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Abstract

We provide a model to explain hidden profiles, a series of persuasion cas-

cades where players choose not to share their private information with the others

and the group therefore fails. In our model, rational players will jointly select a

decision. Attributes decide which decision is optimal, but each player privately

and imperfectly knows these attributes. Hence, before decision-making, the

players meet and sequentially talk. A player benevolently talks based on his

limited information. But under communication constraints, the benevolent talk

may cause the next player to infer that a suboptimal decision is most likely to be

optimal. The next player repeats the previous talk because he is afraid that his

private information may misguide the group. In this way, the players persuade

one another by withholding private information.
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1 Introduction

We study a model of persuasion cascades in group decision-making to demonstrate the
impact of hidden profiles in group decision-making processes where a group fails
to pool individual members’ unique information and selects a suboptimal decision
(Stasser, 1988). Hidden profiles have been argued among psychologists and behavi-
oral scientists (Lightle, Kagel, & Arkes, 2009; Stasser & Stewart, 1992; Stasser & Titus,
1985, 1987; Wittenbaum, 2000). In all of these empirical and experimental studies,
players with similar preferences discussed and then jointly selected an action. Play-
ers tended to discuss common information (known to everyone before discussion)
or already shared information rather than unique information which, therefore, re-
mained hidden. Then, the group chose an action "that was favored by their common
knowledge—that is, the information they all knew before discussion. Moreover, this
common knowledge solution would likely persist even when their combined or col-
lective knowledge clearly favored another route (action)" (Stasser & Titus, 2003, pp.
304).

In this paper, we examine hidden profiles in persuasion cascades through a game
of group decision-making among rational players with common interests. Hence,
each player has an incentive to persuade the other players to support an optimal
decision. Our players have imperfect and asymmetric information, hence, they meet
and talk before decision-making. We consider a sequential talk under communic-
ation constraints such as a limited message set. Specifically, we explore how one
speaker’s talk under communication constraints may lead the next speaker to be-
lieve that a suboptimal decision is more likely to be optimal than an optimal decision.
This next speaker may then withhold his private information if it is against a decision
which, based on the previous speaker’s talk and his own private information, seems
to him to be most likely to be optimal. Then, this next speaker repeats the previ-
ous message because he wants to avoid misguiding the group with his information.
In this way, the rational players may try to persuade one another by withholding
their private information and repeating already commonly shared information. This
cascade of hidden profiles leads to group failure.

Our model can apply to the following example. A university’s recruiting commit-
tee is going to decide whether to hire some job candidate. Their decision is binary,
hiring the candidate or not. Multiple characteristics (attributes) affect the value of
the hiring decision such as the candidate’s research abilities, his teaching abilities,
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his abilities to collaborate with the university’s faculty members, and his commit-
ment to the position. The characteristics are not necessarily known to everyone.
Some members may happen to know the candidate’s research and teaching abilities.
Other members may only know his research and collaborative abilities. Hence, the
committee members meet and talk before they decide.

More formally, in our model, a group of rational players with common interests
will jointly select a binary decision 1 or 0 through sincere voting. Three attributes
jointly decide which decision is optimal. Each attribute is positive or negative. If two
or more attributes are positive, then, decision 1 benefits the players. If two or more
attributes are negative, then, decision 1 hurts the players. Decision 0 yields zero
profit to the players regardless of the attributes. But information on the attributes is
imperfectly and asymmetrically distributed among the players. That is, each player
only observes one or two of the attributes among the three, and no one knows what
the other players know.

First, we consider an outcome-based talk where each player sends a binary cheap
talk message to the others. A player only says 1 or 0 (e.g., "I agree" or "I disagree" on
a proposal of hiring the candidate). For example, the meeting is set for half an hour,
and there are ten participants. Each participant is given only three minutes to talk.
Each participant should talk concisely and effectively. Or, even if the player explains
details behind his agreement or disagreement on the proposal, the other players will
not absorb such details and only recognize that he said, "I agree" or "I disagree."

We examine an equilibrium in which speakers start to mimic a previous message
unless the current speaker has a particularly strong private signal. We call this per-
suasion cascade equilibrium. As a result, hidden profiles—the players withhold their
private information—occur with a positive probability. For example, when one at-
tribute is positive and two are negative, the optimal decision is 0. If the first two
speakers observe the one positive attribute, even when the other speakers observe
one of the two negative attributes (i.e., all the speakers have weak signals), inform-
ation from the first two speakers will alter the ensuing persuasion cascade. The
first two speakers benevolently send message 1 ("I agree"). Then, the third speaker
updates his belief and expects that decision 1 is more likely to be optimal than de-
cision 0. Similarly, the following speakers also repeat message 1. The aggregate of all
players’ information may suffice to support decision 0. However, these persuasion
cascades lead all players to believe that decision 1 is more likely to be optimal than
decision 0.
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This equilibrium also has an advantage when at least one speaker observes both
negatives (i.e., one or more people observe a strong, double, signal while other par-
ticipants receive a weak, single signal). In the previous example, if one speaker ob-
serves a strong signal, he overturns repetition of message 1 and guides the group to
choose decision 0.

Finally, we consider an attribute-based talk where each speaker states which attrib-
ute is positive or negative. We use two examples and explain how communication
constraints can cause hidden profiles in attribute-based talk examples as well. For
simplicity, we include a benevolent decision maker. Now there are three privately
informed speakers and one uninformed decision maker. All players have the same
preferences over the binary decisions. The three speakers sequentially talk to the
decision maker in a public meeting. In the first example, we consider limited private
information and constrained attribute-based talk. That is, each speaker privately ob-
serves two attributes with the same sign or one attribute. Each speaker can only state
one attribute. In the second example, we consider a noisy and constrained attribute-
based talk. Even if a speaker says, "the first attribute is positive," he may fail to make
every word understood by the others. That is, the other players only hear "posit-
ive" with a positive probability. In both examples, the speakers can withhold their
private information (hidden profiles) and repeat the previous message (persuasion
cascades).

The remainder of the article is organized as follows. Section 2 reviews related
literature. Section 3 analyzes a model with outcome-based talk. Section 4 examines
attribute-based talk examples. Section 5 concludes. Proofs are in the appendix.

2 Related Literature

Theoretical models of informational cascades—This is related to literature on herd beha-
vior and informational cascades initiated by Banerjee (1992) as well as Bikhchandani,
Hirshleifer, and Welch (1992). In their models, when each player decides, he does not
consider the effect of his action on the other players’ actions.1 On the other hand, in
our model, when each player decides, he considers the effect of his talk on the other
players’ actions (or/and talks). Also, our model allows a speaker who stated his
support for a proposal to be affected by the following speakers’ messages. He may
finally vote against the proposal.

1See also Chamley (2004) for the background of rational herding studies.
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Lee (1993) showed that there do not occur (action) cascades among rational play-
ers given rich-enough action spaces. Our result is consistent with his in the sense that
our cascades occur given limited spaces for talks and decisions. Smith and Sørensen
(2000) showed that with a rich-enough signal space (i.e., there is a positive probab-
ility of very strong signals to be observed by some players), players’ behavior con-
verges to an optimal action. Similarly, in our model, incorrect persuasion cascades
will be overturned by a talk of a player with strong confidence.

Ellison and Fudenberg (1995) as well as Eyster and Rabin (2010) proposed the-
oretical models of cascades assuming naivety and irrationality of players (without
persuasive motives) given rich-enough action spaces. Our persuasion cascades do
not depend on naivety (or irrationality) of players.2

On other applications of herd behavior models, Callander and Hörner (2009)
theoretically showed the importance of minority’s private information for the so-
ciety when "minority and majorities are the only available information" (p. 1423)
using a model of herding (without persuasive motives). We argue the importance of
unique information compared to common information using a model of persuasion
cascades. Mueller-Frank and Pai (2016) studied a sequential social learning model
where players acquire information by costly search of the other players’ actions. We
do not consider costly information acquisition.

In Ottaviani and Sørensen (2001)’s model of committee decisions, committee
members’ talks may herd due to their reputational concerns. Each member wished
to appear well informed.

In Caillaud and Tirole (2007)’s model of persuasion cascades, there is one pro-
poser (i.e., information provider). There are also multiple committee members with
different prior beliefs about the proposal. Hence, each player is a speaker or a de-
cision maker. In our paper, each player is a speaker and a decision maker.

Bénabou (2013) proposed a theoretical model to explain Groupthink—denial of
reality among joint project members—assuming endogenous imperfect recall and
anticipated feeling. Unlike us, he considered simultaneous joint efforts among play-
ers (i.e., there is no talk).

Group decision-making and experimental evidence in psychology—As Stasser and Titus
(2003) summarized, hidden profiles have been examined by psychologists since 1985.
Stasser and Titus (1985, 1987) first challenged the idea that group decisions are more

2See also Eyster and Rabin (2014) for the study of herding among irrational players.
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informed than individual decisions. Their experimental findings suggest that decision-
making groups are more likely to discuss information which is shared among the
members rather than information which is held privately. As a result, they choose
an action that is favored by their common knowledge. Stasser (1988) called these
patterns of unshared information hidden profiles. (On psychologists’ experimental
study on hidden profiles, see also Rulke & Galaskiewicz, 2000; Stasser & Davis, 1981;
Stasser & Stewart, 1992; Stasser, Stewart, & Wittenbaum, 1995; Stasser & Taylor, 1991;
Stasser, Taylor, & Hanna, 1989; Stasser, Vaughan, & Stewart, 2000; Stewart & Stasser,
1995; Sunstein & Hastie, 2014; Wittenbaum, 2000; Wittenbaum & Park, 2001.) We
propose game theoretic models to explain hidden profiles.

According to experimental studies by Lightle, Kagel, and Arkes (2009), hidden
profiles mainly result from mistakes in recalling information. Mistakes in recalling
common information, they found, are more likely to be corrected than mistakes in
recalling in private information. In our basic model, hidden profiles are driven by
the influence of imperfectly informed players on the imperfectly informed players.
In our extended model, if there is a positive probability that details in each player’s
message are not perceived (due to exogenous noises), hidden profiles can occur.

Attributes and information aggregation—Like De Clippel and Eliaz (2014), we con-
sider two types of information transmission, the attribute-based talk and the outcome-
based talk. The main difference is that De Clippel and Eliaz (2014) studied inform-
ation aggregation through voting alone while we study information aggregation
through group discussion as well as voting. The idea of a multi-attribute object with
uncertain qualities was also considered by Klabjan, Olszewski and Wolinsky (2014),
but their model is about costly information acquisition rather than hidden profiles.

Last, our model is related to models of information aggregation through voting
among players with common preferences (Austen-Smith & Banks, 1996; Feddersen
& Pesendorfer 1998; McLennan 1998), in particular when the decision is associated
with multiple issues (Ahn & Oliveros 2013). However, voting is not the only way to
aggregate information in our model.
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3 Model with Outcome-Based Talk

3.1 Setup

There are L players, where L � 3. The players jointly make a binary decision, de-
noted:

d 2 f1, 0g .

Decision d = 1 (d = 0) can be interpreted as an action (no action).
The state is

θ = (θ1, θ2, θ3) .

We call elements in the state attributes. θ is drawn from a discrete uniform distribu-
tion with support f1,�1g3. In other words, for each i 2 f1, 2, 3g, the i-th attribute is
either of θi = 1 or θi = �1, which are equally likely. All attributes are independent
and identically distributed (i.i.d.). These distributions are common knowledge.

The players have the same preference over decisions. Each player’s payoff is
given by: (

θ1 + θ2 + θ3 if d = 1
0 if d = 0

(1)

For example, if (θ1, θ2, θ3) = (1, 1,�1) (if (θ1, θ2, θ3) = (1,�1,�1)), d = 1 yields a
payoff 1 (�1) to every player.

Each player observes a private signal on θ. Given θ, for each player l 2 f1, 2, ..., Lg,
his private signal σl is drawn from a discrete uniform distribution with support I (θ)
such that:

I (θ) = fθ1,?g � fθ2,?g � fθ3,?g n f(θ1, θ2, θ3) , (?,?,?)g .

The private signals are i.i.d. These distributions are common knowledge.3

After observing private signals, all players meet and sequentially talk. The order
of the players’ talks is determined randomly when they meet.

In this section, we consider the outcome-based talk such that each player l sends a

3If the true state is θ = (1, 1,�1), then, for any player l’s private information is σl 2 I (θ) where:

I (θ)= f(1, 1,?) , (1,?,�1) , (?, 1,�1) , (1,?,?) , (?, 1,?) , (?,?,�1)g .

We expect that given any I (θ) � fθ1,?g � fθ2,?g � fθ3,?g, our main results, which we will
show, remain unchanged.
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binary message denoted:
ml 2 f1, 0g ,

and this message is perfectly observed by the others before the next player talks.
This is a cheap talk—each player can choose either message regardless of his private
signal.4

After the group talk, all players simultaneously cast their votes. Each player l’s
vote is denoted:

vl 2 f1, 0g .

Then, the group decision is made according to the random dictatorship rule—after
the players simultaneously vote, one vote is randomly selected from the votes, and
the selected vote becomes the group decision.5

After the decision is made, all players’ payoffs are realized.
In summary, this is a group decision-making game among finite players with

imperfect information. The setup of this game is common knowledge. But the at-
tributes are imperfectly known to players, and no player’ private information is ob-
served by the other players.

3.2 Timeline

The sequence of events is summarized as follows:

1. Nature decides attributes which jointly decide a correct decision. Then, each
player observes a private and imperfect signal on these attributes.

2. All players meet and sequentially talk.

3. All players simultaneously vote.

4. A decision is made according to the random dictatorship rule.

5. Finally, payoffs are realized for all players.
4Although this is a cheap talk, we interpret this binary message as agreement on either decision,

and hence we call this communication the outcome-based talk. Moreover, like De Clippel and Eliaz
(2014), we also consider the attribute-based talk as well. See Section 4 for further details.

5We use the random dictatorship rule for simplicity. We expect that as long as sincere voting is
expected, our main results still hold.

Under the random dictatorship rule, sincere voting is optimal for all players because every player’s
vote is pivotal, i.e., the player knows that his vote will determine a decision with probability 1/L. See
Gibbard (1973) as well as Börgers and Smith (2014) for the theoretical studies of random dictatorship
rule.
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3.3 Definitions

We define terminologies.
n+l and n�l denote numbers of positive attributes and negative attributes, respect-

ively, included in player l’s private signal, σl.6

ht denotes a sequence of the first through the t-th messages, where ht := (m1, � � � , mt)

for t 2 f1, � � � , Lg and h0 = ? (empty).
Next, we define a symmetric perfect Bayesian equilibrium of this game.

Definition 1 (Symmetric PBE ) A symmetric perfect Bayesian equilibrium of this game
(a symmetric PBE) consists of a talking strategy correspondence m� and a voting strategy
correspondence v� which are used by the all players, as follows:

(1) If player l is assigned to be the t-th speaker, the talk strategy correspondence m� (σl, ht�1)

maps his private information σl and history ht�1 to his talk ml so that:
(1-a) Every m 2 m� (σl, ht�1) maximizes his expected payoff.
(1-b) If m� (σl, ht�1) = f1, 0g, he randomizes ml = 1 and ml = 0 w.p. 1

2 and 1
2 ,

respectively.
(2) If player l is assigned to be the t-th speaker, the voting strategy correspondence

v� (σl, hL, t) maps σl, the entire history hL, and t to his vote vl such that:
(2-a) Every v 2 v� (σl, hL, t) maximizes his expected payoff.
(2-b) If v� (σl, hL, t) = f1, 0g, he randomizes vl = 1 and vl = 0 w.p. 1

2 and 1
2 ,

respectively.
(3) Moreover, at each point in time, a player updates his belief on attributes using Bayes’

rule that takes into account his private information, a sequence of past messages, and the
other players’ strategies.

Because this is a cheap talk, there is an equilibrium in which players’ messages
do not convey any information at all. To eliminate these types of babbling equilibria,
we define an informative equilibrium.

Definition 2 (Informative Equilibrium) Suppose player l is the t-th speaker. In an inform-
ative equilibrium it holds that:

Pr
�

θ = θ
0 jσs = σ, ht�1 = h, ml = 1

�
6= Pr

�
θ = θ

0 jσs = σ, ht�1 = h, ml = 0
�

.

for some s 6= l, θ
0
, σ and h.

6For example,
�
n+l , n�l

�
= (2, 0) if σl = (1,?, 1), and

�
n+l , n�l

�
= (1, 1) if σl = (�1, 1,?).
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In informative equilibrium, player l’s message ml affects some other player (say,
player s)’s inference on some attributes (say, θ

0
).

We also define a monotonic persuasion equilibrium of this game such that players’
messages affect one another in a monotonic way.

Definition 3 (Monotonic Persuasion Equilibrium) In a monotonic persuasion equilibrium,
every speaker’s message is informative. Moreover, for any σl and eσl, where n+l and n�l
correspond to σl, en+l and en�l correspond to eσl:

m� (σl, ht�1) = mt�1 ) m� (eσl, ht�1) = mt�1

holds given: ��n+l � n�l
�� � ��en+l � en�l ��

if n+l � n�l and en+l � en�l are both non-negative (or both non-positive).

We focus on the player’s confidence in the optimal decision. In monotone persua-
sion equilibrium, the less confident the player, the more easily the player is affected
by the past messages.

Consider a sequence of past messages, ht�1 = (m1, � � � , mt�1), and suppose that
player l is the t-th speaker. Then, we compare different private signal realizations
for player l. For example:

σl n+l � n�l
σl = (1, 1,?) 2

σl = (1,?,?) 1

σl = (?, 1,�1) 0

σl = (�1,?,?) �1

σl = (?,�1,�1) �2

We interpret that player l is more confident given σl = (1,?,?) than given σl =

(?, 1,�1). Let us compare player l’s inferences before communication.

� Given σl = (?, 1,�1), he infers that the optimal decision is d = 1 and d = 0
with probability 1/2 and 1/2, respectively, because he infers θ = (1, 1,�1) and
θ = (�1, 1,�1) with probability 1/2 and 1/2, respectively.
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� On the other hand, given σl = (1,?,?), he infers that the optimal decision is
d = 1 and d = 0 with probability 3/4 and 1/4, respectively, because he infers
θ = (1, 1, 1), θ = (1, 1,�1), θ = (1,�1, 1) and θ = (1,�1,�1) with probability
1/4, 1/4, 1/4 and 1/4, respectively.

Hence, we interpret that σl = (1,?,?) gives player l greater confidence about
which decision is optimal than σl = (?,+1,�1) does. Similarly, we say that he is
more confident given σl = (�1,?,?) than given σl = (?, 1,�1), and so on. We do
not directly compare σl = (1,?,?) and σl = (�1,?,?).

In monotone persuasion equilibrium, player l repeats the previous message mt�1

given his private information σl = (?, 1,�1) if he does so given σl = (1,?,?). Sim-
ilarly, player l repeats mt�1 given σl = (?, 1,�1) if he does so given σl = (?,?.� 1).
We say nothing between σl = (1,?,?) and σl = (�1,?,?).

Finally, we define "hidden profiles" for this game to be outcomes of inefficient
information sharing. (See Stasser & Titus, 2003, for their definition.)

Definition 4 (Hidden Profiles) If a group does not select a decision which is optimal con-
ditional on an aggregate of all players’ private information, we call this outcome "hidden
profiles."

A group may select a suboptimal decision due to inefficient information sharing—
the group does not effectively pool players’ private information, as discussed in this
paper. A group may also select the suboptimal decision due to lack of information in
the group—some attributes are not observed by any player at all. The latter outcome
will be examined in a future paper.

3.4 Result

We study a symmetric PBE, which we will simply call an equilibrium from now on. All
players’ strategies are determined before the game starts.

Without loss of generality, we call the t-th speaker "player t" for 8t 2 f1, 2, ..., Lg.
Hence, m� (σt, ht�1) denotes a player’s talking strategy when he is the t-th speaker
(he is player l). For a voting strategy, we simplify the notation and let v� (σl, hL)

denote a player’s voting strategy when he is the t-th speaker (he is player l).

Assumption 1 (Beliefs off the equilibrium path) For every player, if some other player’s
message is not consistent with his private information, he ignores the message in his inference
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on attributes. If multiple messages are not consistent with one another, a player ignores the
oldest message in his inference. If there still remains inconsistency, he ignores the second
oldest message, and so on.

This assumption implies the following. Suppose that h3 = (m1, m2, m3) = (1, 1, 0)
indicates

�
n+3 , n�3

�
= (0, 2) (i.e., player 3 observed two negative attributes) in equi-

librium. But player 4 has private information σ4 = (?, 1, 1), which is not consistent
with m3. In this case, player 4 ignores m3.

Suppose that h4 = (m1, m2, m3, m4) = (1, 1, 0, 1) indicates
�
n+3 , n�3

�
= (0, 2) and�

n+4 , n�4
�
= (2, 0) (i.e., player 3 observed two negative attributes while player 4 ob-

served two positive attributes) in equilibrium. Two messages, m3 and m4, are not
consistent with each other, but both messages can be consistent with σ5 = (?, 1,�1).
In this case, player 5 ignores m3.

We will show the existence of an equilibrium in which hidden profiles, decision-
making processes that are driven by imperfectly informed players’ motives to per-
suade the other imperfectly informed players, occur as a result of persuasion cascades
in group decision making.

Proposition 1 There is a monotonic persuasion equilibrium in which hidden profiles occur
with a positive probability.

Proof. There is an equilibrium which consists of a player’s talk strategy and voting
strategy such that, if he is assigned as the t-th speaker for any t 2 f1, ..., Lg, he
chooses his message as follows:

m� (σ1, h0) =

8><>:
1 if

�
n+1 , n�1

�
2 f(2, 0) , (1, 0)g

0 if
�
n+1 , n�1

�
2 f(0, 2) , (0, 1)g

1 and 0 w.p. 1
2 and 1

2 , respectively, otherwise.

m� (σ2, h1) =

8><>:
1 if

�
n+2 , n�2

�
2 f(2, 0) , (1, 0)g

0 if
�
n+2 , n�2

�
2 f(0, 2) , (0, 1)g

m1 otherwise.

m� (σt, ht�1) =

8><>:
1 if

�
n+t , n�t

�
= (2, 0)

0 if
�
n+t , n�t

�
= (0, 2)

mt�1 otherwise.

for t 2 f3, ..., Lg ,
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and he chooses his vote as follows:

v� (σt, hL) =

8><>:
1 if

�
n+t , n�t

�
= (2, 0)

0 if
�
n+t , n�t

�
= (0, 2)

mL otherwise.

for t 2 f1, ..., L� 1g .

v� (σL, hL) = mL.

This is a monotone persuasion equilibrium. See the appendix for the proof of existence
of this equilibrium.

Player 1’s message affects player 2’s message only if player 2 is indifferent between
the two decisions based on his private information, i.e.,

�
n+2 , n�2

�
= (1, 1). And

player 2’s message affects player 3’s message if player 3 has uncertainty about the
optimal decision, i.e.,

�
n+3 , n�3

�
2 f(1, 1) , (0, 1) , (0, 1)g. This continues: player l’s

message affects player (l + 1)’s message if player (l + 1) has uncertainty about the
optimal decision. Finally, the last player’s message affects voting decisions of all
players who have uncertainty about the optimal decision. In addition, even if he is
not the last speaker, each player’s message can indirectly affect other players’ voting
decisions.

For example, there are three players (i.e., L = 3). Consider θ = (1,�1,�1), i.e.,
the optimal decision is d = 0. The players’ private signals are drawn as follows:8><>:

σ1 = (1,?,?)
σ2 = (1,�1,?)
σ3 = (1,?,�1)

Although the aggregate of the players information is complete, no player is 100 %
confident about the optimal decision. In this case, player 1’s private information
favors d = 1, and hence his message is m1 = 1. Player 2 is indifferent between two
decisions based on his private information. Hence, player 2 is affected by player 1’s
talk and repeats the talk, i.e., m2 = 1. This is similar for player 3. In summary, the
players’ talks are:

m1 = 1 ! m2 = 1 ! m3 = 1 .

As a result, all players vote for 1, and hence, the group decision is d = 1 (i.e., the
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group fails) with probability 1. The outcome is summarized as follows:

Private signals Talks Voting behavior Decision8><>:
σ1 = (1,?,?)
σ2 = (1,�1,?)
σ3 = (1,?,�1)

m1 = 1
! m2 = 1
! m3 = 1

8><>:
v1 = 1
v2 = 1
v3 = 1

d = 1
w.p. 1

The players privately observe one positive attribute (i.e., common information), and
they repeatedly talk their support for decision 1. Finally, a decision favored by
the common information survives. This outcome fits hidden profiles discussed in
Stasser and Titus (2003).

The next example seems more surprising and intuitive than the previous ex-
ample. There are five players (i.e., L = 5). Consider θ = (1,�1,�1) again. The
players’ private signals are drawn as follows:8>>>>>><>>>>>>:

σ1 = (1,?,?)
σ2 = (1,�1,?)
σ3 = (?,?,�1)
σ4 = (?,?,�1)
σ5 = (?,�1,?)

Although the aggregate of the players information is complete, no player is 100 %
confident about the optimal decision. In this case, player 1’s private information
favors d = 1, and hence his message is m1 = 1. Player 2 is indifferent between two
decisions based on his private information. Hence, player 2 is affected by player 1’s
talk and repeats the talk, i.e., m2 = 1. Player 3’s private information favors d = 0,
but he is not sufficiently confident about either decision. Hence, player 3 is affected
by earlier speakers’ talks and selects m3 = 1. This is similar for players 4 and 5. In
summary, the players’ talks are:

m1 = 1 ! m2 = 1 ! m3 = 1 ! m4 = 1 ! m5 = 1.

As a result, all players vote for 1, and hence, the group decision is d = 1 (i.e., the
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group fails) with probability 1. The outcome is summarized as follows:

Talks Voting behavior Decision

m1 = 1
! m2 = 1
! m3 = 1
! m4 = 1
! m5 = 1

8>>>>>><>>>>>>:

v1 = 1
v2 = 1
v3 = 1
v4 = 1
v5 = 1

d = 1
w.p. 1

Without a group discussion, at least players 3 through 5 vote for 0, and the group
avoids the loss with the probability more than 3/5.

Player 3 does not select m3 = 0 although his private information favors d = 0.
Why? The reason is as follows. Player 3 computes trade-offs of selecting m3 = 0. The
talk m3 = 0 may give an additional information to the other players. But if players
4 and 5 are not confident (e.g., their private information is (?,�1,?) or (1,�1,?)
or (1,?,?)), they only repeat his talk, i.e., m4 = m5 = 0, which may lead the other
unconfident players to vote for d = 0. On the other hand, the previous messages
m1 = 1 and m2 = 1 lead player 3 to infer that d = 1 is more likely to be optimal than
d = 0. Hence, the cost of selecting m3 = 0 outweighs the benefit in this case.

Persuasion Cascades—In summary, hidden profiles result from imperfectly informed
players’ motives to persuade the other imperfectly informed players. Every player wants
other imperfectly informed players to vote for an optimal decision. If the player per-
fectly knows the optimal decision, he tends to share his private information with the
other players. However, if the player only has imperfect information, he may infer
that the suboptimal decision is more likely to be optimal than the optimal decision.
Then, he hides his private information and misleads the other players. Furthermore,
one player’s misleading talk may result in the next player’s misleading talk: and
players repeat the same talk. We interpret this outcome as persuasion cascades.

Comparison with the standard informational cascade models—The above men-
tioned examples also emphasize the difference of our model from the standard in-
formation cascade models. Group discussions can change speakers’ minds and guide
them to the optimal direction. Again, consider a model with five players. Consider
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the players private information:8>>>>>><>>>>>>:

σ1 = (1,?,?)
σ2 = (1,?,?)
σ3 = (?,?,�1)
σ4 = (?,�1,�1)
σ5 = (1,?,?) .

Then, the equilibrium outcome is:

Talks Voting behavior Decision

m1 = 1
! m2 = 1
! m3 = 1
! m4 = 0
! m5 = 0

8>>>>>><>>>>>>:

v1 = 0
v2 = 0
v3 = 0
v4 = 0
v5 = 0

d = 0
w.p. 1

In this case, speaker 1 initiates incorrect persuasion cascades by claiming his support
for d = 1. However, speaker 4 is confident about the optimal decision, d = 0. He
claims his support for d = 0 and overturns incorrect persuasion cascades. As a result,
all speakers are persuaded to vote for d = 0. This is an example of a successful group
discussion. But if the talk order is changed, a suboptimal persuasion cascade occurs
again.

Private Signals Talks Voting behavior Decision8>>>>>><>>>>>>:

σ1 = (?,�1,�1)
σ2 = (1,?,?)
σ3 = (?,?,�1)
σ4 = (1,?,?)
σ5 = (1,?,?) .

m1 = 0
! m2 = 1
! m3 = 1
! m4 = 1
! m5 = 1

8>>>>>><>>>>>>:

v1 = 0
v2 = 1
v3 = 1
v4 = 1
v5 = 1

d = 1
w.p. 4/5

In addition, as discussed in Section 2, our result is contrasted with a herding
model by Banerjee (1992) as well as a model of informational cascades by Bikhchandani,
Hirshleifer, and Welch (1992). Unlike their models, our model involves players’ per-
suasion incentives. Contrary to Ellison and Fudenberg (1995) and Eyster and Ra-
bin (2010), our players are rational. Unlike a talk cascade model by Ottaviani and
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Sørensen (2001), our players pursue the goal of making an optimal decision without
concerning their own reputation.

4 Attribute-based Talk

4.1 Purpose of This Extension

This section considers an attribute-based talk—each player talks one of the attributes.
A model of attribute-based talk may be more consistent with empirical and experi-
mental evidence in psychology (Stasser & Titus, 1985 & 2003). However, an attribute-
based model requires very complicated computations of players’ inferences. Hence,
for simplicity, we include a benevolent decision maker (DM), and we let three speak-
ers sequentially talk to the decision maker in a public place meeting. The decision
maker has the same preference over decisions as the speakers.

We provide informal arguments on two examples.7 In the first example, the
speakers observe two attributes with the same sign or one attribute. Even if a player
observes two positive attributes, he can only talk one attribute. In other words,
he can reveal his information and support some decision, but he cannot tell how
strongly his information supports the decision. In the second example, we consider
a noisy attribute-based talk. In this case, even if a speaker says, "the first attribute is
positive," the other players may fail to hear the entire message. In both examples,
the communication constraints can lead the speakers to withhold their private in-
formation.

De Clippel & Eliaz (2014) also studied premise-based [attribute-based] and outcome-
based information aggregation. However, they considered information aggregation
through voting while we focus on information aggregation through a discussion.8

4.2 Attribute-based Talk Example 1

There is a decision maker (DM) and three informed players (speakers 1, 2 and 3).
The speakers’ payoff structure remains unchanged from the one in Section 3. DM’s
payoff structure is the same as the speakers’ structure.

7We thank Shinsuke Kanbe for suggestions and comments on the examples in this section.
8Moreover, their main question is "Should the group reach a decision by voting whether each

premise is true or false, or should they simply vote on the outcome?" (de Clippel & Eliaz, 2014, p. 34).
This question is beyond the scope of this paper.
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Example 1 assumes a smaller attribute set and a smaller private signal set than
the model in Section 3. θ = (θ1, θ2, θ3) is drawn from a discrete uniform distribution
with support:

f1,�1g3 n f(1, 1, 1) , (�1,�1,�1)g .

Then, players observe two attributes with the same sign or one attribute. For ex-
ample, given θ = (1,�1, 1), each player’s signal is i.i.d. and drawn from a discrete
uniform distribution with support:

f(1,?, 1) , (1,?,?) , (?,�1,?) , (?,?, 1)g .

Neither (1,�1,?) nor (?,�1, 1) is observed.
After observing private signals, the speakers sequentially talk to DM in a public

meeting. Each speaker’s message is observable to the other speakers as well as to
the DM.

Here we consider an attribute-based talk: speaker t (i.e., the t-th speaker) sends a
cheap talk message mt such that:

mt 2 f1, 2, 3g � f+,�g .

After the meeting, DM chooses a binary decision. Finally, the payoffs of all play-
ers are realized. Then, the game ends.

Claim 1 Example 1 has a PBE in which hidden profiles occur with a positive probability.

We can construct a PBE in which speakers 1 and 2 reveal their private informa-
tion. However, speaker 3 withholds his information and repeats the previous talk
under some conditions.

The following is an informal description of the equilibrium strategies:

1. Speaker 1’s talk:

(a) If he observes two attributes, he randomly selects one attribute to be talked.
E.g., he mixes between m1 = (1,+) and m1 = (3,+) if σ1 = (1,?, 1).

(b) If he observes one attribute, he talks it. E.g., m1 = (1,+) if σ1 = (1,?,?).

2. Speaker 2’s talk:
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(a) Suppose he observes two attributes.

i. If neither was yet talked, he randomly selects one attribute to be talked.
E.g., he mixes between m2 = (1,+) and m2 = (3,+) if σ1 = (1,?, 1)
and m1 /2 f(1,+) , (3,+)g.

ii. If either was talked, he talks the remaining attribute. E.g., he sends
m2 = (1,+) if σ1 = (1,?, 1) and m1 = (3,+).

iii. If either was talked wrongly, he talks the attribute (i.e., he corrects the
past wrong message). E.g., he sends m2 = (1,+) if σ1 = (1,?, 1) and
m1 = (1,�).

(b) If he observes one attribute, he talks it. E.g., m2 = (1,+) if σ2 = (1,?,?).

3. Speaker 3’s talk:

(a) If he observes two attributes, his message choice is similar to 2.a. (See the
appendix for details.)

(b) If he observes one attribute:

i. If a different attribute was repeatedly talked by the previous two speak-
ers, he repeats the same talk. E.g., m3 = (1,+) if σ3 = (?,?,�1) and
m1 = m2 = (1,+).

ii. Otherwise, he talks this attribute. E.g., m3 = (1,�) if σ3 = (?,?,�1)
and m1 6= m2.

4. DM’s beliefs off the equilibrium path:

(a) If multiple messages are not consistent with one another, he ignores the
oldest message in his inference. If there still remains inconsistency, he
ignores the second oldest message, and so on.

See Appendix B.1 for details of the speakers’ strategy and DM’s strategy.
Next, let us consider two cases for private signal realization given θ = (1,�1,�1).

In the first case:

Private signals Talks Decision8><>:
σ1 = (1,?,?)
σ2 = (1,?,?)
σ3 = (?,?,�1)

m1 = (1,+)
! m2 = (1,+)
! m3 = (1,+)

d = 1
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Given m1 = m2 = (1,+), speaker 3 expects σ1 = (1, 1,?), (1,?,?) or (?, 1,?),
and he also expects σ2 = (1,?,?). Hence, speaker 3 infers θ = (1, 1,�1) and θ =

(1,�1,�1)with positive probabilities, respectively, and he puts more weight on θ =

(1, 1,�1). Speaker 3 also knows that m3 = (3,�) would lead DM to select d = 0.
Hence, in order to induce d = 1, speaker 3 withholds his private information.

On the other hands, given m1 = m2 = m3 = (1,+), DM recognizes the possibility
of σ3 = (?,?,�1) or σ3 = (?,�1,?). Then, he infers θ = (1, 1,�1), θ = (1,�1, 1)
and θ = (1,�1,�1) with positive probabilities, respectively. But he puts a lot of
weight on θ = (1, 1,�1) and θ = (1,�1, 1). Then, he chooses d = 1.

In the next case, the information is fully aggregated by DM:

Private signals Talks Decision8><>:
σ1 = (1,?,?)
σ2 = (1,?,?)
σ3 = (?,�1,�1)

m1 = (1,+)
! m2 = (1,+)
! m3 = (2,�)

d = 0

Speaker 3 overturns persuasion cascades m1 = m2 = (1,+). Hence, DM infers that
speaker 3 observed σ3 = (?,�1,�1), and DM selects d = 0.

We can construct an equilibrium in which no speaker withholds his private in-
formation. If this is an equilibrium, given m1 = m2 = (1,+) and m3 = (i,�) for i 2
f2, 3g, DM selects d = 1 on the equilibrium path. Moreover, given m1 = m2 = (1,+)
and m3 = (1,�) (i.e., m3 is not consistent with m1 and m2), DM should ignore m3

and select d = 1. This does not seem plausible for the following reason.
Fix m1 = m2 = (1,+). Given σ3 = (?,?,�1), speaker 3 prefers d = 1, and he

also knows m3 = (3,�) results in d = 1. Hence, speaker 3 has no reason to send
an inconsistent message, m3 = (1,�). On the other hand, given σ3 = (?,�1,�1),
speaker 3 wants to avoid d = 1. He knows he cannot do anything by sharing his
private information. He may have a reason to send m3 = (1,�) like an emergency
alarm. Hence, given m1 = m2 = (1,+) and m3 = (1,�), it seems plausible that DM
takes m3 seriously and selects d = 0.

4.3 Attribute-based Talk Example 2

Example 2 is different from Example 1 in two ways. First, the attribute and private
signal sets remain unchanged from the ones in Section 3.

Second, we consider a noisy attribute-based cheap talk. Let ms
t denote a message
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sent by the t-th speaker (i.e., player t), where:

ms
t 2 f1, 2, 3,?g � f+,�g .

Let mr
t denote how ms

t is received by the other players. For simplicity, mr
t is publicly

known (i.e., every player knows that player t’s message is received as mr
t by all the

other players).
For any t, the relation between ms

t and mr
t is:

If ms
t = (i,+1) , then mr

t =

(
(i,+) w.p. 1� ε

(?,+) w.p. ε
for i 2 f1, 2, 3g

If ms
t = (?,+1) , then mr

t = (?,+) w.p. 1.

where ε 2 [0, 1]. The corresponding relations given ms
t = (i,�) or ms

t = (?,�) are
defined similarly.

Claim 2 Example 2 has a PBE in which hidden profiles occur with a positive probability.

We can construct an equilibrium which induces the same probability distribution
of d as the equilibrium given the outcome-based talk. Let players actually use two
messages. For example, each player’s message at each point in time is drawn from a
discrete uniform distribution with supports either f1, 2, 3,?g� f+g or f1, 2, 3,?g�
f�g.

We also expect to find a more informative equilibrium. For example, the players’
private signals are drawn as follows:8><>:

σ1 = (1,?,?)
σ2 = (1,�1,?)
σ3 = (1,?,�1) .

In this case, player 1’s private information favors d = 1, and hence he talks ms
1 =

(1,+). If his message is perceived by the other players with noise, i.e., mr
1 = (?,+),

his message affects talks by players 2 and 3, who are indifferent between two de-
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cisions given their private information.

Private signals Talks Decision8><>:
σ1 = (1,?,?)
σ2 = (1,�1,?)
σ3 = (1,?,�1)

ms
1 = (1,+)! mr

1 = (?,+)
! ms

2 = (1,+)! mr
2

! ms
3 = (1,+)! mr

3

d = 1

For this outcome to realize, mr
2 (mr

3) can be either of (1,+) and (?,+).
However, if player 1’s message ms

1 = (1,+) is received by the other players
without noise, i.e., mr

1 = (1,+), this message does not significantly affect the in-
ference of players 2 and 3.

Private signals Talks Decision8><>:
σ1 = (1,?,?)
σ2 = (1,�1,?)
σ3 = (1,?,�1)

ms
1 = (1,+)! mr

1 = (1,+)
! ms

2 = (?,�)! mr
2 = (?,�)

! ms
3 = (?,�)! mr

3 = (?,�)
d = 0

Appendix B.2 presents the speaker’s strategy which can lead to the above mentioned
outcome.

5 Conclusion

We provide a model of persuasion cascades in group decision-making. Our model ex-
plains hidden profiles where players fail to share their private information with the
others even though it is easy to assume that rational players with common interests
will jointly select an optimal decision. In our examples, useful information is distrib-
uted among players, therefore, the players meet and sequentially talk before making
a decision. We examine the communication constraints that might lead the players
to repeat the previous speakers’ talks and withhold private information. As a result,
the group may fail to select an optimal decision, which would probably be chosen if
they aggregate all available information. Our model is simple enough to be testable.

Our result explains the role of hidden profiles and persuasion cascades in the fail-
ure of conforming (or homogeneous) decision-making groups and suggests possible
benefits of a more heterogeneous group for decision-making processes. Investiga-
tion the latter point is one of avenues for future research.

Our future studies also include examination of other equilibria. We focused on
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one type of equilibrium which fits hidden profiles. However, there must be many
equilibria in these sequential talk models. The most critical issue is whether the
information problems in our equilibria are “accidental and rare” or should be seen
as a common occurrence. We can use the methods developed herein to project the
most efficient equilibria. The information problems projected in the most efficient
equilibria can also be compared to the hidden profiles discussed in this paper.

Investigation of the more efficient decision making mechanism can address new
questions. For example, what if all players speak or vote simultaneously? In the
study of binary voting procedures, Dekel and Piccione (2000) showed that sequential
voting did not improve on simultaneous voting with respect to information aggrega-
tion. But in our model of information aggregation via cheap talk, the conclusion can
be different. Consideration of conflicts of interests among the players rather than the
existence of one shared point of view should also be examined to provide a more
“real world” projection of persuasion cascades.
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Appendix A (Outcome-based Talk)

A.0 Definitions

Θ(i,j) denotes a set of θ which consists of i positive (i.e., 1) attributes and j negative
(i.e., �1) attributes. For example, Θ(2,1) = f(1, 1,�1) , (1,�1, 1) , (�1, 1, 1)g, and
Θ(3,0) = f(1, 1, 1)g.
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Σ(i,j) denotes a set of private signals which include i positive (i.e., 1) attributes
and j negative (i.e., �1) attributes. For example, Σ(2,0) = f(1, 1, 0) , (1, 0, 1) , (0, 1, 1)g
and Σ(1,1) = f(1,�1, 0) , (1, 0,�1) , (0, 1,�1)g.

For any l and t,

p
�
θ0jh, σ

�
= Pr[θ = θ0jht = h, σl = σ].

And
PΘ(i,j) (h, σ) = ∑

θ2Θ(i,j)
p (θjh, σ) .

For 8t:

Expected payoff of mt = 1 given σt and ht�1

:=
N

∑
i=0

(2i� N)| {z } �
Expected payoff of mt=1 given θ2Θ(i,n�i)

∑
θ2Θ(i,n�i)

p (θjht�1, σt)

�
L

∏
u=t+1

Pr[mu = mu�1 for8mu�1jθ]| {z }
=:Pr[mt affects mnjθ]

� 1
L

 
t�1

∑
u=1

Pr[vu = mL for8mLjθ, ht�1] + Pr[vt = mL for8mLjσt] + (L� t)

!
| {z }

=:Pr[mt affects d jmt affects mn. θ,ht�1,σt]

where:
L

∏
u=t+1

Pr[mu = mu�1 for 8mu�1jθ] strictly increase with t

because Pr[mu=mu�1 for 8mu�1jθ] < 1. Also, note that:

Pr[mt affects djmt affects mL. θ, ht�1, σt]

= 1
L

L

∑
u=0

Pr[vu = mLjmu = mu�1 for8mu�1 for8u 2 ft+ 1, ..., Lg , θ, ht�1, σt]

= 1
L

 
t�1

∑
u=1

Pr[vu = mn for8mLjθ, ht�1] + Pr[vt = mL for8mLjσt] + (L� t)

!
.
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A.1 Proposition 1 (Outcome-based Talk)

It suffices to check player t (the t-th speaker)’s optimal mt given ht�1 and his optimal
vt given hL for each σt 2 f(1,�1,?) , (1,?,?)g for any t.

A.1.1 Player 1’s talk and inferences

The optimal talk m1 given each σ1 = σ01 is:

m1 =

(
1 if σ01 = (1,?,?)
Indifferent if σ01 = (1,?,�1)

The optimal talk is computed in two steps.
[Step 1] Find PΘ0 (h0, σ01) given each σ01, where h0 = ?. To save space, let PΘ0 =

PΘ0 (h0, σ01) in the following table:

PΘ(3,0) PΘ(2,1) PΘ(1,2) PΘ(0,3)

σ01 = (1,?,?) 1
4

2
4

1
4 0

σ01 = (1,?,�1) 0 1
2

1
2 0

[Step 2] Compute the conditional expected payoff:

�
Expected payoff of m1 = 1jσ1 = σ01

�
=

8<: 3 � 1
4

�
1
2

�L�1
+ 2

4

�
1
3

� �5
6

�L�2 � 1
4

�
1
3

� �5
6

�L�2
> 0 if σ01 = (1,?,?)

1
2

�
1
3

� �5
6

�L�2
(2) + 1

2

�
1
3

� �5
6

�L�2
(�2) = 0 if σ01 = (1,?,�1)

To compute the above mentioned expected payoffs, we use the results in Step 1.
Also, find a probability that m1 affects d given each θ.

Fix any σ1 = σ01. Given θ0 = (1, 1, 1), m1 affects d w.p.
�

1
2

�L�1
as follows: m1

affects mL w.p.
�

1
2

�L�1
, i.e., σt 2 Σ(1,0) for 8 t 2 f2,...,Lg; hence, if m1 affects mL, m1

affects vt w.p. 1 for 8 t.
Given θ0 2 f(1, 1,�1) , (1,�1,�1)g, m1 affects d w.p. 1

3

�5
6

�L�2
as follows: m1

affects mL w.p. 1
3

�5
6

�L�2
, i.e., σ2 2 Σ(1,1) and σt 2 Σ(0,1) [ Σ(1,1) [ Σ(1,0) for 8t 2

f3, ..., Lg; hence, if m1 affects mL, m1 affects vt w.p. 1 for 8 t.
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A.1.2 Player 2’s talk and inferences

The optimal talk m2 given h1 = m1 and σ1 = σ01 is:

σ02 = (1,?,?) σ02 = (1,?,�1)
m1 = 1 m2 = 1 m2 = m1

m1 = 0 m2 = 0 m2 = m1

The optimal talk is computed in two steps.
[Step 1] Find PΘ0 (h01, σ02) given σ02 for each h01 = m1. Let PΘ0 = PΘ0 (h01, σ02) in two

tables below. Given σ02 = (1,?,?):

PΘ(3,0) PΘ(2,1) PΘ(1,2) PΘ(0,3)

m1 = 1 1
1+2( 2

3)+
1
3
= 3

8
2( 2

3)
1+2( 2

3)+
1
3
= 4

8

1
3

1+2( 2
3)+

1
3
= 1

8 0

m1 = 0 0
2( 1

3)
2( 1

3)+
2
3
= 1

2

2
3

2( 1
3)+

2
3
= 1

2 0

Given σ02 = (1,?,�1):

PΘ(3,0) PΘ(2,1) PΘ(1,2) PΘ(0,3)

m1 = 1 0
2
3

2
3+

1
3
= 2

3

1
3

2
3+

1
3
= 1

3 0

m1 = 0 0
1
3

1
3+

2
3
= 1

3

2
3

1
3+

2
3
= 2

3 0

[Step 2] Compute the conditional expected payoff:

�
Expected payoff of m2 = 1jσ2 = σ02, h1 = m1

�8>>>>>>>><>>>>>>>>:

3 � 3
8

�
1

2L�2

� �
1� 1

2L

�
+ 4

8

� 5
6

�L�2
�

1� 1
4L

�
�1

8

� 5
6

�L�2
> 0

if m1 = 1& σ2 = (1,?,?)

1
2

�5
6

�L�2 � 1
2

�5
6

�L�2
�

1� 1
4L

�
> 0 if m1 = 0 & σ2 = (1,?,?)� 2

3

� �5
6

�L�2
�

1� 1
4L

�
�
�

1
3

� �5
6

�L�2
> 0 if m1 = 1 & σ2 = (1,?,�1)

1
3

�5
6

�L�2 � 2
3

�5
6

�L�2
�

1- 1
4L

�
< 0 if m1 = 0 & σ2 = (1,?,�1)

To compute the above mentioned expected payoffs, we use the results in Step
1. Also, find a probability that m2 affects d given each θ fixing m1. The probability
remains unchanged for σ2 2 f(1,?,?) , (1,?,�1)g.
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(i) Fix m1 = 1 and any σ2. Given θ0 = (1, 1, 1), m2 affects d w.p. 1
2L�2

�
1� 1

2L

�
as

follows: m2 affects mL w.p. 1
2L�2 , i.e. σt 2 Σ(1,0) for 8 t 2 f3, ..., Lg. m1 = 1 implies

σ1 2 Σ(1,0) [ Σ(2,0); hence, if m2 affects mL, m2 affects v1 and vt for 8 t 2 f2, ..., Lg
w.p. 1

2 and 1, respectively.
Given θ0 = (1, 1,�1), m2 affects d w.p.

� 5
6

�L�2
�

1� 1
4L

�
as follows: m2 affects mL

w.p.
�5

6

�L�2
, i.e. σt 2 Σ(0,1) [ Σ(1,1) [ Σ(1,0) for 8 t 2 f3, ..., Lg. m1 = 1 implies σ1 2

Σ(1,1) [ Σ(1,0) [ Σ(2,0); hence, if m2 affects mL, m2 affects v1 and vt for 8 t 2 f2, ..., Lg
w.p. 3

4 and 1, respectively.
Given θ0 = (1,�1,�1), m2 affects d w.p.

� 5
6

�L�2
as follows: m2 affects mL w.p.�5

6

�L�2
, i.e., σt 2 Σ(0,1) [ Σ(1,1) [ Σ(1,0) for 8 t 2 f3, ..., Lg. m1=1 implies σ1 2 Σ(1,1) [

Σ(1,0); hence, if m2 affects mL, m2 affects v0 w.p. 1 for 8 t.
(ii) Now, fix m1 = 0. Given θ0 = (1, 1,�1), m2 affects d w.p.

�5
6

�L�2
as follows:

m2 affects mL w.p.
� 5

6

�L�2
, i.e., σt 2 Σ(0,1) [ Σ(1,1) [ Σ(1,0) for 8 t 2 f3, ..., Lg. m1 = 0

implies σ1 2 Σ(0,1) [ Σ(1,1). Hence, if m2 affects mL, m2 affects v0 w.p. 1 for 8 t.
Given θ0 = (1,�1,�1), m2 affects d w.p.

�5
6

�L�2
�

1� 1
4L

�
as follows: m2 affects

mL w.p.
�5

6

�L�2
, i.e., σt 2 Σ(0,1) [ Σ(1,1) [ Σ(1,0) for 8 t 2 f3, ..., Lg. m1 = 0 implies

σ1 2 Σ(1,1) [ Σ(0,1) [ Σ(0,2). Hence, if m2 affects mL, m2 affects v1 and vt for 8 t 2
f2, ..., Lg w.p. 3

4 and 1, respectively.

A.1.3 Player t’s talk and inferences, 2<t<L

Fix any t � 3. The optimal talk mt given each σt = σ0t and h0t�1 = (m1, ..., mt�1) is:

σ0t = (1,?,?) σ0t = (1,?,�1)
m1 = m2 = mt�1 = 1 mt = mt�1 mt = mt�1

m1 = 0 & m2 = mt�1 = 1 mt = mt�1 mt = mt�1

m2 = 0 & mt�1 = 1 mt = mt�1 mt = mt�1

m1 = m2 = mt�1 = 0 mt = mt�1 mt = mt�1

m1 = 1 & m2 = mt�1 = 0 mt = mt�1 mt = mt�1

m2 = 1 & mt�1 = 0 mt = mt�1 mt = mt�1

[Step 1] Find PΘ0
�
h0t�1, σ0t

�
given σ0t for each h0t�1. Let PΘ0 = PΘ0

�
h0t�1, σ0t

�
in
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tables below. For σ0t = (1,?,?):

ht�1 PΘ(3,0) PΘ(2,1) PΘ(1,2) PΘ(0,3)

m1 = m2 = mt�1 = 1 1
1+ 10

9 +
1
6(

5
6)

t�3

10
9

1+ 10
9 +

1
6(

5
6)

t�3

1
6(

5
6)

t�3

1+ 10
9 +

1
6(

5
6)

t�3 0

m1 = 0 & m2 = mt�1 = 1 0
1
3

1
3+

1
9(

5
6)

t�3

1
9(

5
6)

t�3

1
3+

1
9(

5
6)

t�3 0

m2 = 0 & mt�1 = 1 0 1 0 0

m1 = m2 = mt�1 = 0 0
1
3(

5
6)

t�3

1
3(

5
6)

t�3
+ 5

9

5
9

1
3(

5
6)

t�3
+ 5

9

0

m1 = 1 & m2 = mt�1 = 0 0
2
9(

5
6)

t�3

2
9(

5
6)

t�3
+ 5

18

5
18

2
9(

5
6)

t�3
+ 5

18

0

m2 = 1 & mt�1 = 0 0 0 1 0

For σ0t = (1,?,�1):

ht�1 PΘ(3,0) PΘ(2,1) PΘ(1,2) PΘ(0,3)

m1 = m2 = mt�1 = 1 0
5
9

5
9+

1
6(

5
6)

t�3

1
6(

5
6)

t�3

5
9+

1
6(

5
6)

t�3 0

m1 = 0 & m2 = mt�1 = 1 0
1
6

1
6+

1
9(

5
6)

t�3

1
9(

5
6)

t�3

1
6+

1
9(

5
6)

t�3 0

m2 = 0 & mt�1 = 1 0 1 0 0

m1 = m2 = mt�1 = 0 0 PΘ(2,1) PΘ(1,2) 0

m1 = 1 & m2 = mt�1 = 0 0 PΘ(2,1) PΘ(1,2) 0

m2 = 1 & mt�1 = 0 0 0 1 0
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[Step 2] Compute the conditional expected payoff as follows.

�
Expected payoff of mt = 1jσt = σ0t, ht�1 = (m1, ..., mt�1)

�

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

3 � 1
1+ 10

9 +
1
6(

5
6)

t�3

�
1
2

�L�t �
1� t�1

2L

�
+

10
9

1+ 10
9 +

1
6(

5
6)

t�3

�5
6

�L�t
�

1� 10t�3
60L

�
�

1
6(

5
6)

t�3

1+ 10
9 +

1
6(

5
6)

t�3

�5
6

�L�t
> 0

if
m1=m2=mt�1=1
σ0t= (1,?,?)

5
9

5
9+

1
6(

5
6)

t�3

�5
6

�L�t
�

1� 10t�3
60L

�
�

1
6(

5
6)

t�3

5
9+

1
6(

5
6)

t�3

�5
6

�L�t
> 0 if

m1=m2=mt�1=1
σ0t= (1,?,�1)

1
3

1
3+

1
9(

5
6)

t�3

�5
6

�L�t �
1- t

6L
�
�

1
9(

5
6)

t�3

1
3+

1
9(

5
6)

t�3

�5
6

�L�t
�

1� 1
4L

�
> 0 if

m1=0,m2=mt�1=1
σ0t= (1,?,?)

1
6

1
6+

1
9(

5
6)

t�3

�5
6

�L�t �
1� t

6L
�
�

1
9(

5
6)

t�3

1
6+

1
9(

5
6)

t�3

� 5
6

�L�t
�

1� 1
4L

�
> 0 if

m1=-,m2=mt�1=1
σ0t= (1,?,�1)

1
3(

5
6)

t�3

1
3(

5
6)

t�3
+ 5

9

�5
6

�L�t �
5
9

1
3(

5
6)

t�3
+ 5

9

�5
6

�L�t
�

1� 10t�3
60L

�
< 0 if

m1=m2=mt�1=0
σ0t= (1,?,?)

2
9(

5
6)

t�3

2
9(

5
6)

t�3
+ 5

18

�5
6

�L�t
�

1� 1
4L

�
�

5
18

2
9(

5
6)

t�3
+ 5

18

� 5
6

�L�t
�

1� 10t�3
60L

�
< 0

if
m1=1, m2=mt�1=0
σ0t= (1,?,?)

Given σ0t = (1,?,�1), "m1 = m2 = mt�1 = 1" and "m1 = m2 = mt�1 = 0"
("m1 = 0 & m2 = mt�1 = 1" and "m1 = 1 & m2 = mt�1 = 0" ) are symmetry to each
other.

To compute the above mentioned expected payoffs, we use the results in Step
1. Also, find a probability that mt affects d given each θ fixing ht�1, which remains
unchanged for σt 2 f(1,?,?) , (1,?,�1)g.

(i) So, fix any σt and m1 = m2 = mt�1 = 1. Given θ0 = (1, 1, 1), mt affects d w.p.

1
2L�t

1
L

�
L� t+ 1+ t�1

2

�
= 1

2L�t

�
1� t�1

2L

�
as follows: mt affects mL w.p. 1

2L�t , i.e., σt 2 Σ(1,0) for 8 t 2 ft+ 1, ..., Lg. ht�1 implies
σt 2 Σ(1,0) [ Σ(2,0) for 8 t 2 f1, ..., Lg n ftg; hence, if mt affects mL, mt affects vt for 8
t 2 f1, 2, ..., t� 1g and vt0 for 8 t0 2 ft, t+ 1, ..., Lg w.p. 1

2 and 1, respectively.
Given θ0 = (1, 1,�1), mt affects d w.p.

�5
6

�L�t 1
L

�
L� t+ 1+ 3

4 +
4
5 +

5(t�3)
6

�
=
�5

6

�L�t
�

1� 10t�3
60L

�
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as follows: mt affects mL w.p.
� 5

6

�L�t
, i.e., σt 2 Σ(0,1) [ Σ(1,1) [ Σ(1,0) for 8 t 2

ft+ 1, ..., Lg. ht�1 implies:

σt 2 Σ(1,1) [ Σ(1,0) [ Σ(2,0) for t 2 f1, 2g .
σt0 2 Σ(0,1) [ Σ(1,1) [ Σ(1,0) [ Σ(2,0) for t0 2 f3, 4, ..., t� 1g .

Hence, if mt affects mL, mt affects v1, v2, vt for 8 t 2 f3, 4, ..., t� 1g and vt0 for 8
t0 2 ft, t+ 1, ..., Lg w.p. 3

4 , 4
5 , 5

6 and 1, respectively.
Given θ0 = (1,�1,�1), mt affects d w.p.

�5
6

�L�t
as follows: mt affects mL w.p.�5

6

�L�t
, i.e.,

σt 2 Σ(0,1) [ Σ(1,1) [ Σ(1,0) for8t 2 ft+ 1, ..., Lg .

ht�1 implies:

σt 2 Σ(1,1) [ Σ(1,0) for t 2 f1, 2g .
σt 2 Σ(0,1) [ Σ(1,1) [ Σ(1,0) for t 2 f3, 4, ..., t� 1g .

Hence, if mt affects mL, mt affects vt for 8 t w.p. 1.
(ii) Fix m1 = 0 and m2 = mt�1 = 1. Given θ0 = (1, 1,�1), mt affects d w.p.�5

6

�L�t �
1� t

6L
�

as follows: ht�1 implies:

σ1 2 Σ(1,1) [ Σ(0,1) & σ2 2 Σ(1,0) [ Σ(2,0),
σt 2 Σ(1,1) [ Σ(0,1) [ Σ(1,0) [ Σ(2,0) for t 2 f3, 4, ..., t� 1g ,

Hence, if mt affects mL, mt affects v1, v2 and vt for 8 t 2 f3, 4, ..., t� 1g and vt0 for 8
t0 2 ft, t+ 1, ..., Lg w.p. 1 , 1

2 , 5
6 and 1, respectively.

Given θ0 = (1,�1,�1), mt affects d w.p.

�5
6

�L�t 1
L
�

L� 1+ 3
4

�
=
� 5

6

�L�t
�

1� 1
4L

�
as follows: ht�1 implies:

σ1 2 Σ(1,1) [ Σ(0,1) [ Σ(0,2) & σ2 2 Σ(1,0),
σt 2 Σ(0,1) [ Σ(1,1) [ Σ(1,0) for t 2 f3, 4, ..., t� 1g ,

Hence, if mt affects mL, mt affects v1 and vt for t 2 f2, ..., Lgw.p. 3
4 and 1, respectively.

(iii) Fix m1 = m2 = mt�1 = 0. Given θ0 = (1, 1,�1), mt affects d w.p.
�5

6

�L�t
as
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follows: ht�1 implies:

σt 2 Σ(1,1) [ Σ(0,1) for t 2 f1, 2g ,
σt 2 Σ(1,0) [ Σ(1,1) [ Σ(0,1) for t 2 f3, 4, ..., t� 1g .

Hence, if mt affects mL, mt affects affects vt w.p. 1 for 8 t.
Given θ0 = (1,�1,�1), mt affects d w.p.

1
L
�5

6

�L�t
�

L� t+ 1+ 3
4 +

4
5 +

5(t�3)
6

�
=
� 5

6

�L�t
�

1-10t�3
60L

�
as follows: ht�1 implies:

σt 2 Σ(1,1) [ Σ(0,1) [ Σ(0,2) for t 2 f1, 2g ,
σt 2 Σ(1,0) [ Σ(1,1) [ Σ(0,1) [ Σ(0,2) for t 2 f3, 4, ..., t� 1g ,

Hence, if mt affects mL, mt affects v1, v2, vt for 8 t 2 f3, 4, ..., t� 1g and vt0 for 8
t0 2 ft, t+ 1, ..., Lg w.p. 3

4 , 4
5 , 5

6 and 1, respectively.
(iv) Fix m1 = 1 and m2 = � � � = mt�1 = 0. Given θ0 = (1, 1,�1), mt affects d w.p.�5

6

�L�t
�

1� 1
4L

�
as follows: ht�1 implies:

σ1 2 Σ(2,0) [ Σ(1,0) [ Σ(1,1) & σ2 2 Σ(0,1),
σt 2 Σ(1,0) [ Σ(1,1) [ Σ(0,1) for t 2 f3, 4, ..., t� 1g ,

Hence, if mt affects mL, mt affects v1 and vt for 8 t 2 f2, ..., Lg w.p. 3
4 and 1, respect-

ively.
Given θ0 = (1,�1,�1), mt affects d w.p.

� 5
6

�L�t �
1� t+2

6L
�

as follows: ht�1 implies:

σ1 2 Σ(1,0) [ Σ(1,1) & σ2 2 Σ(0,2) [ Σ(0,1),
σt 2 Σ(1,0) [ Σ(1,1) [ Σ(0,1) [ Σ(0,2) for t 2 f3, 4, ..., t� 1g .

Hence, if mt affects mL, mt affects v1, v2, vt for 8 t 2 f3, 4, ..., t� 1g and vt0 for 8
t0 2 ft, t+ 1, ..., Lg w.p. 1

2 , 2
3 , 5

6 and 1, respectively.
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A.1.4 Player j’s vote and inferences on attributes, j<l

Fix j < L. The optimal vote vj given each σj = σ0j and h0L = (m1, ..., mL) is:

hLnσt σt = (1,?,?) σt = (1,?,�1)
m1 = m2 = mL = 1 vj = mL vj = mL

m1 = 0 & m2 = mL = 1 vj = mL vj = mL

m2 = 0 & mL = 1 vj = mL vj = mL

m1 = m2 = mL = 0 vj = mL vj = mL

m1 = + & m2 = mL = 0 vj = mL vj = mL

m2 = + & mL = 0 vj = mL vj = mL

The optimal vote is computed in two steps.
[Step 1] Find PΘ0

�
h0L, σ0j

�
given σ0j for each h0L. Let PΘ0 = PΘ0

�
h0L, σ0j

�
in tables

below. Given σ0j = (1,?,?):

hL PΘ(3,0) PΘ(2,1) PΘ(1,2) PΘ(0,3)

m1 = m2 = mL = 1 1
1+ 10

9 +
1
6(

5
6)

L�2

10
9

1+ 10
9 +

1
6(

5
6)

L�2

1
6(

5
6)

L�2

1+ 20
18+

1
6(

5
6)

L�2 0

m1=0 & m2=mL=1 0
1
3

1
3+

1
9(

5
6)

L�2

1
9(

5
6)

L�2

1
3+

1
9(

5
6)

L�2 0

m2 = 0 & mL = 1 0 1 0 0

m1 = m2 = mL = 0 0
1
3(

5
6)

L�2

1
3(

5
6)

L�2
+ 5

9

5
9

1
3(

5
6)

L�2
+ 5

9

0

m1 = 1 & m2 = mL = 0 0
2
9(

5
6)

L�2

2
9(

5
6)

L�2
+ 5

18

5
18

2
9(

5
6)

L�2
+ 5

18

0

m2 = 1 & mL = 0 0 0 1 0

For σ0j = (+,?,�):
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hL PΘ(3,0) PΘ(2,1) PΘ(1,2) PΘ(0,3)

m1 = m2 = mL = 1 0
5
9

5
9+

1
6(

5
6)

L�2

(�1) 1
6(

5
6)

L�2

5
9+

1
6(

5
6)

L�2

(�2)

0

m1 = 0 & m2 = mL = 1 0
1
6

1
6+

1
9(

5
6)

L�2

(�3) 1
9(

5
6)

L�2

1
6+

1
9(

5
6)

L�2

(�4)

0

m2 = 0 & mL = 1 0 1 0 0

m1 = m2 = mL = 0 0 (*2) (*1) 0

m1 = 1 & m2 = mL = 0 0 (*4) (*3) 0

m2 = 1 & mL = 0 0 0 1 0

Given σ0j = (1,?,�1), "m1 = m2 = mL�1 = 1" and "m1 = m2 = mL�1 = 0"
("m1 = 0 & m2 = mL�1 = 1" and "m1 = 1 & m2 = mL�1 = 0" ) are symmetry to each
other.

[Step 2] Compute "the expected payoff of selecting vj = 1" given each σ0j and h0L.

A.1.5 Player l’s talk & vote and inferences

The optimal talk mL given hL�1 = (m1, ..., mL�1) and σL = σ0L is:

σ0L = (1,?,?) σ0L = (1,?,�1)
m1 = m2 = mL�1 = 1 mL = mL�1 mL = mL�1

m1 = 0 & m2 = mL�1 = 1 mL = mL�1 mL = mL�1

m2 = 0 & mL�1 = 1 mL = mL�1 mL = mL�1

m1 = m2 = mL�1 = 0 mL = mL�1 mL = mL�1

m1 = 1 & m2 = mL�1 = 0 mL = mL�1 mL = mL�1

m2 = 1 & mL�1 = 0 mL = mL�1 mL = mL�1

The optimal talk is computed in two steps.
[Step 1] Find PΘ0 (h01, σ02) given σ02 for each h01=m1. To save space, let PΘ0=PΘ0 (h01, σ02)
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in tables below. Given σ0L=(1,?,?):

hL�1 PΘ(3,0) PΘ(2,1) PΘ(1,2) PΘ(0,3)

m1 = m2 = mL�1 = 1 1
1+ 10

9 +
1
6(

5
6)

L�3

10
9

1+ 10
9 +

1
6(

5
6)

L�3

1
6(

5
6)

L�3

1+ 10
9 +

1
6(

5
6)

L�3 0

m1 = 0 & m2 = mL�1 = 1 0
1
3

1
3+

1
9(

5
6)

L�3

1
9(

5
6)

L�3

1
3+

1
9(

5
6)

L�3 0

m2 = 0 & mL�1 = 1 0 1 0 0

m1 = m2 = mL�1 = 0 0
1
3(

5
6)

L�3

1
3(

5
6)

L�3
+ 5

9

5
9

1
3(

5
6)

L�3
+ 5

9

0

m1 = 1 & m2 = mL�1 = 0 0
2
9(

5
6)

L�3

2
9(

5
6)

L�3
+ 5

18

5
18

2
9(

5
6)

L�3
+ 5

18

0

m2 = 1 & mL�1 = 0 0 0 1 0

Given σ0L = (1,?,�1):

hL�1 PΘ(3,0) PΘ(2,1) PΘ(1,2) PΘ(0,3)

m1 = m2 = mL�1 = 1 0
5
9

5
9+

1
6(

5
6)

L�3

1
6(

5
6)

L�3

5
9+

1
6(

5
6)

L�3 0

m1 = 0 & m2 = mL�1 = 1 0
1
6

1
6+

1
9(

5
6)

L�3

1
9(

5
6)

L�3

1
6+

1
9(

5
6)

L�3 0

m2 = 0 & mL�1 = 1 0 1 0 0

m1 = m2 = mL�1 = 0 0 PΘ(2,1) PΘ(1,2) 0

m1 = 1 & m2 = mL�1 = 0 0 PΘ(2,1) PΘ(1,2) 0

m2 = 1 & mL�1 = 0 0 0 1 0

Given σ0L = (1,?,�1), "m1 = m2 = mL�1 = 1" and "m1 = m2 = mL�1 = 0" ("m1 = 0
& m2 = mL�1 = 1" and "m1 = 1 & m2 = mL�1 = 0" ) are symmetry to each other.

The optimal vL follows. The optimal mL also follows by repeating the previous
analysis for player j 2 f3, 4, ..., L� 1g. (Replace j with L.)

Appendix B (Attribute-based Talk)

B.1 Example 1

We describe a PBE which was informally introduced in Section 4.2. WLOG, we focus
on each speaker’s talk strategy when his private signal is (1, 1,?) or (1,?,?). For
any speaker t 2 f1, 2, 3g, his message strategy mt given σt 2 Σ++ is symmetric to
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mt given σt = (1, 1,?) and σt = (1,?,?), respectively. mt given any σt 2 Σ�� and
σt 2 Σ� is symmetric to mt given σt 2 Σ++ and σt 2 Σ+, respectively.

B.1.1 Speaker 1’s talk

Fix σ1 = (1, 1,?). Then:

m1 = (1,+) and m1 = (2,+) w.p. 1
2 and 1

2 , respectively.

Fix σ1 = (1,?,?). Then:

m1 = (1,+)

B.1.2 Speaker 2’s talk

Fix σ2 = (1, 1,?). Then:

m2 =

8>>>>>><>>>>>>:

(1,+) & (2,+) w.p. 1
2 & 1

2 , respectively, if m1 /2 f(1,+) , (2,+)g ,
(1,+) if m1 = (2,+) ,
(2,+) if m1 = (1,+) ,
(1,+) if m1 = (1,�) ,
(2,+) if m1 = (2,�) .

Fix σ2 = (1,?,?). Then:
m2 = (1,+) for any m1.
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B.1.3 Speaker 3’s talk

Fix σ3 = (1, 1,?). Then:

m3 =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(1,+) & (2,+) w.p. 1
2 & 1

2 , respectively, if m1, m2 /2 f(1,+) , (2,+)g
(1,+) & (2,+) w.p. 1

2 & 1
2 , respectively, if fm1, m2g = f(1,+) , (2,+)g

(1,+) if m1 = m2 = (2,+)
(2,+) if m1 = m2 = (1,+)
(1,+) if m2 = (1,�)
(2,+) if m2 = (2,�)
(1,+) if m1 = (1,�) & m2 6= (1,+)
(2,+) if m1 = (2,�) & m2 6= (2,+)

Fix σ3 = (1,?,?). Then:

m3 =

(
m2 if m1 = m2 & m2 2 f(2,�) , (3,�)g
(1,+) otherwise

B.1.4 DM’s Decision

For any i, j 2 f1, 2, 3g and any s 2 f1, 2, 3g, we say, "mi and mj are not consistent (or
inconsistent) with each other," if mi = (s,+) and mj = (s,�), and we say "mi and mj

are consistent with each other," otherwise.
Suppose that m1, m2 and m3 are consistent with one another. Then, DM chooses

d = 1 if one of (1) through (3) holds:8><>:
(1) mi = (s,+), mj = (t,+) and mi 6= mj for any i, j 2 f1, 2, 3g ,
(2) m1 = m2 = m3 = (s,+),
(3) m1 = m2 = (s,�) and m3 = (t,+),

DM chooses d = 0 if one of (4) through (6) holds:8><>:
(4) mi = (s,�), mj = (t,�) and mi 6= mj for any i, j 2 f1, 2, 3g,
(5) m1 = m2 = m3 = (s,�),
(6) m1 = m2 = (s,+) and m3 = (t,�),

and DM chooses d = 1 and d = 0 w.p. 1
2 and 1

2 , respectively, if one of (7) through (10)
holds:
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8>>>><>>>>:
(7) m1 = m3 = (s,+) and m2 = (t,�),
(8) m1 = m3 = (s,�) and m2 = (t,+),
(9) m1 = (s,+) and m2 = m3 = (t,�),
(10) m1 = (s,�) and m2 = m3 = (t,+),

for any s, t 2 f1, 2, 3g in all cases, (1) through (10).
Suppose that m1 is not consistent with m2 or/and m3 while m2 is consistent with

m3. Then:

d =

8><>:
1 if m2 = (s,+) and m3 = (t,+) for any s, t 2 f1, 2, 3g,
0 if m2 = (s,�) and m3 = (t,�) for any s, t 2 f1, 2, 3g,
1 & 0 w.p. 1

2 & 1
2 , respectively, otherwise.

Suppose that m1 and m2 are both not consistent with m3.Then:

d =

(
1 if m3 = (s,+) for any s 2 f1, 2, 3g,
0 if m3 = (s,�) for any s 2 f1, 2, 3g,

B.2 Example 2

We only explain each speaker’s talk strategy given σj 2 f(1, 1,?) , (1,?,?) , (1,?,�1)g
and every possible history.

B.2.1 Speaker 1’s talk

Fix σ1 = (1, 1,?). Then:

m1 = (?,+) .

Fix σ1 = (1,?,?). Then:
m1 = (1,+) .

Fix σ1 = (1,?,�1). Then:

m1 = (1,+) and (3,�) w.p. 1
2 and 1

2 , respectively.
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B.2.2 Speaker 2’s talk

Fix σ2 = (1, 1,?). Then:

m2 =

(
(i,+) if mr

1 = (j,+) where i, j 2 f1, 2g , i 6= j
(?,+) otherwise.

Fix σ2 = (1,?,?). Then:

m2 =

(
(?,�) if mr

1 = (?,�)
(1,+) otherwise.

Fix σ2 = (1,?,�1). Then:

m2 =

(
(1,+) if mr

1 2 f(?,+) , (2,+) , (3,�)g
(3,�) otherwise (i.e., mr

1 2 f(2,�) , (?,�) , (1,+)g).

B.2.3 Speaker 3’s talk

Fix σ3 = (1, 1,?). Then:

m3 =

8><>:
(2,+) if (1,+) 2

�
mr

1, mr
2
	

(1,+) if (2,+) 2
�

mr
1, mr

2
	

but (1,+) /2
�

mr
1, mr

2
	

(?,+) otherwise.

Fix σ3 = (1,?,?). Then:

m3 =

8><>:
(1,+) if mr

1 = mr
2 = (i,�)where i = 2, 3

(1,+) if mr
2 = (�,+)

(�,�) otherwise.

Fix σ3 = (1,?,�1). Then:

m3 =

8>>>><>>>>:
(1,+) if mr

1 = mr
2 = (3,�)

(1,+) if "mr
2 = (�,+) & Not [mr

1 = mr
2 = (1,+)]”

(3,�) if mr
1 = mr

2 = (1,+)
(3,�) otherwise (i.e., if "mr

2 = (�,�) & Not [mr
1 = mr

2 = (3,�)]”).
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