now ready to prove Proposition B-3. We provide the proof only for the case
where 0 > 1 and §{/§2 = §G°/§P? > 1. The same argument can be applied to the

other cases. Suppose
Cie/Cir < Gk /< (84)

so that w? < w®. Since ¢(§i; w') in Lemma BT is strictly increasing in g and is also

strictly increasing in w’ (provided that ¢ > 1 and g} > 1), it follows that

1< gy = o(g15w) < 615 w") = o977 w") = 55, (85)
which in turn implies

1< g3 = o355 w?h) < 0(gasw") < (g7 w") = g5 (86)

Continuing in the same fashion for each ¢, we obtain 1 < LE]{‘ < gtB forall t > 2, or
g/ — 1] < |gP/gP — 1| for all t > 2. Therefore, we conclude that

{g}9°, converges faster than {GZ}°.

equivalently,

B Additional results

B.1 On the case with logarithmic utility

Put g, := (K, H;)" and define

R(Ge, Ger1) = In(F (Cx Ky, CuHy — 7 " Hypn) — Kig). (87)

It should then be easy to see that

R(Dyge(D'™), i1 (DY) = R(§(D'), G2 (D)) + In(A,), (88)
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where A; and g, are defined by (B9). Hence, as in the proof of Lemma I, we can

obtain the associated deterministic formulation

V(@)= sup {R@,fgn+Zﬁté<gt,gtﬂ>+v<a,m>

{93324 t=1

‘ v €l(x), g1 € L(9e),t € Z++}7 (39)

where v(a, A, §) is a constant defined by

v(a, A, ) ZZﬁtln 7(D') = An(« ZtﬁteR (90)

t=1 Dt

A sufficient condition for the objective function in (B9) to be bounded on the set of
all feasible paths is 3 < 1, which is always satisfied™ Therefore, we can apply
Proposition 1l to the case with logarithmic utility.

Observe that the optimal solution of (89) is not influenced by a nor by A. This
means that when the utility function is of a logarithmic form, unpredictable disasters
do not affect the growth rate at all. We should emphasize, however, that the welfare
implication is unambiguously negative, even in this case. We can see this, in that
the constant term v(«, A, §) is increasing in « and decreasing in \. (Be aware that
In(a) < 0 because o < 1.)

B.2 More on the comparative statics

Here we report the comparative statics results of <., ., and s,. Let us begin with &,
the capital-to-labor ratio employed in final goods production. Since Fj, is decreasing
by Assumption B, it is immediately clear from (B4) that <, is increasing in (x and
decreasing in (g. This result simply follows from the standard substitution effect. A
larger magnitude of disasters makes either physical or human capital relatively scarce,
depending on whether the disaster is targeted at physical or human capital. As long
as disasters destroy both types of capital in the same proportion, the capital-to-labor

ratio is unaffected, and therefore %, is independent of o and \.

16 Notice that with the logarithmic utility, (&7) is replaced by

S BT In(Cy) < In(Culn +1 — ulx) YreptB Y, 1)

the right-hand side of which is finite if 5 < 1.
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As for n, and s,, using (Z¥) immediately yields

on., 1 0g.

OCk B nC OCk B

aﬁ*C_H: ag*C_H_lz

0 and 92)

0
1-6
This means that the reaction of 7, to (i will be different from that of g, if 6 < 0. It
also follows from (B1l) that

oln(s,) (i B Fk(/%*,l)) Ok, 1
I \ke F(Rol)) 0k (i
_ CiK (% _ 1) < (1/e. —1)/Cx 93)
and
Oln(s,) 1 94, N (i B Fk(fz*,m) OF.
Ny G — (1—06g) 0y fo  F(R.,1) ) OCy
G 1 1 0k, Fy(Ry, 1)
f— + R - ' 7
Ge — (1 =0r) (1 —=0)Cy  Ru Oy F(Ry, 1)

1< 1 Ri,1)/e

- (- A )>(1/<1_e)—1/a*>/cH, (94)

where ¢, is the (depreciation-adjusted) capital elasticity of marginal productivity in

the balanced growth path, defined by,

_/%*Fkk(/%*, 1)Cu(n+1—10n)—Cx(1— 5K>'

Ex 1= — 95

Fy(f 1) Caln+ 1 — o) )
Therefore, . 95
S S

— <0ife,>1 and —=>0ife, >1-—06. 96

Ox = 9 (%)

B.3 Continuous-time analogue

Let A\x be the instantaneous hazard rate of physically destructive small-scale disasters
defined by

\ i Pr(a disaster occurs at a given location during h units of time)
Kk = lim .

B0 h oD

Denote by o € (0, 1) the expected fraction of capital which survives each occurrence

of this type of disaster. Then, under the assumption of idiosyncratic risk, the aggregate
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process of physical capital accumulation is
Kt+At = E [ZK(At) {Kt + (F(Kt, (1 — nt)Ht> — Ct — 5KKt) At}] (98)
for sufficiently small At > 0, where zx (At) is a random variable such that

1 with probability e x4
2 (Af) = (99)

ag  with probability 1 — e At

Notice that (88) may be written as

K — K
t+AAtt t — (e_AKAt _|_ QK(l - e_)\KAt)) (F(Kt7 (1 - nt)Ht) — Ct — 6KKt)
Q*AKAt -1
+ (1= ag)——K. (100)

By taking the limit for At — 0, we have
Kt = F(Ki, (1 = ny)Hy) — Cp — 0x Ky — (1 — () Ky, (101)

where we define (i by

_ o 1=Kl (AY]
A similar argument yields
Hy = G(nyHy) — 0 Hy — (1 — () Hy. (103)

Hence, the continuous-time analogue of our two-sector endogenous growth model is

given by

T
V(K,H) = maxE{/ e Pu(Cy)dt + e TV (aKr, aHr)
0

st. Ky = F(K,, (1 —n)H,) —C, — (6 +1—C)K;,  (104)
H, = G(nH,) — (0 + 1 — Cy)H, (105)
H0:H7K0:K7 (106)

where 7' is the uncertain timing of economy-wide disaster. The timing is a poisson
process with a constant hazard rate A > 0. Notice that the assumption of full depre-

ciation of capital is relaxed here. Assuming that the optimal solution of this problem
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exists, the associated Hamilton-Jacobi-Bellman (HJB) equation is given by

pV(K, H) = néix{u(C’) +Vk(K,H)[F(K,(1-n)H)—C — (g + 1 — (k) K]
+Vu(K,H)[G(nH) — (g +1— (y)H]
LAV (aK, aH) — V(K, H)]}. (107)

As in Proposition 1], one can show that V' is homogeneous of degree 6. Therefore,

the HIB equation may be written as
pV (K, H) = max {u(c) + Vi (K, H)[F(K,(1 —n)H) — C — K]
Vi H)IGH) — ] (108

where

p=p+r=X, 6 :=86+1-¢ ic{K H}. (109)

This coincides with the HIB equation associated with the deterministic version of the

problem

max / e Ptu(Cy)dt
0
S.t. ]’?t == F(Rt, (1 — ﬁt)ﬁt) — ét — gKkt
_f{t - G(’Fltﬁt> - 5H-Ht
Hy=H K, =K. (110)

Following the standard procedure, the balanced growth rate is computed as

. :77—(5H+1—CH)—(p+)\—)\a9)

) : 111
g 1 —0 (111)

A comprehensive characterization of this type of model can be found in Caballe and
Santos (1993). The analysis may also be extended to a more general class of two-

sector endogenous growth models as demonstrated by Bond et al. (1996).
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B.4 Extension to Epstein-Zin-Weil utility

The framework in Section I may be extended to the Epstein-Zin-Weil utility model,
in which the Bellman equation is given by

yel'(z)

V(z) = max {R(w,y) 8 (E [(V(Dy))TD&}, (112)

where v > 0 is the Arrow-Pratt coefficient of risk aversion.™ When the two parame-
ters 6 and ~ happen to satisfy 1 — v = 0, this problem degenerates into the standard
expected-utility framework we relied upon in the main text.

Assume that the solution V' of this functional equation exists. Then, as in Propo-
sition 1], one can show that V' is homogeneous of degree # under Assumptions 0l and
0. Hence, (IT2) may be simplified as

Viw) = max {R(x.9)+ V@], (113)
where ;
Bi=Ba"T+1-N)T. (114)

This coincides with the Bellman equation associated with the deterministic version
of the problem where the effective discount factor is given by B. By applying this
extended version of the model to the two-sector endogenous growth example in Sec-

tion B, we obtain the balanced growth rate

1
1-6

g = (Bln+ 1= 3ulC) ™ = (BRa’™ + 1= N5 (+1=04)u) ™, (115)

which is (B¥). Some simple algebra reveals

85 1 G

=——22 >0, 116
0~ 1— 0 (1o
03, 0 gAY .

- >0iff = 0 117
da  1—fOralv+l-A< U= (1n

~ ~ al=7-1

9. _ 0 9T gz, (118)

ON  1—0O a7 +1—\

as claimed in the text.

""The apparent difference between (II2) and the original formulation of Epstein and Zin (1989) is
solely a matter of normalization. See, for example, Traeger (2014).
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