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Abstract

We study indeterminacy of indicative meanings (disagreements about meanings

of messages among players), a kind of language vagueness examined in Blume

and Board (2013). They, using a cheap talk model in which the state distribution

and the players’ language competence were ex-ante uncertain, demonstrated

that this vagueness occurs as the equilibrium language. We expand the work

of Blume and Board by using a model between an uninformed decision maker

and an informed agent in which the state-distribution and the state are both ex-

ante uncertain. We show that this two-dimensional uncertainty also leads to

indeterminacy of indicative meanings, that is, to a set of conditions in which an

agent with different perceptions of state-distribution intentionally uses the same

symbol for the different extents of information on the state. Our vagueness can

lead to welfare improvement.
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1 Introduction

"A proposition is vague when there are possible states of things concerning
which it is intrinsically uncertain whether, had they been contemplated by the
speaker, he would have regarded them as excluded or allowed by the proposi-
tion. By intrinsically uncertain we mean not uncertain in consequence of any
ignorance of the interpreter, but because the speaker’s habits of language were
indeterminate" (Peirce, 1902, pp. 748).1

Vagueness of language is a pervasive feature of natural language. There are vari-
ous interpretations of vagueness of language.2 Lipman (2009) discussed vagueness
related to context-dependent meaning. Blume and Board (2013), hereafter BB, con-
sidered a kind of vagueness, indeterminacy of indicative meanings, related to language
competence.3 We study indeterminacy of indicative meanings, related to the per-
ception of the state-distribution (or worldview). If a message indicates a set of states
rather than the exact state, the language is imprecise. If a message can indicate dif-
ferent sets of states, for example, depending on the context, language is vague. In
addition, if the receivers of the message do not know which set of states the sender
of the message indicates, there is indeterminacy of indicative meanings (or disagree-
ments about indicative meanings of messages among players).

As an illustration of indeterminacy of indicative meanings, the word "threat" was
used inconsistently through the U.S. Federal government. On August 26, 2014 in
reaction to ISIS video release on the first beheading of U.S. journalists, Department of
Homeland Security Secretary Jeh Johnson said that DHS and the FBI are "unaware of
any specific, credible threat to the U.S. homeland" from Islamic State.4 White House
Press Secretary Josh Earnest said that the U.S. has no current plant to raise its own
threat level.5 Secretary of Defense Chuck Hagel said "They are an imminent threat
to every interest we have, whether it’s in Iraq or anywhere else.”6 Among the U.S.

1This reference is contained in the revision in 2012 of Keefe & Smith (1997). Retrieved from ht-
tps://plato.stanford.edu/entries/vagueness/

2There is an increasing number of studies on vagueness of natural language by economists as well
as philosophers. See Section 2 for further details.

3In BB, the set of messages each player can use and understand is limited and private information.
4http://www.washingtontimes.com/news/2014/aug/29/jeh-johnson-no-imminent-threat-

against-us-despite-/
5http://www.foxnews.com/world/2014/08/29/cameron-talks-tough-on-radical-islam-as-uk-

raises-terror-threat/
6http://www.bloomberg.com/news/2014-08-21/islamic-state-poses-imminent-threat-to-u-s-
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military services, "the word ‘aircraft’ was understood by the Air Force to include
helicopters, but by Army pilots to exclude helicopters" (Snook, 2000, pp. 163).7

We attempt to provide a theoretical explanation for this type of vagueness extend-
ing cheap talk models developed by Crawford and Sobel (1982), hereafter CS. We
assume two-dimensional uncertainty about the state in which the underlying state-
distribution and the state is ex-ante uncertain to players.8 We focus on a static model
of communications between an uninformed receiver/decision-maker (R) and an in-
formed sender/agent (S). R chooses an action after taking advice from S. The model
predicts that this two-dimensional uncertainty leads the equilibrium language to be
vague: S, with different perceptions of the state-distribution (or different views of
the entire world), uses the same message for different extents of S’s information on
the state. For example, there are two uniform distributions with different sizes of
support: a small size [0, 1] and a large size [0, 2]. S observes a binary signal on the
state-distribution. He also observes a signal on the state, which is the percent rank to
the support of the true state distribution in ascending order. S has two types given
the first signal: type 1 perceives that the small size (of distribution) is more likely
than the large size while type 2 perceives the opposite.9 Like in CS, there is a conflict
of interest between the players: S always prefers a higher action than R given any
state. Thus, each type partitions the space for the second signal into finite intervals
and sends a different message to R for a different interval. Furthermore, different
types use the same message for different extents of information on the state. For
example, if type 1 says "small" when his second signal is below 20%, then type 2
also says "small" when his second signal is below 15%, and vice versa. If type 1 says
"large" when his second signal is above 20%, then, type 2 also says "large" when his
second signal is above 15%, and vice versa. In other words, given the same signal
25%, different types use different words. Furthermore, without knowing S’s type, R
does not know what S indicates by saying "small."

We also show that vagueness can result in welfare improvement in simplified

hagel-says.html
7This example is contained in Crémer, Garicano and Prat (2007).
8To our knowledge, little literature on communication games considers two-dimensional uncer-

tainty on the state. However, we believe that our uncertainty setting is realistic in many situations.
Knight (1921) said "we live in a world full of contradiction and paradox...the existence of a problem
of knowledge depends on the future being different from the past..." (pp. 167).

9Uncertainty about the state-distribution in our model is replicated in a model with a single state-
distribution and multiple signal channels. However, this alternative model also involves two dimen-
sions of uncertainty. See Section 3 for further details.
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discrete models. Consider a referendum on cutting government spending. The gov-
ernment (S) announces the optimal level of spending cut to the public. Given the
announcement, the representative voter (R) updates a belief on the optimal level.
This voter’s updated belief will be implemented. The optimal level is null or small
(distribution 1). Or it may be null or large (distribution 2). The government is more
biased toward the larger cut than the voter. When the null level is optimal for the
voter, the government prefers a small cut but dislikes a medium or large cut. In this
example, suppose the distribution is known to everyone. In the former case (distri-
bution 1), the government always recommends a small cut (a babbling equilibrium).
But in the latter case (distribution 2), the government differentiates the recommend-
ation depending on the state. Next suppose that the true distribution is uncertain
to the public. Given any distribution, the government announces a different recom-
mendation for a different state using vague language and induces a null cut when
it is optimal for the voter and a medium cut else. This improvement of information
transmission benefits both players.

Last, we examine the effect of heterogenous beliefs on the equilibrium language.
Due to psychological, cultural or other factors, the players possess different prior
beliefs on the underlying state distribution and update the same information dif-
ferently. We show that the language will be vague if there are at least either het-
erogenous prior beliefs or heterogeneous preferences. However, heterogeneity in
preferences and heterogeneity in prior beliefs can complement each other in facil-
itating information transmission. This result shows that heterogeneity can benefit
organizations.

The remainder of the paper is organized as follows: Section 2 reviews related
literature. Section 3 describes a basic model and the main results. Section 4 uses
the uniform-quadratic specification of the CS model. Section 5 extends the model
to argue political campaigns and discusses welfare implications of the vagueness.
Section 5 also studies a model with heterogenous beliefs. Section 6 concludes the
paper. Proofs are in the appendix.

2 Related Literature

Since Lewis (1969) analyzed conventions of languages using coordination games,
philosophers and economists have applied game theory to study linguistics. Two of
important approaches are "game theoretic pragmatics" and "evolutionary game the-
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ory to model cultural language evolution" (De Jaegher, 2003, pp. 406).10 This study
takes the former approach. In particular, as discussed in Section 1, it is closely related
to the theory of vagueness of natural language by BB. In BB and our paper, there are
two-dimensions of uncertainty: one dimension is on the state (an action type), and
the other dimension is on S’s type associated with his fundamental ability and invis-
ible from R. The latter dimension of uncertainty causes language for communicating
information on the former dimension of uncertainty to be vague. Although BB and
we posit two dimensions of uncertainty, BB assumed constraint of players’ ability
to produce and interpret messages while we assume constraint of players’ ability
to perceive the underlying distribution of the state. BB studied a common interest
game while we consider differences in preferences as well as prior beliefs between
the players. Blume and Board (2014) also studied vagueness of language. Unlike this
paper, Blume and Board (2014) considered uni-dimensional uncertainty (about the
action type) and a communication error, noise. Hence, identical messages by S do
not always result in identical interpretations by R; i.e., the language is vague. Due
to different preferences among the possible projects, a type of S intentionally selects
a message to increase the vagueness in R’s side. In their model as well as our work,
this intentional vagueness can enhance welfare.

Our work extends the research by Rubinstein (2000) and Lipman (2002, 2009) on
the economics of languages. Rubinstein (2000) proposed a model of optimal lan-
guages using a different framework from ours. According to Rubinstein, a language
is a binary relationship between objects, and the optimal language allows an effi-
cient, precise identification of specific events. Rubinstein also studied the emergence
of languages through evolution while we analyze the vagueness of language in a
static model and our equilibrium language has a partitional form. Lipman (2002)
discussed topics associated with the economics of languages such as the optimal
structure of languages; effects of language on choice, debate, and inference rules; and
vagueness. Lipman (2009) extended the argument on context-dependent vagueness.
He introduced an example where we intentionally use "tall" for different heights for
different types of objects: "‘tall’ for a newborn means about 15 inches, while ‘tall’ for
a professional basketball player means above 6 foot 10" (Lipman, 2009, pp. 1).

De Jaegher (2003) as well as Blume, Board and Kawamura (2007) related a game
theoretic rational for vagueness to the idea of Myerson (1991, pages 285-288): noisy

10De Jaegher (2003) provided an overview of applications of game theory in linguistics by focusing
on these two approaches.
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communication channels can mitigate conflict of interest and hence improve inform-
ation transmission (a carrier pigeon example). De Jaegher (2003) looked at correlated
equilibria in coordination games. He argued that vagueness, which is driven by cor-
relation device, can be efficiency enhancing. Blume, Board and Kawamura (2007)
extended CS’s cheap talk model by including exogenous noises in it. They showed
that for any level of conflict of interest, there is some level of noise which enhances
welfare as obtained by any communication device.

On the other hand, De Jaegher and Rooij (2011), Franke, Jäger and Rooij (2011),
O’Connor (2014), Lambie-Hanson and Parameswaran (2015), Parameswaran and
Lambie-Hanson (2016), and Lim and Wu (2017) studied vagueness of language us-
ing common interest games. De Jaegher and Rooij (2011) assumed that R imper-
fectly observes contexts in S’s message. They explained the evolution of vagueness
using prospect theory. Franke, Jäger and Rooij (2011) showed the evolution of vague-
ness as a result of cooperative signaling among boundedly rational players (limited
memory). O’Connor (2014) considered a model where the states are contiguous. He
showed the evolution of vagueness as a result of learning dynamics.

Lambie-Hanson and Parameswaran (2015) introduced R’s type of prior belief
about the state distribution as well as S’s language type. Parameswaran and Lambie-
Hanson (2016) introduced R’s type of interpreting S’s message and considered noises
in S’s information. Lim and Wu (2017) developed literal vagueness, which is a kind of
context-dependent vagueness, and showed their vagueness arose as Pareto-optimal
equilibrium outcomes in sequential talk models.

Crémer, Garicano and Prat (2007) studied the theory of organizational languages
in the presence of bounded rationality. They analyzed the optimal language when
the number of available messages is limited due to bounded rationality. They form-
alized Arrow (1974)’s idea of coding and explored the relationship between the
choice of organizational language and the choice of organizational structure while
we address organizational languages when the number of messages is endogenously
determined. Warglien (2013) discussed two perspectives on organizations and lan-
guages. His first perspective focuses on languages in organizations including eco-
nomic studies by March and Simon (1958) and Arrow (1974). The second perspective
is on organizations as language. This paper is related to the first perspective.

There are a number of linguistic and philosophical investigations published on
vagueness of natural languages. Williamson (2003) summarized multiple approaches
to the issue such as epistemicist view, fuzzy logic, supervaluationism and vagueness
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as a property of objects. For each specific approach to vagueness in linguistic and
philosophical studies, see Williamson (1994) on the epistemicist view, Zadeh (1975)
on fuzzy logic, and Fine (1975) as well as Keefe and Smith (1997) on supervaluation-
ism. Our approach is closer to the epistemicist view in the sense that the equilib-
rium language draws boundaries in S’s information but R does not know where the
boundaries lie.

Our basic model is an extension of cheap talk models pioneered by CS. In CS,
the state distribution is common knowledge, only the state is ex-ante uncertain. A
perfectly informed S partitions the state space into finite spaces and reveals the true
interval to an uninformed R. That is, the language is imprecise. In our model, the
language is vague as well as imprecise.

The idea of considering uncertainty about distributions is related to Morgan and
Stocken (2008) and Kawamura (2013). A distribution of populations’ preferences is
unknown to a policy maker in their papers while the sender’s perception of state
distribution is unknown to the receiver in our model.

3 Model

3.1 Setup

There are two players, a receiver (R) and a sender (S). R is a decision maker who
selects and implements an action. R’s action and the state θ decide payoffs for each
player. S has more information on the state. Thus, before making a decision, R asks
S for advice.

The state-distribution, whose cumulative distribution function (CDF) is denoted
by F, is not certain ex-ante. There are n state-distributions, where n � 2, each of
which is a continuous distribution supported on a compact and convex subset of R.
CDFs and supports of the distributions are denoted by Fi and Ti � R, respectively,
for i 2 f1, 2, ..., ng. F = Fi is realized with probability qi for i 2 f1, 2, ..., ng, where

Σ
i2f1,2,...,ng

qi = 1.

We assume that there are at least two distributions, Fi and Fj, where i, j 2 f1, 2, ..., ng
such that Ti \ Tj has a positive measure, and:

Fi (θ) 6= Fj (θ) almost everywhere over Ti \ Tj. (1)

F is not directly observed by any player. Instead, S observes a private signal,
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denoted by t 2 f1, 2, ..., ng. This signal reveals the truth with probability p 2 [0, 1]
and is a random noise with support f1, 2, ..., ng with probability 1 � p, where the
random noise is drawn according to the same distribution as the distribution of state
distributions. For example, given F = Fi for i 2 f1, 2, ..., ng, S observes:

t =

(
i with probability p+ (1� p) qi

j with probability (1� p) qj for j 2 f1, 2, ..., mg n fig
(2)

θ, which is drawn according to F, is not directly observed by any player. Instead,
S observes a private signal s 2 [0, 1] so that:

s = F (θ) for 8F 2 fF1, F2, ..., Fng . (3)

That is, S only observes a rank of the state, which is measured by percent to the
support of the true state distribution F in ascending order.

After observing the two signals, S sends a message to R. S’s message set is M,
which is anything sufficiently large such as R. Thereafter, R selects an action from
R.

The timeline is summarized as follows:

1. Nature selects the state distribution F 2 fF1, F2, ..., Fng. Nature also selects the
state θ according to F.

2. S observes two signals: a signal t 2 f1, 2, ..., ng on the state distribution and a
signal s 2 [0, 1] on the state.

3. S sends a message m 2 M to R.

4. R selects an action a 2 R.

5. The payoff is realized for every player. The game ends.

The payoff function of player l 2 fR, Sg is denoted by UR (a, θ) and US (a, θ, b),
respectively. UR (a, θ) � US (a, θ, 0) holds for all a and θ, and US (a, θ, b) is twice
continuously differentiable. For any θ and b, there is a unique action a so that
US

1 (a, θ, b) = 0. Moreover, US
11 (a, θ, b) < 0 < US

12 (a, θ, b) holds for all a and θ,
and 0 < US

13 (a, θ, b) holds for all a, b and θ. Functional forms of UR and US are
common knowledge.
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Let aR (θ) =
�

a 2 R : UR
1 (a, θ) = 0

	
. aS (θ; b) is defined similarly. Then, from

the definitions of payoff functions, aS (θ; b) = aR (θ) holds given b = 0 for all θ, and
aS (θ; b)� aR (θ) increases with b for any θ and b.

In summary, no player directly observes the state-distribution F or the state θ. S
observes two private signals, t (on F) and s (on θ). The other aspects of the game are
common knowledge.

The two key parameters are p and b. p measures the level of stochasticity around
the problem. p can also measure S’s ability to understand the set of potential solu-
tions or the entire world. Then, b measures conflict of interest over the optimal ac-
tions between R and S. If b > 0, S always prefers a larger action than R.

Comparison of this model with CS and BB with respect to uncertainty—Unlike in CS
and BB, there is uncertainty about the state-distribution. In addition, contrary to
BB, we do not consider uncertainty nor constraint about S’s message set. In BB, a
number of messages available to S can be smaller than the number of states, and S’s
message set is S’s private information. In our model, S’s message set is large, which
is known to everyone.

An alternative model—The uncertainty in this model is replicated in a model with
a single distribution and multiple signal channels. However, this alternative model
also involves two dimensions of uncertainty. For example, consider an alternative
model with a single state-distribution and multiple signal channels in which the
CDF of the state-distribution is given by eF (θ) = Σ

k2f1,2,...,ng
qkFk (θ). S observes two

signals t and s. There are n channels generating the second signal s such that given
the state θ, s goes through the i-th channel with probability qiFi(θ)

Σ
k2f1,2,...,ng

qkFk(θ)
. Given

that the true signal channel is the i-th channel, the first signal t is determined so
that t = i with probability p + (1� p) qi, and t = j with probability (1� p) qj for
j 2 f1, 2, ..., ng n fig. The second signal s is determined so that s = Fi (θ). Hence, R is
not certain about what S observes on the state (signal s) and how S interprets it (S’s
information on the signal channel).

3.2 Definitions

The solution concept is Perfect Bayesian equilibrium (PBE). In PBE, a strategy for S
associates his information with a message m and is optimal for S given R’s reaction
to his message. R updates his belief on the true state using Bayes’ rule. A strategy for
R associates each message m with an action a and is optimal for R given his updated
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belief.
In addition, the following definitions are used in the entire paper.
Types—S is called Type t if he observes signal t 2 f1, 2, ..., ng on the state distribu-

tion. S’s type represents how he perceives the state distribution (or his worldview).
For 8t 2 f1, 2, ..., ng, Type t infers F = Ft with probability p+ (1� p) qt and F = Fj

with probability (1� p) qj for j 2 f1, 2, ..., ng n ftg.
Partition Equilibrium—We define "a partition equilibrium with N1-N2-...-Nn inter-

vals" to be a PBE in which Type t partitions his signal space into Nt intervals and
sends a different message given signals belonging to a different interval of his in-
formation partition for each t 2 f1, 2, ..., ng. Let σ�t specify an equilibrium strategy
of Type t, a mapping from s to m. Let σ� = fσ�1 , σ�2 , ...σ�ng be strategies of all types.
Let ρ� specify an equilibrium strategy of R, a mapping from m to a.

Outcome Equivalent—We do not distinguish equilibria which involve the same
partitions but different messages and hence are outcome equivalent to one another.

In addition, we assume that S uses one message per interval (i.e. S uses the same m
given signals belonging to the same interval of the partition). This assumption im-
plies that, unless there is full revelation, there remain off-equilibrium messages. Hence,
we assume that given off-equilibrium message, R infers nothing additionally to com-
mon prior.

We also suppose that both types commonly use some message only if they strictly
prefer the message to any other messages. In cheap talk models, m is a mere symbol
because it does not reveal any information by itself. Hence, the result remains un-
changed if S randomizes his messages so that there are no off-equilibrium messages
as in CS.

Indicative Meanings and Vagueness—Let F (θjm, t) denote a CDF conditional on
message m sent by S and S’s type t. Then, we interpret that F (θjm, t) represents type
t’s indicative meaning by sending m.

Suppose that both types t and t0 send some message m on the equilibrium path,
and the extensions of the message is different for different types such that F (�jm, t) 6=
F (�jm, t0), then, we say the language is vague.

Indeterminacy of Indicative Meanings—Let F (θjm) denote a conditional CDF (without
information on t). We say that there is indeterminacy of indicative meanings if F (�jm) 6=
F (�jm, t) for any t who sends m on the equilibrium path (i.e., R cannot determine the
indicative meaning of m without knowing S’s type).

Language—We call the set of messages and indicative meanings of the messages
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language.
Let ∆xi = xi � xi�1 for any sequences x1, x2, ..., xi�1 and xi from real numbers.

3.3 Equilibria

Our main questions include: How does the two-dimensional state-uncertainty affect
the equilibrium language? To answer this question, we compare models under dif-
ferent dimensions of state uncertainty. In both cases, only S observes a private signal
s on θ.

Under one-dimensional state-uncertainty, every player has perfect information on
the state distribution F. (I.e., p = 1 and type signal t is public information.)

Under two-dimensional state-uncertainty, S has private information on F (and hence
θ). (I.e., p 2 [0, 1] and type signal t is S’s private information.)

Hence, under one-dimensional state-uncertainty, the game is comprised of two
subgames so that there is one subgame per type of S. Hence, it is a simple extension
of CS. Under two-dimensional state-uncertainty, there is only one subgame because
S’s type is not observable to R.

Lemma 1 Fix b 2 (0, ∞). Under one-dimensional state-uncertainty (i.e., t is public in-
formation), every PBE is a partition equilibrium. Further, every equilibrium is outcome
equivalent to an equilibrium in which different types of S use different messages on the equi-
librium path.

Proof. See Appendix A.1.
With one dimension of uncertainty, S’s type is observable to R. Hence, different

types do not need to use the same message, and hence the equilibrium language is
not vague.

Lemma 2 Fix b 2 (0, ∞) and p 2 [0, 1]. Under two-dimensional state-uncertainty (i.e., t
is S’s private information), every PBE is a partition equilibrium.

Proof. See Appendix A.1.
As under one-dimensional state-uncertainty, under two-dimensional state-uncertainty,

equilibrium language has a partitional form when there is conflict of interest (i.e.,
b 6= 0). However, different types should use the same message as follows.
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Proposition 1 Fix b 2 (0, ∞) and p 2 [0, 1]. Consider any equilibrium under two-
dimensional state-uncertainty (i.e., t is S’s private information). Consider a set of types,
denoted by N, such that

\
i2N

Tj has a positive measure and condition (1) holds for every pair

of i, j 2 N , where i 6= j. Then, all types belonging to N should commonly use at least one
message. Further, if p 2 (0, 1), there is indeterminacy of indicative meanings of a message
which is sent by all types belonging to N on equilibrium path.

Proof. See Appendix A.1.
With two dimensions of state-uncertainty, each type has incentives to pretend to

be the other types. As a result, the extensions of their language is vague—different
types commonly use some messages (words) for different extensions. Hence, the
multiple dimensional state-uncertainty causes the language to be vague.

As discussed in Sections 1 and 2, BB also showed that the same message is used
for different extensions by different types. However, their type depends on S’s lan-
guage competence (i.e., S’s message set).

As BB argued, it can be natural in some situations that R can select an outside
option, which yields state-dependent payoffs to both players and whose payoffs are
ex-ante known to every one. In BB, the game with this option is called a default game.
According to Chiba and Leong (2013), equilibria still have partitional forms in the
leading case of CS model with an outside option in R’s choice set. With the default
option, our main result remains unchanged.

4 Uniform-Quadratic Case

From now on, we focus on a uniform-quadratic case, introduced in CS. Its tractability
allows us to examine what our vague language looks like.

We consider two state-distributions, i.e., n = 2. Hence, there are two types for S.
There are two uniform distributions, F1 and F2, whose supports are T1 = [0, 1] and
T2 = [0, L], respectively, where L > 1. The true state-distribution F is F1 with prob-
ability q1 =

1
2 and F2 with the remaining probability. Hence, Type 1 infers that F is

F1 with probability 1+p
2 and F2 with probability 1�p

2 , and vice versa for the inference
by Type 2.

The payoff function of each player is UR (a, θ) = � (θ � a)2 and US (a, θ, b) =
� (θ + b� a)2 where b > 0. The model specification in this section satisfies assump-
tions required to obtain the main results in Section 3.
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Figure 1 shows the outcome given L = 2 (i.e., T1 = [0, 1] and T2 = [0, 2]), b = 1
4

and p = 1
2 under two-dimensional state uncertainty. There is a partition equilibrium

in which both S types must commonly use two messages. For each type, the bound-
ary point in his signal space is x1 =

7
5 y1 and y1 =

p
3201�45

84 � 1
7 . Figure 2 shows the

outcome given L = 2 and b = 1
4 under one-dimensional state uncertainty. Type 1

uses one message at most, and Type 2 uses two messages at most. Both S types do
not need to use a common message.

Remark 1 Fix p 2 [0, 1] and b 2 (0, ∞). In a partition equilibrium with N1-N2 inter-
vals, both types of S commonly use messages, m1, m2, ..., mN1 . There is indeterminacy of
indicative meanings at least for mN1 . Moreover, if p 2 (0, 1], there is indeterminacy of indic-
ative meanings for all m1, m2, ..., mN1 , and, for each of the common messages, information
provided by Type 2 second order stochastically dominates (SOSD) information provided by
Type 1.

Type 1 perceives that the smaller size (of state-distribution) is more likely than
the larger size, and vice versa for the perception of Type 2. Nevertheless, Type 1
provides information with the same mean but larger variances than Type 2. We also
show in Appendix A.2 that Type 1 uses each common message for the wider range
of states than Type 2.

To understand intuitions of this result, we briefly describe the equilibrium out-
come after defining notations.

Here are notations to be used in this section. x (N1) � (x0, ..., xN1) denotes Type
1’s partition in a partition equilibrium with N1-N2 intervals where 0 = x0 < x1 <

12



... < xN1 = 1, and (xt�1, xt) is called the t-th interval of x (N1). Type 2’s partition,
denoted y (N2) � (y0, ..., yN2), is defined similarly. Thus, S’s equilibrium strategy
σ� = fσ�1 , σ�2g is characterized by x (N1) and y (N2).

N2(b, p) denotes the maximum number of messages used by Type 2 in an equi-
librium. N1(b, p) denotes a number of messages used by Type 1 in equilibrium given
Type 2 uses N2(b, p) messages.

In a partition equilibrium with N1-N2 intervals, there is a unique N1 given N2,
and N1 � N2. The relationship between x (N1) and y (N2) is given by:

xi =

( L(1+p)+1�p
1+p+L(1�p)yi for i 2 f1, ..., N1 � 1g
1 for i = N1.

(4)

Type 2’s partition y (N2) satisfies:

∆yi =

(
∆yi�1 +

8b
L(1+p)+1�p for i 2 f2, ..., N2g n fN1, N1 + 1g

∆yi�1 +
8b

L(1+p)+1�p +
4

L(1+p)+1�p Gb,p (N1) for i 2 fN1, N1 + 1g .
(5)

where:
Gb,p (N1) =

Pr[m=mN1 jt=1](E[θjm=mN1 ,t=2]�E[θjm=mN ,t=1])
Pr[m=mN1 jt=1]+Pr[m=mN1 jt=2]

. (6)

Types 1 and 2 send m = mi given s 2 (xi�1, xi) (if this interval exists) and s 2
(yi�1, yi), respectively, for i 2 f1, ..., N2g, and mi 6= mi0 for any i 6= i0.

There may be multiple equilibria with different N2 (and hence N1). As observed
in CS, both players are better off as N2 increases. It is reasonable to focus on a par-
tition equilibrium with N1 (b, p)-N2 (b, p) intervals. See Appendix A.2 for further
details and proofs of the remark in this section.

5 Extensions

We have considered the uniform-quadratic case in CS so that our work is compar-
able to the current literature such as BB. However, the uniform-quadratic case re-
quires heavy computations. Hence, we will use a further simplified model (with
discrete states) to examine welfare implications of our vagueness. We will also dis-
cuss whether S reveals distribution type if he can. Finally, we will examine the effect
of heterogenous beliefs on the equilibrium language.
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5.1 Political Campaign (Discrete Case)

We simplify a uniform-quadratic model in Section 4. Specifically, we consider two
discrete-distributions. Given F = F1, the state is θ = 0 or θ = 1, which are equally
likely. Given F = F2, the state is θ = 0 and θ = L, where L > 1, which are equally
likely. We use this simplified model to examine welfare implications of vagueness.

We think that this model can help understand vagueness of languages in polit-
ical campaigns. "The basis of a good campaign strategy is, first, to recognize the
reality of the campaign—or broader context in which the campaign is being run—
and second, to set an appropriate goal that, if achieved, will win the election." (Sides,
Shaw, Grossmann, and Lipsitz, chapter 5)

Consider a referendum on a policy proposal such as a spending cut. The govern-
ment is S, and a representative voter is R. The true state tells whether to implement
a spending cut (a > 0) or not (a = 0) and how large the spending cut should be.
Given the government’s announcement, the voter has a view of the optimal level,
which will be implemented. Given F = F1, the optimal spending cut level is null or
small. Given F = F2, it is null or relatively large.

Remark 2 Fix 1 < L < 2 and b 2
�

1
2 , 1+L

4

�
. Then, there is indeterminacy of indicative

meanings in the equilibrium language under two-dimensional state uncertainty. Further-
more, this vagueness improves welfare.

We look at R’s ex-ante expected payoff because it is well known that S’s ex-ante
expected payoff increases if R’s payoff is increases.

Fix b 2
�

1
2 , 1+L

4

�
. Under two-dimensional state uncertainty, the both distribution

types commonly use two messages. If type 1 sends m = Null and m = Large given
s = 0 and s = 1 respectively, then, so does type 2, and vice versa. Given s = 1, type
1 infers θ = 1 with probability 1+p

2 and θ = L with the remaining probability while
type 2 infers θ = 1 with probability 1�p

2 and θ = L with the remaining probability.
Given s = 0, both types infer θ = 0 with probability 1. As a result, R will choose
a = 0 and a = 1+L

2 in response to m = Null and m = Large respectively. See Figure

3. R’s ex-ante expected payoff is � (1�L)2

8 .
On the other hand, under one-dimensional state uncertainty, if F = F1 (i.e., θ = 0

or θ = 1) or S has type 1, the players do not agree with the optimal choice. S always
wants to induce the highest inducible action. There is only a babbling equilibrium,
and a = 1

2 is chosen in any state. If F = F2 (i.e., θ = 0 or θ = L) or S has type 2,
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the players can agree with the optimal choice. Even for S, a = L is too large in state
θ = 0. Hence S fully reveals the state. a = θ is chosen in every state. See Figure 4.
Hence, under one-dimensional uncertainty, R’s ex-ante expected payoff is �1

8 .
Therefore, two-dimensional uncertainty causes vagueness (specifically m = Large

in this case), but it incentivizes both types of S to separate his messages depending
on the signal. As a result, both players’ payoff increases on average.

If b /2
�

1
2 , 1+L

4

�
, the vagueness does not improve welfare. For b < 1

2 , S has
closer preferences to R and hence fully reveals information under one-dimensional
state uncertainty. But under two dimensional uncertainty, both distribution types
commonly use two messages. Thus, the additional dimension of uncertainty causes
welfare loss. For b > 1+L

4 , S always wants to induce the highest inducible action. In
this case, two-dimensional state uncertainty is worse.

What if there is one more communication stage after S observes a signal t (on F)
but before he observes a signal s (on θ)?

Remark 3 Fix 1 < L < 2 and b 2
�

1
2 , 1+L

4

�
. Then, in the first communication stage, both

distribution types (t=1,2) pool. In the second communication stage, different distribution
types commonly use the same messages.

If type information is revealed, type 2 is better-off. But type 1 is worse-off because
the second stage communication cannot be informative. Thus, type 1 pretends to be
type 2. Indeterminacy of indicative meanings remain. See Appendix A.3 for further
details and proofs of remarks in this section.

15



5.2 Agree to Disagree (Different Prior Beliefs)

The basic model shows that the language is vague (indeterminacy of indicative mean-
ings) if there is heterogeneity in preferences. The section introduces heterogenous
prior beliefs into the basic model. Due to psychological, cultural or other factors, the
players are endowed with different prior beliefs and update the same information
differently. Tversky and Kahnemen (1974) and Aumann (1976) initiated arguments
on the effect of psychological, cultural and other factors on prior beliefs of players.
Since then, a number of examples in the literature such as Che and Kartik (2009)
and Van den Steen (2010) modelled communication games with different prior be-
liefs. According to Che and Kartik (2009), "Although game-theoretic models often
assume a common prior, referred to as the Harsanyi doctrine, there is a significant
and growing literature that analyzes games with heterogenous priors" (pp. 817).

We will show the following. First, language is vague if there is heterogeneity in
at least either prior beliefs or preferences. Second, heterogeneity in preferences and
heterogeneity in prior beliefs can complement each other in facilitating information
transmission (non-monotonicity).

We use the uniform-quadratic specification in Section 4 given L = 2. Addition-
ally, we assume the difference that both players have different prior beliefs on the dis-
tribution. Each player l 2 fR, Sg believes F = F1 with probability ql and F = F2

with probability 1� ql , where ql 2 (0, 1). They know their own prior and the other
player’s prior.

Remark 4 Fix b = 0 and p 2 (0, 1]. Then, any PBE is a partition equilibrium in which
both types of S commonly use at least one message for different extensions. The indicative
meanings of the commonly used message are indeterminate.

The last analysis examines organizational issues. Two dimensional state uncer-
tainty causes two dimensional heterogeneity between the players. How do these
two dimensions of heterogeneity affect the equilibrium language?

Again we assume different preferences (b > 0). For simplicity, we suppose that
S has no information on the state distribution (p = 0). Thus, there is one type of
S, and the only type partitions the signal space. Let x (N) � (x0, ..., xN) denote a
partition of the signal space [0, 1] with N intervals, where 0 = x0 < ... < xN = 1.
Let NDP �b, qR, qS� denote the maximum number of intervals for some b, qR and qS

given p = 0.
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Remark 5 Fix p = 0. Then, NDP �b, qR, qS� is not monotonic with jqR � qSj given b.
Similarly, NDP �b, qR, qS� is not monotonic with b given jqR � qSj.

In a partition equilibrium with N intervals, the partition should satisfy:

∆xi = ∆xi�1 +
4

2�qR
b+ 4(qR�qS)

2�qR
xi for i 2 f2, ..., Ng .

Unless qR = qS, there is non-monotonicity as shown in Figures 5 and 6. Fixing
jqR � qSj 6= 0, NDP �b, qR, qS� is not monotonic with jbj. Fixing jbj, NDP �b, qR, qS� is
not monotonic with jqR � qSj.

The more messages the language involves, the better off both players are. Hence,
the last lemma implies that heterogeneity can be beneficial to organizations. See
Appendix A.4 for further details and proofs of remarks in this section.

6 Conclusion

This paper provides a potential theoretical explanation for the observation that nat-
ural language involves a kind of vagueness, indeterminacy of indicative meanings.
We have shown that there can be indeterminacy of indicative meanings when there is
two-dimensional state uncertainty (the state distribution as well as the state itself is
ex-ante uncertain to players). An informed agent communicates with an uninformed
decision maker using a message for different indicative meanings depending on how
the agent perceives the entire world (the state distribution). Under some condition,
this type of vagueness incentivizes the agent to reveal more information and hence
leads to welfare improvement.

Our work suggests several avenues for future research. The first avenue is invest-
igation of sufficient or/and necessary conditions for the optimality of our vagueness
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in static models. The second is studying evolution of the optimal language and ex-
amining whether vagueness of language remains over time. The third is conducting
experimental tests for this model.
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Appendix A

A.1 Proofs for Section 3

A.1.1 Definitions

Define al for l 2 fR, Sg:

aS (θ; b) := arg max
a2R

US (a, θ, b) for 8θ,8b

aR is given similarly. From assumptions, al is well defined.
Define Ul for l 2 fR, Sg:

US
�
a, s0, b; i

�
= E

h
US (a, θ, b) js = s0, t = i

i
= (p+ (1� p) qi)US �a, F�i

�
s0
�

, b
�
+ ∑

j2f1,2,...,ngnfig
(1� p) qjUS

�
a, F�j

�
s0
�

, b
�

.

UR is expressed similarly. Ul is a convex combination of Ul and hence preserves
similar properties to those of Ul such as Ul is continuously twice differentiable,
UR (a, s; i) = US (a, s, 0; i) for 8a,8s; US

11 < 0 < US
12 for 8a,8s; and 0 < US

13 for
8a,8b.

Thus, there also well defined Al for l 2 fR, Sg:

AS (s, i, b) := arg max
a2R

US (a, s, b; i)

Then, it follows from 0 < US
13 that AS (s, i, b) = AR (s, i) if b = 0 for 8s, 8i and

AS (s, i, b)�AR (s, i) increases with b for any b and θ. Al is bounded below and above
by Al (0, i) and Al (1, i), respectively because the support [j2f1,2,...,ngTj is bounded.

A.1.2 Proof for Lemma 1

Under one-dimensional state uncertainty, there are n subgames, one game per type
of S. Lemma 1 and Theorem 1 in CS directly applies to each subgame since S perfectly
knows θ and payoff functions satisfy required conditions. Thus, each type uses finite
messages and induces finite actions. Last, even if different types commonly use some
message, R infers differently for different types. Thus, the claim holds.

21



A.1.3 Proof for Lemma 2

It suffices to show the next three claims: every PBE is a partition equilibrium; at
least two types of S uses at least one message; when multiple types use a common
message, they use it for different extensions.

Claim 1 Every PBE is a partition equilibrium for any b 2 (0, ∞) and p 2 (0, 1).

Proof. Follow Lemma 1 and Theorem 1 in CS. Thus, if the set of actions induced in
equilibrium is finite, the equilibrium should have a partitional form because US

12 > 0.
Thus. it suffices to show that if multiple actions are induced by one type, for every
two distinct actions a and a0 induced by one type, there is ε > 0 such that ja0 � aj � ε.

Consider two cases: no message is commonly used by multiple types; second, at
least one message is used by at least two types.

In the first case, the analysis is equivalent to the proof of Lemma 1 because a
message reveals the type and payoff functions Ul satisfied required conditions for
Lemma 1 and Theorem 1.

In the second case, suppose a is induced by Type 1 and Type 2. Suppose a0 > a is
also induced by both types. Let a be induced by Type 1 given s1 and Type 2 given s2,
respectively. Let a0 be induced by Type 1 given s01 and Type 2 given s02, respectively.
Hence, by weakly revealed preferences and continuity there exists a unique si such
that US (a, si, b; i) = US (a0, si, b; i). Thus:

a < AS (si, i, b) < a0 for i 2 f1, 2g .

Type k, where k 2 f1, 2g, does not induce a for any s > si nor a0 for any s > si. This
and UR

12 > 0 implies that:

a � γAR (s1, 1) + (1� γ) AR (s2, 2) � a0 for some γ 2 (0, 1) .

Thus, there is an ε > 0 such that a0 � a � ε.
Last, suppose a is induced by Type 1 and Type 2. Suppose a0 > a is induced

only by Type 1. For Type 1, there exists a unique s1 such that US (a, s1, b; 1) =
US (a0, s1, b; 1), but for Type 2, US (a, s, b; 2) > US (a0, s, b; 2) holds for any s. Thus:

a < AS (s1, 1, b) < a0,

a < AS (1, 2, b) < a0.
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Both types induce a, but type 1 does not induce it for any s > si. Only Type 1 induces
a0 and he does not induce it for s < s1:

AR (s1, 1) � a0,

a � γAR (s1, 1) + (1� γ) AR (1, 2) for some γ 2 (0, 1) .

Thus, there is an ε > 0 such that a0 � a � ε.

A.1.4 Proof for Proposition 1

Fix b 2 (0, ∞) and p 2 [0, 1]. Consider any equilibrium under two-dimensional
state-uncertainty (i.e., t is S’s private information).

Consider a set of types N such that
\

i2N

Ti has a positive measure and condition

(1) (i.e., Fi (θ) 6= Fj (θ) almost everywhere over Ti \ Tj) holds for every pair of i, j 2 N
, where i 6= j.

Let F�i represent an inverse function of Fi supported on [0, 1].
The next claim suffices to show that all types belonging to N should commonly use at

least one message.

Claim 2 For any i 2 N, an action a0 induced by Type i given s = si (and hence in its
neighborhood) should be induced by Type j given some s0 2

�
min

�
sj, si

	
, max

�
sj, si

	�
(and hence in its neighborhood) for every j 2 N.

This claim implies that all types belonging to N should induce at least one same
action. Hence, all types belonging to N should commonly use at least one message.
Proof. Take θ0 2

\
i2N

Ti such that Fi
�
θ0
�
6= Fj

�
θ0
�

for every pair of i, j 2 N , where

i 6= j. any i 6= j. Let si = Fi
�
θ0
�
.

Without loss of generality, consider 1, 2 2 N and s1 > s2. Then:

F�1 (s2) < F�1 (s1) = θ0 = F�2 (s2) < F�2 (s1)

, aS �F�1 (s2)
�
< aS �θ0� < aS �F�2 (s1)

�
.
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Besides, Type 1 (i.e., S observing t = 1) infers:

F =

8><>:
F1 with probability p+ (1� p) q1

F2 with probability (1� p) q2

Fj where j 2 Nn f1, 2g otherwise

,

and Type 2 (i.e., S observing t = 2) infers:

F =

8><>:
F1 with probability (1� p) q1

F2 with probability p+ (1� p) q2

Fj where j 2 Nn f1, 2g otherwise

.

Hence:

US (a, s1, b; 1) = (p+ (1� p) q1)US �a, θ0, b
�
+ (1� p) q2US �a, F�2 (s1) , b

�
+ ∑
8j2Nnf1,2g

(1� p) qjUS
�

a, F�j (s1) , b
�

,

US (a, s1, b; 2) = (1� p) q1US �a, θ0, b
�
+ (p+ (1� p) q2)US �a, F�2 (s1) , b

�
+ ∑
8j2Nnf1,2g

(1� p) qjUS
�

a, F�j (s1) , b
�

,

US (a, s2, b; 1) = (p+ (1� p) q1)US �a, F�1 (s2) , b
�
+ (1� p) q2US �a, θ0, b

�
+ ∑
8j2Nnf1,2g

(1� p) qjUS
�

a, F�j (s2) , b
�

,

US (a, s2, b; 2) = (1� p) q1US �a, F�1 (s2) , b
�
+ (p+ (1� p) q2)US �a, θ0, b

�
+ ∑
8j2Nnf1,2g

(1� p) qjUS
�

a, F�j (s2) , b
�

.

Then,
AS (s2, b; 1) < AS (s2, b; 2) < AS (s1, b; 1) < AS (s1, b; 2)

due to US
11 < 0, F�j (s2) < F�j (s1), F�1 (s2) < θ0 < F�2 (s1) because:

US
1 (a, s2, b; 1) > US

1 (a, s2, b; 2) > US
1 (a, s1, b; 1) > US

1 (a, s1, b; 2) for any a.
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Also, for any a > a0

US (a, s2, b; 1)�US
�
a0, s2, b; 1

�
< US (a, s2, b; 2)�US

�
a0, s2, b; 2

�
< US (a, s1, b; 1)�US

�
a0, s1, b; 1

�
< US (a, s1, b; 2)�US

�
a0, s1, b; 2

�
due to US

12 > 0, F�j (s2) < F�j (s1), F�1 (s2) < θ0 < F�2 (s1).
Take an action a0 induced by Type 1 given s = s1 (and hence in its neighbor-

hood). Then, a0 should be induced by Type 2 given some s0 2 [s2, s1] (and hence in
its neighborhood) as follows.

If a0 2
�

AS (s2, b; 2) , AS (s1, b; 2)
�
, by continuity, there must be s0 2 (s2, s1) such

that AS (s0, b; 2) = a0. The action a0 should be induced by Type 2 given s in the
neighborhood of s0.

Consider a0 � AS (s2, b; 2). If some action ea > a0 is inducible on the equilibrium
path, due to the revealed preference:

0 � US (ea, s1, b; 1)�US
�
a0, s1, b; 1

�
,

and
US (ea, s1, b; 1)�US

�
a0, s1, b; 1

�
> US (ea, s2, b; 2)�US

�
a0, s2, b; 2

�
.

In this case, because Type 1 given s1 weakly prefers a0 to ea, Type 2 given s = s2

strictly prefers a0 to ea. If a0 is highest inducible action, Type 2 given s = s2 strictly
prefers a0 to any action a < a0 because US (a, s2, b; 2) is increasing with a for a < a0.
The action a0 should be induced by Type 2 given s in the neighborhood of s2.

Consider a0 � AS (s1, b; 2). If some action ea < a0 is inducible on the equilibrium
path, due to the revealed preference:

0 � US
�
a0, s1, b; 2

�
�US (ea, s1, b; 2) ,

and:
US
�
a0, s1, b; 1

�
�US (ea, s1, b; 1) < US

�
a0, s1, b; 2

�
�US (ea, s1, b; 2) .

In this case, because Type 1 given s1 weakly prefers a0 to ea, Type 2 given s = s1

strictly prefers a0 to ea. If a0 is the lowest inducible action, Type 2 given s = s1 strictly
prefers a0 to any action a > a0 because US (a, s1, b; 2) is decreasing with a for a > a0.
The action a0 should be induced by Type 2 given s in the neighborhood of s1.
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Similarly, an action induced by Type 2 given s = s2 is also induced by Type 1.
(Take a0 induced by Type 2 given s = s2. If a0 2

�
AS (s2, b; 1) , AS (s1, b; 1)

�
, a0 should

be induced by Type 1 given s in the neighborhood of s0 where AS (s0, b; 1) = a0. If
a0 � AS (s2, b; 1), a0 should be induced by Type 1 given s in the neighborhood of s2.
If a0 � AS (s1, b; 1), a0 should be induced by Type 1 given s in the neighborhood of
s1.)

The above proof applies to any types i, j 2 N.
The next claim suffices to show that if p 2 (0, 1), all types belonging to N should

commonly use at least one message for different extensions.

Claim 3 Fix p 2 (0, 1). When two types commonly use some message and at least one type
use multiple messages, then, the two types use the common message for different extensions.

Proof. If three actions a < a0 < a” are induced by Type 1, and a and a” are induced
by Type 2 as well, then, a0 should be induced by Type 2.

It suffices to consider two cases: first, two actions are induced by Type 1 and Type
2; second, only one action is induced by both types.

In the fist case, let a and a0 be induced by Type 1 and Type 2, where a < a0 . Type
1 and Type 2 are indifferent between the two actions at s = x and s = y, respectively.
Let m be used to induce a. The underlying states given which each sends m includes
the neighborhoods of θ = F�1 (x) and θ = F�2 (x) for Type 1 and the neighborhoods
of θ = F�1 (y) and θ = F�2 (y) for Type 2. Thus, it suffices to show x 6= y. This
inequality holds because S’s indifference conditions require:

US (a, x, b; 1) = US
�
a0, x, b; 1

�
, p+ (1� p) q1

(1� p) q2
=

US �a0, F�2 (x) , b
�
�US �a, F�2 (x) , b

�
US
�
a, F�1 (x) , b

�
�US

�
a0, F�1 (x) , b

�
and:

US (a, y, b; 2) = US
�
a0, y, b; 2

�
, (1� p) q1

p+ (1� p) q2
=

US �a0, F�2 (y) , b
�
�US �a, F�2 (y) , b

�
US
�
a, F�1 (y) , b

�
�US

�
a0, F�1 (y) , b

� ,

but p+(1�p)q1
(1�p)q2

6= (1�p)q1
p+(1�p)q2

.
In the second case, suppose Type 1 induces a for s 2 (x, x0) and a0 for s 2 (x0, x”),

where a < a0; Type 2 induces a for s 2 (y, y0) and a” for s 2 (y0, y”), where
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a < a” 6= a0. Single crossing properties imply x0 6= y0. Suppose not, x0 = y0. Then,
min fa0, a”g > max

�
AS (x0, 1, b) , AS (x0, 2, b)

	
. US (a, x0, b; 1) and US (a0, y, b; 2) both

decreases with a over a � max
�

AS (x0, 1, b) , AS (x0, 2, b)
	

, and Type 1’s choice im-
plies that a0 is highest inducible action over a � max

�
AS (x0, 1, b) , AS (x0, 2, b)

	
, i.e.,

a0 � a”. Type 2’s choice implies a0 � a”. There is a contradiction.
If p = 0 or p = 1, x = y should hold, i.e., all types belonging to N commonly use

at least one message for the same extension.

A.2 Section 4 (the Uniform-Quadratic Case)

We present results to support arguments in Section 4, including Remark 1.

A.2.1 One-dimensional state uncertainty

We additionally defines the following notations for the subgame given Type t, where
t 2 f1, 2g, in a partition equilibrium with N1-N2 intervals.

Lemma 3 Fix b 2 (0, ∞). Consider a partition equilibrium with N1-N2 intervals. In a
subgame given Type t, where t 2 f1, 2g:

(1) Type t’s partition satisfies ∆θi = ∆θi�1 + 4b for i 2 f2, ..., Ntg.
(2) Type t sends m = mi given θ 2 (θi�1, θi) so that mi 6= mi0 for any i0 6= i.
(3) R selects a = ai given m = mi such that ai =

θi�1+θi
2 for i 2 f1, ..., Ntg.

Proof. For each subgame, the outcome is defined by S’s indifference conditions (S’s
ICs) and R’s best responses (R’s BRs).

At any boundary point θ = θi for i 2 f1, ..., Ni � 1g, any type of S should be
indifferent between two actions, a = ai and a = ai+1:

� (θi + b� ai)
2 = � (ai+1 � θi � b)2

, ai+1 + ai = 2θi + 2b
(S’s ICs)

Given m = mi for i 2 f1, ..., Ntg, R updates his belief on the state using Bayes’ rule
and selects the optimal action a=ai:

ai = E [θjθ 2 (θi�1, θi)] =
θi�1+θi

2 . (R’s BRs)

Hence, regardless of S’s type, S’s ICs and R’s BRs define the partition such that ∆θi =

∆θi�1 + 4b for i 2 f2, ..., Ntg.
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Lemma 4 Fix b 2 (0, ∞). Consider a subgame given Type t, where t 2 f1, 2g. Then, there
is a positive integer NCS

t (b) such that there is an equilibrium where type t partitions the state
space into N intervals for N 2

�
1, 2, ..., NCS

t (b)
	

. Further, NCS
t (b) decreases with b.

Proof. The previous lemma implies ∆θi = θ1 + 4 (i� 1) b for i 2 f1, ..., Ng for any
type. Hence, the existence of an equilibrium with N intervals requires θ1 > 0 and:

θN =
N
∑

i=1
∆θi = Nθ1 + 2N (N � 1) b = i.

For any b > 0, NCS
t (b) is well defined such that NCS

1 (b) = n for b 2 [bn+1, bn) for
n � 1 and NCS

2 (b) = N for b 2 [LbN+1, LbN) for N � 1.

A.2.2 Two-dimensional state uncertainty

Lemma 5 Fix p 2 (0, 1) and b 2 (0, ∞). Any PBE is a partition equilibrium. Further, in
a partition equilibrium with N1-N2 intervals:

(1) There is a unique N1 for N2, and N1 � N2.

(2) Gb,p (N1)=
∆xN1

∆xN1+∆yN1

�
(L(1+p)+1�p)(yN1�1+yN1)

4 -
(1+p+L(1�p))(xN1�1+xN1)

4

�
� 0.

(3) Type 1’s partition x (N1) satisfies:

∆xi = ∆xi�1 +
8b

1+p+L(1�p) for i 2 f2, ..., N1 � 1g .

∆xi � ∆xi�1 +
8b

1+p+L(1�p) for i = N1.

(4) Type 2’s partition y (N2) satisfies:

∆yi =

(
∆yi�1 +

8b
L(1+p)+1�p for i 2 f2, ..., N2g n fN1, N1 + 1g ,

∆yi�1 +
8b

L(1+p)+1�p +
4

L(1+p)+1�p Gb,p (N1) for i 2 fN1, N1 + 1g .

(5) Relationship between partitions of both types is:

xi =

8<:
L(1+p)+1�p
1+p+L(1�p)yi for i 2 f1, ..., N1 � 1g ,

1
�
� L(1+p)+1�p

1+p+L(1�p)yN1

�
for i = N1.

(6) Both types send m = mi given s 2 (xi�1, xi) (if this interval exists) and s 2
(yi�1, yi), respectively, for i 2 f1, ..., N2g, where mi 6= mj for any j 6= i.
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(7) R selects a = ai given m = mi such that:

ai =

(
(L(1+p)+1�p)(yi�1+yi)

4 for i 2 f1, ..., N2g n fN1g ,
(L(1+p)+1�p)(yi�1+yi)

4 � Gb,p (N1) for i = N1,

where a1, ..., aN1 is also described as follows:

ai =

8<:
(1+p+L(1�p))(xi�1+xi)

4 for i 2 f1, ..., N2g n fN1g ,
(1+p+L(1�p))(xi�1+xi)

4 +
∆yN1
∆xN1

Gb,p (N2) for i = N1.

Proof. First, we show claims, "on the equilibrium path, every action induced by Type
1 should be also induced by Type 2" and "on the equilibrium path, every action in-
duced by Type 2 given s 2

h
0, 1+p+L(1�p)

L(1+p)+1�p

i
should be also induced by Type 1." We use

the observation that given some signal s, Type 1’s ideal action is a = 1+p+L(1�p)
2 s+ b

while Type 2’ ideal action given s is a = L(1+p)+1�p
2 s+ b.

To define a partition, we consider indifference conditions of each type of S (S’s
ICs) and R’s best responses (R’s BRs).

Suppose ai+1 and ai are induced in the i-th and (i+ 1)-th intervals, respectively,
by Type 1. At the boundary point s = xi, Type 1’s ICs require:

ai+1 + ai = (1+ p+ L (1� p)) xi + 2b. (S’s ICs (t=1))

1+ p+ L (1� p)Similarly, suppose ai+1 and ai are induced in the i-th and (i+ 1)-th
intervals, respectively, by Type 2. At the boundary point s = yi, Type 2’s ICs require:

ai+1 + ai = (L (1+ p) + 1� p) yi + 2b. (S’s ICs (t=2))

Thus, if ai and ai+1 are induced by both types of S, then: xi =
L(1+p)+1�p
1+p+L(1�p)yi. Type

1’s ideal action given signal s = xi is equivalent to Type 2’s ideal action given signal
s = yi for i 2 f1, 2, ..., N1-1g.

R’s BRs require that given m = mi for any i 2 f1, 2, ..., N1g (i.e., both types use
mi):

ai =
Pr[m=mijt=1]E[θjmi,t=1]+Pr[m=mijt=2]E[θjmi,t=2]

Pr[m=mijt=1]+Pr[m=mijt=2] (R’s BRs)
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given m = mi for i 2 fN1 + 1, ..., N2g (i.e., only Type 2 use mi) is

ai = E [θjmN1 , t = 2] , (R’s BRs)

where E [θjmi, t = 1] = (1+p+L(1�p))(xi�1+xi)
4 and E [θjmN1 , t = 2] = (L(1+p)+1�p)(yi�1+yi)

4 .
S’s ICs imply E [θjmN1 , t = 1] = E [θjmN1 , t = 2] for i 2 f1, ..., N1 � 1gwhile E [θjmN1 , t = 1] �
E [θjmN1 , t = 2]. Thus, ai is well defined as claimed.

Lemma 6 Fix p 2 (0, 1) and b 2 (0, ∞). Consider mt in a partition equilibrium with
N1-N2 intervals, where t 2 f1, 2, ..., N1 � 1g. Information provided by Type 2 second order
stochastically dominates (SOSD) information provided by Type 1.

Proof. Type 1 uses mi given s 2 (xi�1, xi) while Type 2 uses mi given signal s 2
(yi�1, yi). The two conditional distributions have the same mean

(L(1+p)+1�p)(yi�1+yi)
4 = (1+p+L(1�p))(xi�1+xi)

4 ,

but different supports; and the former has larger variances than the latter as follows.

Type Support Variances

t=1 (xi�1, xi)[ (Lxi�1,Lxi)
(1+p+L2(1�p))(x2

i�1+xi�1xi+x2
i )

6 � (1+p+L(1�p))(xi�1+xi)
2

42

t=2 (yi�1, yi)[ (Lyi�1, Lyi)
(L2(1+p)+1�p)(y2

i�1+yi�1yi+y2
i )

6 � (L(1+p)+1�p)2(yi�1+yi)
2

42

A.3 Proofs for Section 5.1 (Discrete Model)

A.3.1 Proof for Remark 2

We find sufficient conditions which satisfy the next three claims.
Claim 1. Under two-dimensional uncertainty, there exists an equilibrium in which

every type uses different messages for different signals, as shown in Figure 3.
Claim 2. Under two-dimensional uncertainty, there is no equilibrium in which

different types use different messages for s = 1. (Language is vague.)
Claim 3. Under one-dimensional uncertainty, there only exists a babbling equi-

librium given type 1 while there is a separation equilibrium given type 2, as shown
in Figure 4.

30



Claim 1 holds if b < 1+L
4 as follows. Under two-dimensional uncertainty, in the

supposed equilibrium, each type induces a = 0 given s = 0 and a = 1+L
2 given

s = 1. Thus, this equilibrium exists if both types prefer a = 0 to a = 1 given s = 0.
We obtain the condition.

Claim 2 holds if b > p(L�1)
2 as follows. Under two-dimensional uncertainty, if

different types use different messages for s = 1, type 1 induces a = 0 given s = 0
and a = 1+p+(1�p)L

2 given s = 1 while type 2 induces a = 0 given s = 0 and
a = (1+p)L+1�p

2 given s = 1. However, if b > p(L�1)
2 , type 1 does not most prefer

a = 1+p+(1�p)L
2 given s = 1 among all inducible actions.

Claim 3 holds if b 2
�

1
2 , L

2

i
as follows. Under one-dimensional uncertainty, each

type of S knows the state (because s = θ) and induces a = θ by sending m = s in a
separating equilibrium if it exists. We can show that a separating equilibrium exists
for a type if this type wants to induce low action a = 0 for θ = 0. The condition is
b � 1

2 for type 1 and b � L
2 for type 2.

Therefore, if 1 < L < 2, then, b 2
�

1
2 , 1+L

4

�
suffices for the three claims.

Then, fix b 2
�

1
2 , 1+L

4

�
. We look at the most informative equilibrium. Under two-

dimensional state uncertainty, both types send m = Null given s = 0 and m = Large
given s = 1, as shown in Figure 3. R’s ex-ante expected payoff is:

1
2

 
� (1� L)2

8

!
| {z }

F=F1

+ 1
2

 
� (1� L)2

8

!
| {z }

F=F2

= � (1�L)2

8 ,

where: 8>>>>>>>>><>>>>>>>>>:

1
2

�
� (0� 0)2

�
| {z }

θ=0

+ 1
2

 
�
�

1� 1+ L
2

�2
!

| {z }
θ=1

= � (1�L)2

8 if F = F1,

1
2

�
� (0� 0)2

�
| {z }

θ=0

+ 1
2

 
�
�

L� 1+ L
2

�2
!

| {z }
θ=L

= � (1�L)2

8 if F = F2.

Under one-dimensional uncertainty, we consider a babbling equilibrium given type
1 and a separation equilibrium given type 2, as shown in Figure 4. R’s ex-ante ex-
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pected payoff is:
1
2

�
�1

4

�
| {z }

F=F1

+ 1
2 (0)|{z}

F=F2

= �1
8 ,

where: 8>>>>>>><>>>>>>>:

1
2

 
�
�

0� 1
2

�2
!

| {z }
θ=0

+ 1
2

 
�
�

1� 1
2

�2
!

| {z }
θ=1

= �1
4 if F = F1,

1
2

�
� (0� 0)2

�
| {z }

θ=0

+ 1
2

�
� (L� L)2

�
| {z }

θ=L

= 0 if F = F2.

Hence, R is better-off under two-dimensional state uncertainty.
Fix b < 1

2 . Under one-dimensional state uncertainty, there is a separation equilib-
rium given each type. R’s ex-ante expected payoff is:

1
2 (0)|{z}

F=F1

+ 1
2 (0)|{z}

F=F2

= 0.

Hence, R is worse-off under two-dimensional state uncertainty.
Fix b > 1+L

4 . Under two-dimensional state uncertainty, there only exists a bab-
bling equilibrium in which only a = 1+L

4 is induced by both types. R’s ex-ante
expected payoff is:

1
2

�
�L2 � 2L+ 5

16

�
| {z }

F=F1

+ 1
2

�
�5L2 � 2L+ 1

16

�
| {z }

F=F2

= �3L2�2L+3
8

�
< � L2�2L+3

16

�
.

Under one-dimensional state uncertainty, there only exists a babbling equilibrium
in which only a = 1

2 (a = L
2 ) is induced given type 1 (type 2). R’s ex-ante expected

payoff is:

1
2

�
�1

4

�
| {z }

F=F1

+ 1
2

 
� (1� L)2

8

!
| {z }

F=F2

= � L2�2L+3
16 .

Hence, R is worse-off under two-dimensional state uncertainty.
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A.3.1 Proof for Remark 3

Let a0 = 0, a1 =
1+p+(1�p)L

2 and a2 =
(1+p)L+1�p

2 (i.e., a0 < a1 < a2). If the type is
revealed in the first stage, type 1 can induce a0 and a1 while type 2 can induce a0 and
a2, respectively, in the second stage. But type 1 knows he will prefer a2 to a1 given
s = 1. Hence, type 1 pretends to be type 2.

A.4 Proofs for Section 5.2 (Different Prior Beliefs)

A.4.1 Proof for Remark 4

The proof and the outcome is similar to those for a model in section 4. We only show
differences in equilibrium outcome from the basic model.

Type 2’s partition y (N2) satisfies:

∆yi =

8<: ∆yi�1 + 4 (qR�qS)(1�p)
2�qR(1�p) yi for i 2 f2, ..., N2g n fN1, N1 + 1g ,

∆yi�1 + 4 (qR�qS)(1�p)
2�qR(1�p) yi +

2Gb,p(N1)

(1+(1�p)(1�qR)+p) for i 2 fN1, N1 + 1g .

Relationship between partitions of both types is:

xi =

8<:
1+(1�p)(1�qS)+p

1+(1�p)(1�qS)
yi for i 2 fN1, N1 + 1g ,

1
�
� 1+(1�p)(1�qS)+p

1+(1�p)(1�qS)
yN1

�
for i = N1.

R selects a = ai given m = mi such that:

ai =

(
(1+(1�p)(1�qR)+p)(yi�1+yi)

2 for i 2 f1, ..., N2g n fN1g ,
(1+(1�p)(1�qR)+p)(yi�1+yi)

2 � Gb,p (N1) for i = N1.

Due to the difference in prior beliefs jqR � qSj, any type of S cannot credibly separate
messages for signals. Then, as in the basic model, the communication should have a
partitional form. The players use a smaller number of messages as jqR � qSj is larger.
Moreover, in a partition equilibrium N1-N2 intervals, both types of S commonly use
messages m1, m2, ..., mN1 . Type 1’s ideal action given signal s=xi is equivalent to Type
2’s ideal action given s = yi, which is a = (1+ (1� p) (1� qS) + p) yi + b, for i 2
f1, ..., N1 � 1g.
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A.4.2 Proof for Remark 5

In a partition equilibrium with N intervals, the partition satisfies:

∆xi = ∆xi�1 +
4

2�qR
b+ 4(qR�qS)

2�qR
xi for i 2 f2, ..., Ng .

S send m = mi given s 2 (xi�1, xi) for i 2 f1, ..., Ng so that mi 6= mi0 for any i0 6= i.
Then, R selects a = ai given m = mi such that ai =

(2�qR)(xi�1+xi)
4 for i 2 f1, ..., Ng.

Therefore, there observed non-monotonic relationships unless qR = qS (common
prior belief). For example, fixing qR =

1
4 and qS =

3
4 , then, larger jbj can result in

smaller or larger NDP �b, qR, qS�:

NDP
�

b, qR, qS
�
=

8>>>>><>>>>>:
4 for b 2

�3375
8416 , 223

544

�
,

3 for b 2
�

17
48 , 225

464

�
n
�3375

8416 , 223
544

�
,

2 for b 2
�

11
16 , 15

16

�
n
�

17
48 , 225

464

�
,

1 otherwise.

For another example, fixing b = 3
8 and qR =

1
2 , then, larger jqR � qSj can result in

smaller or larger NDP �b, qR, qS�:

NDP
�

b, qR, qS
�
=

8>>>>>><>>>>>>:

4 for qS 2
�

29�3
p

21
16 , 4+(476�12

p
1545])1/3+(476+12

p
1545])1/3

16

�
,

3 for qS 2
�7

8 , 1
�
n
�

29�3
p

21
16 , 4+(476�12

p
1545])1/3+(476+12

p
1545])1/3

16

�
,

2 for b 2
�

1
2 , 7

8

�
,

1 for b 2
�

0, 1
2

�
.
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