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Abstract

We analyze a dynamic model of international environmental agreements (IEAs) where

countries cannot make long-term commitments or use sanctions or rewards to induce

cooperation. Countries can communicate with each other to build endogenous beliefs

about the random consequences of (re)opening negotiation. If countries are patient,

an effective agreement can be reached after a succession of short-lived ineffective

agreements. This eventual success requires “sober optimism”: the understanding

that cooperation is possible but not easy to achieve. Negotiations matter because

beliefs are important. An empirical application illustrates the importance of sober

optimism in the climate agreement.
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1 Introduction

A negotiated solution to a global collective action problem, such as protection of the

earth’s climate, may depend on the negotiating parties’ belief about the probability of

success. If parties enter negotiations virtually certain that they will succeed, or that

they will fail, they are unlikely to make the compromises required for success. Prospects

are better if negotiators begin with “sober optimism”, recognizing that the outcome is

uncertain and that a successful agreement might result only after a sequence of failures.

To examine the importance of beliefs in the formation of International Environmental

Agreements (IEAs), we model the outcome of negotiations as a stochastic process. Both

the parties’ beliefs and the stochastic process resulting from negotiations are endogenous.

After presenting the model and characterizing the equilibrium set, we provide a

climate-based application that illustrates “sober optimism” and assesses the welfare gain

associated with different equilibrium beliefs.1 The analysis also shows the equilibrium

effect of the fragmentation of the global polity. For example, groups such as the EU and

the BRIC countries that adopt a common negotiating position reduce fragmentation in

our setting. These kinds of agglomerations are not sufficient for achieving a large IEA,

but they make it easier to coordinate on beliefs that support a good outcome.

A two-stage participation game with industrial organization antecedents forms the

basis for much of the theory of IEAs (d’Aspremont et al., 1983; Palfrey and Rosenthal,

1984). In the first stage, parties to the negotiation make a binary decision, choosing

whether to join the agreement or remain as outsiders.2 In the next stage, those who

joined the agreement choose an action, such as the reduction of greenhouse gas emissions,

to maximize members’ joint welfare. The free-riding non-members benefit from the mem-

bers’ provision of the public good. Countries’ sovereignty, the lack of a supra-national

enforcement agency, and the difficulty of making commitments, all justify the assumption

that countries play a non-cooperative participation game.3

Early applications of this game to the IEA setting, relying on parametric examples,

conclude that large and effective IEAs do not emerge in equilibrium, especially when

the potential gains from cooperation are large (Hoel, 1992; Carraro and Siniscalco, 1993;

Barrett, 1994). Kolstad and Toman (2005) describes this conclusion as the “paradox

of international agreements”. These papers explain the actual difficulty of building a

successful IEA. However, countries sometimes manage to form ambitious agreements and

1Osmani and Tol (2009), Bréchet et al. (2011) and Bosetti et al. (2013) also use numerical methods
to study coalition stability. We use a simpler IAM, a new type of equilibrium, and we have a different
research focus than those papers.

2We assume throughout that countries use pure strategies. Dixit and Olson (2000) and Hong and Karp
(2012, 2014) study mixed strategy equilibria to one-shot games. The outcome of these games is a random
variable, but owing to the static setting there are no subsequent decisions that might be affected by that
outcome.

3A distinct strand of literature studies IEAs using concepts of cooperative game theory such as core
(Chander and Tulkens, 1995, 1997; Germain et al., 2003) or farsightedness (Ray and Vohra, 2001; Osmani
and Tol, 2009; Diamantoudi and Sartzetakis, 2015, 2018). Finus (2001), Wagner (2001), Barrett (2005),
and de Zeeuw (2015) survey the literature.
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signatories often comply even if the IEA has no explicit sanctioning mechanism and despite

international law’s limited authority (Breitmeier et al., 2006). Young (2011) emphasizes

that outcomes are sensitive to context; some agreements attract many members and

have been important in mitigating trans-boundary pollution. Mitchell (2018) lists 1270

multilateral environmental agreements, including 512 amendments and 224 protocols, for

the period from 1800 to 2018.

Despite being sensitive to parametric assumptions (Karp and Simon, 2013), earlier

models’ pessimistic conclusions continue to inform the profession. For example, Nord-

haus (2015) concludes that trade sanctions might be needed to enable countries to solve

the problem of climate change. Earlier papers study the role of trade sanctions, social

norms, monetary transfers, or replacing convex technology with increasing-returns-to-

scale Barrett (1997, 2001, 2006), Hoel and Schneider (1997), and Carraro et al. (2006).

Several papers imbed the two-stage participation game into a repeated game. Consis-

tent with the Folk Theorem, countries may be willing to remain in a large IEA if they are

patient and believe that their defection triggers a low-membership equilibrium (Barrett,

2003). These large agreements are self-enforcing, and require no explicit commitment, but

the deviation strategies that support them may be implausible. Battaglini and Harstad

(2016) study a repeated game in which signatories can commit to the number of periods

during which an IEA is binding. This commitment ability enables countries to solve an

investment-holdup problem, potentially resulting in a large and long-lived IEA. Kovac

and Schmidt (2017) demonstrate that even in the absence of commitment or the holdup

problem, large IEAs are possible when deviation triggers a costly delay of reaching a

long-term agreement.

These papers allow for multiple bargaining rounds, but a final equilibrium coalition

emerges after a single round. This feature makes the continuation payoff a known function

(i.e., a model primitive) of the outcome of the current stage game. Because the equilibrium

in our game is a stochastic process, we have to determine the continuation value functions

and the probability distribution of outcomes jointly with the equilibrium decision rules.

This complexity reflects negotiations’ genuinely stochastic nature; the model reveals the

relation between the endogenous beliefs and the endogenous stochastic process.

Our dynamic model does not require implausible out-of-equilibrium behavior, long-

term commitment (e.g. about the length of the agreement) or exogenous costs of delay

in reaching an agreement. There are no side-payments or (e.g. trade) sanctions, and

the abatement technology is standard. Reflecting real-world limitations in commitment

ability, and historical examples (e.g. Canada’s abrogation of the Kyoto Protocol), we rec-

ognize that signatories can review and reject any previously-signed agreement. Countries

adhere to an agreement only when it serves their national self-interest, so all agreements

are “interim”. Abandoning any interim agreement triggers a new round of negotiation,

resulting in a new interim stable (non-cooperative Nash) agreement. Stable interim agree-

ments are either “failures” or “successes”. The failures have low membership and produce

low welfare gains, just as in the standard one-shot models. The successes, in contrast,
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have (relatively) high membership and produce high welfare. Members of a failed agree-

ment disband it at the earliest opportunity. By triggering a new round of negotiation,

they might be free-riders in a future agreement, either a failed or a successful one; at

worst, they become members of a subsequent short-lived failed agreement.

All agreements are non-cooperative Nash equilibria to a participation game, and in

that sense stable, but only the successful agreements are sufficiently attractive to maintain

members’ permanent adherence. We call these agreements “sustainable” (not merely

stable). To understand why the existence of such equilibria requires sober optimism,

consider a subgame that begins with an interim sustainable agreement. Members of that

agreement recognize that if they abandon it, thereby triggering a new round of negotiation,

they might become free-riders in a subsequent agreement. If they are extremely optimistic

about the near-term emergence of another successful agreement, the incentive to deviate

from the existing agreement is high, making the original agreement non-sustainable. Thus,

the existence of such agreements requires that countries are not “too optimistic” about

the chance of successful negotiations. Now consider an out-of-equilibrium subgame that

begins with an interim agreement that is neither a “failure” nor a “success”, but something

in between. Members of this agreement must abandon it if the process is to eventually

produce a successful agreement. Members are actually willing to abandon it only if they

are sufficiently optimistic about the prospects of reaching a successful agreement in the

near-term. In short, these successful (= sustainable) equilibria require sober optimism.

Our model has the flavor of real-world negotiations: they might be painstakingly long

and their outcome uncertain (Benedick, 1998; Oberthur and Ott, 1999).4 Negotiations

might not be successful, but ex ante they are not a waste of time. The meta equilibrium

in this game includes beliefs, summarized by an endogenous probability distribution over

the size of the next-period IEA and the identity of its members. The negotiation process

constrains but does not uniquely determine these beliefs.

Our results provide a counterweight to the literature suggesting that IEAs require

special circumstances to succeed, and otherwise are doomed to be small and ineffective.

This pessimistic view can be self-fulfilling, because beliefs affect outcomes. Beliefs can be

influenced by the political environment and by conversations among negotiators: people

have to talk to each other in order to decide what to believe. By recognizing the stochastic

relation between negotiations’ fundamentals and their outcomes, our paper can explain

observed heterogeneity and it might shift the narrative about the prospects for successful

IEAs, thereby improving those prospects.

Our major results (Section 3) use a reduced-form model for the stage game payoffs

(Section 2). Under assumptions previously used in climate economics, we show that

this repeated game is isomorphic to a dynamic model that incorporates stock pollutants

such as CO2 (Section 4). Adapting Golosov et al.’s (2014) (hereafter, GHKT) Integrated

4Benedick (1998) documents that during the negotiation process that eventually resulted in the Mon-
treal Protocol, events took a variety of surprising turns and some of the important agreements were shaped
by chance.
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Assessment Model (IAM), we study climate negotiations (Section 5). We then discuss in

greater detail the relation between our model and previous literature (Section 6).

2 The model

We specify the payoff, review the one-period game, and then describe the dynamic game.

As in most of the literature, players can form a single coalition at a time. The model is

described by a list ⟨δ,N, (ui)i∈N ⟩ where δ ∈ (0, 1) is the discount factor, N := {1, 2, . . . , n}
is the set of all players with cardinality n ≥ 4, and ui : N → R is the single-period reduced-

form period payoff function of player i, where N is the set of all subsets of N . In every

period, players decide whether to join a coalition. Their decisions in period t result in a

coalition Mt ∈ N . Player i’s discounted present-value payoff from period t onward is

∞∑
s=t

δs−tui(Ms).

The reduced-form payoff in a period depends only on the coalition in that period. Two

examples, based on a two-stage game, illustrate this dependence. In the first stage agents

make a binary decision, choosing whether to join or to remain outside a coalition. In the

second stage, coalition members pick their policies to maximize their joint welfare, and

non-members choose their policies to maximize their individual welfare. The equilibrium

to the second stage induces the reduced form payoff functions (ui)i∈N . Our principal

results depend on the reduced form functions but not on their origin. For example, the

second-stage coalition policies might emerge from a political economy equilibrium instead

of cooperative behavior, leading to different reduced form functions.

Example 1. Player i′s payoff function is

−1

γ
(ḡi − gi)

γ − c
∑
j∈N

gj ,

with γ > 1, c > 0, and gi player i’s pollution-generating consumption. The first term

equals the private benefit from consuming gi and the second term equals the damage from

aggregate pollution. Coalition members jointly maximize their aggregate payoff; non-

members maximize their own welfare. The reduced-form payoff functions are symmetric

across players even though the original payoff functions are not:

ui(M) =

c
γ

γ−1

(
|M |

γ
γ−1 − |M |+ n− 1

γ |M |
γ

γ−1

)
− c

∑
j∈N ḡj ∀i ∈ M

c
γ

γ−1

(
|M |

γ
γ−1 − |M |+ n− 1

γ

)
− c

∑
j∈N ḡj ∀i /∈ M.

(1)

Example 2. A more familiar model uses the payoff function

gi − c
∑
j∈N

gj , (2)
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with 1/n < c < 1. Again, gi ∈ [0, 1], is player i’s pollution level. For each M ∈ N , the

reduced-form payoff function is

ui(M) =


−c(n− |M |) ∀i ∈ M if |M | ≥ 1/c

1− c(n− |M |) ∀i /∈ M if |M | ≥ 1/c

1− cn ∀i ∈ N if |M | < 1/c.

(3)

2.1 Static one-shot game

The one-shot game is a building block for the dynamic game. We adopt the tie-breaking

assumption that players join a coalition whenever they are indifferent between joining

and not joining. A stable coalition M ∈ N (i.e., a Nash equilibrium for this participation

game) satisfies5

i ∈ M if and only if ui (M ∪ {i}) ≥ ui (M \ {i}) . (4)

The ‘only if’ part in (4) implies that M is internally stable (no member wants to leave),

and the ‘if’ part implies that it is externally stable (non-members do not want to join).

We use m∗ to denote the number of countries in a stable coalition to the one-shot game.

For the two Examples above, m∗ is unique.

Remark 1. For Example 1, there exists a unique equilibrium size m∗ ≥ 2; m∗ is inde-

pendent of c and is weakly decreasing in γ with limγ→1m∗ = n and limγ→∞m∗ = 2.

Furthermore, m∗ = 3 for γ = 2 and m∗ = 2 for all γ > 2.

Remark 2. For Example 2, there exists a unique equilibrium size m∗ ≥ 2, the solution

to

m∗ = ⌈1/c⌉,

where ⌈1/c⌉ (the ceiling function) is the smallest integer weakly greater than 1/c.

For Example 2, larger marginal damages lower the equilibrium coalition size and

increase the benefit of cooperation. This relation is sometimes taken to imply that equi-

librium cooperation is low precisely when it is most valuable (the “paradox of IEAs”).

However, Example 1 shows that this conclusion need not hold in general.6

5The ‘only if’ part is equivalent to

ui (M) ≥ ui (M \ {i}) ∀i ∈ M

and the ‘if’ part is equivalent to
ui (M ∪ i) < ui (M) ∀i /∈ M.

6By Remark 1, the equilibrium coalition size in Example 1 falls with γ, but the relation between the
benefit of cooperation and γ is non-monotonic. Here, the relation between the benefit of cooperation and
the equilibrium level of cooperation is also non-monotonic.
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In the symmetric setting Condition (4) does not pin down the identity of coalition

members. Denote M ⊂ N as the set of equilibrium outcomes:

M := {M ∈ N |M satisfies (4)}. (5)

In the Examples above, M contains Cn
m∗ :=

(
n
m∗

)
different stable coalitions, each with

m∗ members. This indeterminacy is innocuous in the one-shot model but is important in

the dynamic setting, where players’ beliefs about the negotiation outcome matter.7

The outcome of the negotiation is uncertain prior to the negotiation process. By

assumption, players know that some stable coalition in M will emerge, but they are

not sure which one. We describe players’ beliefs using the probability distribution π =

(πM )M∈M, where πM ∈ [0, 1] equals the probability that M is the outcome of the stage

game. The distribution π might be purely subjective, reflecting a common belief about

the equilibrium outcome. Alternatively, we can view π as a randomization device that

players collectively agree to use to promote coordination.

We refer to π as a common belief without specifying its micro-foundations. Players

who share a common belief π evaluate their ex-ante payoff as

Eπ

[
ui(M̃)

]
:=

∑
M∈M

ui(M)πM ,

where M ⊂ N is defined by (5).

2.2 Dynamic setting

The dynamic game contains many periods, each of which has two stages. We assume that

countries cannot commit to a coalition for more than a single period.8 The state variable

at the beginning of a period is the coalition inherited from the previous period, M−1; the

initial condition is M−0 = ∅, the null coalition. In the first stage of a period players

decide whether to reopen the negotiation process. If every player chooses to stay with the

existing coalition, they receive the payoffs associated with that coalition for a period and

then move to the next period. If any player deviates from the existing coalition in the

first stage, that coalition dissolves and players move to the second stage where a stable

7Instead of assuming that countries are symmetric we might assume that they have symmetric payoffs
but are exogenously ranked according to their willingness to join a coalition; thus, if for example we know
that seven countries join the coalition, we also know the identity of those countries. This ranking typically
eliminates the multiplicity that is the source of uncertainty, which is fundamental to our results. If the
ranking is stochastic, the uncertainty remains, although calculating the equilibrium becomes intractable.
Alternatively, countries might have asymmetric payoffs, as in the real world. In general, however, that
type of asymmetry might not be enough to eliminate uncertainty. For example, an equilibrium coalition
might contain two “big” countries or four “small” countries, or some other combination.

8Introducing commitment ability and allowing members of a coalition to endogenously choose the
duration of the agreement as in Battaglini and Harstad (2016), does not change our results. For a small
coalition, the duration is always set to the shortest possible length (i.e., only one period). For a sufficiently
large coalition, members make it as long-term as possible.
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Figure 1: The timing of the game.

coalition is randomly selected using the probability distribution π.9 Players receive the

payoff associated with that coalition for a period, and then move to the next period. The

abandonment of a previously negotiated agreement in the first stage does not affect the

probability distribution of the negotiated coalition in the second stage.10 Figure 1 shows

the timing of the game.

We study Markov perfect equilibria, where players’ first-stage strategies are functions

ai : N → {0, 1} that determines their first stage action. Given an existing coalition

M−1 ∈ N , ai(M−1) = 1 means that player i wants to stick to M−1 and ai(M−1) = 0

means that she wants to reopen the negotiation process. If
∏

j∈N aj(M−1) = 1, then

players retain the existing coalition M−1, and the game moves to the next period. Other-

wise, the game moves to the second stage, where a new coalition M ∈ N emerges from the

participation game. Players have rational expectations; they understand that the proba-

bility distribution π governs the second stage outcome, conditional on defection from the

existing coalition. Every coalition in the support of π is stable (a Nash equilibrium).

Denote Vi(M−1) as player i’s equilibrium value of entering a period with the existing

coalition M−1. Generalizing equation (4), M ∈ N is stable, i.e., it is a Nash equilibrium

of the second-stage participation game, if and only if

i ∈ M ⇐⇒ ui(M ∪ {i}) + δVi(M ∪ {i}) ≥ ui(M \ {i}) + δVi(M \ {i}). (6)

In the first stage of a period, each player compares the payoffs associated with two

scenarios, and decides whether to stick with the inherited coalition M−1. If all players

stick with M−1, i’s payoff is ui(M−1) + δVi(M−1). If any player abandons M−1, thus

moving to the second stage, they know that they will end up with one of the coalitions

satisfying (6). Unless such a coalition is unique, it is viewed as a random variable, M̃ , with

9We ignore discounting between the first and second stage of a period and other costs of reopening
negotiations. Those costs would make countries less willing to abandon both a large and a small existing
coalition, so the equilibrium effect of introducing such costs is ambiguous.

10The plausible relation between past coalitions and current beliefs is ambiguous. If the last abandoned
coalition was M , should players then think that M is more likely or less likely to emerge at the next
round? Our assumption that prior coalitions have no effect on current beliefs is neutral with regard to
this question and it makes the model tractable.
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distribution π, the common belief. Player i’s payoff depends on her first-stage action only

if all other players stick with the inherited coalition. We use the tie-breaking assumption

that players who are indifferent between actions stick with the current coalition. Player

i’s expected payoff of abandoning M−1 and reopening the negotiation process, is

Eπ

[
ui(M̃) + δVi(M̃)

]
:=

∑
M∈M

(ui(M) + δVi(M))πM ,

where

M := {M ∈ N |M satisfies (6)}. (7)

Player i sticks with M−1 if and only if

ui(M−1) + δVi(M−1) ≥ Eπ[ui(M̃) + δVi(M̃)],

which determines the policy function ai. The endogenous common belief (πM )M∈M, the

policy functions (ai)i∈N , and the value functions Vi(M−1) are simultaneously determined.

Definition 2.1. A list (π, (ai)i∈N ) is an equilibrium of model ⟨δ,N, (ui)i∈N ⟩ if and only

if there exist value functions (Vi)i∈N such that:

a) the support M of the common belief π is given by

M = {M ∈ N |M satisfies (6) given (Vi)i∈N}; (8)

b) the policy functions (ai)i∈N satisfy

ai(M−1) ∈ argmax
ai∈{0,1}

{
[ui(M−1) + δVi(M−1)] ai

+ Eπ

[
ui(M̃) + δVi(M̃)

]
(1− ai)

}
; (9)

c) the value functions (Vi)i∈N solve

Vi(M−1) =

ui(M−1) + δVi(M−1) if
∏

j∈N aj(M−1) = 1

Eπ

[
ui(M̃) + δVi(M̃)

]
otherwise.

(10)

Condition (8) requires that the equilibrium common belief be rationalizable in the

sense that every coalition in its support is stable and every coalition outside the support is

not stable under the belief.11 Condition (9) states that player i chooses ai = 1 whenever

she would like to use the preceding coalition, even if she knows it will be blocked by

11To see that the latter requirement is necessary, let M be a coalition not included in the support of
the equilibrium belief. As a thought experiment, however, players can ask themselves what happens if M
emerges as a candidate coalition during the negotiation process. If M satisfies the stability condition (6),
players realize that the negotiation process can actually result in M , invalidating the original belief which
excludes M from its support.
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other players. This condition follows from our tie-breaking assumption, and it rules out

uninteresting equilibria where a player chooses ai = 0 simply because another player

chooses aj = 0.12

We assume that π treats players symmetrically, so the probability of forming a coali-

tion of a particular size is independent of the identity of its members:13

Definition 2.2. A common belief π is symmetric if

|M | = |M ′| =⇒ πM = πM ′ .

Symmetric beliefs are reasonable when players are symmetric. Moreover, if π is interpreted

as a randomization device used to facilitate coordination, players would not unanimously

agree to use the device unless it treats them impartially.

3 Results

We show that if players are impatient, every stable coalition to the dynamic game has

m∗ members, just as in the static game. These coalitions are repeatedly formed and sub-

sequently abandoned, and they do little to solve the collective action problem. However,

if players are patient, stable coalitions have either m∗ members or more members. The

small coalitions are abandoned in the next period, but the larger coalitions, once formed,

are never abandoned: they are sustainable. There are no equilibrium structures with

coalitions having three or more sizes. We discuss equilibrium selection when players are

patient.

To characterize the equilibrium, we rely upon the following assumption, consistent

with the essential aspects of the Examples above.

Assumption 1. The reduced-form payoff functions are symmetric across players and

there exists an integer m∗ ∈ {2, 3, . . . , n− 2} such that

ui(M) > ui(M ∪ {i}) ∀i ∈ N \M ⇐⇒ |M | ≥ m∗ (11)

and

ui(M) ≥ ui(M \ {i}) ∀i ∈ M ⇐⇒ |M | ≤ m∗. (12)

Moreover, for any M ∈ N such that |M | ≥ m∗ − 1,

a) |M | < |M ′| implies ui(M) ≤ ui(M
′) for all i ∈ M ∩M ′ and the second inequality is

strict if |M | ≥ m∗;

12Condition (10) implies that even non-members can trigger the abandonment of the inherited coalition.
The modification where non-members do not have this veto power would not change the equilibrium in
the presence of a free-rider problem. There, if members of a coalition want to stick with the coalition, so
do non-members.

13The assumption of symmetric beliefs is common in multistage participation games, e.g. where invest-
ment precedes the participation decision (Barrett, 2006).
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b) |M | < |M ′| implies ui(M) < ui(M
′) for all i /∈ M ∪M ′;

c) |M | < |M ′| implies
∑

i∈N ui(M) <
∑

i∈N ui(M
′);

d) ui(M) ≤ uj(M) for all i ∈ M and j /∈ M and the inequality is strict if |M | ≥ m∗.

Conditions (11) and (12) imply that the size of any stable coalition to the one-shot

game, m∗, is unique. Properties a) and b) mean that a larger coalition is preferable both

for coalition members and non-members, and Property c) requires that the aggregate

period payoff increases in the coalition size. Property d) implies that the economy suffers

from a free-rider problem. In view of the assumed symmetry of the reduced-form payoff

functions, we often use umin and umout to denote the period payoffs of members and non-

members, respectively, when the size of current coalition is m.

3.1 Equilibrium with a single coalition size

Here we present a pessimistic result showing that even in the dynamic setting all equilibria

might have only m∗ members, just as in the static model. This result uses the following

notation. For each m ∈ {1, 2, . . . , n}, define the average payoff

ūm :=
m

n
umin +

(
1− m

n

)
umout (13)

and observe that under Assumption 1-c) and -d)

umin < ūm < umout ∀m ≥ m∗ − 1.

Because the aggregate period payoff strictly increases in m ≥ m∗− 1, so does the average

payoff ūm. We denote l∗ as the smallest coalition for which insiders’ payoff is no less than

the average payoff when the coalition has m∗ members. That is l∗ > m∗ is defined by

ul
∗
in ≥ ūm∗ > ul

∗−1
in ;

l∗ exists and is unique under Assumption 1 because unin = ūn > ūm∗ > um∗
in and umin is

strictly increasing in m ≥ m∗.

Proposition 3.1. Under Assumption 1, the strategy profile (ai)i∈N defined by

ai(M−1) =


1 if |M−1| ≥ l∗ and i ∈ M−1

1 if |M−1| ≥ m∗ and i /∈ M−1

0 otherwise

(14)

together with the symmetric common belief π defined by

πM = 1/Cn
m∗ ∀M ∈ M,
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where

M := {M ∈ N | |M | = m∗},

constitutes an equilibrium if and only if

δ < δl∗ :=
ul

∗−1
out − ul

∗
in

ul
∗−1
out − ūm∗

∈ (0, 1].

In the equilibrium described in Proposition 3.1, players believe that reopening the

negotiation process always results in a coalition of size m∗. This belief is rationalizable

because under it the second-stage participation game yields only coalitions of size m∗. In

the first stage of each period, players collectively choose to stay with the coalition they

inherit from the preceding period if and only if it is larger than or equal to l∗ > m∗. If the

dynamic game begins at t = 0 with a coalition smaller than l∗, players for t ≥ 1 inherit a

coalition of size m∗. Players abandon the inherited coalition and start over every period.

The coalition size remains constant at m∗, but the identity of members changes. This

equilibrium exists if and only if players are sufficiently impatient (δ < δl∗).
14

The equilibrium values of m∗, l
∗, and δl∗ are highly nonlinear discontinuous functions

of model parameters. Appendix B.7 discusses these functions for n = 15. In Example 1,

m∗ ∈ {2, 3} for γ > 1.2, a range that includes the quadratic case, γ = 2, used in many

papers. For γ > 1.2 the pessimistic outcome, where all stable coalitions havem∗ members,

exists only if δ < 0.6. Thus, although the dynamic model produces the pessimistic static

result in some circumstances, a moderate level of patience implies that the support of any

equilbrium belief must contain larger coalitions. In Example 2, small changes in c can

lead to large changes in δl∗ . For a given δ, a small change in c can cause the nature of

the equilibrium to change. Thus, for both Examples the dynamic and static versions of

the model may have quite different implications.

3.2 Equilibria with multiple coalition sizes

We say that a coaltion is sustainable if it is both stable and, once formed, permanent.

The requirement of stability means that the coalition can be formed during the second-

stage negotiation: it can therefore be reached even if the preceding coalition was smaller.

Sustainability means that members are willing to remain in the coalition even though by

doing so they give up the possibility of free riding. Members make this tradeoff only if

they are sufficiently patient, i.e., if the discount factor is large.15 Proposition 3.2 charac-

terizes equilibria for large δ, where there are both small and large stable coalitions. Only

14This type of equilibrium does not exist for a larger δ because of condition (8), which requires that
every stable coalition is included in the support of the equilibrium common belief. When the discount
factor is large enough, coalitions of size l∗ are stable, invalidating the belief that the negotiation process
always results in a coalition of size m∗.

15There are no sustainable equilibria if players are very impatient. In this case, every stable coalition
has m∗ members, as in Proposition 3.1. These coalitions are not permanent: in each period, they disband
and a new one forms.
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the large coalitions are sustainable. This proposition defines the endogenous probability

that negotiation results in a large (and sustainable) coalition; it makes the term “sober

optimism” precise. We then show that there do not exist equilibria with coalitions having

three or more different sizes.

The intuition for the fact that the large (but not the small) stable coalitions are

sustainable is straightforward. Sustainability induces members of the large coalition to

remain insiders, thus making this coalition internally stable. Suppose to the contrary

that the large stable coalition was not sustainable. In this case, members believe that the

coalition will be disbanded at some time in the future. Because the model is stationary,

members therefore believe that the coalition will be disbanded in the next period. With

this belief, members want to free-ride in the current period, destroying the coalition’s

internal stability. Thus, any internally stable coalition larger thanm∗ must be sustainable.

Proposition 3.2. For each m∗ ≥ max{l∗,m∗ + 2}, (a) and (b) are equivalent:

a) There exists a symmetric common belief π with

M = {M ∈ N | |M | ∈ {m∗,m
∗}} , (15)

and integer k∗ with m∗ ≤ k∗ ≤ m∗ for which the strategy profile (ai)i∈N defined by

ai(M−1) =


1 if |M−1| ≥ m∗ for all i

1 if |M−1| ≥ k∗ and i /∈ M−1

0 otherwise

(16)

constitutes an equilibrium.

b) The discount factor δ is greater than

δm∗ :=
um

∗−1
out − um

∗
in

um
∗−1

out −max{ūm∗ , um
∗−1

in }
∈ (0, 1]. (17)

The common belief associated with this equilibrium is given by

πM =


πm∗

/Cn
m∗ if |M | = m∗(

1− πm∗)
/Cn

m∗ if |M | = m∗

0 otherwise,

(18)

where πm∗ ∈ (0, 1) can be any value in the interval

Πm∗
δ :=

(
max

0,
(1− δ)

(
um

∗−1
in − ūm∗

)
ūm∗ − ūm∗ − δ

(
um

∗−1
in − ūm∗

)
 ,

δ − um∗−1
out −um∗

in

um∗−1
out −ūm∗

δ + δ
1−δ

ūm∗−um∗
in

um∗−1
out −ūm∗

]
⊂ (0, 1). (19)

12



For a given discount factor, two forces constrain m∗, the size of the large coalition.

A stable coalition of the second-stage game cannot be too large, or members would want

to defect and free ride for a period. However, m∗ cannot be too small, because otherwise

members of a coalition with k∗ countries would not be willing defect, in the hope of

obtaining m∗. The set of equilibrium values of m∗ depends on δ:

{m ∈ N | max{l∗,m∗ + 2} ≤ m ≤ n, δ > δm∗} (20)

Define m̄∗ as the largest element in this set, i.e., the largest stable coalition; m̄∗ is an

increasing function of δ.

Unlike the equilibrium presented in Proposition 3.1, the common belief in Proposi-

tion 3.2 is not uniquely determined, although πm∗
, the probability of drawing a coalition

with m∗ members, must lie in the interval given by (19). If πm∗
is too large, members

want to deviate from a large coalition because of the high probability that they will be

free-riders to a future large coalition; in that case, m∗ would not be stable. Thus, large

coalitions cannot be too easy to reproduce, once abandoned. However, the equilibrium

πm∗
must be large enough so that players want to abandon any coalition smaller than

m∗. Restriction (19) provides a precise meaning to “sober optimism”.

The next proposition shows that there is no symmetric equilibrium with three or

more stable coalition sizes. To understand this result, recall our comment above that

sustainablity is a necessary condition for the internal stablility of any coalition greater

than m∗. Thus, if there existed an equilibrium with three or more distinct stable coalition

sizes then all except the smallest must be sustainable. Moreover, any member’s defection

from a sustainable coalition must cause the resulting coalition to no longer be sustainable;

otherwise the original coalition is not internally stable. Consequently, if there are two (or

more) sustainable coalitions, then there must be a coalition of intermediate size that is

not sustainable. Thus, the hypothesis that there exist stable coalitions of at least three

different sizes implies that there exists a sustainable coalition and another coalition that

is strictly larger that is not sustainable. We show that this (implausible) implication must

be false, thus ruling out the possibility of stable coalitions with three or more sizes.

Proposition 3.3. The support of any symmetric equilibrium belief cannot contain coali-

tions of three or more distinct sizes.

(Readers interested only in the implications of our model for climate negotiations can

jump to Section 5 without loss of continuity.)

3.2.1 Illustrating Proposition 3.2

The two Examples above yield simple formulae for δm∗ , the threshold discount factor

above which there are both small and large stable coalitions.

13



Figure 2: The threshold value δm∗ of discount factor (left) and the largest size m̄∗ of
stable coalitions (right) in the model of Example 1, for n = 15.

Proposition 3.4. In Example 1, for each m∗ > max{l∗,m∗+1}, the equilibria described

in Proposition 3.2 exist if and only if δ is greater than

δm∗ =
γ(m∗ − 1)

γ
γ−1 − (γ − 1)((m∗)

γ
γ−1 − 1)

(m∗ − 1)
γ

γ−1 − 1
.

A larger sustainable coalition requires more patience: δm∗ increases in m∗.

The left panel of Figure 2 shows that δm∗ is non-monotonic in γ. As the value of γ

increases from its lower bound, 1, (i.e., as the pollution abatement cost function becomes

slightly convex), players must be much more patient to sustain large coalitions. This

result is consistent with the analysis in the static setting, where the stable coalition size,

m∗, falls with γ (Remark 1). However, for higher convexity, the threshold value δm∗ falls

with γ. In the dynamic setting, stronger convexity can make it easier (by requiring less

patience) to achieve large sustainable coalitions. The right panel of Figure 2 shows this

relation more clearly, graphing the largest equilibrium coalition, m̄∗, as a function of γ

for two values of δ. As γ increases, the value of m̄∗ initially decreases, but then increases

once the cost function becomes sufficiently convex. The grand coalition can be sustained

when δ = 0.85 and γ > 2.3.

Even in the dynamic setting, the equilibrium in Example 1 is independent of the

marginal damage parameter, c. In Example 2, in contrast, the equilibrium depends on

the marginal damage parameter in a striking manner:

Proposition 3.5. In Example 2, for each m∗ > max{l∗,m∗+1}, the equilibria described

in Proposition 3.2 exist if and only if δ is greater than

δm∗ = 1− c.

The value of δm∗ is decreasing in c, but is independent of m∗.

14



Figure 3: The equilibrium beliefs in Example 1 (left) and Example 2 (right). For each m∗,
each bar represents the range Πm∗

δ of possible values of πm∗
for different δ. The number

of players is set to n = 15 for both cases. In Example 1 we set γ = 2 and in Example 2
we set c = 0.475. In both examples, m∗ = 3 and l∗ = 5.

For Example 2, an increase in the damage parameter c reduces m∗, the size of the small

coalition (by Remark 2), but also makes it easier (by requiring less patience) to achieve a

large coalition. For a given discount factor δ, it is possible to sustain the grand coalition

when c > 1− δ.

3.2.2 Equilibrium beliefs

For these examples, we can numerically characterize equilibrium beliefs. For Example 1,

we fix γ = 2 with n = 15. The left panel of Figure 3 shows the equilibrium combinations of

m∗ and πm∗
for four values of δ. Here, m∗ = 3, l∗ = 5, and δl∗ = 0.588. If δ < 0.588 there

exists only the small equilibrium coalitions (Proposition 3.1); in equilibrium, coalitions

with m∗ = 3 members are repeatedly formed and then abandoned.

When δ is greater than 0.588, however, larger coalitions can emerge as sustainable

outcomes. When δ = 0.6 the stable set consists of both the small coalitions with m∗ = 3

members and the large (sustainable) coalitions with m∗ = 5 members. The common

belief associated with m∗ = 5 is πm∗ ∈ Πm∗
δ = (0, 0.005]. A new round of negotiation is

believed to produce coalitions with five members with probability less than or equal to

0.005. Once a coalition with five members is formed, players will stick with it. Thus, for

δ = 0.6, even though the exact value of πm∗
is not pinned down, the size of the larger

stable coalitions is unique: m∗ = 5.

If δ = 0.7 the larger coalitions can have m∗ = 5, 6, or 7 members and the associated

ranges of πm∗
are (0, 0.032], (0.053, 0.082], and (0.107, 0.113], respectively. As δ gets closer

to 1, even larger coalitions can be stable. In particular, the grand coalition can be in the

support of equilibrium belief if δ is greater than 0.861.

The right panel of Figure 3 presents the result of a similar exercise for Example 2.
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Here we set c = 0.475, so m∗ = 3, l∗ = 5, and δl∗ = 0.777. If δ is smaller than 0.777,

the equilibrium characterized by Proposition 3.1 exists, where all stable coalitions have

m∗ = 3 members. By Proposition 3.5, δm∗ = 1−c = 0.525 for all m∗ > l∗ = 5. Therefore,

any coalition of size m∗ ∈ {6, . . . , 15} can be stable if δ is greater than 0.525. However,

the associated value of πm∗
varies with m∗ and δ. For large m∗, the range Πm∗

δ of possible

value of πm∗
becomes wider as the discount factor gets closer to 1.

The one-shot setting predicts the same outcome, m∗ = 3, in both of these examples.

But in the dynamic setting, these models give significantly different predictions. For

instance, in Example 1 with n = 15 and γ = 2, the symmetric equilibrium is always

characterized by either Proposition 3.1 or Proposition 3.2 for a given value of δ. (For

the same value of δ there cannot be equilibria with two sizes of coalitions and also an

equilibrium with only the smaller size m∗.) Example 2, in contrast, allows the two types

of equilibria to coexist when the discount factor lies in between 0.525 and 0.777. When

δ is in this range, the players may end up with the equilibrium where the negotiation

always yields a coalition with three members; however, they might end up with another

equilibrium having a larger coalition, even the grand coalition.

3.3 Equilibrium selection

Multiplicity of equilibria is natural in the context of international environmental agree-

ments, where the outcome may depend on self-fulfilling beliefs generated by the political

climate. In a “soberly optimistic” environment, countries believe that large coalitions are

possible, leading to a good outcome. If there is little political momentum to solve the

problem, in contrast, countries believe that only small coalitions are possible, making it

impossible to achieve a larger coalition. Despite the plausibility of multiplicity of equilib-

ria in this setting, we consider two refinements that select m∗, the number of participants

of the large coalition.

The first refinement assumes that an increase in the width of the interval Πm∗
δ increases

the plausibility of the corresponding value of m∗. To motivate this assumption, suppose

that a shock (e.g. an election result) shifts the common belief. This shift might cause

the updated value of πm∗
to leave the admissible range, Πm∗

δ given by (19), unless this

interval is sufficiently wide. A narrower Πm∗
δ requires more precise coordination of beliefs

among otherwise uncoordinated players. This reasoning suggests that whenever multiple

values for m∗ are possible, the one associated with the largest interval Πm∗
δ is most likely

to materialize. This refinement selects m∗ as a solution to

m∗ ∈ argmax
m

{max
π

Πm
δ − inf

π
Πm

δ }. (21)

The second refinement selects the Pareto Efficient equilibrium from the set of feasible

equilibria. A player’s ex ante payoff equals her expected payoff before learning the result

of the negotiation. Her ex ante expected flow payoff conditional on a coalition of size m
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emerging from the negotiation is ūm, an increasing function of m. Therefore, a sufficient

condition for the unconditional ex ante payoff to increase inm∗ is that the probability that

negotiation produces a large coalition (m∗ instead ofm∗) also increases inm∗. Because the

mapping from m∗ to the probability πm∗
is a correspondence, not a function, the meaning

of this sufficient condition is ambiguous. However, it seems reasonable to assume that

if a larger m∗ shifts up the interval Πm∗
δ , i.e., causes both its boundaries to increase,

then the probability of m∗ also increases. With this assumption, a sufficient condition for

equilibria with larger m∗ to Pareto dominate equilibria with smaller m∗ is that a larger

m∗ shifts up Πm∗
δ .

Inspection of Figure 3 shows that for our numerical examples, both refinements select

the largest feasible m∗: an increase in m∗ causes the interval Πm∗
δ to become wider and

also to shift up. The next proposition provides evidence that these results hold more

generally.

Proposition 3.6.

a) Under Assumption 1 there always exists δ∗ ∈ (0, 1) such that

argmax
m

{max
π

Πm
δ − inf

π
Πm

δ } = {n}

for any δ > δ∗.

b) For Example 2, an equilibrium with larger m∗ Pareto dominates any equilibrium with

smaller m∗.

Part (a) shows that when players are sufficiently patient, under our first refinement they

keep reopening the negotiation process until they achieve the grand coalition. Part (b)

shows that coalitions with larger m∗ Pareto dominate smaller coalitions. The latter result

can only be analytically proven for Example 2, but the same result holds in the empirical

application in Section 5. In all cases, the negotiation process may produce many short-

lived agreements with small membership along the way.

4 Structural models

The discussion above uses a reduced-form model where the period payoff is a function of

only the coalition in that period. This approach significantly simplifies the analysis while

keeping the generality of the model fairly intact. However, the reduced-form focus limits

our results’ applicability because not every model has a reduced-form representation. In

particular, the absence of stock variables may seem restrictive: climate change involves

greenhouse gas stocks. Here we present an isomorphism, showing the features of a model

with stock variables having a reduced-form representation.
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Figure 4: The timing of the structural game.

4.1 The model

To establish the isomorphism, we define a structural (as distinct from reduced-form)

model, one characterized by a list ⟨δ,N, (Φi)i∈N , F, T ⟩; as above, δ ∈ (0, 1) is the discount

factor and N := {1, 2, . . . , n} is the set of all players. The function Φi(gt, Gt) determines

the period payoff; the vector gt := (g1,t, . . . , gn,t) contains the players’ emissions, which

affect the evolution of the stock Gt, a public bad such as greenhouse gasses. The integer

T ≤ ∞ equals the number of periods. We are primarily interested in the case with T = ∞,

but we also need to consider finite-period versions of the model in order to define limit

equilibria. The equation of motion for G is16

Gt = F (gt, Gt−1)

for some function F . Player i’s discounted present-value payoff at t ≤ T is

T∑
s=t

δs−tΦi(gs, Gs).

The game proceeds as in the preceding section, but now players choose their contri-

bution to the public bad (emissions) in each period after a coalition forms. Members

of a coalition jointly choose their gi’s to maximize their aggregate life-time payoff, and

each non-member chooses gi to maximize her individual life-time payoff. We use τ ≤ T

to denote the number of remaining periods. Each player’s strategy is a pair of policy

rules, a function aTi (M−1, G−1, τ) ∈ {0, 1} that determines whether a player sticks with

the existing coalition in the first stage, and a real-valued function gTi (M,G−1, τ), that

determines her contribution to G at the end of each period. Figure 4 depicts the timing

of the game.

Let V T
i (M−1, G−1, τ) be player i’s continuation value when the economy has τ peri-

ods to go, conditional on the coalition M−1 and the level of the public bad G−1 inher-

ited from the preceding period. The “scrap value” at the end of the game is zero, so

16With additional notation, we can replace the scalar G with a vector.
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V T
i (M−1, G−1, 0) := 0. In the second stage of the period game, coalition M ∈ N is a

Nash-equilibrium (i.e., stable) outcome if and only if

i ∈ M ⇐⇒
Φ̂T
i (M ∪ {i}, G−1, τ) + δV̂ T

i (M ∪ {i}, G−1, τ − 1)

≥ Φ̂T
i (M \ {i}, G−1, τ) + δV̂ T

i (M \ {i}, G−1, τ − 1),
(22)

where

Φ̂T
i (M,G−1, τ) := Φi(g

T (M,G−1, τ), F (gT (M,G−1, τ), G−1))

and

V̂ T (M,G−1, τ − 1) := V T
i (M,F (gT (M,G−1, τ), G−1), τ − 1).

Condition (22) is the structural analogue of (6). With this notation, we can define the

equilibrium of structural models for T ≤ ∞.

Definition 4.1. A list (πT , (aTi )i∈N , (gTi )i∈N ) is an equilibrium of structural model ⟨δ,N, (Φi)i∈N , F, T ⟩
if there exist value functions (V T

i )i∈N such that:

a) for each G−1 and τ , the support MT (G−1, τ) of the common belief πT is

MT (G−1, τ) = {M ∈ N |M satisfies (22) given (V T
i )i∈N , (gTi )i∈N , and G−1}; (23)

b) the policy functions (aTi )i∈N satisfy

aTi (M−1, G−1, τ) ∈ argmax
ai∈{0,1}

{[
Φ̂T
i (M−1, G−1, τ) + δV̂ T

i (M−1, G−1, τ − 1)
]
ai

+ EπT

[
Φ̂T
i (M̃,G−1, τ) + δV̂ T

i (M̃,G−1, τ − 1)
]
(1− ai)

}
; (24)

c) the policy functions (gTi )i∈N solve

(gTi (M,G−1, τ))i∈M ∈ argmax
(gi)i∈M

∑
i∈M

{
Φi(g, F (g, G−1)) + δV T

i (M,F (g, G−1), τ − 1)
}

s.t. gj = gTj (M,G−1, τ) ∀j /∈ M,

gTi (M,G−1, τ) ∈ argmax
gi

{
Φi(g, F (g, G−1)) + δV T

i (M,F (g, G−1), τ − 1)
}

s.t. gj = gTj (M,G−1, τ) ∀j ∈ N \ {i}
∀i /∈ M ;

d) the value functions (V T
i )i∈N solve

V T
i (M−1, G−1, τ) =


Φ̂T
i (M−1, G−1, τ) + δV̂ T

i (M−1, G−1, τ − 1) if
∏
j∈N

aj(M−1, G−1, τ) = 1

EπT

[
Φ̂T
i (M̃,G−1, τ) + δV̂ T

i (M̃,G−1, τ − 1)
]

otherwise.

(25)

This definition is a straightforward extension of Definition 2.1. We are interested in
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T = ∞, where there are always infinitely many periods to go; here, τ does not change

with calendar time, so we can consider stationary equilibria.

Definition 4.2. An equilibrium (π∞, (a∞i )i∈N , (g∞i )i∈N ) of the infinite time horizon

structural model is a limit equilibrium if for each T < ∞ there exists an equilibrium

(πT , (aTi )i∈N , (gTi )i∈N ) of the T -period version of the model such that (π∞, (a∞i )i∈N , (g∞i )i∈N )

is a point-wise limit of (πT , (aTi )i∈N , (gTi )i∈N ) as T → ∞.

4.2 Isomorphism

Structural models are isomorphic to reduced-form models if there exists a mapping be-

tween the two types of model such that a) any equilibrium of the reduced-form repre-

sentation of an (infinite time horizon) structural model coincides with an equilibrium of

the structural model, and b) any limit equilibrium of a structural model coincides with

an equilibrium of the associated reduced-form model. The key assumption is linearity-in-

state.

Assumption 2 (Linearity-in-state). The per-period payoff function of structural models

is given by

Φi(gt, Gt) = ϕi(gt)− cGt

for some function ϕi(·) and constant c > 0, and the equation of motion for G is

F (gt, Gt−1) = f(gt) + σGt−1

for some function f(·) and constant σ ∈ [0, 1).

To make structural models consistent with reduced-form models, we also need the

following assumption regarding the functions ϕi and f .

Assumption 3. For each integer τ ≤ ∞ and M ∈ N , there exists a unique vector

ĝτ (M) = (ĝτ1 (M), . . . , ĝτn(M)) that solves both

max
(gi)i∈M

∑
i∈M

{
ϕi(g)− c

1− (δσ)τ

1− δσ
f(g)

}
given (ĝτj (M))j∈N\M , (26)

and

max
gi

{
ϕi(g)− c

1− (δσ)τ

1− δσ
f(g)

}
given (ĝτj (M))j∈N\{i} ∀i /∈ M. (27)

Under Assumptions 2 and 3, we can define a mapping that transforms a structural

model ⟨δ,N, (Φi)i∈N , F,∞⟩ into a “corresponding reduced-form model” ⟨δ,N, (u∞i )i∈N ⟩
with flow payoff

u∞i (M) := ϕi(ĝ
∞(M))− c

1

1− δσ
f(ĝ∞(M)) ∀M ∈ N .
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Proposition 4.1. Under Assumptions 2 and 3, if (π, (ai)i∈N ) is an equilibrium of reduced-

form model ⟨δ,N, (u∞i )i∈N ⟩, then (π, (ai)i∈N , (ĝ∞i )i∈N ) is an equilibrium of structural

model ⟨δ,N, (Φi)i∈N , F,∞⟩.

This proposition states that any equilibrium of the reduced-form model “correspond-

ing” to an infinite time horizon structural model is also an equilibrium of the structural

model. There may nevertheless be equilibria of a structural model with T = ∞ that

are not equilibria of a reduced form model. However, within the restricted set of limit

equilibria, the converse of Proposition 4.1 holds.

Proposition 4.2. Under Assumptions 2 and 3, if (π∞, (a∞i )i∈N , (g∞i )i∈N ) is a limit

equilibrium of structural model ⟨δ,N, (Φi)i∈N , F,∞⟩, then (π∞, (a∞i )i∈N ) is an equilibrium

of reduced-form model ⟨δ,N, (u∞i )i∈N ⟩.

Under Assumptions 2 and 3, all of the limit equilibria of a structural model can be

characterized by studying the associated reduced-form model.

4.3 Examples

Battaglini and Harstad’s (2016) model of international environmental agreements satis-

fies Assumptions 2 and 3. A transformation of more complicated models, including (a

variation of) GHKT’s climate model and Traeger’s (2015) generalization, also satisfies

the assumptions. Therefore, the isomorphism from Section 4.2 extends the applicability

of our analysis in Section 3.

Example 3. A simplified version of Battaglini and Harstad’s (2016) model is represented

by ⟨δ,N, (Φi)i∈N , F,∞⟩ where

Φi(g, G) = −1

2
(ḡi − gi)

2 − cG

and

F (g, G−1) = σG−1 +
∑
i∈N

gi.

With these functional forms, Assumptions 2 and 3 are both satisfied. In particular, using

superscript τ to index the parameter τ , we have

ĝτi (M) =

ḡi − c1−(δσ)τ

1−δσ |M | ∀i ∈ M

ḡi − c1−(δσ)τ

1−δσ ∀i /∈ M.

for each τ ∈ {1, 2, . . . ,∞} and

u∞i (M) =

− c
1−δσ

{∑
i∈N ḡi − c

1−δσ

(
|M |2 − |M |+ n− 1

2 |M |2
)}

∀i ∈ M

− c
1−δσ

{∑
i∈N ḡi − c

1−δσ

(
|M |2 − |M |+ n− 1

2

)}
∀i /∈ M
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Propositions 4.1 and 4.2 then show that it suffices to analyze the equilibrium of the

associated reduced-form model ⟨δ,N, (u∞i )i∈N ⟩. This model, after being transformed into

the reduced-form model, produces Example 1 with γ = 2.

Example 4. A variation of GHKT’s climate-economy model provides a richer structure.17

The discounted present-value payoff of player i is

∞∑
s=t

δs−t ln(Ci,t),

where Ci,t is consumption of player i at period t. Output Yi,t is divided into consumption

Ci,t and investment. Assuming full depreciation of capital, we can write the end-of-period

level of capital as

Ki,t = Yi,t − Ci,t.

The production function in country i is given by

Yi,t = Ω(Gt)Ai,t−1K
κ
i,t−1Hi(N

1
i,t, . . . , N

L
i,t) with

L∑
l=1

N l
i,t = 1,

where Gt is the stock of carbon (after absorbing the current emission), Ai,t−1 is the total

factor productivity, N1
i,t is the fraction of labor used in the final goods sector and N l

i,t,

l > 1, is the fraction of labor used for intermediate-good production sector l. Here, Ω(·)
and Hi(·) are some functions. The production process generates carbon dioxide as a

byproduct, and the level gi,t of carbon emission depends on the labor allocation vector

(N1
i,t, . . . , N

L
i,t) via

gi,t = Ei(N
1
i,t, . . . , N

L
i,t)

for some function Ei(·). The equation of motion for carbon stock is

Gt = F (gt, Gt−1)

for some function F (·).
We can simplify this structural model provided that

H∗
i (gi) := max

N1
i ,...,N

L
i

{
Hi(N

1
i , . . . , N

L
i )
∣∣Ei(N

1
i , . . . , N

L
i ) ≤ gi

}
is well defined for each gi > 0. The solution of this maximization problem determines the

labor allocation vector that maximizes production without exceeding carbon emissions gi.

Then, without loss of generality, we may simplify the production function as a function

17To preserve the linear-in-state structure we treat the oil stock as unlimited, whereas GHKT assume
that the stock is scarce, leading to positive Hotelling rent. In calibrating the model (Section 5) our
assumption that oil extraction is costly replaces their scarcity assumption. Merely in the interest of
simplicity, we treat the stock of carbon as a scalar. GHKT represent the climate system using a vector
of stocks, making it possible to use a multi-box model that can incorporate delay between emissions and
changes in damages (Gerlagh and Liski, 2018).
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of emission level:

Yi,t = Ω(Gt)Ai,t−1K
κ
i,t−1H

∗
i (gi,t).

Moreover, denoting si,t := Ki,t/Yi,t as the savings rate, we can write

∞∑
v=t

δv−t ln(Ci,v) =
κ

1− δκ
ln(Ki,t−1) +

1

1− δκ

∞∑
v=t

δv−t ln (Ai,v−1)

+

∞∑
v=t

δv−t

(
ln(1− si,v) +

δκ

1− δκ
ln(si,v)

)

+
1

1− δκ

∞∑
v=t

δv−t {ln (H∗
i (gi,v)Ω(Gv))} .

The first and the second terms on the right-hand side are both predetermined at the

beginning of period t. Moreover, since the third and the fourth terms are additive and

separable, the optimal choice of savings rate can be immediately computed as s = δκ,

irrespective of the values of (Gv, gi,v)
∞
v=t. Consequently, we can treat the third term as a

constant, with respect to the emissions choice. It follows that the normalized discounted

payoff of player i can be written as

∞∑
v=t

δv−t ln (H∗
i (gi,v)Ω(Gv)) .

Therefore, this model is represented by a structural model ⟨δ,N, (Φi)i∈N , F,∞⟩ where

Φi(g, G) = ln (H∗
i (gi)Ω(G)).

In the economics literature, the climate system is often modeled as a linear system,

which suggests specifying F (g, G) = σG +
∑

i∈N gi. Also, in this type of model, it is

reasonable to specify Ω(G) = e−cG for some c > 0 (Hassler et al., 2016). Hence, as long

as ϕi(g) = ln (H∗
i (gi)) is consistent with Assumption 3, we can apply Propositions 4.1

and 4.2. This model nests Example 3.

5 Climate negotiations

We use the model in Example 4 to explore the implications of sober optimism for climate

negotiations. We closely follow GHKT’s calibration, but we choose parameters so that

our baseline n = 15 provides an index of “fragmentation” in the actual world; a larger

n corresponds to a more fragmented world.18 Greater fragmentation of the world polity

alters the non-cooperative equilibrium without altering the fully cooperative outcome.

The small stable coalition in this model always has m∗ = 3 members; for n = 15 this

coalition contains 20% of the entire world. For our decadal discount factor δ = 0.86, there

18Appendix C explains our calibration and provides additional results. With n = 15 we choose other
parameters so that the noncooperative equilibrium emissions, absent any climate coalition, matches actual
levels, and the fully cooperative equilibrium emissions matches the optimum in GHKT. Although n = 15
is arbitrary, by tying other parameter values to this choice, we can associate n = 15 with the status quo.
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Table 1: Equilibria with multiple coalition sizes

m∗ δm∗ Πm∗

δ maxΠm∗

δ − inf Πm∗

δ welfare gain (% GWP)

5 0.375 (0.001, 0.074] 0.072 (0.38, 0.60]

10 0.688 (0.198, 0.287] 0.089 (1.96, 2.22]

15 0.779 (0.517, 0.662] 0.146 (4.20, 4.41]

exists an equilibrium in which this small IEA emerges and is subsequently abandoned in

every period; the welfare gain in this equilibrium equals 0.37 percent of decadal Gross

World Product (GWP).19 Sustainable coalitions having 5 to 15 members also arise as

another type of equilibrium. Table 1 shows for m∗ ∈ {5, 10, 15}: the critical δm∗ above

which a sustainable IEA with m∗ members exist; the interval of beliefs that support this

m∗; the width of this interval; and the range of welfare gains.20 For example, there exists a

sustainable grand coalition (m∗ = 15) if players believe that the probability of achieving

this coalition in a period is greater than 0.52 and less than 0.66; these probabilities

correspond to an expected time-to-arrival of the coalition of between 1.5 and 2 decades.

In comparison, the expected time to arrival under beliefs that support a sustainable

coalition with m∗ = 10 ranges from about 3.5 to 5 decades. The expected welfare gain

associated with the sustainable grand coalition is 4.2 to 4.4 percent of decadal GWP,

which is much larger than the gain under the succession of small stable coalitions. The

value of sober optimism (i.e., switching from the worst to best equilibrium) is about 4

percent of decadal GWP.

By changing n, we can consider scenarios with different levels of fragmentation. An

increase in n, representing a more fragmented world, leads to significant increases in

the non-cooperative level of emissions, and to a corresponding large increase in welfare

associated with any large coalition. We find that the critical discount factor above which

the grand coalition is sustainable increases with n and it exceeds our parameter δ = 0.86

for n ≥ 25. As n ranges from 24 to 100, the fraction of countries that join the largest

sustainable coalition (which we denote m̄∗ := maxm∗) decreases from 1 to 0.2; see the

top left panel of Figure 5. This result shows the importance of agglomerations of smaller

countries into larger blocs, e.g. the EU and the BRIC countries. These agglomerations

may be necessary (if not sufficient) for achieving the grand coalition as a sustainable

IEA. Even with sober optimism, the grand coalition would be impossible for a highly

fragmented world.

The top right panel of Figure 5 provides another perspective on the effect of fragmen-

tation. The upper and lower curves in this figure graph the supremum and infimum of

19We calculate the welfare increase in moving from the non-cooperative equilibrium to the equilibrium
with the small IEA, and convert to consumption units by dividing by the marginal utility of consumption
in the first decade. We then express this dollar amount as a percent of GWP in the first decade.

20These welfare gains are large relative to those in Nordhaus (2008) but small relative to the levels in
the GHKT model (Barrage, 2014).
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Figure 5: The impacts of fragmentation on equilibrium coalition sizes (top left), sustain-
able coalition size with the largest belief interval (top right), welfare gains (bottom left),
and the belief interval for the largest sustainable coalition (bottom right).

beliefs that support the largest sustainable coalition. The distance between these curves

is “substantial” when n is small, but the distance becomes imperceptible (although it

remains positive) for large n. The narrowing range of beliefs that supports the largest

sustainable equilibrium reflects the increased difficulty of coordinating on beliefs that

support a good outcome, as the world becomes more fragmented. The fact that both

the upper and lower bound of beliefs supporting the best equilibrium outcome fall with

n > 24 mean that not only does the best outcome become less good (in that a smaller

fraction of countries join the IEA), but it also becomes less likely.

The bottom left panel of Figure 5 depicts the welfare consequence of fragmentation.

The highest curve shows the welfare gain in moving from the non-cooperative equilibrium

to the global optimum. The lowest curve shows the minimum welfare gain among the

equilibria in the IEA game.21 The non-monotonic curve shows the maximum welfare gain

21For small n there exists a “pessimistic equilibrium”, the one in which all stable coalitions have three
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among the equilibria in the IEA game: the gain under the equilibrium having the largest

sustainable coalition. The difference between the maximum and minimum welfare gains

can be interpreted as the value of sober optimism. As n rises above 24, the maximum

welfare gain falls sharply because the largest size of sustainable coalitions becomes smaller

(top left panel) and the beliefs that support these coalitions must involve a low probability

of reaching them, and a correspondingly long time-to-arrival (top right panel).

Our two equilibrium selection criteria predict the same outcome for small n: for n ≤ 19

they both select the largest sustainable coalition. For larger n, the Pareto criterion still

selects the largest sustainable coalitions, but the width-based criterion makes a different

prediction.22 The bottom right panel of Figure 5, shows that for n ≤ 19 the interval Πm∗
δ

is widest for the grand coalition, where m∗ = n. For n > 20, the coalition having the

widest interval of beliefs is m∗ = 6. Hence, if the world becomes more fragmented, the

width-based refinement selects sustainable coalitions with only 6 members even though

much larger coalitions are also sustainable.

6 Discussion

Here we relate our results to those in the literature and thereby further clarify our con-

tributions. We discuss three important aspects of the model: punishment, renegotiation,

and belief.

6.1 Punishment

Sustaining cooperative outcomes in a repeated game setting requires some form of pun-

ishment. In our model, if players leave a sustainable coalition, remaining members will

abrogate the agreement in the next period. That abandonment makes the original defector

worse off, and thus plays a role similar to the punishment in the standard repeated games.

Importantly, however, there are no self-harming punishments in our model: abandoning

an agreement implies neither the end of negotiation (as in the grim-trigger strategy) nor a

retaliation against non-compliance (as in the getting-even strategy). Signatories abandon

the agreement not to deter potential defectors but to make a fresh start by renegotiating.

Battaglini and Harstad (2016) use a similar mechanism, where defecting from an

equilibrium coalition triggers the replacement of a long-term agreement (which circum-

vents a hold-up problem) by a short-term agreement (which suffers from the hold-up

problem). Their punishment mechanism requires that countries are able to commit to

long-term agreements, whereas in our model countries can always reject any previously

signed agreement. Kovac and Schmidt (2017) do not require long term commitment, but

they assume that failure to reach an agreement results in costly delay. Our model has

members. For large n all equilibria contain sustainable coalitions having five or more members. Here, the
equilibrium with the lowest welfare corresponds to the equilibrium with the smallest sustainable coalition.

22Section 3.3 explains why we associate a smaller interval of beliefs that support a sustainable coalition
with greater difficulty in achieving that coalition .
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no such exogenous delay. A new round of negotiation immediately takes place and a new

stable agreement arises endogenously. Opening a new round of negotiation may be costly

solely due to the multiplicity of equilibria, making the consequence of defection uncertain.

Our model is distinctive in explaining, as an integral part of the equilibrium, nego-

tiation “failures” and the subsequent renegotiation. In other dynamic models, on the

equilibrium path the final agreement occurs in the first period (Battaglini and Harstad,

2016; Kovac and Schmidt, 2017). There, negotiation either fails or succeeds, depend-

ing on primitives of the model. The equilibrium trajectory in our model contains both

short-term failures and a long-term success. In reality, many IEAs evolve over time and

ultimately become more effective.

6.2 Renegotiation

Barrett (1999, 2002, 2003) and Finus and Rundshagen (1998) argue that self-enforcing

international agreements must be renegotiation-proof as defined by Farrell and Maskin

(1989). Players who anticipate future renegotiation realize that it is in their interest to

renegotiate even after entering into a punishment phase. The possibility of renegotiation

therefore undermines the credibility of punishment, calling into question the plausibility

of the equilibrium that hinges on the punishment. Accordingly, Farrell and Maskin (1989)

suggest that renegotiation proofness should exclude Pareto ranked equilibria. This aspect

of renegotiation-proofness makes good sense in the original context where the unique

cooperative outcome Pareto dominates outcomes in a punishment phase. However, when

there are distinct, equally plausible outcomes in the set of equilibria, their argument is less

convincing; switching from an inefficient equilibrium to one of the more efficient equilibria

is a nontrivial move.

In our setting, the stable set in the second-stage participation game may consist of

small and large coalitions; the latter Pareto dominate the former. Even though all players

prefer larger coalitions, they can rationally believe that the second-stage participation

game could result in small coalitions. Outsiders of a small coalition would be better

off as members of a large coalition, but they would rather wait for other outsiders to

join the coalition.23 The possibility of eventually being an outsider to a large stable

coalition makes it even more attractive to remain as an outsider to a small coalition.

Therefore, even if players were allowed to renegotiate immediately after the second-stage

participation game, a small agreement is a plausible outcome.

We agree that opportunities for renegotiation are integral to a model of IEAs; our

model includes these opportunities. However, we reject the conclusion that transitory

equilibria cannot be Pareto dominated. Players abandon the Pareto-dominated transitory

equilibria at the earliest opportunity, the next period.

23This observation follows from the fact that the IEA participation is a multi-player variant of the
game of chicken, where players make threats to induce others to back down. In the real-world negotiation
process of IEAs, as Bodansky (2001) documents, countries actually play a game of chicken.
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6.3 Beliefs

Our definition of equilibrium is closely related to Aumann’s (1974; 1987) correlated equi-

librium. Negotiations usually follow a pre-negotiation phase where countries share a basic

sense of what might be possible once higher-level negotiations begin. Because the final

outcome of negotiation is contingent upon how things unfold later, the pre-negotiation

phase naturally yields a state-contingent correlated strategy of Aumann (1987), which

we call a common belief. However, the equilibrium conditions we impose on the belief

are stronger than Aumann (1987) requires. In particular, we rule out the possibility that

the communication channel is noisy or that the ‘mediator’ can communicate separately

and confidentially with each country. Moreover, we require an equilibrium correlation

device to include all of the Nash equilibrium outcomes in its support. These additional

restrictions make our analysis conservative. One might obtain a larger equilbrium set by

relaxing these restrictions.

In contrast to previous studies, our analysis highlights the critical (albeit latent) role

of communication. A pre-negotiation phase of international agreements works as a com-

munication channel through which countries build a common belief (a correlation device)

to coordinate their actions. In the static setting pre-play communication can influence the

outcome if players can commit themselves to binding contracts or if a mediator transforms

the game into one of incomplete information (Myerson, 1994). Neither of these possibil-

ities is plausible in international negotiations. We show that in a dynamic setting of a

fairly general participation game, even when no commitment is allowed and no mediator

is available, pre-play communication can decisively affect the outcome by influencing the

common belief. Through the pre-play communication, players need to share the belief

that a sustainable coalition is possible but cannot be taken for granted: their optimism

must be sober, not giddy.

7 Conclusion

We provide a dynamic model of agreements among sovereign nations, in which countries

abandon any agreement when doing so is in their self-interest. This behavior reflects the

reality of international relations, where countries cannot credibly commit to agreements.

Our primary innovation is to replace the deterministic outcome of all previous dynamic

analytic models with an endogenous stochastic process. This feature makes it possible to

identify the connection between players’ beliefs (e.g. their degree of optimism) and the

stochastic process emerging from negotiation.

Contrary to the prevailing pessimistic views about the prospects for IEAs, we find that

countries can cooperate, at least in the long run. If they are fairly patient, (re)opening

the negotiation process might yield either a small or a large coalition. In the next period

small coalitions are abandoned in an attempt to make a fresh start, and large coalitions

are sustained; members of the large coalition remain compliant. This result is based on a
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general reduced-form model and does not require explicit sanctions or direct money trans-

fers. There is no delay of the agreement or assumed punishment phase. Our conclusions

explain why some negotiations achieve meaningful results, even though circumstances

might appear to doom them to failure.

We provide conditions under which the reduced-form model is isomorphic to one with a

pollution stock, making our results applicable to climate treaties. Using this isomorphism

we examine the role of sober optimism in a simple but powerful Integrated Assessment

Model. For a familiar calibration, we find that negotiations might produce the grand

coalition within a couple of decades, but only if countries are soberly optimistic about

the outcome. Greater fragmentation of the world polity, beyond some point, reduces the

fraction of countries that join the largest sustainable equilibrium, and also makes it more

difficult to coordinate on beliefs that yield a good outcome. For these two reasons, the

agglomeration of small nations into a larger bloc, such as the EU or the BRIC, can make a

good outcome more likely. The agglomeration does not alter the set of feasible outcomes,

but it changes strategic incentives.

The simple idea underlying our analysis is worth re-stating here. The exact outcome

of the IEA negotiation process is inherently uncertain due to the multiplicity of equi-

libria. This uncertainty opens the possibility that countries continue cooperating once

they reach a sufficiently good agreement. The emergence of a good agreement requires

that countries set the bar sufficiently high and also believe that it is possible to clear the

hurdle. Insufficient optimism makes countries willing to settle for too little cooperation.

Excessive optimism would undermine a large existing agreement by making members

think that defection is cheap. Meaningful cooperation among sovereign countries requires

sober optimism: the understanding that cooperation is possible but not easy to achieve.
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A Proofs

This appendix provides proofs of the propositions stated in the text. Some of the proofs

involve tedious steps, which we summarize in a series of lemmas. Referees’ Appendix B

contains the proofs of these lemmas

A.1 Proof of Proposition 3.1

For this proposition, we use the following lemma.

Lemma A.1. Given the strategy profile (14), M satisfies (6) only if |M | ∈ {m∗, l
∗}.

Proof. (Proposition 3.1) We first prove the ‘if’ part of the proposition. Suppose that the

discount factor δ satisfies

δ < δl∗ :=
ul

∗−1
out − ul

∗
in

ul
∗−1
out − ūm∗

∈ (0, 1]. (A.1)

Let (πM )M∈M and (ai)i∈N be defined as in Proposition 3.1. Then, given (πM )M∈M and

(ai)i∈N , the value functions defined by

Vi(M−1) =

 1
1−δui(M−1) if |M−1| ≥ l∗

1
1−δ ū

m∗ otherwise

satisfy (10). Since the support of the common belief only includes coalitions with m∗ < l∗

members,

Eπ

[
ui(M̃) + δVi(M̃)

]
= Eπ

[
ui(M̃)

]
+ δEπ

[
Vi(M̃)

]
= ūm∗ + δ

1

1− δ
ūm∗

=
1

1− δ
ūm∗ . (A.2)

The last two equalities imply that for any M−1

ui(M−1) + δVi(M−1) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
⇐⇒ ui(M−1) ≥ ūm∗ (A.3)

because if |M−1| ≥ l∗,

ui(M−1) + δVi(M−1) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
⇐⇒ ui(M−1) +

δ

1− δ
ui(M−1) ≥

1

1− δ
ūm∗

⇐⇒ ui(M−1) ≥ ūm∗
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and if |M−1| < l∗,

ui(M−1) + δVi(M−1) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
⇐⇒ ui(M−1) +

δ

1− δ
ūm∗
i ≥ 1

1− δ
ūm∗

⇐⇒ ui(M−1) ≥ ūm∗ .

Notice that for i ∈ M−1, ui(M−1) = u
|M−1|
in , so by the definition of l∗

ui(M−1) ≥ ūm∗ ⇐⇒ u
|M−1|
in ≥ ūm∗ ⇐⇒ |M−1| ≥ l∗. (A.4)

In addition, for i /∈ M−1, where ui(M−1) = u
|M−1|
out ,

ui(M−1) ≥ ūm∗ ⇐⇒ u
|M−1|
out ≥ ūm∗ ⇐⇒ |M−1| ≥ m∗. (A.5)

One can confirm the last equivalence in (A.5) by observing

|M−1| ≥ m∗ =⇒ u
|M−1|
out ≥ um∗

out > um∗
in

=⇒ u
|M−1|
out >

m∗
n

um∗
in +

(
1− m∗

n

)
um∗
out = ūm∗ ,

where we use Assumption 1-(a), and

|M−1| < m∗ =⇒ u
|M−1|
out ≤ u

|M−1|+1
in ≤ um∗

in < um∗
out

=⇒ u
|M−1|
out <

m∗
n

um∗
in +

(
1− m∗

n

)
um∗
out = ūm∗ ,

where we use (11) and Assumption 1-(a) and (d). Hence, it follows from (A.3), (A.4),

and (A.5) that given (πM )M∈M and (Vi)i∈N , the policy functions (ai)i∈N defined by (14)

do indeed satisfy (9).

To complete the proof of the ‘if’ part, we next show that given (Vi)i∈N , M satisfies (6)

if and only if |M | = m∗. There are two cases to consider. Consider first the case where

l∗ = m∗ + 1. Let M be a coalition with |M | = m∗. Then for each i ∈ M ,

ui(M) + δVi(M) = um∗
in +

δ

1− δ
ūm∗
i

≥ um∗−1
out +

δ

1− δ
ūm∗

= ui(M \ {i}) + δVi(M \ {i}),

where the inequality follows from the definition of m∗. Therefore, the coalition M is

internally stable. We now establish that this coalition is also externally stable. For each
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i /∈ M , because (by hypothesis) m∗ + 1 = l∗, we have

ui(M ∪ {i}) + δVi(M ∪ {i}) = ul
∗
in +

δ

1− δ
ul

∗
in

< ul
∗−1
out +

δ

1− δ
ūm∗

= ui(M) + δVi(M),

where the inequality is due to (A.1). Therefore, the coalition M is externally stable. We

conclude that if l∗ = m∗ + 1, coalitions of size m∗ satisfy (6).

We need to prove that none of the other coalitions (i.e., those with |M | ̸= m∗) satisfy

(6). Because Lemma A.1 states that a coalition is stable only if its size is m∗ or l∗, we

need only show that coalitions of size l∗ do not satisfy (6). In fact, coalitions of size l∗

are not internally stable because for each i ∈ M with |M | = l∗,

ui(M) + δVi(M) = ul
∗
in +

δ

1− δ
ul

∗
in

< ul
∗−1
out +

δ

1− δ
ūm∗

= ui(M \ {i}) + δVi(M \ {i}),

where the inequality is again implied by (A.1).

Consider the other case where l∗ > m∗+1, where the definition of m∗ directly implies

that coalitions of size m∗ satisfy (6). Also, exactly the same argument as in the first case

shows that coalitions of size l∗ are not internally stable. Hence, together with Lemma A.1,

we conclude that M satisfies (6) if and only if |M | = m∗. This completes the proof of the

‘if’ part.

To prove the ‘only if’ part, suppose that δ ≥ δl∗ . We shall show that the common belief

(πM )M∈M and the policy functions (ai)i∈N defined in Proposition 3.1 do not constitute

an equilibrium. In particular, we claim that coalitions of size l∗ satisfy (6) if δ ≥ δl∗ .

First, coalitions of size l∗ are internally stable because for each i ∈ M with |M | = l∗,

ui(M) + δVi(M) = ul
∗
in +

δ

1− δ
ul

∗
in

≥ ul
∗−1
out +

δ

1− δ
ūm∗

= ui(M \ {i}) + δVi(M \ {i}),

where the inequality follows from δ ≥ δl∗ . Also, coalitions of size l∗ are externally stable
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because for each i /∈ M with |M | = l∗,

ui(M ∪ {i}) + δVi(M ∪ {i}) = ul
∗+1
in +

δ

1− δ
ul

∗+1
in

< ul
∗
out +

δ

1− δ
ul

∗
out

= ui(M) + δVi(M),

where the inequality is due to (11) and the fact that l∗ ≥ m∗. However, the stability of

l∗ is inconsistent with the common belief defined in Proposition 3.1, which presumes that

only coalitions of size m∗ satisfy (6).

A.2 Proof of Proposition 3.2

We begin with a roadmap of the proof. We first show that part (a) implies part (b). To

this end, we verify that strategy (16) in part (a) constitutes an equilibrium only if (19)

holds. We then show that this equation holds only if inequality (17) holds. We then show

that part (b) imnplies part (a). To this end, we take as given a probability in the interval

defined by (19) and we assume that δ satisfies (17). We then show that the equilibrium

strategy satisfies (16).

We use the following notations. For the common belief (πM )M∈M satisfying (15),

denote as πm∗
the probability that any coalition of size m∗ is drawn from the distribution,

namely, πm∗
:=
∑

|M |=m∗ πM . Obviously, πm∗
must satisfy πm∗

> 0. Also πm∗
must

satisfy 1 > πm∗
because otherwise coalitions of size m∗ would not be in the support.

Also, we define ūπ by

ūπ := ūm
∗ πm∗

1− δ(1− πm∗)
+ ūm∗

(
1− πm∗

1− δ(1− πm∗)

)
, (A.6)

which, as shown in the following lemma, represents players’ expected per-period payoff if

they reopen the negotiation process.

Lemma A.2. Given the common belief satisfying (15) and the strategy profile defined by

(16), the associated value functions (Vi)i∈N are given by

Vi(M−1) =

 1
1−δui(M−1) if |M−1| ≥ m∗

1
1−δ ū

π otherwise.
(A.7)

Lemma A.3. If the common belief satisfying (15) and the strategy profile defined by (16)

constitute an equilibrium, it must be the case that

πm∗
(δ) :=

δ − um∗−1
out −um∗

in

um∗−1
out −ūm∗

δ + δ
1−δ

ūm∗−um∗
in

um∗−1
out −ūm∗

≥ πm∗
>

(1− δ)
(
um

∗−1
in − ūm∗

)
ūm∗ − ūm∗ − δ

(
um

∗−1
in − ūm∗

) =: πm∗
(δ). (A.8)
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Lemma A.4. For each m∗ ≥ l∗,

πm∗
(δ) > max

{
0, πm∗

(δ)
}

(A.9)

if and only if

δ >
um

∗−1
out − um

∗
in

um
∗−1

out −max{ūm∗ , um
∗−1

in }
= δm∗ . (A.10)

Proof. (Proposition 3.2, a) ⇒ b)) Because πm∗
satisfies 1 > πm∗

> 0, (A.8) in Lemma A.3

requires

πm∗
(δ) > max

{
0, πm∗

(δ)
}
. (A.11)

Hence, statement a) of the proposition requires that (A.11) be true, and by Lemma A.3,

(A.11) is equivalent to δ > δm∗ , which is statement b). Therefore, we conclude that

statement a) implies statement b).

We now prove the converse: statement b) in the proposition implies statement a),

with the help of the following lemma.

Lemma A.5. Suppose that δ > δm∗. Given the common belief satisfying (15) and the

strategy profile defined by (16), M is stable if and only if |M | ∈ {m∗,m
∗}.

Proof. (Proposition 3.2, a) ⇐ b))

Assuming that statement b) is true (i.e., δ > δm∗), construct an equilibrium combi-

nation of belief and strategy as follows. First, let Πm∗
δ ⊂ (0, 1) be the interval defined as

(19):

Πm∗
δ =

(
max{0, πm∗

(δ)}, πm∗
(δ)
]
.

We know from Lemma A.4 that Πm∗
δ is nonempty if and only if δ > δm∗ . Therefore, we

can choose πm∗ ∈ Πm∗
δ and let (πM )M∈M be the belief defined as (18). We note that this

belief clearly satisfies (15). Let (ai)i∈N be the strategy profile defined as (16) where we

choose k∗ ∈ {m∗, . . . , n− 1} such that

uk
∗

out ≥ ūπ > uk
∗−1

out , (A.12)

where ūπ is defined in (A.6). Outsiders want to stick with an inherited coalition having

k∗ members but they prefer to reopen negotiations if the inherited coalition has k∗ − 1

members. Under Assumption 1, such a k∗ always exists and is unique because

un−1
out > unin = ūn > ūπ > ūm∗ > um∗

in ≥ um∗−1
out (A.13)

and umout is strictly increasing in m ≥ m∗ − 1. By (A.13), the first inequality in (A.12) is

satisfied at k∗ = n−1 and the second inequality is satisfied at k∗ = m∗. Choose k
∗ as the

smallest integer (which of course is unique) that satisfies the first inequality in (A.12);

then k∗ − 1 also satisfies the second inequality.
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With this combination of belief and strategy, Lemma A.2 shows that the associated

value functions (Vi)i∈N are given by

Vi(M−1) =


1

1−δui(M−1) if |M−1| ≥ m∗

Eπ

[
ui(M̃) + δVi(M̃)

]
= 1

1−δ ū
π otherwise.

With (Vi)i∈N given, Lemma A.5 shows that M satisfies (6) (i.e., M is stable) if and only

if |M | ∈ {m∗,m
∗}. Hence, to complete the proof, all we need to show is that (ai)i∈N

solves (9) given (Vi)∈N and (πM )M∈M. Fix M−1 and first consider an arbitrary member

i ∈ M−1. If this player sticks with M−1, she obtains the payoff

ui(M−1) + δVi(M−1) =

 1
1−δu

|M−1|
in if |M−1| ≥ m∗

u
|M−1|
in + δ

1−δ ū
π if |M−1| < m∗.

(A.14)

If she abandons M−1, she obtains the payoff

Eπ

[
ui(M̃) + δVi(M̃)

]
=

1

1− δ
ūπ. (A.15)

Combining (A.14) and (A.15) implies the equivalence

ui(M−1) + δVi(M−1) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
⇐⇒ u

|M−1|
in ≥ ūπ

for i ∈ M−1. This equivalence is true regardless of the choice of M−1. Therefore, the

strategy profile defined by (16) is optimal for members of any existing coalition if

um
∗

in ≥ ūπ > um
∗−1

in . (A.16)

The first inequality states that members of an existing coalition prefer sticking with the

coalition whenever it has at least m∗ members. The second inequality states that they

would rather reopen the negotiation if the existing coalition is smaller than m∗. We need

to show that (A.16) in fact holds. Because πm∗ ≤ πm∗
(δ), it follows that

um
∗

in ≥ (1− δ)um
∗−1

out + δūπ. (A.17)

Because um
∗−1

out > um
∗

in , we then have

um
∗−1

out > (1− δ)um
∗−1

out + δūπ

and therefore

um
∗−1

out > ūπ. (A.18)
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Combining (A.17) and (A.18) yields

um
∗

in ≥ (1− δ)um
∗−1

out + δūπ > ūπ,

which proves the first inequality in (A.16). The second inequality in (A.16) directly

follows from the fact that πm∗
> πm∗

(δ). We have therefore proved that the strategy

profile defined by (16) is optimal for members of M−1.

Next consider an arbitrary nonmember i /∈ M−1. If this player sticks with M−1, she

obtains the payoff

ui(M−1) + δVi(M−1) =

 1
1−δu

|M−1|
out if |M−1| ≥ m∗

u
|M−1|
out + δ

1−δ ū
π if |M−1| < m∗.

(A.19)

If instead she defects, triggering a new round of negotiation, her payoff is

Eπ

[
ui(M̃) + δVi(M̃)

]
=

1

1− δ
ūπ. (A.20)

Combining (A.19) and (A.20) implies the equivalence

ui(M−1) + δVi(M−1) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
⇐⇒ u

|M−1|
out ≥ ūπ

for i /∈ M−1. This equivalence is true regardless of the choice of M−1. Therefore, the

strategy profile defined by (16) is optimal for nonmembers of any existing coalition if

uk
∗

out ≥ ūπ > uk
∗−1

out . (A.21)

The interpretation of these inequalities is analogous to that of (A.16). By construction

of k∗, (A.21) in fact holds. Therefore, the strategy profile defined by (16) is also optimal

for nonmembers of M−1.

A.3 Proof of Proposition 3.3

As above, π denotes a symmetric equilibrium belief and M its support; (ai)i∈N and

(Vi)i∈N are the equilibrium policy functions and the value functions, respectively. We

begin with a roadmap of the proof. We first use the assumptions that beliefs and reduced-

form payoffs are symmetric (Definition 2.2 and Assumption 1) to show that the expected

payoff from reopening the negotiation process must be the same for all countries (Lem-

mas A.6 and A.7). Then we show that coalitions with fewer than m∗ members cannot be

included in M (Lemmas A.8 and A.9). We also show that any coalition in M with more

than m∗ members must be sustainable and any defection from such a coalition must make

it unsustainable (Lemma A.10). It follows that if M contains coalitions of three or more

distinct sizes, we can find M,M ′ ∈ M such that |M | > |M ′| > m∗ and M ′ is sustainable

but M \ {i} is not, for any i ∈ M , in spite of the fact that M \ {i} is not smaller than
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M ′. This observation, together with the inequalities derived in Lemma A.11, causes a

contradiction.

Lemma A.6. For any M,M ′ ∈ N with |M | = |M ′|, if M satisfies ai(M) = 1 for all

i ∈ N , so does M ′.

Lemma A.7. The expected payoff from reopening the negotiation process is identical for

all players, namely,

Eπ

[
ui(M̃) + δVi(M̃)

]
= Eπ

[
uj(M̃) + δVj(M̃)

]
∀i, j ∈ N. (A.22)

Using this intermediate result, we can prove the following lemmas.

Lemma A.8. If M ∈ M and |M | < m∗, then M is sustainable but M ∪ {i} is not

sustainable for any i ∈ N \M .

Lemma A.9. If M ∈ M, it must be the case that |M | ≥ m∗.

Lemma A.10. If M ∈ M and |M | > m∗, then M is sustainable but M \ {i} is not

sustainable for any i ∈ M .

Combining these lemmas yields the following result, which we use for the proof of the

proposition.

Lemma A.11. If M ∈ M and |M | ̸= m∗, it must be the case that

u
|M |
in ≥ (1− δ)Eπ

[
ui(M̃) + δVi(M̃)

]
> u

|M |−1
in ∀i ∈ N. (A.23)

Proof. (Proposition 3.3) Suppose that the support M of the symmetric equilibrium belief

contains coalitions of three or more distinct sizes. Then we can choose M,M ′ ∈ M such

that |M | ̸= |M ′| and neither of them is of size m∗. Assume that |M | > |M ′| without loss
of generality.

Fix i ∈ N arbitrarily. By Lemma A.11, we have

u
|M |
in ≥ (1− δ)Eπ

[
ui(M̃) + δVi(M̃)

]
> u

|M |−1
in (A.24)

and

u
|M ′|
in ≥ (1− δ)Eπ

[
ui(M̃) + δVi(M̃)

]
> u

|M ′|−1
in . (A.25)

Because |M | − 1 ≥ |M ′|, Assumption 1-a) implies

u
|M |−1
in ≥ u

|M ′|
in . (A.26)

Combining (A.24)–(A.26) yields

(1− δ)Eπ

[
ui(M̃) + δVi(M̃)

]
> (1− δ)Eπ

[
ui(M̃) + δVi(M̃)

]
, (A.27)
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a contradiction. Therefore we conclude that the support of any symmetric equilibrium

belief cannot contain coalitions of three or more distinct sizes.

A.4 Proof of Proposition 3.4

Proof. (Proposition 3.4) As in the proof of Remark 1, define θ = γ/(γ − 1). Using (1), it

is easy to see that
um

∗−1
out − um

∗
in

cθ
= (m∗ − 1)θ − 1

θ
(m∗)θ +

1

θ
,

and
um

∗−1
out − um

∗−1
in

cθ
=

θ − 1

θ

(
(m∗ − 1)θ − 1

)
.

Because m∗ > l∗, we have max{ūm∗ , um
∗−1

in } = um
∗−1

in . Therefore, using (17)

δm∗ =
um

∗−1
out − um

∗
in

um
∗−1

out − um
∗−1

in

=
θ

θ−1(m
∗ − 1)θ − 1

θ−1

(
(m∗)θ − 1

)
(m∗ − 1)θ − 1

as claimed in the proposition. To prove that δm∗ is increasing in m∗, note that

∂δm∗

∂m∗
1

δm∗
=

θ2(m∗ − 1)θ−1 − θ(m∗)θ−1

θ(m∗ − 1)θ − ((m∗)θ − 1)
− θ(m∗ − 1)θ−1

(m∗ − 1)θ − 1
,

which is positive if and only if

(m∗)θ−1 − θ > 1−
(

m∗

m∗ − 1

)θ−1

. (A.28)

Because θ > 1, the right-hand side of (A.28) is negative for any m∗ ≥ 2. The left-hand

side of (A.28) is an increasing function of m∗ and it is easy to verify that it is positive at

m∗ = e. Therefore, (A.28) holds if m∗ ≥ e. By Remark 1, we know that m∗ ≥ 2 for all

θ > 1. The fact that m∗ > m∗ + 1 implies m∗ > e, so we conclude that for all θ > 1 δm∗

is increasing in m∗.

A.5 Proof of Proposition 3.5

Proof. (Proposition 3.5) Because m∗ > m∗, using (3) yields

um
∗−1

out − um
∗

in = 1− c and um
∗−1

out − um
∗−1

in = 1,

from which we obtain

δm∗ =
um

∗−1
out − um

∗
in

um
∗−1

out − um
∗−1

in

= 1− c.
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We briefly discuss the mechanism behind this result, which depends on the stage-

2 stability condition. In stage 2, a member’s incentive to leave a coalition falls with

c. If a member of a coalition of size m∗ > m∗ leaves the coalition, she obtains the

immediate net benefit of um
∗−1

out − um
∗

in = 1 − c (the abatement cost the player avoids by

leaving the coalition, minus the private benefit she receives from this abatement). Because

m∗ > m∗ ≥ 1/c, her defection does not influence the abatement levels of the other players

in the current period. Coalitions of size m∗ are not stable in the static setting because

the short run benefit of defecting, 1 − c, is positive, and there is no long run cost of

defecting. In the dynamic setting, however, a player needs to take into account (at stage

2) the next-period consequence of a current deviation from a coalition with m∗ members.

That deviation causes players to enter the next period with a coalition of size m∗ − 1.

The remaining members disband this coalition, inflicting a long run cost on the erstwhile

member who defected in the previous period. The next round of negotiation might result

in a small coalition, m∗. The cost of leaving the coalition depends on the discount factor.

To discourage members from defecting, the discount factor needs to be large enough to

counteract the immediate net benefit of leaving, which is 1− c.

A.6 Proof of Proposition 3.6

To make this proof self-contained, we repeat some definitions used in the proof of Propo-

sition 3.2:

πm∗
(δ) =

δ − αm∗

δ + δ
1−δβm∗

and πm∗
(δ) =

(1− δ)ηm∗

1− δηm∗
. (A.29)

αm∗ :=
um

∗−1
out − um

∗
in

um
∗−1

out − ūm∗
∈ (0, 1), βm∗ :=

ūm
∗ − um

∗
in

um
∗−1

out − ūm∗
≥ 0, (A.30)

and

ηm∗ :=
um

∗−1
in − ūm∗

ūm∗ − ūm∗
∈ [0, 1). (A.31)

With these definitions, we write (19) as

Πm∗
δ =

(
max{0, πm∗

(δ)}, πm∗
(δ)
]
.

Proof. (Proposition 3.6-(a)) We note that βm∗ = 0 for m∗ = n because ūn = unin. Other-

wise, βm∗ is strictly positive. Hence,

lim
δ→1

πm∗
(δ) =

0 if m∗ < n

1− αn =
un
in−ūm∗

un−1
out −ūm∗ > 0 if m∗ = n,

and

lim
δ→1

πm∗
(δ) = 0.
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Therefore,

lim
δ→1

(
maxΠm∗

δ − inf Πm∗
δ

)
= 0

for any m∗ ̸= n, whereas

lim
δ→1

(
maxΠm∗

δ − inf Πm∗
δ

)
=

unin − ūm∗

un−1
out − ūm∗

> 0.

for m∗ = n. It follows that there exists δ∗ ∈ (0, 1) such that

δ > δ∗ =⇒ maxΠn
δ − inf Πn

δ > maxΠm∗
δ − inf Πm∗

δ ∀m∗ ̸= n,

which proves statement (a) of the proposition.

Proof. (Proposition 3.6-(b)) First observe in (A.29) that πm∗
(δ) is decreasing in αm∗ and

βm∗ and πm∗
(δ) is increasing in ηm∗ . Hence for the statement (b) of the proposition to be

true, it suffices to show that αm∗ and βm∗ are both decreasing in m∗ and ηm∗ is increasing

in m∗.

For Example 2, where m∗ = ⌈1/c⌉ ≥ 1/c, we know from (3) that

um
∗

in = −c(n−m∗), um
∗

out = 1− c(n−m∗),

and

ūm
∗
=

m∗

n
um

∗
in +

n−m∗

n
um

∗
out =

n−m∗

n
− c(n−m∗) (A.32)

for any m∗ ≥ m∗ and therefore

αm∗ =
um

∗−1
out − um

∗
in

um
∗−1

out − ūm∗
=

n− cn

cn(m∗ − 1−m∗) +m∗
,

βm∗ =
ūm

∗ − um
∗

in

um
∗−1

out − ūm∗
=

n−m∗

cn(m∗ − 1−m∗) +m∗
,

ηm∗ =
um

∗−1
in − ūm∗

ūm∗ − ūm∗
=

cn− n−m∗+cn
m∗−m∗

cn− 1

for any m∗ ≥ m∗ + 1. A brief inspection of these expressions should reveal that αm∗ and

βm∗ are both decreasing in m∗ and ηm∗ is increasing in m∗, as desired.

A.7 Proof of Proposition 4.1

Proof. (Proposition 4.1) Let (π, (ai)i∈N ) be an equilibrium of reduced-form model ⟨δ,N, (u∞i )i∈N ⟩,
where

u∞i (M) = ϕi(ĝ
∞(M))− c

1− δσ
f(ĝ∞(M)). (A.33)
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Then, by definition, there exist value functions (Vi)i∈N such that M is the collection of

all M ∈ N satisfying

i ∈ M ⇐⇒ u∞i (M ∪ {i}) + δVi(M ∪ {i}) ≥ u∞i (M \ {i}) + δVi(M \ {i}), (A.34)

the policy functions (ai)i∈N satisfy

ai(M−1) ∈ argmax
ai∈{0,1}

{
[u∞i (M−1) + δVi(M−1)] ai

+ Eπ

[
u∞i (M̃) + δVi(M̃)

]
(1− ai)

}
, (A.35)

and the value functions (Vi)i∈N solve

Vi(M−1) =

u∞i (M−1) + δVi(M−1) if
∏

j∈N aj(M−1) = 1

Eπ

[
u∞i (M̃) + δVi(M̃)

]
otherwise.

(A.36)

Now define functions (V ∞
i )i∈N by

V ∞
i (M−1, G−1) := Vi(M−1)−

c

1− δσ
σG−1.

Given (A.33), (A.34), (A.35), (A.36), (26), and (27), it is straightforward to see that

(π, (ai)i∈N , (ĝ∞i )i∈N ) satisfies Definition 4.1 as an equilibrium of structural model ⟨δ,N, (Φi)i∈N , F,∞⟩
with (V ∞

i )i∈N being the value functions associated with the structural model.

A.8 Proof of Proposition 4.2

For this proposition, we begin with the following lemma.

Lemma A.12. Under Assumptions 2 and 3, if (π1, (a1i )i∈N , (g1i )i∈N ) is an equilibrium

of the structural model ⟨δ,N, (Φi)i∈N , F, 1⟩, then the support M1 of the belief and a1i are

both independent of G−1 and

g1i (M,G−1, 1) = ĝ1i (M), (A.37)

where ĝ1i is defined in Assumption 3. The value function associated with this model is

given by

V 1
i (M−1, G−1, 1) = v1i (M−1)− c

1− (δσ)1

1− δσ
σG−1

for some function v1i .

The next lemma generalizes Lemma A.12.

Lemma A.13. Under Assumptions 2 and 3, for each T < ∞, if (πT , (aTi )i∈N , (gTi )i∈N )

is an equilibrium of structural model ⟨δ,N, (Φi)i∈N , F, T ⟩, then the support MT of the
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belief and aTi are both independent of G−1 and

gTi (M,G−1, τ) = ĝτi (M) (A.38)

for each τ ≤ T , where ĝτi is defined in Assumption 3. The value function associated with

this model is given by

V T
i (M−1, G−1, τ) = vτi (M−1)− c

1− (δσ)τ

1− δσ
σG−1

for some function vτi for each τ ≤ T .

Proof. (Proposition 4.2) Let (π∞, (a∞i )i∈N , (g∞i )i∈N ) be a limit equilibrium of structural

model ⟨δ,N, (Φi)i∈N , F,∞⟩. Then, by Lemma A.13, the corresponding value functions

(V ∞
i )i∈N are given by

V ∞
i (M−1, G−1) = lim

T→∞
V T
i (M−1, G−1, T ) = v∞i (M1)−

c

1− δσ
σG−1 (A.39)

for some functions (v∞i )i∈N . Also, the support M∞ of the belief and (a∞i )i∈N are both

independent of G−1 and the policy functions (g∞i )i∈N coincide with (ĝ∞i )i∈N .

Since (π∞
M , (a∞i )i∈N , (g∞i )i∈N ) is an equilibrium of ⟨δ,N, (Φi)i∈N , F,∞⟩, it satisfies

(23), (24), and (25). It follows that M∞ is the collection of all M ∈ N that satisfies

i ∈ M ⇐⇒ ϕi(ĝ
∞(M ∪ {i}))− c [σG−1 + f(ĝ∞(M ∪ {i}))]

+ δV ∞
i (M ∪ {i}, σG−1 + f(ĝ∞(M ∪ {i})))

≥ ϕi(ĝ
∞(M \ {i}))− c [σG−1 + f(ĝ∞(M \ {i}))]

+ δV ∞
i (M \ {i}, σG−1 + f(ĝ∞(M \ {i})))

⇐⇒ u∞i (M ∪ {i}) + δv∞i (M ∪ {i})

≥ u∞i (M \ {i}) + δv∞i (M \ {i}),

where

u∞i (M) = ϕi(ĝ
∞(M))− c

1− δσ
f(ĝ∞(M)).
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Also, the policy functions (a∞i )i∈N satisfy

a∞i (M−1) ∈ argmax
ai∈{0,1}

{(
Φ̂∞
i (M−1, G−1) + δV̂ ∞(M−1, G−1)

)
ai

+ Eπ

[
Φ̂∞
i (M̃,G−1) + δV̂ ∞(M̃,G−1)

]
(1− ai)

}

= argmax
ai∈{0,1}

{(
u∞i (M−1) + δv∞i (M−1)− c

1− (δσ)∞

1− δσ
σG−1

)
ai

+

(
Eπ

[
u∞i (M̃) + δv∞i (M̃)

]
− c

1− (δσ)∞

1− δσ
σG−1

)
(1− ai)

}

= argmax
ai∈{0,1}

{
[u∞i (M−1) + δv∞i (M−1)] ai

+ Eπ

[
u∞i (M̃) + δv∞i (M̃)

]
(1− ai)

}
,

where

Φ̂∞
i (M,G−1) := Φi(ĝ

∞(M), F (ĝ∞(M), G−1))

= ϕi(ĝ
∞(M))− cf(ĝ∞(M))− cσG−1 (A.40)

and

V̂ ∞(M,G−1) := V ∞(M,F (ĝ∞(M), G−1))

= v∞(M)− c
1− (δσ)∞

1− δσ
σ [f(ĝ∞(M)) + σG−1] . (A.41)

Finally,

V ∞
i (M−1, G−1) =

Φ̂∞
i (M−1, G−1) + δV̂ ∞

i (M−1, G−1) if
∏

j∈N a∞j (M−1, G−1) = 1

Eπ

[
Φ̂∞
i (M̃,G−1) + δV̂ ∞(M̃,G−1)

]
otherwise,

which, together with (A.39), (A.40), and (A.41), implies

v∞i (M−1) =

u∞i (M−1) + δv∞i (M−1) if
∏

j∈N a∞j (M−1, G−1) = 1

Eπ

[
u∞i (M̃) + δv∞i (M̃)

]
otherwise.

Hence (π∞, (a∞i )i∈N ), with the value functions (v∞i )i∈N , satisfies Definition 2.1 as an

equilibrium of reduced-form model ⟨δ,N, (u∞i )i∈N ⟩.
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B Technical information: not for publication

This appendix collects the following technical information.

• Appendix B.1 contains the proof of Remark 1. This Remark is related to Proposi-

tion 1 in Karp and Simon (2013), which shows how the curvature of marginal costs

affects the largest and the smallest stable coalition. We impose more structure here,

leading to uniqueness and monotonicity results.

• Appendix B.2 contains the proof of Remark 2, which is well known, but we provide

its proof to make the paper self-contained.

• Appendix B.3 contains the proof of Lemma A.1, which appeared in the proof of

Proposition 3.1.

• Appendix B.4 contains the proof of Lemmas we used in the proof of Proposition 3.2

(Lemmas A.2–A.5).

• Appendix B.5 contains the proofs of Lemmas we used in the proof of Proposition 3.3

(Lemmas A.6–A.11).

• Appendix B.6 contains the proofs of Lemmas we used in the proof of Proposition 4.2

(Lemmas A.12–A.13).

• Appendix B.7 presents numerical examples we briefly mentioned in Section 3.1.

B.1 Proof of Remark 1

To simplify the notation, we define θ := γ/(γ − 1). Note that θ is strictly decreasing in

γ ∈ (1,∞) with limγ→1 θ = ∞ and limγ→∞ θ = 1. We now show that for each θ, there

exists a unique integer m∗ such that a coalition M is stable if and only if |M | = m∗. The

integer m∗ is given by

m∗ = min{n, ⌊x(θ)⌋}, (B.42)

where ⌊x(θ)⌋ (the floor function) is the greatest integer weakly smaller than x(θ). Here

x(θ) is the unique root of Γ(x, θ) = 0, where Γ(x, θ) is defined as

Γ(x, θ) := θ
(x− 1)θ

xθ − 1
− 1 ∀x ∈ (1,∞).

We characterize m∗ by characterizing x(θ). In particular, we prove that x(θ) is strictly

increasing in θ ∈ (1,∞) with limθ→1 x(θ) ∈ (2, 3) and limθ→∞ x(θ) = ∞. A key step in

the proof is to show that x(θ) is a bijective mapping and therefore is monotonic.

With this roadmap in mind, we first prove the following lemma.

Lemma B.1. For each θ ∈ (1,∞), Γ(x, θ) is strictly increasing in x and there exists

unique x ∈ (1,∞) such that Γ(x, θ) = 0.
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Proof. Fix θ ∈ (1,∞). Then we have

∂Γ(x, θ)

∂x
= θ2

(x− 1)θ−1

(xθ − 1)2
(xθ−1 − 1) > 0 ∀x ∈ (1,∞),

which means that Γ(x, θ) is strictly increasing in x. Using L’Hospital’s Rule we have

lim
x→1

Γ(x, θ) = −1 < 0 < θ − 1 = lim
x→∞

Γ(x, θ).

Because Γ(x, θ) is continuous and strictly increasing in x, there exists unique x ∈ (1,∞)

such that Γ(x, θ) = 0.

Using Lemma B.1, we can implicitly define a function x(θ) by

Γ(x(θ), θ) = 0 ∀θ ∈ (1,∞).

To characterize x(θ) as a function of θ, it is useful to define another function H(x, θ) as

H(x, θ) := 1− ln(θ) + ln(xθ − 1)− xθ

xθ − 1
ln(xθ)

for each x > 1 and θ > 1. The next lemma characterizes H(x, θ) and provides its

connection to Γ(x, θ).

Lemma B.2. The function H(x, θ) has the following properties:

(i) for each θ ∈ (1,∞),

∂Γ(x, θ)

∂θ

∣∣∣∣
x=x(θ)

⋛ 0 ⇐⇒ H(x(θ), θ) ⋛ 0; (B.43)

(ii) for each x ∈ (1,∞),

lim
θ→1

∂Γ(x, θ)

∂θ
= H(x, 1); (B.44)

(iii) H(x, 1) is strictly increasing in x and H(x, 1) = 0 has a unique root, x1, which

satisfies 2 < x1 < 3;

(iv) Given x ∈ (1,∞), H(x, θ) is strictly decreasing in θ; if x ∈ (1, x1], we have H(x, θ) <

0 for all θ ∈ (1,∞); if x ∈ (x1,∞), on the other hand, there is unique θ ∈ (1,∞)

such that H(x, θ) = 0.

Proof. (i) We have

∂Γ(x, θ)

∂θ
=

(x− 1)θ

xθ − 1

(
1 + ln((x− 1)θ)− xθ

xθ − 1
ln(xθ)

)
(B.45)

and

Γ(x(θ), θ) = 0 ⇐⇒ (x(θ)− 1)θ = ((x(θ))θ − 1)/θ. (B.46)
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Using (B.46) and the definition of H(x, θ) we conclude

∂Γ(x, θ)

∂θ

∣∣∣∣
x=x(θ)

=
(x(θ)− 1)θ

(x(θ))θ − 1
H(x(θ), θ),

which proves (B.43).

(ii) Using (B.45), we have

lim
θ→1

∂Γ(x, θ)

∂θ
= 1 + ln(x− 1)− x

x− 1
ln(x) = H(x, 1),

which proves (B.44).

(iii) Next we note that
∂H(x, 1)

∂x
=

ln(x)

(x− 1)2
> 0,

so H(x, 1) is strictly increasing. Also, it is easy to see that limx→1H(x, 1) = −∞,

limx→∞H(x, 1) = 1, and

H(2, 1) = ln(e/4) < 0 < ln(2e/33/2) = H(3, 1).

Therefore, the equation H(x, 1) = 0 has a unique root x1 in the interval (2, 3).

(iv) Given x ∈ (1,∞),

∂H(x, θ)

∂θ
= −1

θ

(
1− xθ

(xθ − 1)2
ln(xθ) ln(xθ)

)
< 0,

soH(x, θ) is strictly decreasing in θ. Because limθ→∞H(x, θ) = −∞ and limθ→1H(x, θ) =

H(x, 1), and because H(x, 1) is strictly increasing in x, it follows that when x ∈ (1, x1],

we have H(x, θ) < 0 for all θ ∈ (1,∞) and when x ∈ (x1,∞), the equation H(x, θ) = 0

has a unique root with respect to θ.

Equipped with Lemma B.2, we can characterize Γ(x, θ) as a function of θ. The next

lemma shows that the equilibrium number of members cannot be less than x1.

Lemma B.3. If x ∈ (1, x1], there is no θ ∈ (1,∞) such that Γ(x, θ) = 0.

Proof. Fix x ∈ (1, x1] and suppose to the contrary that there exists θ ∈ (1,∞) such that

Γ(x, θ) = 0. We establish the Lemma by falsifying this hypothesis. Let θx be the smallest

θ satisfying Γ(x, θ) = 0 for x ∈ (1, x1]. Note that x = x(θx) by definition of x(θ).

As an intermediate step, we establish

∂Γ(x, θ)

∂θ

∣∣∣∣
θ=θx

≥ 0. (B.47)

We confirm this inequality in two steps, first showing that it holds over the open interval

x ∈ (1, x1) and then showing that it also holds at the boundary x = x1. For the first
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step, note that limθ→1 Γ(x, θ) = 0. If x ∈ (1, x1), we know from results (ii) and (iii) of

Lemma B.2 that

lim
θ→1

∂Γ(x, θ)

∂θ
= H(x, 1) < 0.

Therefore, Γ(x, θ) < 0 for θ close to but larger than 1. Consequently, the graph of

Γ(x, θ) as a function of θ must cross 0 at θx from below. Therefore, (B.47) must hold for

x ∈ (1, x1).

Now we move to the second step, showing that (B.47) also holds at x = x1. For x = x1

we use Lemma B.2 (ii), which implies

lim
θ→1

∂Γ(x1, θ)

∂θ
= H(x1, 1) = 0.

To evaluate Γ(x1, θ) in the neighborhood of θ = 1 we use a second order approximation

of the function. Using the definition of Γ(x, θ), we have

xθ − 1

(x− 1)θ
∂2Γ(x, θ)

∂θ2
=

(
ln(x− 1)− xθ

xθ − 1
ln(x)

)(
xθ − 1

(x− 1)θ
∂Γ(x, θ)

∂θ
+ 1

)
+

(
ln(x)

xθ − 1

)2

θxθ.

Evaluating this expression at x = x1 and taking the limit of θ → 1, we obtain

lim
θ→1

∂2Γ(x1, θ)

∂θ2
=

(
ln(x1 − 1)− x1

x1 − 1
ln(x1)

)(
lim
θ→1

∂Γ(x1, θ)

∂θ
+ 1

)
+

(
ln(x1)

x1 − 1

)2

x1

= (H(x1, 1)− 1) (H(x1, 1) + 1) +
(1 + ln(x1 − 1)−H(x1, 1))

2

x1

= −1 +
(1 + ln(x1 − 1))2

x1
< 0,

where the second line uses the definition of H(x, 1) and Lemma B.2 (ii), the third line

uses Lemma B.2 (iii), and the inequality is due to the fact that x1 ∈ (2, 3).

Therefore, Γ(x1, θ) is a concave function of θ in the neighborhood of θ = 1. Because

this function and its partial derivative both equal 0 at θ = 1, Γ(x1, θ) < 0 for θ close to

but larger than 1. This fact means that Γ(x1, θ) is increasing in the neighborhood of θx;

thus, (B.47) holds for x = x1.

We now falsify the hypothesis. By definitions of x(θ) and θx, x = x(θx). Lemma B.2

(i) shows that (B.47) implies

H(x, θx) ≥ 0,

which contradicts Lemma B.2 (iv). Therefore, we conclude that there is no θ ∈ (1,∞)

such that Γ(x, θ) = 0 for x ∈ (1, x1].

The next lemma confirms that for x > x1 there exists a unique θ > 1 that satisfies

Γ(x, θ) = 0.

4



Lemma B.4. For each x ∈ (x1,∞), there exists a unique θ ∈ (1,∞) such that Γ(x, θ) = 0.

Proof. Fix x ∈ (x1,∞). Observe that

lim
θ→1

Γ(x, θ) = 0 > −1 = lim
θ→∞

Γ(x, θ)

and

lim
θ→1

∂Γ(x, θ)

∂θ
= H(x, 1) > 0,

where the last equality follows from (B.44) and the next inequality follows from Lemma B.2 (iv).

Hence, there exits at least one θ ∈ (1,∞) such that Γ(x, θ) = 0.

To prove the uniqueness of such θ, suppose to the contrary that Γ(x, θ) = 0 has

multiple roots with respect to θ. Let θx be the smallest root and θ′x > θx be the second

smallest. The definition of x(θ) implies that x(θx) = x(θ′x) = x.

By Lemma B.2 (ii), we know that

lim
θ→1

∂Γ(x, θ)

∂θ
= H(x, 1) > 0.

Therefore, the graph of Γ(x, θ) is positive for θ > 1 in the neighborhood of θ = 1.

Consequently the graph of Γ(x, θ) as a function of θ either crosses 0 from above at θx, or

the graph is tangent to 0 at that point. This observation implies the weak inequality

∂Γ(x, θ)

∂θ

∣∣∣∣
θ=θx

≤ 0,

which, by result (i) of Lemma B.2, is equivalent to

H(x, θx) ≤ 0. (B.48)

We show that (B.48) and the hypothesis that Γ(x, θ) = 0 has multiple roots imply a

contradiction. We need to consider two cases, where (B.48) holds as a strict inequality

and where it holds as an equality.

CASE 1: Consider the case where (B.48) holds with strict inequality. Here, the graph

of Γ(x, θ) crosses 0 at θ = θx from above. Consequently, at θ = θ′x, the graph of Γ(x, θ)

must cross or touch 0 from below, implying

∂Γ(x, θ)

∂θ

∣∣∣∣
θ=θ′x

≥ 0.

By result (i) of Lemma B.2, this inequality implies

H(x, θ′x) ≥ 0.

Because θ′x > θx and becauseH(x, θ) is strictly decreasing in θ by result (iv) of Lemma B.2,
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we then have

H(x, θx) > H(x, θ′x) ≥ 0,

which contradicts (B.48).

CASE 2: Consider the case where H(x, θx) = 0. Here the graph of Γ(x, θ) is tangent

to 0 at θ = θx. The function is convex at this point because

∂2Γ(x, θ)

∂θ2

∣∣∣∣
θ=θx

=
1

θx

(x− 1)θx

xθx − 1

[
xθx
(
ln(xθx)

xθx − 1

)2

− 1

]
> 0.

We establish the inequality using the fact that Γ(x, θx) = 0 and ∂Γ(x, θx)/∂θ = H(x, θx) =

0. Consequently, Γ(x, θ) is positive in the neighborhood of θx except at θx where it equals

0.

Now, observe that for any x̃ ∈ (x1, x), we have

Γ(x̃, θ) < Γ(x, θ) ∀θ ∈ (1,∞),

because Γ(x, θ) is strictly increasing in x by Lemma B.1. By making x̃ sufficiently close

to x, then we can find θx̃ and θ′x̃ such that θx̃ < θx < θ′x̃,

Γ(x̃, θx̃) = Γ(x̃, θ′x̃) = 0 and Γ(x̃, θ) < 0 ∀θ ∈ (θx̃, θ
′
x̃),

which implies

H(x̃, θx̃) < 0 < H(x̃, θ′x̃). (B.49)

However, because θ′x̃ > θx̃ and since H(x̃, θ) is strictly decreasing in θ by result (iv) of

Lemma B.2, we then have

H(x̃, θx̃) > H(x̃, θ′x̃),

which contradicts (B.49).

We can now characterize x(θ) as an increasing function, which in turn allows us to

prove Remark 1.

Lemma B.5. Function x(θ) is strictly increasing in θ ∈ (1,∞) with limθ→1 x(θ) = x1

and limθ→∞ x(θ) = ∞. In particular, x(2) = 3 and 2 < x(θ) < 3 for all θ ∈ (1, 2).

Proof. Combining Lemmas B.1, B.3, and B.4, we conclude that x(θ) is a bijection from

(1,∞) onto (x1,∞). Hence, x(θ) must be monotonic. To prove that x(θ) is strictly

increasing, it suffices to show that x(2) < x(3). Observe

Γ(x, 2) = 0 ⇐⇒ 2
x− 1

x+ 1
= 1 ⇐⇒ x = 3,

which implies x(2) = 3. Also,

Γ(3, 3) = 3
(3− 1)3

33 − 1
− 1 = − 1

13
< 0 = Γ(x(3), 3),
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which implies x(3) > 3 because Γ(x, 3) is strictly increasing in x by Lemma B.1. The last

part of the lemma follows from the fact that x(2) = 3 and x(θ) is strictly increasing with

x(θ) > x1 > 2 for all θ.

Proof. (Remark 1) Fix γ ∈ (1,∞) so that θ = γ/(γ − 1) is fixed. Use (1) and observe

that a coalition M with |M | ≥ 2 is internally stable if and only if

u
|M |
in ≥ u

|M |−1
out ⇐⇒ 1

θ
|M |θ ≥ (|M | − 1)θ +

1

θ

⇐⇒ 0 ≥ Γ(|M |, θ).

On the other hand, a coalition M with |M | ≤ n− 1 is externally stable if and only if

u
|M |
out > u

|M |+1
in ⇐⇒ |M |θ + 1

θ
≥ 1

θ
(|M |+ 1)θ

⇐⇒ Γ(|M |+ 1, θ) > 0.

Therefore, by defining m∗ by (B.42), we conclude that M is stable if and only if |M | = m∗.

Since x(θ) is unique by Lemma B.1, so is m∗. Also, since x(θ) is independent of c, so

is m∗. Moreover, Lemma B.5 shows that m∗ is weakly increasing in θ ∈ (1,∞) with

limθ→1m∗ = 2, limθ→∞m∗ = n. This result means that m∗ is weakly decreasing in

γ ∈ (1,∞) with limγ→∞m∗ = 2 and limγ→1m∗ = n, as claimed in the remark. Finally,

Lemma B.5 also shows that x(2) = 3 and 2 < x(θ) < 3 for all θ ∈ (1, 2), which means that

m∗ = 3 when θ = 2 (or when γ = 2) whereas m∗ = 2 when θ < 2 (or when γ > 2).

B.2 Proof of Remark 2

To prove the ‘if’ part, put m∗ := ⌈1/c⌉ and fix M such that |M | = m∗. Since 1 < 1/c ≤
m∗ < 1/c+ 1, we have

u
|M |
in − u

|M |−1
out = cm∗ − 1 ≥ 0,

meaning that M is internally stable. If m∗ = n, there is no outsiders of M and we do not

have to check its external stability. If m∗ < n, the external stability condition is satisfied

because

u
|M |
out − u

|M |+1
in = 1− c > 0.

Hence, we conclude that M is stable.

To prove the ‘only if’ part, let M be a stable coalition. By (3), M cannot be internally

stable if |M | ≥ 1/c + 1 and M cannot be externally stable if |M | < 1/c. Hence, either

M = n with |M | < 1/c+ 1 or M ̸= n with 1/c ≤ |M | < 1/c+ 1. Since 1/c < n, we must

have 1/c ≤ |M | < 1/c+1 for both cases and therefore |M | = ⌈1/c⌉ = m∗. This completes

the proof.
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B.3 Proof of Lemma A.1

Proof. Let M be a coalition that satisfies (6) and assume that players use the strategies

(14). First, suppose |M | ≤ l∗ − 1. Then, the participation decision of a single member

does not change the continuation value:

Vi(M ∪ {i}) = Vi(M \ {i}) ∀i ∈ M

because strategy profile (14) instructs members to abandon the coalition in the following

period. Therefore, the internal stability required in (6) implies

u
|M |
in ≥ u

|M |−1
out ,

which, by (12), implies |M | ≤ m∗. But |M | < m∗ is impossible because the external

stability in (6) implies

u
|M |+1
in < u

|M |
out ,

which, by (11), requires |M | ≥ m∗. Therefore, |M | = m∗ is the only possibility if

|M | ≤ l∗ − 1.

We next show that |M | cannot be greater than l∗. To confirm this claim, suppose to

the contrary that for M satisfying (6), |M | ≥ l∗ + 1. Then, under strategy profile (14),

which instructs all players to remain even if one player defects from the coalition,

Vi(M ∪ {i}) = 1

1− δ
u
|M |
in and Vi(M \ {i}) = 1

1− δ
u
|M |−1
out ∀i ∈ M.

The hypothesis |M | ≥ l∗+1, the fact that l∗+1 > m∗, and (11), imply that Vi(M \{i}) >
Vi(M ∪ {i}). This inequality and the internal stability required in (6) imply that

u
|M |
in ≥ u

|M |−1
out ,

which, by (12), is possible only if |M | ≤ m∗. But this contradicts the hypothesis |M | ≥
l∗ + 1 and the fact that l∗ > m∗. Therefore, |M | ≤ l∗.

It follows that under strategy profile (14), necessary conditions for stability are that

either |M | = m∗ or |M | = l∗.

B.4 Proofs of Lemmas A.2–A.5

Proof. (Lemma A.2) Under the strategy profile (ai)i∈N defined by (16), every player sticks

with the coalition they inherit whenever its size is at least as large as m∗. For smaller

inherited coalitions, members defect, initiating a new round of negotiation that results in

either a coalition of size m∗ or of size m∗, with probability πm∗
and 1−πm∗

, respectively.
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Hence, the value functions (Vi)i∈N satisfy the recursion

Vi(M−1) =

ui(M−1) + δVi(M−1) if |M−1| ≥ m∗

Eπ

[
ui(M̃) + δVi(M̃)

]
otherwise.

(B.50)

Solving the first line of this equation yields

Vi(M−1) =
1

1− δ
ui(M−1) (B.51)

for any M−1 with |M−1| ≥ m∗. Therefore

Eπ

[
Vi(M̃)

∣∣∣|M̃ | = m∗
]
=

1

1− δ
Eπ

[
ui(M̃)

∣∣∣|M̃ | = m∗
]
=

1

1− δ
ūm

∗
. (B.52)

Note that the second line on the right side of (B.50) is independent ofM−1 for |M−1| < m∗.

Because m∗ < m∗, it follows that

Eπ

[
Vi(M̃)

∣∣∣|M̃ | = m∗

]
= Eπ

[
Eπ

[
ui(M̃) + δVi(M̃)

] ∣∣∣|M̃ | = m∗

]
= Eπ

[
ui(M̃) + δVi(M̃)

]
. (B.53)

Combining (B.52) and (B.53), we obtain

Eπ

[
ui(M̃) + δVi(M̃)

]
= Eπ

[
ui(M̃) + δVi(M̃)

∣∣∣|M̃ | = m∗
]
πm∗

+ Eπ

[
ui(M̃) + δVi(M̃)

∣∣∣|M̃ | = m∗

] (
1− πm∗

)
=

(
ūm

∗
+

δ

1− δ
ūm

∗
)
πm∗

+
(
ūm∗ + δEπ

[
Vi(M̃)

∣∣∣|M̃ | = m∗

])(
1− πm∗

)
=

1

1− δ
ūm

∗
πm∗

+ ūm∗
(
1− πm∗

)
+ δEπ

[
ui(M̃) + δVi(M̃)

] (
1− πm∗

)
.

We set the first and last expressions in this string of equalities equal to each other and

solve for Eπ[Vi(M̃)]. Using this expression, we have (A.7).

Proof. (Lemma A.3) Internal stability for a coalition of size m∗ requires

ui(M) + δVi(M) ≥ ui(M \ {i}) + δVi(M \ {i}) ∀i ∈ M,

for M with |M | = m∗. Using Lemma A.2, this inequality can be written as

1

1− δ
um

∗
in ≥ um

∗−1
out + δ

1

1− δ
ūπ. (B.54)

Rearranging terms yields the first inequality in (A.8) (the upper bound of Πm∗
δ ). We note
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that this upper bound, πm∗
(δ), is smaller than 1 because

1 >
δ − um∗−1

out −um∗
in

um∗−1
out −ūm∗

δ + δ
1−δ

ūm∗−um∗
in

um∗−1
out −ūm∗

⇐⇒ δ

1− δ

ūm
∗ − um

∗
in

um
∗−1

out − ūm∗
− um

∗−1
out − um

∗
in

um
∗−1

out − ūm∗
> 0

⇐⇒ δūm
∗
+ (1− δ)um

∗−1
out − um

∗
in > 0, (B.55)

where we use the fact that m∗ ≥ l∗ > m∗ and therefore ūm
∗ ≥ um

∗
in and um

∗−1
out > um

∗
in ≥

ul
∗
in ≥ ūm∗ . The inequality in the second line of (B.55) always holds because ūm

∗ ≥ um
∗

in

and um
∗−1

out > um
∗

in .

Moreover, for the proposed strategy profile to constitute an equilibrium, members of

an inherited coalition must prefer reopening the negotiation if the size of the inherited

coalition is smaller than m∗. Hence, it must be the case that

Eπ

[
ui(M̃) + δVi(M̃)

]
> ui(M−1) + δVi(M−1) ∀i ∈ M−1 (B.56)

whenever |M−1| < m∗. Using Lemma A.2, inequality (B.56) can be written as

1

1− δ
ūπ > u

|M−1|
in + δ

1

1− δ
ūπ.

This inequality must hold when |M−1| = m∗ − 1 in particular, implying

ūπ > um
∗−1

in , (B.57)

which by (A.6) is equivalent to the second inequality in (A.8) (the lower bound of Πm∗
δ in

(19) when it exceeds 0). We note that because ūm
∗
> um

∗−1
in , this lower bound, πm∗

(δ),

is negative if and only if um
∗−1

in < ūm∗ , which is only the case for m∗ = l∗.

Proof. We need to consider two cases.

CASE 1: Consider first the case where m∗ = l∗. By definition of l∗, we have ul
∗−1
in <

ūm∗ and therefore the right-hand side of (A.9) is 0. Hence, (A.9) is equivalent to πl∗(δ) >

0, or

δ >
ul

∗−1
out − ul

∗
in

ul
∗−1
out − ūm∗

,

which coincides with (A.10) because max{ūm∗ , ul
∗−1
in } = ūm∗ .

CASE 2: Next consider the case where l∗ < m∗ ≤ n; here, the right-hand side of (A.9)

is non-negative. We claim that

πm∗
(δ) > πm∗

(δ) ⇐⇒ δ > δm∗ . (B.58)
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To prove this claim, define

αm∗ :=
um

∗−1
out − um

∗
in

um
∗−1

out − ūm∗
∈ (0, 1), βm∗ :=

ūm
∗ − um

∗
in

um
∗−1

out − ūm∗
≥ 0,

and

ηm∗ :=
um

∗−1
in − ūm∗

ūm∗ − ūm∗
∈ [0, 1),

so that we can write

πm∗
(δ) =

δ − αm∗

δ + δ
1−δβm∗

and πm∗
(δ) =

(1− δ)ηm∗

1− δηm∗
.

We note that βm∗ = 0 for m∗ = n because ūn = unin. Otherwise, βm∗ is strictly positive.

Observe that

πm∗
(δ)− πm∗

(δ) = 0 ⇐⇒ (1− δ)ηm∗

1− δηm∗
=

δ − αm∗

δ + δ
1−δβm∗

⇐⇒ δ =
αm∗

1− ηm∗ (βm∗ + 1− αm∗)

⇐⇒ δ =
um

∗−1
out − um

∗
in

um
∗−1

out − um
∗−1

in

⇐⇒ δ = δm∗ ,

where the last line uses the fact that m∗ > l∗ > m∗ and therefore max{ūm∗ , um
∗−1

in } =

um
∗−1

in . Hence, δ = δm∗ ∈ (0, 1) is the unique root of the equation πm∗
(δ) − πm∗

(δ) = 0.

Also observe

lim
δ→0

πm∗
(δ) = −∞ < 0 ≤ ηm∗ = lim

δ→0
πm∗

(δ),

which means that πm∗
(δ) − πm∗

(δ) < 0 for small δ. This fact and the fact that δ = δm∗

is the unique root of πm∗
(δ)− πm∗

(δ) = 0, imply (B.58).

Proof. (Lemma A.5) The ‘only if’ part follows from exactly the same argument as in the

proof of Lemma A.1. To prove the ‘if’ part, take M such that |M | = m∗. Since the belief

satisfies (15) and the strategies are given by(16), Lemma A.2 shows that the associated

value functions (Vi)i∈N are given by

Vi(M−1) =


1

1−δui(M−1) if |M−1| ≥ m∗

Eπ

[
ui(M̃) + δVi(M̃)

]
= 1

1−δ ū
π otherwise.

(B.59)

Because |M | = m∗ < m∗ − 1, it follows that

Vi(M ∪ {i}) = Vi(M \ {i}) = 1

1− δ
ūπ
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for all i ∈ N .24 Hence, in this case, the definition of m∗ implies that M satisfies (6).

Now take M such that |M | = m∗. Then M is internally stable because for each i ∈ M ,

ui(M ∪ {i}) + δVi(M ∪ {i}) = um
∗

in +
δ

1− δ
um

∗
in

≥ um
∗−1

out +
δ

1− δ
ūπ

= ui(M \ {i}) + δVi(M \ {i}),

where the inequality follows from the fact that πm∗ ≤ πm∗
(δ). Also, M is externally

stable because for each i /∈ M ,

ui(M ∪ {i}) + δVi(M ∪ {i}) = um
∗+1

in +
δ

1− δ
um

∗+1
in

< um
∗

out +
δ

1− δ
um

∗
out

= ui(M \ {i}) + δVi(M \ {i}),

where the inequality follows from the fact that m∗ > m∗. Hence, M satisfies (6). We

conclude that M satisfies (6) if and only if |M | ∈ {m∗,m
∗}.

B.5 Proofs of Lemmas A.6–A.11

Proof. (Lemma A.6) Fix M,M ′ ∈ N such that |M | = |M ′| and suppose that M satisfies

ai(M) = 1 for all i ∈ N . Once M is formed, players keep using it so we have

Vi(M) = ui(M) + δVi(M) ∀i ∈ N,

which implies

Vi(M) =
1

1− δ
ui(M) ∀i ∈ N. (B.60)

Because ai(M) = 1 for each i ∈ N , it must be the case that

ui(M) + δVi(M) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
∀i ∈ N. (B.61)

Combining (B.60) and (B.61), we have

1

1− δ
ui(M) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
∀i ∈ N,

which under the symmetry of the reduced-form payoff functions implies

1

1− δ
min

{
u
|M |
in , u

|M |
out

}
≥ max

i∈N

{
Eπ

[
ui(M̃) + δVi(M̃)

]}
. (B.62)

24This part requires m∗ ̸= m∗ + 1. If m∗ = m∗ + 1, coalitions with m∗ members will not be externally
stable.
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Now suppose that ai′(M
′) = 0 for some i′ ∈ N . We establish the Lemma by falsifying

this hypothesis. Under the hypothesis, when M ′ is inherited from the preceding period,

player i′ strictly prefers reopening the negotiation process. So we must have

ui′(M
′) + δVi′(M

′) < Eπ

[
ui′(M̃) + δVi′(M̃)

]
,

where (because
∏

j∈N aj(M
′) = 0)

Vi′(M
′) = Eπ

[
ui′(M̃) + δVi′(M̃)

]
,

implying
1

1− δ
ui′(M

′) < Eπ

[
ui′(M̃) + δVi′(M̃)

]
.

Under the symmetry of the reduced-form payoff functions, this inequality implies

1

1− δ
min

{
u
|M ′|
in , u

|M ′|
out

}
< Eπ

[
ui′(M̃) + δVi′(M̃)

]
. (B.63)

Because |M | = |M ′|, combining (B.62) and (B.63) yields

max
i∈N

{
Eπ

[
ui(M̃) + δVi(M̃)

]}
< Eπ

[
ui′(M̃) + δVi′(M̃)

]
,

a contradiction.

Proof. (Lemma A.7) Let L be the set of all sustainable coalitions, namely,

L := {M ∈ N | ai(M) = 1∀i ∈ N} . (B.64)

Then we may write

M ∈ L =⇒ Vi(M) = ui(M) + δVi(M) =
1

1− δ
ui(M) ∀i ∈ N (B.65)

and

M /∈ L =⇒ Vi(M) = Eπ

[
ui(M̃) + δVi(M̃)

]
= Eπ

[
ui(M̃)

]
+ δEπ

[
Vi(M̃)

]
∀i ∈ N. (B.66)

Combining (B.65) and (B.66), we obtain

Eπ

[
Vi(M̃)

]
= Eπ

[
Vi(M̃)

∣∣M̃ ∈ L
]
πL + Eπ

[
Vi(M̃)

∣∣M̃ /∈ L
] (

1− πL)
=

1

1− δ
Eπ

[
ui(M̃)

∣∣M̃ ∈ L
]
πL

+
(
Eπ

[
ui(M̃)

]
+ δEπ

[
Vi(M̃)

]) (
1− πL) ∀i ∈ N, (B.67)

where πL ∈ [0, 1] denotes the probability of drawing a sustainable coalition under the

13



equilibrium belief,

πL :=
∑
M∈L

πM . (B.68)

Solving (B.67) for Eπ

[
Vi(M̃)

]
yields

Eπ

[
Vi(M̃)

]
=

1

1− δ

(
πL

1− δ(1− πL)
Eπ

[
ui(M̃)

∣∣M̃ ∈ L
]
+

(1− δ)(1− πL)

1− δ(1− πL)
Eπ

[
ui(M̃)

])
,

which implies

Eπ

[
ui(M̃) + δVi(M̃)

]
= Eπ

[
ui(M̃)

]
+ δEπ

[
Vi(M̃)

]
=

1

1− δ(1− πL)
Eπ

[
ui(M̃)

]
+

πL

1− δ(1− πL)

δ

1− δ
Eπ

[
ui(M̃)

∣∣M̃ ∈ L
]

(B.69)

for all i ∈ N . Note that by assumption the reduced-form payoff functions (ui)i∈N are

symmetric across players and so is the equilibrium belief π, also by assumption. Moreover,

by Lemma A.6, the set L treats players symmetrically. Therefore, we conclude that the

right-hand side of (B.69) is independent of i, which completes the proof.

Proof. (Lemma A.8) Fix M ∈ M such that |M | < m∗. Because M is externally stable,

ui(M) + δVi(M) > ui(M ∪ {i}) + δVi(M ∪ {i}) ∀i ∈ N \M. (B.70)

By (11), |M | < m∗ implies that there exists i′ ∈ N \M such that

ui′(M) ≤ ui′(M ∪ {i′}),

which by the assumed symmetry of the reduced-form payoff functions implies

ui(M) < ui(M ∪ {i}) ∀i ∈ N \M. (B.71)

Combining (B.71) and (B.70) yields

Vi(M) > Vi(M ∪ {i}) ∀i ∈ N \M. (B.72)

Now choose arbitrary i ∈ N \ M arbitrarily. It follows from (B.72) that at either

M or M ∪ {i} is sustainable; if this were not the case then Vi(M) = Vi(M ∪ {i}) =

Eπ

[
ui(M̃) + δVi(M̃)

]
, contradicting (B.72). Also, M and M ∪ {i} cannot both be sus-

tainable because otherwise (B.71) implies

Vi(M) =
1

1− δ
ui(M) ≤ 1

1− δ
ui(M ∪ {i}) = Vi(M ∪ {i}),
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which contradicts (B.72). Thus, to complete the proof we need only show that M ∪ {i}
is not sustainable. Suppose to the contrary that M ∪{i} is sustainable (which implies M

is not sustainable). Then

Vi(M ∪ {i}) = ui(M ∪ {i}) + δVi(M ∪ {i}) (B.73)

and

Vi(M) = Eπ

[
ui(M̃) + δVi(M̃)

]
. (B.74)

Because M ∪ {i} is sustainable, we must have ai(M ∪ {i}) = 1, implying

ui(M ∪ {i}) + δVi(M ∪ {i}) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
(B.75)

Combining (B.73)–(B.75) yields

Vi(M ∪ {i}) = ui(M ∪ {i}) + δVi(M ∪ {i})

≥ Eπ

[
ui(M̃) + δVi(M̃)

]
= Vi(M),

which again contradicts (B.72). This completes the proof.

Proof. (Lemma A.9) Suppose to the contrary that there exists M ∈ M such that |M | <
m∗. We know from Lemma A.8 that M is sustainable. Hence, ai(M) = 1 for all i ∈ N ,

which implies

ui(M) + δVi(M) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
with

Vi(M) =
1

1− δ
ui(M)

for all i ∈ N . Combining these expressions for i ∈ M implies

1

1− δ
u
|M |
in ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
. (B.76)

Fix i′ ∈ N \M so that by Lemma A.8 M ∪ {i′} is not sustainable. Then there must

exist j ∈ N such that aj(M ∪ {i′}) = 0, which implies

Eπ

[
uj(M̃) + δVj(M̃)

]
> uj(M ∪ {i′}) + δVj(M ∪ {i′})

with

Vj(M ∪ {i′}) = Eπ

[
uj(M̃) + δVj(M̃)

]
.

Combining these expressions implies

1

1− δ
uj(M ∪ {i′}) < Eπ

[
uj(M̃) + δVj(M̃)

]
. (B.77)
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By Lemma A.7, we know that the right-hand sides of (B.76) and (B.77) are identical.

Hence, under Assumption 1-a) and -d), combining (B.76) and (B.77) yields

u
|M |+1
in ≤ uj(M ∪ {i′}) < u

|M |
in ≤ u

|M |+1
in ,

a contradiction. Therefore, we conclude that any coalition in M must have at least m∗

members in it.

Proof. (Lemma A.10) The proof is analogous to the proof of Lemma A.8. Fix M ∈ M
such that |M | > m∗. Because M is internally stable,

ui(M) + δVi(M) ≥ ui(M \ {i}) + δVi(M \ {i}) ∀i ∈ M. (B.78)

By (12), |M | > m∗ implies that there exists i′ ∈ M such that

ui′(M) < ui′(M \ {i′}),

which by the assumed symmetry of the reduced-form payoff functions implies

ui(M) < ui(M \ {i}) ∀i ∈ M. (B.79)

Combining (B.79) and (B.78) yields

Vi(M) > Vi(M \ {i}) ∀i ∈ M. (B.80)

Now choose arbitrary i ∈ M . It follows from (B.80) that either M or M \ {i} is

sustainable; if this were not true, then Vi(M) = Vi(M \ {i}) = Eπ

[
ui(M̃) + δVi(M̃)

]
,

contradicting (B.80). Also, M and M \ {i} cannot both be sustainable because otherwise

(B.79) implies

Vi(M) =
1

1− δ
ui(M) <

1

1− δ
ui(M \ {i}) = Vi(M \ {i}),

which contradicts (B.80). Thus, to complete the argument we need only show that M \{i}
is not sustainable. Suppose to the contrary that M \ {i} is sustainable (which implies

that M is not sustainable). Then

Vi(M \ {i}) = ui(M \ {i}) + δVi(M \ {i}) (B.81)

and

Vi(M) = Eπ

[
ui(M̃) + δVi(M̃)

]
. (B.82)

Because M \ {i} is sustainable, we must have ai(M \ {i}) = 1, implying

ui(M \ {i}) + δVi(M \ {i}) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
. (B.83)
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Combining (B.81)–(B.83) yields

Vi(M \ {i}) = ui(M \ {i}) + δVi(M \ {i})

≥ Eπ

[
ui(M̃) + δVi(M̃)

]
= Vi(M),

which again contradicts (B.80). This completes the proof.

Proof. (Lemma A.11) The proof is analogous to the proof of Lemma A.9. Fix M ∈ M
such that |M | ̸= m∗. By Lemma A.9, we know that |M | > m∗. Then it follows from

Lemma A.10 that M is sustainable. Hence, ai(M) = 1 for all i ∈ N , which implies

ui(M) + δVi(M) ≥ Eπ

[
ui(M̃) + δVi(M̃)

]
(B.84)

with

Vi(M) =
1

1− δ
ui(M) (B.85)

for all i ∈ N . Combining these expressions for i ∈ M implies

u
|M |
in ≥ (1− δ)Eπ

[
ui(M̃) + δVi(M̃)

]
∀i ∈ M. (B.86)

Noticing that by Lemma A.7 the right-hand side of this inequality is identical for all

players establishes the first inequality in (A.23).

To derive the second inequality in (A.23), fix i′ ∈ M . Lemma A.10 shows that M \{i′}
is not sustainable. Hence there must exist j ∈ N such that aj(M \{i′}) = 0, which implies

Eπ

[
uj(M̃) + δVj(M̃)

]
> uj(M \ {i′}) + δVj(M \ {i′}) (B.87)

with

Vj(M \ {i′}) = Eπ

[
uj(M̃) + δVj(M̃)

]
. (B.88)

Combining these expressions implies

1

1− δ
uj(M \ {i′}) < Eπ

[
uj(M̃) + δVj(M̃)

]
. (B.89)

Under Assumption 1-a) and -d), (B.89) implies

u
|M |−1
in ≤ uj(M \ {i′}) < Eπ

[
uj(M̃) + δVj(M̃)

]
, (B.90)

Again, by Lemma A.7, the right-hand side of the last inequality is identical for all players,

which establishes the second inequality in (A.23).

17



B.6 Proof of Lemmas A.12–A.13

Proof. (Lemma A.12) Since (g1i (M,G−1, 1))i∈N is the equilibrium profile of emission levels

chosen by players, it must simultaneously satisfy

(g1i (M,G−1, 1))i∈M ∈ argmax
(gi)i∈M

∑
i∈M Φi(g, F (g, G−1))

s.t. gj = g1j (M,G−1, 1) ∀j /∈ M,

and
g1i (M,G−1, 1) ∈ argmax

gi
Φi(g, F (g, G−1))

s.t. gj = g1j (M,G−1, 1) ∀j ∈ N \ {i}
∀i /∈ M

for each M ∈ N . By Assumption 2, we may write

argmax
(gi)i∈M

∑
i∈M

Φi(g, F (g, G−1)) = argmax
(gi)i∈M

∑
i∈M

{ϕi(g)− c [σG−1 + f(g)]}

= argmax
(gi)i∈M

∑
i∈M

{
ϕi(g)− c

1− (δσ)1

1− δσ
f(g)

}

and

argmax
gi

Φi(g, F (g, G−1)) = argmax
gi

{ϕi(g)− c [σG−1 + f(g)]}

= argmax
gi

{
ϕi(g)− c

1− (δσ)1

1− δσ
f(g)

}
.

Hence, by Assumption 3, we have (g1i (M,G−1, 1))i∈N = (ĝ1i (M))i∈N . Notice in particular

that g1i (M,G−1, 1) is independent of G−1. With this result, we may characterize M1 as

the collection of all M such that

i ∈ M ⇐⇒ ϕi(g
1(M ∪ {i}, G−1, 1))− c

[
σG−1 + f(g1(M ∪ {i}, G−1, 1))

]
≥ ϕi(g

1(M \ {i}, G−1, 1))− c
[
σG−1 + f(g1(M \ {i}, G−1, 1))

]
⇐⇒ ϕi(ĝ

1(M ∪ {i}))− c
[
σG−1 + f(ĝ1(M ∪ {i}))

]
≥ ϕi(ĝ

1(M \ {i}))− c
[
σG−1 + f(ĝ1(M \ {i}))

]
⇐⇒ u1i (M ∪ {i}) ≥ u1i (M \ {i}), (B.91)

where we define

u1i (M) := ϕi(ĝ
1(M))− c

1− (δσ)1

1− δσ
f(ĝ1(M)).

Since the last line of (B.91) is independent of G−1, we conclude that M1 is independent

of G−1. The policy functions (a1i )i∈N are also independent of G−1 because they must
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solve

a1i (M−1, G−1, 1) ∈ argmax
ai∈{0,1}

{[
Φi(g

1(M−1, G−1, 1), F (g1(M−1, G−1, 1), G−1))
]
ai

+ Eπ

[
Φi(g

1(M̃,G−1, 1), F (g1(M̃,G−1, 1), G−1))
]
(1− ai)

}

= argmax
ai∈{0,1}

{[
Φi(ĝ

1(M−1), F (ĝ1(M−1), G−1))
]
ai

+ Eπ

[
Φi(ĝ

1(M̃), F (ĝ1(M̃), G−1))
]
(1− ai)

}

= argmax
ai∈{0,1}

{[
ϕi(ĝ

1(M−1))− c
[
σG−1 + f(ĝ1(M−1))

]]
ai

+ Eπ

[
ϕi(ĝ

1(M̃))− c
[
σG−1 + f(ĝ1(M̃))

]]
(1− ai)

}

= argmax
ai∈{0,1}

{
u1i (M−1)ai + Eπ

[
u1i (M̃)

]
(1− ai)

}
.

Finally, it is easy to see that the associated value functions (V 1
i )i∈N are given by

V 1
i (M−1, G−1) = v1i (M−1)− c

1− (δσ)1

1− δσ
σG−1,

where

v1i (M−1) :=

u1i (M−1) if
∏

j∈N a1j (M−1, G−1, 1) = 1

Eπ

[
u1i (M̃)

]
otherwise.

This completes the proof.

Proof. (Lemma A.13) Suppose, as an induction hypothesis, that the statement is true for

some T < ∞. Let (πT+1
M , (aT+1

i )i∈N , (gT+1
i )i∈N ) be an equilibrium of the T + 1-period

structural model. We shall show that the support MT+1 of the belief and aT+1
i are both

independent of G−1, the policy function gT+1
i satisfies

gT+1
i (M,G−1, τ) = ĝτi (M) (B.92)

for each τ ≤ T + 1, and the value function satisfies

V T+1
i (M−1, G−1, τ) = vτi (M−1)− c

1− (δσ)τ

1− δσ
σG−1. (B.93)

for some function vτi for each τ ≤ T + 1. Note that by the induction hypothesis, (B.92)

and (B.93) must be true for τ = 1, 2, . . . , T .

Since (gT+1
i (M,G−1, T +1))i∈N is the equilibrium profile of emission levels chosen by
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players, it must simultaneously satisfy

(gT+1
i (M,G−1, T + 1))i∈M ∈ argmax

(gi)i∈M

∑
i∈M

{
Φi(g, F (g, G−1)) + δV T+1

i (M,F (g, G−1), T )
}

s.t. gj = gT+1
j (M,G−1, T + 1) ∀j /∈ M,

and

gT+1
i (M,G−1, T + 1) ∈ argmax

gi

{
Φi(g, F (g, G−1)) + δV T+1

i (M,F (g, G−1), T )
}

s.t. gj = gT+1
j (M,G−1, T + 1) ∀j ∈ N \ {i}

∀i /∈ M

for each M ∈ N . By Assumption 2 and the induction hypothesis, we may write

argmax
(gi)i∈M

∑
i∈M

{
Φi(g, F (g, G−1)) + δV T+1

i (M,F (g, G−1), T )
}

= argmax
(gi)i∈M

∑
i∈M

{
ϕi(g)− cF (g, G−1) + δvTi (M−1)− c

1− (δσ)T

1− δσ
δσF (g, G−1)

}

= argmax
(gi)i∈M

∑
i∈M

{
ϕi(g)− c

1− (δσ)T+1

1− δσ
F (g, G−1)

}

= argmax
(gi)i∈M

∑
i∈M

{
ϕi(g)− c

1− (δσ)T+1

1− δσ
[f(g) + σG−1]

}

= argmax
(gi)i∈M

∑
i∈M

{
ϕi(g)− c

1− (δσ)T+1

1− δσ
f(g)

}

and similarly

argmax
gi

{
Φi(g, F (g, G−1)) + δV T+1

i (M,F (g, G−1), T )
}

= argmax
gi

{
ϕi(g)− c

1− (δσ)T+1

1− δσ
f(g)

}
.

Hence, by Assumption 3, we have (gT+1
i (M,G−1), T + 1)i∈N = (gT+1

i (M))i∈N . Notice in

particular that gT+1
i (M,G−1, T + 1) is independent of G−1.
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With this result, we may characterize MT+1 as the collection of all M such that

i ∈ M ⇐⇒ ϕi(g
T+1(M ∪ {i}, G−1, T + 1))− cF (gT+1(M ∪ {i}, G−1, T + 1), G−1)

+ δV T+1
i (M ∪ {i}, F (gT+1(M ∪ {i}, G−1, T + 1), G−1))

≥ ϕi(g
T+1(M \ {i}, G−1, T + 1))− cF (gT+1(M \ {i}, G−1, T + 1), G−1)

+ δV T+1
i (M \ {i}, F (gT+1(M \ {i}, G−1, T + 1), G−1))

⇐⇒ ϕi(ĝ
T+1(M ∪ {i}))− c

[
σG−1 + f(ĝT+1(M ∪ {i}))

]
+ δV T

i (M ∪ {i}, σG−1 + f(ĝT+1(M ∪ {i})))

≥ ϕi(ĝ
T+1(M \ {i}))− c

[
σG−1 + f(ĝT+1(M \ {i}))

]
+ δV T

i (M \ {i}, σG−1 + f(ĝT+1(M \ {i})))

⇐⇒ uT+1
i (M ∪ {i}) + δvTi (M ∪ {i})

≥ uT+1
i (M \ {i}) + δvTi (M \ {i}), (B.94)

where

uT+1
i (M) := ϕi(ĝ

T+1(M))− c
1− (δσ)T+1

1− δσ
f(ĝT+1(M)).

Since the last line of (B.94) is independent of G−1, we conclude that MT+1 is independent

of G−1. The policy functions (aT+1
i )i∈N are also independent of G−1. First, by the

induction hypothesis, aT+1
i (M−1, G−1, τ) is independent of G−1 for all τ = 1, 2, . . . , T .

Also, aT+1
i (M−1, G−1, T + 1) must solve

aT+1
i (M−1, G−1, T + 1) ∈ argmax

ai∈{0,1}

{(
Φ̂T+1
i (M−1, G−1) + δV̂ T

i (M−1, G−1)
)
ai

+ Eπ

[
Φ̂T+1
i (M̃,G−1) + δV̂ T

i (M̃,G−1)
]
(1− ai)

}

= argmax
ai∈{0,1}

{(
uT+1
i (M−1) + δvTi (M−1)− c

1− (δσ)T+1

1− δσ
σG−1

)
ai

+

(
Eπ

[
uT+1
i (M̃) + δvTi (M̃)

]
− c

1− (δσ)T+1

1− δσ
σG−1

)
(1− ai)

}

= argmax
ai∈{0,1}

{[
uT+1
i (M−1) + δvTi (M−1)

]
ai

+ Eπ

[
uT+1
i (M̃) + δvTi (M̃)

]
(1− ai)

}
,

where

Φ̂T+1
i (M,G−1) := Φi(ĝ

T+1(M), F (ĝT+1(M), G−1))

= ϕi(ĝ
T+1(M))− cf(ĝT+1(M))− cσG−1
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Figure 6: The values of m∗ and l∗ (left panel) and the threshold value δl∗ of discount
factor (right panel) in the model of Example 1. The number of players is set to n = 15.

and

V̂ T
i (M,G−1) := V T+1

i (M,F (ĝT+1(M), G−1), T )

= vTi (M)− c
1− (δσ)T

1− δσ
σ
[
f(ĝT+1(M)) + σG−1

]
.

Finally, we can compute the associated value functions (V T+1
i )i∈N as

V T+1
i (M−1, G−1, τ) = vτi (M−1)− c

1− (δσ)τ

1− δσ
σG−1

for each τ ≤ T + 1, where

vT+1
i (M−1) :=

uT+1
i (M−1) + δvTi (M−1) if

∏
j∈N aT+1

j (M−1, G−1, T + 1) = 1

EπT

[
uT+1
i (M̃) + δvTi (M̃)

]
otherwise.

Therefore, the statement of the lemma is true for T+1 as well. Together with Lemma A.12,

the induction argument then completes the proof of the lemma.

B.7 Numerical examples

Figure 6 illustrates Proposition 3.1 based on Example 1. As Remark 1 shows, the value

of m∗ quickly declines as γ increases, converging to m∗ = 2 for all γ > 2. The equilibrium

cut-off size, l∗, is equal to or slightly larger than m∗ and for the most part follows the

same pattern as m∗, although it is not monotonic in γ. Here, players are pessimistic

about future negotiations and therefore willing to keep the coalition they inherit if it is

slightly larger than m∗. But, provided that the initial (t = 0) coalition is smaller than

l∗ (and unless the discount factor is greater than the threshold value δl∗) players always
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Figure 7: The values of m∗ and l∗ (left panel) and the threshold value δl∗ of discount
factor (right panel) in the model of Example 2. The number of players is set to n = 15.

inherit a coalition of size m∗. They repeatedly reopen the negotiation process.

The right panel of Figure 6 shows that δl∗ as a function of γ changes discontinuously

as m∗ and l∗ jump. With m∗ and l∗ being given, however, a larger value of γ always

implies a larger value of δl∗ , making it more likely that this type of pessimistic equilibrium

emerges. Many papers use the quadratic model (γ = 2), where the stable coalition

contains either two or three members, depending on the tie-breaking assumption. Figure 6

shows, for our tie-breaking assumption, that m∗ ∈ {2, 3} for γ > 1.2. Over this range,

the pessimistic equilibrium, where all stable coalitions have m∗ members, requires δ <

0.6. Thus, although our dynamic model produces the pessimistic static result in some

circumstances, a moderate level of patience implies that, for the same γ, equilibrium

beliefs always include larger coalitions.25 The dynamic and static versions of the model

therefore have quite different implications.

Example 2 suggests a slightly different relation, depicted in Figure 7. As Remark 2

shows, the value of m∗ is small unless c, the marginal damage parameter, is also small.

The cut-off size l∗ closely follows the pattern of m∗, but the difference between the two

is somewhat larger here than in Example 1. The right panel shows that the value of δl∗

depends on c; the discontinuous points are due to discontinuity ofm∗ and l∗. Interestingly,

here (unlike Example 1) with m∗ and l∗ given, a larger value of c always implies a smaller

value of δl∗ . Here, a larger marginal damage makes it less, not more, likely that this type

of pessimistic equilibrium exists.

25For example, with an annual discount rate of 7% and a time step of five years, the per period discount
factor is δ = 0.7.
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C Details on the empirical application: Not for publication

In order to make this appendix self-contained, it repreats some of the information in

Section 5. We first describe the empirical model and then discuss the calibration. The

next section derives the reduced form of this structural model. The final section presents

and discusses the numerical results, some of which also appear in Section 5.

C.1 Empirical model

As in Example 4, the discounted present-value payoff of player i is

∞∑
s=t

δs−t ln(Ci,t),

where Ci,t is consumption of player i at period t. Output Yi,t is divided into consumption

and investment. Assuming full depreciation of capital, we can write the end-of-period

level of capital as

Ki,t = Yi,t − Ci,t.

We specify the production function as

Yi,t = e−cGtAi,t−1K
κ
i,t−1(1−No

i,t −N c
i,t −N r

i,t)
1−κ−νEν

i,t

with

Ei,t =
(
ζo
(
Eo

i,t

)ρ
+ ζc

(
Ec

i,t

)ρ
+ ζr

(
Er

i,t

)ρ)1/ρ
,

where, Gt is the stock of carbon (after absorbing the current emission), Ai,t−1 is the total

factor productivity, and 1−No
i,t−N c

i,t−N r
i,t is the fraction of labor used for final output.

Here, Ei,t is the energy composite which is produced by combining three types of energy

inputs: oil Eo
i,t, coal E

c
i,t, and renewables Er

i,t. For simplicity, the model abstracts from

resource scarcity and assumes that energy inputs are produced using labor:

El
i,t = Al

iN
l
i,t, ∀l ∈ {o, c, r}.

The fossil fuel energy inputs are measured in units of carbon so that the carbon emission

is

gi,t = Eo
i,t + Ec

i,t.

The equation of motion for the stock Gt of carbon is

Gt = σGt−1 +
∑
i∈N

gi,t. (C.95)
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Table 2: Summary of calibration

δ 104c σ κ ν ρ

KS 0.859 0.5552 0.945 0.3 0.04 −0.058

GHKT 0.859 0.106 or 2.046 — 0.3 0.04 −0.058

ζo ζc ζr Ao Ac Ar

KS 0.5819 0.11012 0.30789 1073/n 7225/n 1047/n

GHKT 0.5008 0.08916 0.41004 — 7693 1311

C.2 Calibration

We use the decadal time step and consider the case where players are symmetric. In

calibrating the model, we set the number of players to n = 15, for which we consider

alternative values later on. Table 2 summarizes all the parameter values we use, together

with those used by GHKT.

Figure 8: Calibration of c and σ

Because the basic structure of our model is close to GHKT’s model, we for the most

part follow their calibration procedure. The parameter c in the damage function is cali-

brated in such a way that the damage function used by Nordhaus (2008) is well approxi-

mated by our damage function; see the left panel of Figure 8. The difference between the

two damage functions is minimized at c = 0.00005552. We use 0.945 for σ in (C.95) so

that the equation of motion for carbon stock is fairly consistent with the climate system

assumed in the IPCC RCP scenarios, as depicted in the right panel of Figure 8. The

half life of carbon associated with this parameter value is − ln(2)/ ln(σ) ≈ 12.25 decades.

Following GHKT, the values for ζo and ζo (and hence ζr = 1− ζo− ζc) are chosen to make

sure that
ζo
ζc

(
Eo

Ec

)ρ−1

= oil price relative to coal = 5.87
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Table 3: Comparison with GHKT

Eo Ec Er No N c N r

Actual value 3.45 3.81 1.89 — — —

KS (no cooperation) 3.45 3.81 1.89 0.032 0.005 0.018

GHKT (laissez faire) 3.6 4.5 (2.76) — 0.006 (0.021)

KS (full cooperation) 2.57 1.30 1.88 0.024 0.002 0.018

GHKT (optimal) 3.19 2.43 2.76 — 0.003 0.021

KS (reduction) 0.88 2.51 0.01 — — —

GHKT (reduction) 0.41 2.07 — — — —

and
ζo
ζr

(
Eo

Er

)ρ−1

= oil price relative to renewables = 1,

where Eo, Ec, and Er are the actual energy consumption in 2008. Finally, we set the

values for Ao, Ac, and Ar so that the equilibrium energy consumption is all consistent

with the actual value for 2008.

Table 3 compares our benchmark results with GHKT both in terms of laissez faire

scenario and in terms of optimal solution. The actual values are taken from the World

Energy Outlook.26 At the non-cooperative Nash equilibrium, the predicted production

levels of energy inputs match the actual values. The labor allocation among different

energy sectors is very close to the laissez faire scenario of GHKT.27 The fully cooperative

solution suggests that the coal usage be significantly suppressed, just as in GHKT. Com-

pared with GHKT, the reduction of fossil fuel (oil in particular) is more pronounced in

our model, possibly due to the different modeling of production cost. Because we assume

low elasticity of substitution between different energy inputs, the optimal level of Er is

also smaller than the non-cooperative scenario.

26See https://www.iea.org/weo. The total primary energy demand in 2008 was 4.079 Gt of oil, 3.371
Gtoe (gigaton of oil equivalent) of coal, 2.237 Gtoe of renewables (= 1.159 Gtoe of bioenergy + 0.713
Gtoe of nuculear + 0.276 of hydro + 0.089 of other renewables), and 2.588 Gtoe of natural gas (which our
model ignores). Following GHKT, we assume that one ton of oil contains 0.846 ton of carbon, one ton of
coal contains 0.716 ton of carbon, and one ton of oil equivalent is 1.58 tons of coal. With these numbers,
we can calculate that 4.079 Gt of oil contain 4.079× 0.846 = 3.45 Gt of carbon and 3.371 Gtoe of coal is
equivalent to 3.371× 1.58 = 5.32 Gt of coal, which contain 5.32× 0.716 = 3.81 Gt of carbon. Production
of 2.237 Gtoe of renewables implies that 2.237 × 0.846 = 1.89 Gt of carbon would have been released if
the same amount of energy is produced by burning oil.

27GHKT do not explicitly provide the laissez faire level of Er, but they mention that it is very close to
the optimal value. The optimal values listed in the table are all taken from the Matlab code prepared by
Barrage (2014).
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C.3 Reduced form

We transform this structural model into a reduced-form model as follows. Since the

optimal savings rate is si,t = δκ, we can write

∞∑
v=t

δv−t ln(Ci,v) =
1

1− δκ
wi(Ki,t−1, Gt−1, (Ai,v)

∞
v=t−1)

+
1

1− δκ

∞∑
v=t

δv−tũi((N
o
j,v, N

c
j,v, N

r
j,v)

n
j=1), (C.96)

where

wi(Ki,t−1, Gt−1, (Ai,v)
∞
v=t−1) := κ ln(Ki,t−1)− cσGt−1 +

∞∑
v=t

δv−t ln (Ai,v−1)

+
(1− δκ) ln(1− δκ) + δκ ln(δκ)

1− δ

and

ũi((N
o
j , N

c
j , N

r
j )

n
j=1) := (1− κ− ν) ln (1−No

i −N c
i −N r

i )

+
ν

ρ
ln (ζo (A

o
iN

o
i )

ρ + ζc (A
c
iN

c
i )

ρ + ζr (A
r
iN

r
i )

ρ)

− c

1− δσ

n∑
j=1

(Ao
jN

o
j +Ac

jN
c
j ).

For each v ≥ t, given M ∈ N , player i ∈ M chooses (No
i,v, N

c
i,v, N

r
i,v) so as to maximize∑

k∈M
ũk((N

o
j,v, N

c
j,v, N

r
j,v)

n
j=1)

whereas player i /∈ M chooses (No
i,v, N

c
i,v, N

r
i,v) to maximize

ũi((N
o
j,v, N

c
j,v, N

r
j,v)

n
j=1).

The first-order conditions with respect to No
i,v, N

c
i,v, and N r

i,v are given by

ν
ζo(E

o
i,v)

ρ

ζo

(
Eo

i,v

)ρ
+ ζc

(
Ec

i,v

)ρ
+ ζr

(
Er

i,v

)ρ =
(1− κ− ν)No

i,v

1−No
i,v −N c

i,v −N r
i,v

+ δξi(M)Eo
i,v,

ν
ζc(E

c
i,v)

ρ

ζo

(
Eo

i,v

)ρ
+ ζc

(
Ec

i,v

)ρ
+ ζr

(
Er

i,v

)ρ =
(1− κ− ν)N c

i,v

1−No
i,v −N c

i,v −N r
i,v

+ δξi(M)Ec
i,v,

ν
ζr(E

r
i,v)

ρ

ζo

(
Eo

i,v

)ρ
+ ζc

(
Ec

i,v

)ρ
+ ζr

(
Er

i,v

)ρ =
(1− κ− ν)N r

i,v

1−No
i,v −N c

i,v −N r
i,v

,
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Figure 9: Signatory’s energy use (left) and the reduced-form payoff function (right).

where we define

ξi(M) :=

 c
1−δσ |M | i ∈ M

c
1−δσ i /∈ M.

Notice that the solution (No
j , N

c
j , N

r
j )

n
j=1 depends on M . The reduced-form payoff func-

tion is given by

ui(M) = ũi((N
o
j , N

c
j , N

r
j )

n
j=1),

where (No
j , N

c
j , N

r
j )

n
j=1 is a function of M implicitly defined by the system of equations

above. The left panel of Figure 9 shows how the size of a coalition affects the energy

consumption of its members. The reduced-form payoff as a function of coalition size m is

depicted in the right panel of Figure 9.

C.4 Results

In this example, the reduced-form payoff function satisfies Assumption 1. In particular,

as the right panel of Figure 9 shows, the equilibrium coalition size of the static game is

unique and is given by m∗ = 3.

C.4.1 Equilibrium with a single coalition size

As summarized in Table 4, for our calibrated model, we have l∗ = 4 and δl∗ = 0.865 (the

threshold discount factor for the pessimistic result). Since δ = 0.859 < 0.865, this result

suggests that equilibrium with a single coalition size does exist in this example.
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Table 4: Equilibrium with a single coalition size (n = 15)

m∗ l∗ δl∗ welfare gain (% GWP)

3 4 0.865 0.37

Table 5: Equilibria with multiple coalition sizes (n = 15)

m∗ δm∗ Πm∗

δ maxΠm∗

δ − inf Πm∗

δ welfare gain (% GWP)

5 0.375 (0.001, 0.074] 0.072 (0.38, 0.60]

6 0.489 (0.046, 0.124] 0.078 (0.62, 0.86]

7 0.564 (0.084, 0.165] 0.081 (0.91, 1.16]

8 0.617 (0.121, 0.204] 0.083 (1.23, 1.49]

9 0.656 (0.158, 0.244] 0.086 (1.58, 1.84]

10 0.688 (0.198, 0.287] 0.089 (1.96, 2.22]

11 0.713 (0.241, 0.336] 0.094 (2.37, 2.62]

12 0.734 (0.291, 0.393] 0.101 (2.80, 3.04]

13 0.751 (0.351, 0.462] 0.111 (3.25, 3.48]

14 0.766 (0.424, 0.549] 0.125 (3.71, 3.94]

15 0.779 (0.517, 0.662] 0.146 (4.20, 4.41]

C.4.2 Equilibria with multiple coalition sizes

The threshold discount factors for larger stable coalitions are listed in Table 5. Since

the calibrated discount factor (δ = 0.859) is greater than the threshold value δm∗ for all

possible m∗, this result suggests that a wide range of coalition sizes (including the grand

coalition) can be supported as an equilibrium outcome. Also, it follows that the two types

of equilibria (one with a single coalition size and one with multiple coalition sizes) coexist.

Table 5 also reports the interval Πm∗
δ of equilibrium belief πm∗

for each m∗. In this

example, the width of the interval becomes wider as m∗ increases. In order for the

grand coalition to be a sustainable outcome, players need to collectively believe that the

negotiation succeeds with more than 51% probability, but with less than 67% probability.

C.4.3 The value of sober optimism

For each of the possible equilibria, we can compute the welfare gain relative to the non-

cooperative Nash scenario. We define welfare gain as the amount of additional first-decade

consumption needed in the non-cooperative scenario to achieve the equilibrium welfare

level. We calculate it by dividing the difference in welfare by the marginal utility of

consumption for the first decade. When expressed as a fraction of the first-decade output

in the non-cooperative scenario, the welfare gain of player i is given by

1

1− δ

(
ūm

∗ πm∗

1− δ(1− πm∗)
+ ūm∗

(
1− πm∗

1− δ(1− πm∗)

)
− ui(∅)

)
,
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where ūm is defined in (13).28 Since players are symmetric, this fraction also represents

the aggregate welfare gain expressed as a fraction of the first-decade global output.

The equilibrium welfare gains are listed in Table 4 and 5. If players remain highly

pessimistic about the prospect of IEAs, the welfare gain relative to no cooperation will be

about 0.37 percent of the initial-decade GWP (2.63 trillion USD).29 If players successfully

build and share sober optimism, the equilibrium welfare gain can be as much as 4.41

percent of the decadal GWP (31.31 trillion USD), indicating that the value of sober

optimism is 31.31− 2.63 = 28.68 trillion USD (about 4% of the first-decade world GWP.

C.5 Number of players

In this section we present the sensitivity analysis with respect to n, the number of players.

By comparing the results for different values of n, we can investigate how the chance of

successful agreements is affected by agglomerating or disbanding negotiating groups of

countries, such as EU, LDC, or G-77. As we change the value of n, we do not recali-

brate the model (i.e. all the parameter values remain the same). Recalibration makes it

difficult to interpret the results because it involves simultaneous adjustments in multiple

parameters.

It is important to note that the non-cooperative scenario, against which we evaluate

the equilibria, shifts as we change n. The left panel of Figure 10 depicts the energy con-

sumption in our non-cooperative (solid) and cooperative (dashed) scenarios for different

28It follows from (C.96) that the welfare of player i is given by

Wi(M−1) =
1

1− δκ
wi(Ki,t−1, Gt−1, (Ai,v)

∞
v=t−1) +

1

1− δκ
Vi(M−1),

where Vi(M−1) is the equilibrium value function of the reduced-form game, which is given by

Vi(M−1) =

{
1

1−δ
ui(M) if |M−1| ≥ m∗

Eπ

[
ui(M̃) + δVi(M̃)

]
= 1

1−δ
ūπ otherwise.

Here we define

ūπ := ūm∗ πm∗

1− δ(1− πm∗)
+ ūm∗

(
1− πm∗

1− δ(1− πm∗)

)
.

Hence, if the game starts with no preceding coalition (i.e. M0 = ∅), the ex-ante equilibrium welfare can
be computed as

Wπ
i :=

1

1− δκ
wi(Ki,0, G0, (Ai,v)

∞
v=0) +

1

1− δκ

1

1− δ
ūπ.

Then we can express in units of first-decade consumption the equilibrium welfare gain of player i relative
to the non-cooperative Nash scenario as

Wπ
i −Wnc

i

d ln(Ci,1)/dCi,1
=

ūπ − ui(∅)

(1− δκ)(1− δ)
Ci,1 =

ūπ − ui(∅)

1− δ
Yi,1,

where Wnc
i is the welfare level associated with the non-cooperative scenario.

29The decadal GWP value we use is 710.00 trillion USD, taken from World Bank. (See
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.) With this number, the welfare gain asso-
ciated with the full-cooperation scenario can be computed as 33.37 trillion USD (about 4.7% of the
first-decade GWP). This number seems fairly consistent with GHKT. Based on the Matlab code pre-
pared by Barrage (2014), we can compute the welfare gain associated with the optimal solution of GHKT
(relative to their laissez faire scenario) as about 8.5% of the first-decade GWP.
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Figure 10: Annual energy consumption in the non-cooperative (solid) and cooperative
(dashed) scenarios (left panel) and welfare gains relative to the non-cooperative scenario
(right panel).

values of n. Both oil and coal consumption in the non-cooperative scenario increase as

n increases, which is expected because a larger number of players implies a higher de-

gree of fragmentation, and thus greater externality. The optimal energy consumption is

barely affected by n, indicating that we can interpret n as an index of fragmentation. As

shown in the right panel of Figure 10, the welfare gain associated with the full-cooperation

scenario increases in n.

C.5.1 Equilibrium with a single coalition size

The top left panel of Figure 11 shows the value of δl∗ first sharply increases as n grows

from 1, reaching 0.965 for n = 17. For n = 18 or larger, δl∗ stays at around 0.38. In this

example, the equilibrium of this type only exists for n = 15, 16, and 17.

C.5.2 Equilibria with multiple coalition sizes

Unlike the equilibrium with a single coalition size, equilibria with multiple coalition sizes

exist for a wide rage of n and the possible value of m∗, the size of the larger stable

coalition, varies with n. The top right panel of Figure 11 shows that the value of δm
∗
is

greater for larger m∗, and for each m∗, δm
∗
increases with n. As the middle left panel

of Figure 11 shows, the grand coalition can be supported as a sustainable outcome only

when n ≤ 24. As n ranges from 24 to 100, the largest size of sustainable coalitions (which

we denote m̄∗ := maxm∗) decreases from 24 to 20; see the middle right panel of Figure 11.

The equilibrium common belief is also affected by the number of players. The bottom

left panel of Figure 11 depicts the interval Πm∗
δ of πm∗

for the largest possible equilibrium
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coalition size. As n increases, the interval gradually becomes narrower. For n = 24

or larger, the interval becomes very tiny, smaller than 0.005, and at the same time the

probability of achieving the largest possible coalition sharply declines. Consequently, as

shown in the right panel of Figure 10, for n > 24, the maximum equilibrium welfare gain

(relative to the non-cooperative scenario) sharply declines with n.

As the bottom right panel of Figure 11 shows, the interval Πm∗
δ is widest at m∗ = n

as long as n ≤ 19. But for n > 20, the interval is widest at m∗ = 6.
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Figure 11: The impacts of fragmentation on the threshold discount factor δl∗ for unsus-
tainable equilibrium (top left), the threshold discount factor δm∗ for sustainable equilibria
(top right), the fraction of players joining the largest sustainable coalition (middle left),
the sizes of equilibrium coalitions (middle right), the belief interval for the largest sustain-
able coalition (bottom left), the sustainable coalition size with the largest belief interval
(bottom right).
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