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Abstract

We investigate menu mechanisms: dynamic mechanisms where at each his-
tory, an agent selects from a menu of his possible assignments. In comparison to
direct mechanisms, menu mechanisms offer better privacy to participants; we for-
malize this with a novel notion of mechanism informativeness. We consider both
ex-post implementation and full implementation, for both subgame perfection and
a strengthening of dominance that covers off-path histories, and provide conditions
under which menu mechanisms provide these implementations of rules. Our results
cover a variety of environments, including elections, marriage, college admissions,
auctions, labor markets, matching with contracts, and object allocation.
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1 Introduction

1.1 Overview

In 2018, the European Union implemented the General Data Protection Regulation, which
broadly promotes an individual’s right to control his or her personal data. In Chapter 2,
Article 5, the law introduces the principle of data minimization:

Personal data shall be adequate, relevant and limited to what is necessary in
relation to the purposes for which they are processed.

In this article, we investigate the general application of this principle to a broad variety
of problems in mechanism design.

In particular, we consider finite environments with private values and no consumption
externalities, and we investigate privacy improvements over existing dominant strategy
implementations. Among the many mechanisms that have been designed by economists,
dominant strategy implementations have a striking record for real-world application—
from auctions to school choice procedures to labor market clearinghouses and more. For
every problem that can be solved with such a mechanism, the prototypical example is
the direct mechanism: each agent reports all of his private information to a central ad-
ministrator, who then uses these reports to calculate the desired outcome. Of course, for
any reasonable definition of data minimization, direct mechanisms perform disastrously.

We formalize the informativeness of an implementation by considering the perspective
of an observer who is (i) interested in the collective private information of the agents,
(ii) able to observe all actions taken by the agents, and (iii) working with a natural model
about how his observations are generated.1 The informativeness of the implementation,
then, is the partition of the set of type profiles representing what this observer might learn.
Instead of seeking a minimally informative implementation for a particular rule, in this
article we seek privacy improvements over direct mechanisms—that is, implementations
with coarser type profile partitions—for a variety of rules across a variety of environments.

To do so, we introduce menu mechanisms: dynamic mechanisms where at each his-
tory, an agent selects from a menu of his possible assignments. Every rule has menu
mechanisms that imitate the direct mechanism. Moreover, many prominent rules are
effectively described with a menu mechanism—in particular, with an algorithm for cal-
culating outcomes where agents behave desirably in a menu mechanism. Familiar menu
mechanisms, and familiar rules with algorithms easily associated with menu mechanisms,
include

• direct menu mechanisms in a variety of environments, including for voting by com-
mittees (Barberà, Sonnenschein, and Zhou, 1991) in two-candidate election envi-
ronments;

• student-proposing deferred acceptance (Gale and Shapley, 1962) in college admis-
sions environments, including male- and female-proposing deferred acceptance in
marriage environments;

1In the context of partial implementation, the observer assumes that agents conform to the given
type-strategy profile, while in the context of full implementation, the observer assumes that agents play
some equilibrium given the type profile.
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• the salary adjustment process (Crawford and Knoer, 1981; Kelso and Crawford,
1982) in labor market environments, including the English auction in one-object
auction environments;

• the cumulative offers process (Hatfield and Milgrom, 2005) in matching with con-
tracts environments; and

• Gale’s top trading cycles (reported in Shapley and Scarf, 1974), serial dictatorship
(see, for example, Svensson, 1999), the broader class of hierarchical exchange rules
(Pápai, 2000), and the even broader class of trading cycles rules (Pycia and Ünver,
2017; Bade, 2020) in object allocation environments.

We illustrate three of these examples in Figure 1. With the exception of direct menu
mechanisms, the above menu mechanisms are all clearly less informative than direct
mechanisms. This raises the question: are some of these menu mechanisms incentive
compatible, and if so, in what way?

Our main results imply that all of the menu mechanisms for the above examples are
robustly incentive compatible; see Section 5 for a detailed discussion of these examples
and related ones. In particular, we consider both ex-post implementation and full imple-
mentation, for both subgame perfection and everywhere-dominance: a strengthening of
dominance that covers off-path histories. We emphasize that for many of these examples,
while the algorithm is not novel, and while the direct mechanism that gathers all private
information and then calculates outcomes by simulating desired behavior in the menu
mechanism is not novel, the incentive compatibility of the menu mechanism itself has not
been considered previously.

Formally, we provide sufficient conditions for a menu mechanism to provide a robust
implementation of a rule. We consider the following conditions:

• For the environment, richness requires that each agent might have any strict ranking
of his assignments (though he may also have other rankings), and strictness requires
that agents are never indifferent. For the rule, strategy-proofness has the usual
definition, while group strategy-proofness is the usual strong version requiring that
no group of agents can jointly misreport to obtain a Pareto-improvement.

• For the menu mechanism, non-repeating requires that an agent can never select the
same assignment twice, public requires that each agent observes all actions of his
peers, and private requires that each agent observes no actions of his peers. For
private menu mechanisms, reaction-proofness requires that whenever one agent can
deduce something about another agent’s choices, the latter’s assignment has already
been determined.

• For type-strategy profiles—which for convenience, we refer to as conventions—
preferential requires that each agent always selects a most-preferred assignment
and breaks ties consistently, and compatibility with the rule requires that the de-
sired outcome is achieved if all agents conform.

Some of the rules we consider are strategy-proof but not group strategy-proof, and therefore
only some of our results apply. Otherwise, each of our applications either satisfies all
conditions or violates just one; in these latter cases, there are simple workarounds.2

2In particular, we consider labor market environments and one-object auction environments that
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(a) Direct menu mechanism.

(b) Male-proposing deferred acceptance menu mechanism.

(c) English auction menu mechanism.

Figure 1: Examples of menu mechanisms. (a) There are two agents: 1 can consume
from {d, e} and have any strict ranking, and 2 can consume from {a, b, c} and have
any strict ranking. The agents sequentially reveal their complete preference rankings.
(b) There are two men, 1 and 2, and two women, a and b. At each history, a man
either (i) proposes to a woman who has not yet rejected him, or (ii) opts to remain single
(denoted ∅). Each woman processes proposals mechanically, tentatively accepting her
most preferred suitor while rejecting all others. In this example, a prefers 1 to 2, while
b prefers 2 to 1. (c) There are three bidders, 1 and 2 and 3, and one object with two
possible prices, 4 and 8. At each history, a bidder can either (i) bid at the current price,
which ascends over the course of the auction; or (ii) exit (denoted ∅). If several agents
make the same bid, then the one with lowest index is a tentative winner while the others
are asked to bid again.

4



We draw stronger conclusions for private menu mechanisms than public menu mech-
anisms, and emphasize that these are dramatically different institutions. For example,
the public deferred acceptance menu mechanism might describe courtship in a ballroom,
while the private one might describe courtship through a dating app. As another ex-
ample, the public English auction menu mechanism might describe a sale at an auction
house, while the private one might describe a sale online (say, on e-Bay). In general,
we find it convenient to think of private menu mechanisms as smart phone apps that
occasionally notify users that they must select from a given menu. With this in mind,
our main results are the following:

Theorem 1: For each rich environment, each strategy-proof rule, each non-repeating
public menu mechanism, and each preferential convention that is compatible with the
rule, the public menu mechanism is an ex-post perfect implementation of the rule via the
convention.

Theorem 2: For each rich and strict environment, each group strategy-proof rule, each
non-repeating public menu mechanism, and each preferential convention that is compatible
with the rule, the public menu mechanism is both an ex-post perfect implementation of
the rule and a full subgame perfect implementation of the rule.

Theorem 3: For each rich environment, each strategy-proof rule, each non-repeating
and reaction-proof private menu mechanism, and each preferential convention that is
compatible with the rule, the private menu mechanism is an ex-post everywhere-dominant
implementation of the rule via the convention.

Theorem 4: For each rich and strict environment, each group strategy-proof rule, each
non-repeating and reaction-proof private menu mechanism, and each preferential conven-
tion that is compatible with the rule, the private menu mechanism is both an ex-post
everywhere-dominant implementation of the rule and a full everywhere-dominant imple-
mentation of the rule.

As corollaries, our theorems immediately provide novel results for two-candidate elec-
tions, marriage, college admissions, auctions with unit demand, labor markets, matching
with contracts, and object allocation; see Section 5 for details. Taken together, our re-
sults show that like direct mechanisms, menu mechanisms can systematically provide
robust implementations, but unlike direct mechanisms, they can require agents to reveal
substantially less than their complete private information. For public menu mechanisms,
this privacy improvement comes at the cost of moving from dominant strategy imple-
mentation to robust implementation in terms of subgame perfection, and this tradeoff
may be worthwhile in some situations but not in others. For private menu mechanisms,
the privacy improvement comes at no cost in terms of implementation. That said, public
menu mechanisms may be more desirable when transparency about the behavior of all
agents is required by law; for example, this is required by the Freedom of Information
Act for procurement auctions in the United States (Bergemann and Hörner, 2018).

satisfy strictness but violate richness; for these applications, we can still apply our results indirectly by
enriching the environment and then pruning the associated menu mechanism. The menu mechanisms for
trading cycles rules that are not hierarchical exchange rules must be slightly modified to be non-repeating.
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1.2 Literature

Our paper is closely related to the literature on our leading examples, which we discuss in
detail in Section 5. Moreover, our paper is related to recent experiments, recent results
on special classes of menu mechanisms, implementation theory, privacy in mechanism
design, and market design; we discuss each in sequence.

First, in addition to the privacy benefits of menu mechanisms, recent experiments
suggest that there may also be simplicity benefits, as measured by the likelihood of sub-
jects conforming to the convention. In particular, the evidence suggests that while obvi-
ously strategy-proof mechanisms3 generally outperform both menu mechanisms and direct
mechanisms (Bó and Hakimov, 2020b), menu mechanisms outperform direct mechanisms
for both deferred acceptance (Klijn, Pais, and Vorsatz, 2019; Bó and Hakimov, 2020a)
and top trading cycles (Bó and Hakimov, 2020b); thus menu mechanisms can jointly
provide privacy benefits and simplicity benefits even when obviously strategy-proof im-
plementations are not available. That said, unfortunately these simplicity benefits are
not universal: there is no evidence of such an improvement for serial dictatorship (Bó
and Hakimov, 2020b).

Second, our results complement recent results in the literature, which we describe
using our language. First, Kawase and Bando (2018) prove that for each game associated
with a deferred acceptance public menu mechanism, honesty is a subgame perfect equi-
librium; this is an implication of our Theorem 1. Interestingly, Kawase and Bando (2018)
also consider the games where (i) only the side of the market that processes proposals is
strategic, and (ii) both sides are strategic; though these games can also be described using
menu mechanisms, they violate our non-repeating requirement, and therefore our results
do not apply. Second, Bó and Hakimov (2019) prove that for deferred acceptance menu
mechanisms, honesty is an ordinal perfect equilibrium, and Bó and Hakimov (2020b)
extend this result to pick-an-object mechanisms for one-sided matching markets; these
are menu mechanisms where each agent necessarily consumes the last object he selected.
These results are similar to our Theorem 1, but involve a natural subclass of our menu
mechanisms and a different solution concept.

Third, our paper is related to two topics in the broader literature on implementation
theory: ex-post perfect implementation and double implementation. Ex-post perfect im-
plementation is a focal notion of robust implementation for dynamic mechanisms which
has been used to analyze auctions (Ausubel, 2004; Ausubel, 2006; Sun and Yang, 2014)
and voting (Kleiner and Moldovanu, 2017; Gershkov, Moldovanu, and Shi, 2017; Kleiner
and Moldovanu, 2019). Because we require strictness and strategy-proofness, our results
only apply to restricted versions of these settings: (i) auctions where agents have unit
demand, under the restriction that no two objects are identical and no agent is indiffer-
ent between exiting and winning for some price; and (ii) elections with two candidates.
Indeed, our paper primarily complements these previous contributions by applying to
matching environments. Double implementation refers to two kinds of implementation
simultaneously (Maskin, 1979), and to our knowledge we are the first to consider full
subgame perfect implementation (Moore and Repullo, 1988) in this context.4

3For rich and strict environments, if a rule has an obviously strategy-proof implementation (Li, 2017),
then it has one through a millipede mechanism (Pycia and Troyan, 2019), in which case it also has an
implementation in weakly dominant strategies through a menu mechanism that is moreover a pick-
an-object mechanism (Bó and Hakimov, 2020b). There are millipede mechanisms that are not menu
mechanisms, and there are menu mechanisms that are not millipede mechanisms.

4Double implementation has previously been investigated for full Nash implementation with full
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Fourth, we contribute to the literature on privacy in mechanism design with our notion
of informativeness. As we discuss later, our privacy ordering for ex-post implementations
can be viewed as the ordinary Blackwell ordering (Blackwell, 1951), though this is not the
case for full implementations. Moreover, our notion is conceptually related to informa-
tional efficiency, which involves a formal notion of message space size (Hurwicz, 1960).
In the context of auctions, it has previously been argued that one advantage of English
auctions over direct mechanisms is that the winner only needs to reveal that his valuation
is higher than the second-highest, which is desirable if he expects extensive negotiations
to follow or if he does not want to reveal the extent of his technological advantage to com-
petitors (Rothkopf, Teisberg, and Kahn, 1990); this notion is formalized by Milgrom and
Segal (2020).5 With respect to previous notions, the primary advantage of our approach
is that it allows us to partially order implementations, and to do so very generally in the
context of robust implementation. We remark that other interesting notions of privacy
that are less closely related to ours have also been considered.6

Finally, our paper is part of the broader literature identifying practical problems with
direct mechanisms in market design. As examples, (i) a prominent lawsuit alleged that
the central clearinghouse for the resident labor market in the United States had the pur-
pose and effect of allowing hospitals to collude to suppress wages, in violation of anti-trust
law (Jung et al. versus Association of American Medical Colleges et al., 2002); (ii) direct
mechanisms may not be credible because the administrator can deliberately miscalcu-
late outcomes, such as by shill bidding in auctions (Akbarpour and Li, 2020); (iii) the
administrator may accidentally miscalculate outcomes, such as when the City of Boston
unintentionally subverted the goal of prioritizing nearby students in admissions at each
public school, because the assignment algorithm filled the seats reserved for these stu-
dents first (Dur, Kominers, Pathak, and Sönmez, 2018); and (iv) direct mechanisms may
make it unnecessarily difficult for agents who have trouble with contingent reasoning to
identify dominant strategies (Li, 2017). To give the complete picture, though, we should
mention that alternatives to direct mechanisms have their problems, too. As examples,
(i) the National Resident Matching Program is a centralized labor market clearinghouse
for medical residents in the United States that was designed in response to market failures
via unraveling, where hospitals made earlier and earlier exploding offers (Roth and Per-
anson, 1999), and (ii) even in decentralized labor markets by telephone with extremely
short turnaround times, such as the entry-level market for clinical psychologists, there
can be bottlenecks that slow the market and promote strategic behavior (Roth and Xing,
1997). Within this literature, we formalize the point that dominant strategy implemen-
tation can be preserved when moving from a direct mechanism to a dynamic mechanism
that requires agents to reveal considerably less information, such as when moving from a

undominated Nash implementation (Yamato, 1993), as well as for full Nash implementation with full
dominant strategy implementation (Saijo, Sjöström, and Yamato, 2007).

5In particular, Milgrom and Segal (2020) say that an auction satisfies unconditional winner privacy
if and only if—in our language—for each agent, and for each pair of type profiles where (i) this agent
wins and (ii) his peers’ types are the same, the convention assigns both type profiles to the same play.
Clearly, if an auction satisfies unconditional winner privacy, then any less informative auction does as
well.

6For example, in the Bayesian tradition, Eliaz, Eilat, and Mu (2019) consider a notion of privacy
based on the difference between the planner’s prior and posterior. In perception games, agents have
privacy concerns that influence their behavior as they care about the beliefs of observers (Gradwohl
and Smorodinsky, 2017). See Milgrom and Segal (2020) for a discussion of other privacy notions in the
computer science literature, where cryptography technology is taken into account.
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centralized clearinghouse to a market organized by a smart phone app.

2 Model

2.1 Preliminaries

We begin by introducing a generic environment in our model: a finite setting with in-
complete information, private values, and no consumption externalities.

Definition: An environment is a tuple (N, (Xi)i∈N , X, (Θi)i∈N), where

• N is a nonempty and finite set of agents;

• for each i ∈ N , Xi is a nonempty and finite set of assignments, for which we let

(i) Ri denote the set of (complete and transitive) preference relations on Xi, and

(ii) Pi ⊆ Ri denote the set of those that are strict (that is, antisymmetric);

• X ⊆ ×Xi is a nonempty set of outcomes, where each outcome consists of an assign-
ment for each agent; and

• for each i ∈ N , Θi is a nonempty set of types, where each type θi ∈ Θi determines a
preference relation Ri(θi) ∈ Ri; we let Pi(θi) denote the asymmetric part of Ri(θi)
and let Ii(θi) denote the symmetric part of Ri(θi).

We let Θ denote ×Θi, and refer to each θ ∈ Θ as a type profile; we let R(θ) ≡ (Ri(θi))i∈N
denote the associated preference profile. We assume there are no consumption externali-
ties and thus sometimes abuse notation, letting Ri(θi) denote not only a binary relation
on Xi but also the associated binary relation on X. For convenience, whenever we refer
to a generic environment we implicitly assume all of this notation.

In a given environment, the agents wish to condition the outcome on their collective
private information according to a (social choice) rule. We primarily focus on strategy-
proof rules, for which honesty is always a dominant strategy in the associated direct
mechanism:

Definition: Fix an environment. A rule is a function f : Θ → X. We say that f
is strategy-proof if and only if for each θ ∈ Θ, each i ∈ N , and each θ′i ∈ Θi, we have
f(θi, θ−i) Ri(θi) f(θ′i, θ−i).

We are interested in comparing mechanisms that implement a given rule. A mech-
anism is simply an extensive game form with players in N and outcomes in X; see
Appendix E for the formal definition, which is familiar to most readers. The notation we
use throughout the paper is gathered in Table 1. For convenience, whenever we refer to a
generic mechanism G, we implicitly assume all of this notation. Note that a mechanism G
and a type profile θ together determine a game (G,R(θ)).

We focus on implementation that is robust, in that it does not rely on any assumptions
about the beliefs agents have about the private information of their peers. Informally,
we say that a mechanism implements the rule if and only if regardless of the type profile,
the desired outcome is a plausible consequence of the strategic choices of the agents.
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Table 1: Notation for a generic mechanism.

Name Notation Representative element
Set of histories H h
Precedence relation over histories -
Set of immediate successors of h σ(h)
Set of plays Π π
Set of terminal histories Z z
Player function P
Set of histories that belong to i Hi

Set of actions A
Action function α
Set of actions available at h A(h)
Action taken at h to remain on π αh(π)
Action taken at h to continue toward h′ αh(h′)
Information partition for i Ii Ii
Set of actions available at Ii A(Ii)
Outcome function X

We formalize this in several ways, using both type-strategy profiles in a mechanism and
strategy profiles in its associated games. To ease the discussion, we introduce the term
convention as a suggestive shorthand for a type-strategy profile—for example, in a direct
mechanism, honesty is a convention.

Definition: Strategy profiles, related notation, and conventions. Fix an environment
and a mechanism.

• For each i ∈ N , a (pure) strategy for i is a mapping si : Hi → A such that

(i) for each h ∈ Hi, si(h) ∈ A(h); and

(ii) for each Ii ∈ Ii and each pair h, h′ ∈ Ii, si(h) = si(h
′).

We let Si denote the set of strategies for i. A strategy profile is a profile of strategies
s = (si)i∈N , and we let S ≡ ×Si denote the set of strategy profiles.

• For each h ∈ H and each s ∈ S, define πh(s) to be the play that first proceeds
from the initial history to h and then proceeds according to s. Moreover, define
X h(s) ≡ X (πh(s)), and for each i ∈ N let X h

i (s) denote the associated assignment.
When h is the initial history, we simply write π(s) and X (s).

• For each i ∈ N , a type-strategy for i is a mapping Si : Θi → Si. A convention is a
profile of type-strategies S = (Si)i∈N .

In a given game, we formalize the plausibility of a strategy profile in four different
ways. The first three solution concepts are standard, while the fourth is to our knowledge
novel:

Definition: Solution concepts. Fix an environment, a mechanism, and a preference
profile. Each solution concept SC gives a collection of strategy profiles SC(G,R) ⊆ S.
We consider:

• Nash equilibrium: s ∈ NE(G,R) if and only if for each i ∈ N and each s′i ∈ Si,
X (s) Ri X (s′i, s−i).
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• dominant equilibrium: s ∈ DE(G,R) if and only if for each i ∈ N , each s′−i ∈ S−i,
and each s′i ∈ Si, X (si, s

′
−i) Ri X (s′i, s

′
−i).

• subgame perfect equilibrium: if G has perfect information, then s ∈ SPE(G,R) if
and only if for each i ∈ N , each h ∈ Hi, and each s′i ∈ Si, X h(s) Ri X h(s′i, s−i).

• everywhere-dominant equilibrium: s ∈ EDE(G,R) if and only if for each i ∈ N ,
each h ∈ Hi, each s′−i ∈ S−i, and each s′i ∈ Si, X h(si, s

′
−i) Ri X h(s′i, s

′
−i).

For each of these solution concepts, we consider two notions of implementation: (i) ex-
post with respect to a convention, which requires that at each type profile, the convention
specifies an equilibrium that leads to the desired outcome; and (ii) full, which requires
that at each type profile, there are equilibria and each of them yields the desired outcome:

Definition: Implementations. Fix an environment, a rule, and a solution concept SC.
For each mechanism G and each convention S, we say that (G,S) is an ex-post SC-
implementation of f if and only if

• for each θ ∈ Θ, X (S(θ)) = f(θ); and

• for each θ ∈ Θ, S(θ) ∈ SC(G,R(θ)).

We say that G is a full SC-implementation of f if and only if

• for each θ ∈ Θ, SC(G,R(θ)) 6= ∅; and

• for each θ ∈ Θ and each s ∈ SC(G,R(θ)), X (s) = f(θ).

We sometimes say dominant implementation for ex-post DE-implementation, ex-post per-
fect implementation for ex-post SPE-implementation, ex-post everywhere-dominant im-
plementation for ex-post EDE-implementation, full subgame perfect implementation for
full SPE-implementation, and full everywhere-dominant implementation for full EDE-
implementation.

We remark that though ex-post implementation and full implementation are similar,
they are in fact logically independent; we illustrate this for SPE in Figure 2.

2.2 Informativeness

We are interested in comparing mechanisms that implement a given rule on the basis
of the privacy that they afford to participants. Informally, suppose that an observer is
(i) interested in the collective private information of the agents, and (ii) able to observe
all actions taken by the agents.7 In this case, we say that the informativeness of a
mechanism describes what this observer can learn. Of course, this depends on the model
used by the observer: if the observer believes that the actions and the type profile have no
correlation, then the mechanism is not at all informative. We consider two focal models:
(i) the observer assumes that the convention S has been played, and (ii) the observer
assumes that some SC-equilibrium has been played.

7There are may natural variants that we could also consider; for example, the observer only observes
the final outcome.
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(a) Only ex-post perfect. (b) Only full subgame perfect.

Figure 2: Independence of implementations. Only ex-post perfect. Consider N = {1, 2},
X1 = X2 = {a, b}, the types are the strict rankings, the rule specifies that 1 always
receives a while 2 receives the assignment preferred by 1, and the mechanism in Figure 2a.
Only full subgame perfect. Consider N = {1, 2}, X1 = X2 = {a, b, c}, the types are the
strict rankings, the rule maps each preference profile to the unique subgame perfect
outcome of the game given by that profile and the mechanism in Figure 2b, and that
same mechanism. There is no ex-post perfect convention because, for example, each
convention either specifies 1 should select a when his strict ranking is a P c P b, or it
specifies that he should select c when he has this ranking, but it does not specify both.

Definition: Informativeness. Fix an environment and a mechanism. For each conven-
tion S,

• for each π ∈ Π, define the set of types compatible with π given S by

ΘS(π) ≡ {θ ∈ Θ|π(S(θ)) = π}; and

• define the informativeness of G given S by {ΘS(π)}π∈Π\{∅}.
For each solution concept SC,

• for each π ∈ Π, define the set of types compatible with π given SC by

ΘSC(π) ≡ {θ ∈ Θ| there is s ∈ SC(G,R(θ)) such that π(s) = π}; and

• define the informativeness of G given SC by {ΘSC(π)}π∈Π\{∅}.

We compare the relative informativeness of mechanism-model pairs in the obvious
way, by the coarseness of their partitions of the type profiles:

Definition: Relative informativeness. Fix an environment. Let (G,M) and (G′,M ′)
each be a mechanism with an associated model (either a convention or a solution concept).
We say that (G,M) is more informative than (G′,M ′) if and only if the type profile
partition for (G,M) is finer than the type profile partition for (G′,M ′). In this case, we
sometimes say that (G′,M ′) improves upon the privacy of (G,M).

We remark that this can be interpreted as the standard Blackwell order for the con-
vention models, though not for the solution concept models.8 For a given rule f , the

8A Blackwell experiment is a function that associates each unknown state with a probability distri-
bution over signals. For a convention model, simply consider that type profiles are states, plays are
signals, and each state θ surely yields the signal π(S(θ)). In this case, we compare the informativeness of
two mechanism-convention pairs using the standard Blackwell order (Blackwell, 1951). That said, this
insight does not extend to solution concept models because we make no assumption about how a type
profile generates a distribution over its equilibria.
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informativeness of an associated mechanism given a convention is bounded both above
and below: the partition can be no finer than {{θ}|θ ∈ Θ} (which requires each play used
by the convention to occur for a unique type profile) and no coarser than {f−1(x)}x∈f(X)

(which requires each outcome in the range of f to occur on a unique play used by the
convention). For strategy-proof rules, the direct mechanism is necessarily a maximally-
informative implementation:

Observation: For each environment and each strategy-proof rule, let G be a direct
mechanism and let S be the convention where each agent always reports his type. Then

• (G,S) is an ex-post N-implementation of f ;

• (G,S) is an ex-post DE-implementation of f ; and

• the informativeness of G given S is {{θ}|θ ∈ Θ}.

Instead of focusing on a particular rule and seeking a minimally informative implemen-
tation, in this article we seek to systematically construct implementations that are less
informative than direct mechanisms for a variety of rules across a variety of environments.

2.3 Menu mechanisms

To systematically improve upon the privacy of direct mechanisms, we introduce menu
mechanisms, where agents iteratively select from menus of their assignments:

Definition: Fix an environment. A mechanism is moreover a menu mechanism if and
only if

• A = ∪Xi; and

• for each i ∈ N , each h ∈ Hi, and each h′ ∈ σ(h), α(h′) ∈ Xi. We define the menu
at h, Xi(h) ⊆ Xi, by Xi(h) ≡ {α(h′)|h′ ∈ σ(h)}.

As discussed earlier, many of the menu mechanisms we consider are derived naturally
from familiar ideas in the literature; recall Figure 1. With the exception of the menu
mechanisms derived from direct mechanisms, all of our examples are clearly less informa-
tive than direct mechanisms. For example, in an English auction, the winner only needs
to reveal that his valuation is higher than the final price, but does not need to reveal more
beyond that; indeed, this has been recognized as one of the practical merits of English
auctions over direct mechanisms (Rothkopf, Teisberg, and Kahn, 1990). Our main results
show that, perhaps surprisingly, all of these examples also provide robust implementa-
tions of their rules. The particular kind of implementation depends on whether or not
an agent’s actions can be observed by his peers:

Definition: Fix an environment. We say that a menu mechanism is

• public if and only if for each i ∈ N , Ii = {{h}|h ∈ Hi}; and
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• private if and only if for each i ∈ N and each pair h, h′ ∈ Hi, h and h′ share an
information set if and only if at these histories, i has encountered the same menus
and taken the same actions in the same order.9

As discussed in the introduction, the public and private versions of a given menu
mechanism describe dramatically different institutions.

3 Public menu mechanisms

3.1 Results

In this section, we consider public menu mechanisms. We begin by providing condi-
tions under which a public menu mechanism provides an ex-post perfect implementation.
It is well-known that (i) each ex-post perfect implementation is an ex-post Nash im-
plementation, and (ii) for environments with private values, each rule with an ex-post
Nash implementation is strategy-proof (see, for example, Bergemann and Morris, 2005);
thus strategy-proofness of the rule is a necessary condition. In addition to this necessary
condition, we impose the following:

Definition: Assumptions for Theorem 1. Fix an environment, a rule f , a menu mech-
anism G, and a convention S. We say that

• the environment is rich if and only if for each i ∈ N and each Pi ∈ Pi, there is
θi ∈ Θi such that Ri(θi)= Pi;

• G is non-repeating if and only if for each π ∈ Π, each i ∈ N , and each distinct pair
h, h′ ∈ Hi ∩ π, αh(π) 6= αh

′
(π);

• S is f -compatible (or compatible with the rule) if and only if for each θ ∈ Θ, we have
X (S(θ)) = f(θ); and

• S is preferential if and only if for each i ∈ N and each θi ∈ Θi, there is a tie-breaker
τi(θi) ∈ Pi such that for each h ∈ Hi, [Si(θi)](h) = argmaxτi(θi)[argmaxRi(θi)Xi(h)].10

Richness requires that each agent might have any strict ranking of his assignments,
which is satisfied in many matching environments but violated in auction environments
(where lower payments must be preferred) and labor market environments (where higher
salaries must be preferred); we discuss how to nevertheless apply our result for these
particular examples in Section 5.2. The non-repeating requirement is that no agent can
select the same assignment twice; this is satisfied by all of our examples, but violated
by the menu mechanism derived from male-proposing deferred acceptance where women
strategically process proposals that are mechanically submitted by men. Compatibility
with the rule is a basic condition that is necessary for ex-post Nash implementation.

9Formally, for each i ∈ N and each h ∈ Hi, let {h1, h2, ..., ht} denote {h′ ∈ Hi|h′ ≺ h} such
that h1 ≺ h2 ≺ ... ≺ ht, and define the experience of i at h to be the list of menus and selections
Ei(h) ≡

(
(Xi(h1), αh1(h)), (Xi(h2), αh2(h)), ..., (Xi(ht), α

ht(h)), Xi(h)
)
. We require that for each i ∈ N

and each pair h, h′ ∈ Hi, h and h′ share an information set if and only if Ei(h) = Ei(h′).
10Abusing notation, if argmaxRi

(X ′i) is a singleton {x}, we sometimes let argmaxRi
(X ′i) denote x.
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Finally, the preferential requirement is that the convention specifies that each agent should
always pick a most-preferred assignment, breaking ties consistently; this is again satisfied
by all of our examples. Our first theorem states that these conditions guarantee a public
menu mechanism provides an ex-post perfect implementation:

Theorem 1: For each rich environment, each strategy-proof rule, each non-repeating
public menu mechanism, and each preferential convention that is compatible with the
rule, the public menu mechanism is an ex-post perfect implementation of the rule via the
convention.

The formal proof is in Appendix C, and involves lemmas about public menu mech-
anisms (Appendix B) whose proofs involve lemmas about revealed preference theory
(Appendix A). We sketch the arguments below:

Proof sketch. To begin, we take arbitrary θ ∈ Θ, i ∈ N , h ∈ Hi, and s ∈ Si, we define a
to be the assignment for i when he conforms to the convention and b to be the assignment
for i when he deviates—that is, a ≡ X h

i (S(θ)) and b ≡ X h
i (si,S−i(θ−i))—and we seek to

prove that a Ri(θi) b, dismissing the trivial case where a = b. In order to do so, we
consider the plays through h where i conforms and where he deviates, πa ≡ πh(S(θ)) and
πb ≡ πh(si,S−i(θ−i)), and seek type profiles for which the convention specifies these plays.
Because the environment is rich and the convention is preferential, this is possible if for
each agent, certain choices from the menus of certain histories are together rationalizable,
and we therefore apply techniques from revealed preference theory.

In particular, we use the well-known result that choices are rationalizable by a strict
preference relation if and only if there is no revealed cycle (the Cycle Lemma; see for
example Chambers and Echenique, 2016) to prove that (i) always staying on a given play
is rationalizable (the Play Lemma); and (ii) for any history and any continuation strategy
specified by the convention, proceeding toward that history and then conforming to the
continuation strategy is rationalizable (the Continuation Lemma). Both of these proofs
rely critically on the fact that the public menu mechanism is non-repeating. Our proof
of Theorem 1 also involves a second result from revealed preference theory: if all strict
preference relations that rationalize some choices rank a above b, then there is a revealed
path from a to b (the Path Lemma).

By the Continuation Lemma, there is θ∗−i ∈ Θ−i such that each agent j ∈ N\{i}
proceeds to h and then plays according to Sj(θj). By the Play Lemma, i remaining on
πa and i remaining on πb are both rationalizable. If Pa and Pb rationalize i remaining
on πa and πb, respectively, then by richness they are given by types θai and θbi , so πa =
π(S(θai , θ

∗
−i)) and πb = π(S(θbi , θ

∗
−i)). We can therefore apply strategy-proofness to deduce

that a Pa b and b Pb a. Since Pa and Pb were arbitrary rationalizations, thus by the
Path Lemma, i remaining on πa reveals a path from a to b, and i remaining on πb reveals
a path from b to a. Finally, we use both revealed paths to prove that the former revealed
path is revealed entirely after h, which as the convention is preferential implies that
a Ri(θi) b, as desired. �

Next, we consider conditions under which a public menu mechanism is not only an
ex-post perfect implementation, but moreover a full subgame perfect implementation. In
addition to our previous assumptions, we consider the following:
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Definition: Assumptions for Theorem 2 and its corollaries. Fix an environment and a
rule f . For each i ∈ N , each θ ∈ Θ, and each x ∈ X, define the lower counter set of i for
x given θ, LCSi(x|θ) ≡ {x′ ∈ X|x Ri(θi) x

′}. We say that

• the environment is strict if and only if for each i ∈ N and each θi ∈ Θi, Ri(θi) ∈ Pi;

• f is group strategy-proof if and only if there is no θ ∈ Θ, N ′ ⊆ N , and θ′N ′ ∈ ×N ′Θi

such that

(i) for each i ∈ N ′, f(θ′N ′ , θN\N ′) Ri(θi) f(θ); and

(ii) there is i ∈ N ′ such that f(θ′N ′ , θN\N ′) Pi(θi) f(θ);

• f is Maskin monotonic if and only if for each pair θ, θ′ ∈ Θ such that for each i ∈ N ,
LCSi(f(θ)|θ) ⊆ LCSi(f(θ)|θ′), we have f(θ) = f(θ′); and

• f is non-bossy if and only if for each θ ∈ Θ, each i ∈ N , and each θ′i ∈ Θi,
fi(θ) = fi(θ

′
i, θ−i) implies f(θ) = f(θ′i, θ−i).

Strictness rules out indifference, which is common in matching settings but uncom-
mon in auction settings. Group strategy-proofness requires that no coalition of agents can
ever obtain a Pareto-improvement over honesty through a coordinated misrepresentation
of their preference. Maskin monotonicity is the classic necessary condition for full NE-
implementation (Maskin, 1999). Finally, non-bossiness is precisely the condition that
strengthens strategy-proofness to group strategy-proofness in our environments (Satterth-
waite and Sonnenschein, 1981).11 There are strong logical relationships between these
properties for rules:

Theorem PT (Pápai, 2000; Takamiya, 2001):12 For each rich and strict environ-
ment, and for each rule, the following are equivalent:

• the rule is group strategy-proof,

• the rule is strategy-proof and non-bossy, and

• the rule is Maskin monotonic.

Our second theorem provides conditions that guarantee a public menu mechanism is
a double implementation—both an ex-post perfect implementation and a full subgame
perfect implementation. Due to Theorem PT, there are several ways to state our result; we
choose to do so with group strategy-proofness and give the other statements as corollaries:

Theorem 2: For each rich and strict environment, each group strategy-proof rule, each
non-repeating public menu mechanism, and each preferential convention that is compatible
with the rule, the public menu mechanism is both an ex-post perfect implementation of
the rule and a full subgame perfect implementation of the rule.

11We remark that we use the original version of non-bossiness; see Thomson (2016) for a discussion of
variants and their normative content.

12Both Pápai (2000) and Takamiya (2001) prove the equivalence of the first and second items, while
Takamiya (2001) proves the equivalence of the first and third. Both papers involve models with additional
structure, but these particular proofs apply directly to our model.
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The formal proof is in Appendix D, and involves the same lemmas as the proof of
Theorem 1. We sketch the arguments below:

Proof sketch. We take an arbitrary type profile θ ∈ Θ, an arbitrary subgame perfect
equilibrium s∗ ∈ SPE(G,R(θ)), and define sθ ≡ S(θ). By Theorem 1, we have that
sθ ∈ SPE(G,R(θ)) and X (sθ) = f(θ). Thus to complete the proof, we need only show
that X (sθ) = X (s∗).

To do so, we first apply Theorem PT to work with non-bossiness. We then proceed by
backwards induction, iteratively showing that the two equilibria lead to the same outcome
from histories earlier and earlier in the game tree until we conclude that they lead to the
same equilibrium from the initial history. The inductive argument involves an agent i
contemplating the choice between h∗ (as prescribed by s∗) and hθ (as prescribed by sθ),
where by induction the equilibrium outcomes agree for both h∗ and hθ. To prove that the
outcomes agree whether (i) i selects h∗ and then all play according to s∗; or (ii) i selects
hθ and then all play according to sθ; we use the Play Lemma, the Continuation Lemma,
strictness, and non-bossiness. �

3.2 Discussion

Theorem 2 immediately yields several interesting corollaries. To complete their proofs,
first observe that for each rich and strict environment, and for each rule, there is a non-
repeating public menu mechanism and preferential convention that is compatible with
the rule. Indeed, simply consider a public menu mechanism derived from the direct
mechanism, where the agents sequentially reveal their full preference rankings. It fol-
lows immediately from this observation, the classic theorem that Maskin monotonicity
is necessary for full NE-implementation (Maskin, 1999), Theorem 2, and Theorem PT,
that:

Corollary 2.1: For each rich and strict environment, if a rule has a full Nash im-
plementation, then there is a public menu mechanism that is both an ex-post perfect
implementation of the rule and a full subgame perfect implementation of the rule.

Corollary 2.2: For each rich and strict environment, each strategy-proof and non-
bossy rule, each non-repeating public menu mechanism, and each preferential convention
that is compatible with the rule, the public menu mechanism is both an ex-post perfect
implementation of the rule and a full subgame perfect implementation of the rule.

We remark that because the latter corollary involves non-bossiness and a unique
subgame perfect equilibrium outcome, it is conceptually related to Schummer and Velez
(2019).13 Altogether, Corollary 2.1 provides a useful link between the classic literature
on Nash implementation and public menu mechanisms, while Corollary 2.2 allows us to

13In particular, Schummer and Velez (2019) consider sequential equilibria of imperfect information
games where agents sequentially reveal preferences, and then outcomes are given by strategy-proof and
non-bossy rules; they provide sufficient conditions on the prior guaranteeing that all sequential equilibria
are welfare-equivalent to truth-telling, which is itself a sequential equilibrium. Interestingly, they observe
that their work is also related to Marx and Swingels (1997), who prove that a version of non-bossiness
for normal form games guarantees that the order of elimination of weakly dominated strategies does not
matter.
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more clearly investigate the logical relationships of the hypotheses and conclusions of our
results:

Necessity. A hypothesis is logically necessary (for the conclusion) if and only if it is an
implication of the conclusion. For Theorem 1, both strategy-proofness and f -compatibility
(of the appropriate objects) are necessary, as discussed earlier. The rest of the assump-
tions are not: the English auction demonstrates that richness is not necessary, the menu
mechanism derived from male-proposing deferred acceptance where the agents are the
women demonstrates that the non-repeating requirement is not necessary (Kawase and
Bando, 2018), and it is easy to construct an example showing that the preferential re-
quirement is not necessary. Indeed, we provide sufficient conditions for implementation,
but do not describe all possible implementations. For Corollary 2.2, it is easy to show that
the necessity of each of these assumptions is unchanged, as well as to show that strictness
is not necessary, but we do not know whether or not non-bossiness is necessary; we leave
this as an open question:

Conjecture: For each environment, each rule, each public menu mechanism, and each
convention, if the public menu mechanism is both an ex-post perfect implementation of
the rule and a full subgame perfect implementation of the rule, then the rule is non-bossy.

Tightness. A hypothesis is indispensable (for the theorem) if and only if when the
theorem is modified by dropping this hypothesis, it becomes false.14 For Theorem 1,
it is easy to construct examples showing that (the appropriate object) being strategy-
proof, preferential, and f -compatible are each indispensable. In fact, being rich and non-
repeating are also indispensable (Figure 3). For Corollary 2.2, it is easy to show that the
indispensability of each of these assumption is unchanged using Figure 3, whose examples
still apply. It is also easy to show that being strict and non-bossy are indispensable.
Altogether, all assumptions in both results are indispensable, so we say both results are
tight.

Taken together, Theorem 1 and Theorem 2 show that public menu mechanisms provide
an interesting alternative to direct mechanisms. Public menu mechanisms only require a
limited amount of information to be transmitted by the agents, but they only implement
desired outcomes in terms of subgame perfect equilibrium, which is closely related to
common knowledge of rationality (Aumann, 1995): if agents do not trust that the others
will conform to the convention, or at least pursue their own best interest, then undesirable
outcomes can occur. By contrast, direct mechanisms require all information to be trans-
mitted by the agents, but they implement outcomes in dominant strategy equilibrium:
the agents need not have any faith in the rationality of their peers. One summary is
that public menu mechanisms are desirable when agents have optimism about each other
but pessimism about the mechanism administrator, while direct mechanisms are desir-
able when agents have pessimism about each other but optimism about the mechanism

14To avoid confusion: for hypotheses Hi and conclusion C, consider a theorem with the format (H1

and H2 and ...) together imply C. If a hypothesis is necessary, then it is indispensable if and only if it
is not implied by the other hypotheses, and therefore tightness (all hypotheses are indispensable) and
logical independence of hypotheses are synonymous for axiomatic characterizations (where all hypotheses
are necessary). In general, however, it is stronger to state that a hypothesis is indispensable than to
state that it is not implied by the other hypotheses.
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(a) Non-repeating: indispensable. (b) Rich: indispensable.

Figure 3: Indispensable conditions. Non-repeating. Consider N = {1}, X1 = {a, b, c},
the types are the strict rankings, the rule specifies that b is always selected, and the public
menu mechanism in Figure 1a. Rich. Consider N = {1, 2}, X1 = X2 = {a, b, c, d, e, f},
and Figure 1b: Θ1 is the table rows, Θ2 is the table columns, the rule is given by the table
entries, and the public menu mechanism is given. Each type specifies a strict ranking,
most preferred to least preferred from left to right. The preferential convention is not
ex-post perfect because for type profile (fcedba, efacbd), agent 2 can profitably deviate
from the conventional strategy profile by selecting f at the history after 1 selects e.

administrator.

4 Private menu mechanisms

In this section, we consider private menu mechanisms. We begin by providing conditions
under which a private menu mechanism provides an ex-post EDE-implementation. In
fact, in addition to the conditions introduced in the previous section, we only require one
new condition:

Definition: Fix an environment. A private menu mechanism is reaction-proof if and
only if for each distinct pair i, j ∈ N , each pair si, s

′
i ∈ Si, each s−i ∈ S−i, and each pair

h, h′ ∈ Hj such that

• h ∈ π(si, s−i) and h′ ∈ π(s′i, s−i);

• j plays the same number of times before h and h′, and

• Xj(h) 6= Xj(h
′),

we have

• for each pair π1, π2 ∈ Π such that h ∈ π1 ∩ π2, Xi(π1) = Xi(π2), and

• for each pair π′1, π
′
2 ∈ Π such that h′ ∈ π′1 ∩ π′2, Xi(π′1) = Xi(π′2).

Reaction-proofness requires that whenever an agent i signals something to another
agent j—in the sense that if j knows that the others are playing s−i, then he can dis-
tinguish between two strategies i may have played by looking at his menu—then by the
time j can make this distinction, i is already safe from any reaction in the sense that his
assignment is already determined. In fact, all of our leading examples are reaction-proof.
For illustration:
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• Serial dictatorship private menu mechanisms are reaction-proof because an agent
always determines his assignment when he chooses from a menu.

• Deferred acceptance private menu mechanisms are reaction-proof because an agent’s
strategy determines his first experience, his second experience (if there is one), and
so on: the next menu (if there is one) is determined by his own strategy.

• Top trading cycles private menu mechanisms are reaction-proof because even though
an agent can make deductions about the actions of his peers upon observing which
assignments are removed from the next menu, these deductions only concern mem-
bers of previous trading cycles, who have already exited.

Our third theorem states that reaction-proofness and our previous conditions for ex-post
perfect implementation together guarantee a private menu mechanism provides an ex-post
everywhere-dominant implementation:

Theorem 3: For each rich environment, each strategy-proof rule, each non-repeating
and reaction-proof private menu mechanism, and each preferential convention that is
compatible with the rule, the private menu mechanism is an ex-post everywhere-dominant
implementation of the rule via the convention.

Proof. We consider both the private menu mechanism and its associated public menu
mechanism. For each i ∈ N , let Si denote the set of strategies for i in the private menu
mechanism (which is contained in the set of strategies for i in the public menu mech-
anism). Most arguments implicitly involve the private menu mechanism; we explicitly
highlight arguments involving the public menu mechanism.

Assume, by way of contradiction, that we do not have an ex-post everywhere-dominant
implementation via S. Then there are θ ∈ Θ, i ∈ N , h ∈ Hi, and s−i ∈ S−i such that
i has a profitable deviation s′i from Si(θi) at h when his type is θi. By Theorem 1, the
public menu mechanism is an ex-post perfect implementation of the rule via S; thus the
restriction of s−i to the given subgame is not specified by the convention for any type
profile. Let j be the least-index peer of i whose restricted strategy is never specified by
the convention. We claim that j has a strategy specified by the convention s∗j such that
in response to (s∗j , s−i,j), i has a profitable deviation from Si(θi) at h when his type is θi.

Define the plays π ≡ πh(Si(θi), s−i) and π′ ≡ πh(s′i, s−i). We consider two cases:

Case 1: There is θ∗j ∈ Θj such that j adheres to both π and π′ after h according to
convention—that is, both (i) for each h∗ ∈ Hj∩π such that h ≺ h∗, [Sj(θ∗j )](h∗) = αh

∗
(π);

and (ii) for each h∗ ∈ Hj∩π′ such that h ≺ h∗, [Sj(θ∗j )](h∗) = αh
∗
(π′). In this case, simply

define s∗j ≡ Sj(θ∗j ).

Case 2: There is no θ∗j ∈ Θj such that j adheres to both π and π′ after h according to
convention. Then let h1, h2, ... label the histories where j plays after h along π in order,
and let h′1, h′2, ... label the histories where j plays after h along π′ in order. We claim that
there is an earliest t ∈ N such that Xj(ht) 6= Xj(h

′
t). Indeed, if not, then let π∗ ∈ {π, π′}

maximize the number of histories where j plays after h, and let θ∗j be such that j adheres
to π∗ after h according to convention (which we can do by the Play Lemma). Then for
each t ∈ N such that there are both ht and h′t, (i) sj(ht) = sj(h

′
t), as sj is a strategy in

the private menu mechanism; and (ii) [Sj(θ∗j )](ht) = [Sj(θ∗j )](h′t), because the convention
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is preferential; so necessarily both sj and Sj(θ∗j ) agree along π and π′ after h, so θ∗j is
such that j adheres to both π and π′ after h according to convention, contradicting that
there is no such type. Let t6= denote this earliest t ∈ N such that Xj(ht) 6= Xj(h

′
t).

Let θ∗j ∈ Θj be such that j adheres to π after h according to convention (which we
can do by the Play Lemma) and define s∗j ≡ Sj(θ∗j ). We claim

• Xi(πh(Si(θi), s−i)) = Xi(πh(Si(θi), s∗j , s−i,j)), and

• Xi(πh(s′i, s−i)) = Xi(πh(s′i, s∗j , s−i,j)).

For the first item, the two plays are equivalent by construction of s∗j , so we are done. For
the second item, if the two plays are distinct, then as any strategy of j that leads from h
to ht6= also leads from h to h′

t6= , necessarily both πh(s′i, s−i) and πh(s′i, s
∗
j , s−i,j) lead from

h to h′
t6= . By reaction-proofness, the assignment of i is determined after both ht6= and h′

t6= ,
so we are done.

In both cases, j has a strategy specified by the convention s∗j such that in response
to (s∗j , s−i,j), i has a profitable deviation from Si(θi) at h when his type is θi. But then
repeating the argument, i has a profitable deviation when all his peers play a restricted
strategy profile specified by the convention, contradicting that the public menu mecha-
nism is an ex-post perfect implementation of the rule via the convention. �

Finally, we consider conditions under which a private menu mechanism is not only an
ex-post everywhere-dominant implementation, but moreover a full everywhere-dominant
implementation. Our fourth theorem states that reaction-proofness and our previous
conditions for double implementation with subgame perfection together guarantee this:

Theorem 4: For each rich and strict environment, each group strategy-proof rule, each
non-repeating and reaction-proof private menu mechanism, and each preferential conven-
tion that is compatible with the rule, the private menu mechanism is both an ex-post
everywhere-dominant implementation of the rule and a full everywhere-dominant imple-
mentation of the rule.

Proof. By Theorem 3, we have an ex-post everywhere-dominant implementation via S.
Assume, by way of contradiction, we do not have a full everywhere-dominant implemen-
tation. Then there are θ ∈ Θ and s ∈ EDE(G,R(θ)) such that X (S(θ)) 6= X (s).

We claim that both S(θ) and s are subgame perfect equilibria in the associated public
menu mechanism game. Indeed, if not, then for one of these strategy profiles s∗, there is
a history h where the player i has a profitable deviation s′i. By the Play Lemma, there
is a type θ′i ∈ Θi such that Si(θ′i) adheres to πh(s′i, s

∗
−i). But since S is preferential, thus

Si(θ′i) is a strategy in the private menu mechanism, so i has a profitable deviation from
s∗ at h, contradicting that s∗ is an everywhere-dominant equilibrium in the private menu
mechanism game.

Altogether, then, since S(θ) and s are both subgame perfect equilibria in the associated
public menu mechanism game, thus by Theorem 2, X (S(θ)) = X (s), contradicting that
X (S(θ)) 6= X (s). �

We are not sure if reaction-proofness is necessary or indispensable for these results.
That said, there are private menu mechanisms that (i) violate reaction-proofness, and
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Figure 4: Ex-post perfect but not ex-post everywhere-dominant. Consider N = {1, 2},
X1 = {d, e}, X2 = {a, b, c}, the types are the strict rankings, the rule specifies that (i) if
2 ranks a below both b and c, then 1 gets d; else 1 gets e; and (ii) if 1 prefers d to e, then
2 gets a; else 2 gets b. Finally, consider the menu mechanism in Figure 4, which is both
public and private. The preferential convention is an ex-post perfect implementation, but
not an ex-post everywhere-dominant implementation; in fact, at no type profile does 1
have a dominant strategy.

(ii) are ex-post perfect implementations but not ex-post everywhere-dominant implemen-
tations (Figure 4). Taken together, Theorem 3 and Theorem 4 show that private menu
mechanisms can provide unambiguous improvements over direct mechanisms according
to the criteria considered in this article, preserving dominant strategy implementation
(in a particularly robust way that preserves incentives even off-path) while reducing the
information transmitted by agents.

5 Applications

We conclude by investigating implications of our main results across some familiar models.
In contrast to the introduction, in this section we begin with more general examples to
facilitate discussion across examples.

5.1 Matching with contracts

First, we consider matching with contracts (Hatfield and Milgrom, 2005). Suppose that
there is a finite set of doctors and a finite set of hospitals, including a special outside
option. Moreover, there is a finite set of contracts—each of which has an associated
doctor, an associated hospital, and some terms—such that each doctor has a unique
contract with the outside option. Let us say that an environment is a matching with
contracts environment if and only if (i) the agents are the doctors; (ii) for each agent,
the possible assignments are his contracts; (iii) an outcome is any assignment profile; and
(iv) for each agent, the possible types are the strict rankings of his assignments.

For each hospital, a choice correspondence associates each set of its contracts with
a subset of those contracts, and each profile of choice correspondences C determines a
(doctor-proposing) cumulative offers process rule, fCOP |C (Hatfield and Milgrom, 2005).
This rule associates each type profile with the outcome of the cumulative offers process,
which is described in terms of doctors iteratively proposing contracts to hospitals, and
it is straightforward to adapt this process into a menu mechanism. Moreover, for each
C such that (i) the outside option always chooses all contracts, and (ii) each hospital’s
choice correspondence satisfies ‘observable substitutability,’ ‘observable size monotonic-
ity,’ and ‘non-manipulability via contractual terms,’ the rule fCOP |C is strategy-proof
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(Hatfield, Kominers, and Westkamp, 2019). It is easy to verify that our other conditions
are satisfied, and thus we have:

Proposition 1: Fix a matching with contracts environment and a profile of choice
correspondences C such that (i) the outside option always chooses all contracts, and
(ii) each hospital’s choice correspondence satisfies ‘observable substitutability,’ ‘observ-
able size monotonicity,’ and ‘non-manipulability via contractual terms.’ Let Gpublic be a
public menu mechanism for the associated cumulative offers process, and let Gprivate be
the associated private menu mechanism. Then

• Gpublic is an ex-post perfect implementation of fCOP |C via the preferential conven-
tion; and

• Gprivate is an ex-post everywhere-dominant implementation of fCOP |C via the pref-
erential convention.

It is easy to verify that these menu mechanisms improve upon the privacy of direct
mechanisms: after he is hired, a doctor does not need to reveal his ranking of all the
contracts he never proposed. In general, cumulative offers process rules are not group
strategy-proof, which follows from Kojima (2010). We remark that while the literature
has identified conditions that guarantee a cumulative offers process rule is weakly group
strategy-proof (Hatfield and Kojima, 2009), this is not enough for us to apply our results
on full implementation.

5.2 Labor market

Second, we consider labor markets with salaries, which can be viewed as matching with
contracts environments that are modified to have restricted preference domains (Crawford
and Knoer, 1981; Kelso and Crawford, 1982). Suppose that there is a finite set of workers
and a finite set of firms, including a special outside option. Moreover, there is a finite
set of salaries, and the set of contracts is the product of workers and firms and salaries
except that only the lowest salary is ever available for the outside option. Let us say
that an environment is a labor market environment if and only if (i) the agents are the
workers; (ii) for each agent, the possible assignments are his contracts; (iii) an outcome is
any assignment profile; and (iv) for each agent, the possible types are the strict rankings
of his assignments such that a higher salary is always preferred to a lower salary for a
given firm.

Each profile of choice correspondences for firms determines a (worker-proposing) salary
adjustment process rule, fSAP |C (Crawford and Knoer, 1981; Kelso and Crawford, 1982),
which in fact coincides with the restriction of fCOP |C to monotonic types. As with our last
example, the salary adjustment process naturally yields an associated menu mechanism,
but now we cannot directly apply our result because labor market environments violate
richness. Nevertheless, we prove that our results still have implications for this setting
because we can enrich the type space, apply our result for matching with contracts, and
then prune the menu mechanism from the richer environment:

Proposition 2: Fix a labor market environment and a profile of choice correspon-
dences C such that (i) the outside option takes all contracts, and (ii) each firm’s choice
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correspondence satisfies ‘observable substitutability,’ ‘observable size monotonicity,’ and
‘non-manipulability via contractual terms.’ Let Gpublic be a public menu mechanism for
the associated salary adjustment process, and let Gprivate be the associated private menu
mechanism. Then

• Gpublic is an ex-post perfect implementation of fSAP |C via the preferential conven-
tion; and

• Gprivate is an ex-post everywhere-dominant implementation of fSAP |C via the pref-
erential convention.

Proof: We prove both parts with the same arguments. First, modify the labor market
environment so that each agent can have all strict rankings and apply Proposition 1 to
obtain the desired implementation. Second, remove all types that violate monotonicity;
we still have the desired implementation. Finally, modify the mechanism by pruning off
all histories that are unused by the convention; we still have an implementation, and the
result is the desired menu mechanism. �

It is easy to verify that these menu mechanisms improve upon the privacy of direct
mechanisms: after he is hired, a worker does not need to reveal his reservation salary.

An important special case is when each firm hires at most one worker, first prioritizes
having an employee, then prioritizes minimizing the sole employee’s salary, and finally
considers the employee’s identity. In this case, we can reinterpret workers as buyers with
unit demand, reinterpret firms as sellers with unit supply, and reinterpret higher salaries
as lower prices, resulting in a multi-item auction with unit demand where the objects are
not identical. It is standard in discrete settings to assume that each buyer is indifferent
between exiting and receiving the object at one of the prices, but in our variant model this
is never the case, which is a natural assumption when the bid increment is large. Note
that under the labor market interpretation, the implementation is a descending salary
procedure, while under the auction interpretation, it is an ascending price procedure.

If, moreover, there is a single buyer, then this can be interpreted as the auctioneer.
In the standard model, it is well-known that the Vickrey rule is strategy-proof (Vickrey,
1961), and that it is implemented by the English auction, which can clearly be written as
a menu mechanism.15 Our results show that these insights extend to our variant model
with no buyer indifference: the English auction implements a variant of the Vickrey rule,
where the winner pays the highest possible price that is no greater than the second-highest
valuation.

5.3 College admissions

Third, we consider school choice (Gale and Shapley, 1962). Suppose there is a finite set
of students and a finite set of schools, including a special outside option. Moreover, each
school has a quota (or capacity), where the quota of the outside option is infinite. Let us
say that an environment is a school choice environment if and only if (i) the agents are
the students; (ii) for each agent, the possible assignments are the schools; (iii) an outcome

15In fact, ex-post perfect implementation has been investigated for a variety of more complex auction
environments (Ausubel, 2004; Ausubel, 2006; Sun and Yang, 2014).
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is any assignment profile such that no school is assigned to more students than its quota;
and (iv) for each agent, the possible types are the strict rankings of his assignments.

Each profile of choice correspondences for schools C determines a (student-proposing)
deferred acceptance rule, fDA|C (Gale and Shapley, 1962). As with our previous examples,
there is an associated menu mechanism. For each school, a priority is a strict ranking of
students that implicitly deems all students acceptable. If C is responsive to a profile of
priorities p and respects the quotas, then fDA|C is strategy-proof (Dubins and Freedman,
1981; Roth, 1982). In this case, fDA|C is moreover group strategy-proof if and only if it is
efficient if and only if it is consistent if and only if p is acyclic (Ergin, 2002). It is easy
to verify that our other conditions are satisfied, and thus we have:

Proposition 3: Fix a school choice environment, a profile of priorities p, and a profile
of choice correspondences C that is responsive to p and respects the quotas. Let Gpublic

be a public menu mechanism for the associated deferred acceptance algorithm, and let
Gprivate be the associated private menu mechanism. Then

• Gpublic is an ex-post perfect implementation of fDA|p via the preferential convention;

• Gprivate is an ex-post everywhere-dominant implementation of fDA|p via the prefer-
ential convention; and

• if fDA|p is group strategy-proof, or fDA|p is efficient, or fDA|p is consistent, or p is
acyclic, then moreover (i) Gpublic is a full subgame perfect implementation of fDA|p,
and (ii) Gprivate is a full everywhere-dominant implementation of fDA|p.

It is easy to verify that these menu mechanisms improve upon the privacy of direct
mechanisms: after he is enrolled, a student does not need to reveal his ranking of the
schools he did not apply to. Observe that the first and second item of Proposition 3
can be derived from Proposition 1, as these school choice environments are matching
with contracts environments that satisfy the hypotheses of the proposition (Hatfield and
Milgrom, 2005; Hatfield, Kominers, and Westkamp, 2019). As discussed earlier, for the
first item of Proposition 3, similar insights were recently obtained by Kawase and Bando
(2018) and Bó and Hakimov (2019).

Analogues of Proposition 3 hold in many interesting variants of the model; we mention
three. First, deferred acceptance remains strategy-proof even when schools individually
face affirmative action constraints, including the special case where each school simply
reserves a certain number of seats for minority students (Abdulkadiroǧlu and Sönmez,
2003; Abdulkadiroǧlu, 2005; Hafalir, Yenmez, and Yildrim, 2013; Ehlers, Hafalir, Yenmez,
and Yildrim, 2014). Second, deferred acceptance remains strategy-proof even when schools
collectively face distributional constraints, which has been applied to the matching of
doctors to hospitals in Japan while respecting the Japanese regional caps (Kamada and
Kojima, 2015; Kamada and Kojima, 2018). Finally, in the special case where each school
has a quota of one, we can view students as men and schools as women (or alternatively,
view students as women and schools as men); this is the classical marriage problem (Gale
and Shapley, 1962).
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5.4 Object allocation

Fourth, we consider object allocation without money. Suppose there is a finite set of
agents and a finite set of objects, with at least many objects as agents. Let us say that
an environment is an object allocation environment if and only if (i) for each agent, the
possible assignments are the objects; (ii) an outcome is any assignment profile where no
object is assigned to more than one agent; and (iii) for each agent, the possible types are
the strict rankings of his assignments.

Each consistent control rights structure ω determines an associated trading cycles
rule, fTC|ω, and the class of trading cycles rules is precisely the class of efficient and
group strategy-proof rules (Pycia and Ünver, 2017; Bade, 2020). This class includes the
hierarchical exchange rules (Pápai, 2000), which in turn include both (i) Gale’s top trading
cycles (reported in Shapley and Scarf, 1974); and (ii) serial dictatorship (see, for example,
Svensson, 1999).

Each trading cycles rule is defined by a trading cycles algorithm that has an associated
menu mechanism, and for hierarchical exchange rules these menu mechanisms are non-
repeating, but in general they are not due to the presence of brokers. In the trading cycles
algorithm, a broker cannot select his own object until late in the procedure. For our menu
mechanisms, we modify this to recover our non-repeating property in a manner that has
no impact on the algorithm: if a broker selects his own object before the algorithm wants
him to, then he must immediately select another object. It is easy to verify that our
other conditions are satisfied, and thus we have:

Proposition 4: Fix an object allocation environment and a consistent control rights
structure ω. LetGpublic be a non-repeating public menu mechanism adapted for the associ-
ated trading cycles algorithm, and let Gprivate be the associated private menu mechanism.
Then

• Gpublic is both (i) an ex-post perfect implementation of fTC|ω via the preferential
convention, and (ii) a full subgame perfect implementation of fTC|ω; and

• Gprivate is both (i) an ex-post everywhere-dominant implementation of fTC|ω via the
preferential convention, and (ii) a full subgame perfect implementation of fTC|ω.

It is easy to verify that these menu mechanisms improve upon the privacy of direct
mechanisms: an agent does not need to reveal how he ranks the objects that he desires less
than his assignment (unless he is a broker). Observe that in this model, every efficient and
group strategy-proof rule has a double implementation in terms of everywhere-dominant
equilibrium. Finally, we remark that each serial dictatorship rule can clearly be imple-
mented in these ways through a menu mechanism that is minimally informative among
all implementations.

5.5 Two-candidate elections

Finally, we consider two-candidate elections. Suppose there is a finite set of voters and
two candidates. Let us say that an environment is a two-candidate election environment if
and only if (i) for each agent, the possible assignments are the candidates; (ii) an outcome
is any assignment profile where all agents are assigned the same candidate; and (iii) for
each agent, the possible types are the strict rankings of his assignments.
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Each committee C determines a voting by committees rule fC , and the class of vot-
ing by committees rules is precisely the class of strategy-proof and onto rules (Barberà,
Sonnenschein, and Zhou, 1991). It is easy to see that strategy-proofness is equivalent to
group strategy-proofness for these environments, and to verify that our other conditions
are satisfied; thus we have:

Proposition 5: Fix a two-candidate election environment and a committee C. Let
Gpublic be a public menu mechanism for the associated direct mechanism, and let Gprivate

be the associated private menu mechanism. Then

• Gpublic is an ex-post perfect implementation of fC via the preferential convention;

• Gpublic is a full subgame perfect implementation of fC ;

• Gprivate is an ex-post everywhere-dominant implementation of fC via the preferen-
tial convention; and

• Gprivate is a full everywhere-dominant implementation of fC .

In this case, menu mechanisms offer no privacy improvements over direct mechanisms;
in both cases, the election gathers all voter preference information. We remark that in
this setting, because players have strict preferences over all outcomes, implementation
in subgame perfect equilibrium is equivalent to implementation in guided iteratively un-
dominated strategies, which has been proposed as a simple implementation where players
receive assistance in making their calculations (Glazer and Rubinstein, 1996). When there
are three or more candidates, richness and strictness imply that the only strategy-proof
rules that respect consensus are the dictator rules (Gibbard, 1973; Satterthwaite, 1975).

Appendix A: Proofs of Cycle and Path Lemmas

In this appendix, we provide two lemmas about revealed preference theory (the Cy-
cle Lemma and the Path Lemma) that are useful for studying public menu mechanisms.

In particular, some of our arguments involve fixing an agent’s choices at some histories—
for example, so that the agent always chooses to remain on a given play—and then estab-
lishing that the convention specifies these choices for some type. When the environment is
rich and the convention is preferential, this is equivalent to establishing that the choices
are rationalizable by a strict preference relation; we therefore begin this appendix by
abstracting from other features of our model to focus on menus and choices:

Definition: A choice space is a tuple (A,M, C), where

• A is a finite set of alternatives,

• M ⊆ 2A is a nonempty collection of menus, and

• C :M→ A is a choice function such that for each M ∈M, C(M) ∈M .

We let PA denote the set of strict preference relations on A.
For each pair a, b ∈ A, we say that a is revealed preferred to b by C, written aBC b, if

and only if there is M ∈ M such that a, b ∈ M and C(M) = a. A list (a1, a2, ..., ak) ∈
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∪κ∈N\{1}Aκ is a C-path (from a1 to ak) if and only if for each t ∈ {1, 2, ..., k−1}, atBC at+1,
and is moreover a C-cycle (from a1 to a1) if and only if ak = a1.16

Finally, we say that C is rationalizable (by a strict preference relation) if and only if
there is P ∈ PA such that for each M ∈M, C(M) = argmaxPM ; in this case, we say that
P rationalizes C. We let PC ⊆ PA denote the set of members of PA that rationalize C.

Our first lemma, which is a standard result, provides a necessary and sufficient condi-
tion for rationalizability. When applied to public menu mechanisms (under appropriate
conditions), this lemma allows us to establish that certain choices made by an agent at
some of his histories are specified by the convention for some type:

Cycle Lemma: For each choice space (A,M, C), there are no C-cycles if and only if C
is rationalizable.

The Cycle Lemma is a direct corollary of Proposition 2.7 in Chambers and Echenique
(2016); we therefore omit its proof.

Our second lemma applies to public menu mechanisms (under appropriate conditions)
when certain choices made by an agent are only specified by the convention for types that
rank some assignment a over another assignment b. In this case, the lemma allows us to
conclude that these choices yield a path from a to b:

Path Lemma: Let (A,M, C) be a choice space such that C is rationalizable. For each
pair a, b ∈ A, there is a C-path from a to b if and only if for each P ∈ PC, we have a P b.

Proof: Let (A,M, C) satisfy the hypotheses; we prove the parts in sequence.

[⇒] Assume there is a C-path from a to b, (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Aκ, and let P ∈ PC.
It follows by definition that for each t ∈ {1, 2, ..., k − 1}, we have at P at+1; thus by
transitivity, a = a1 P ak = b, as desired.

[⇐] We prove the contrapositive; assume there is no C-path from a to b. Because C is
rationalizable, there is P ∈ PC. If {a, b} ∈ M, then since there is no C-path from a to
b, thus we have C({a, b}) = b, so b P a and we are done; thus let us assume {a, b} 6∈ M.
Define M∗ ≡M∪ {a, b} and define C∗ :M∗ → A by (i) C∗({a, b}) ≡ b, and (ii) for each
M ∈M, C∗(M) ≡ C(M).

Assume, by way of contradiction, there is a C∗-cycle (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Aκ.
Since C is rationalizable, thus by the Cycle Lemma there are no C-cycles, so in particular
(a1, a2, ..., ak) is not a C-cycle; thus there is t ∈ {1, 2, ..., k − 1} such that at = b and
at+1 = a. Using the members of (a1, a2, ..., ak), we can construct a C∗-cycle from a to
a, (a′1, a

′
2, ..., a

′
k′), such that (i) for each t ∈ {2, 3, ..., k′ − 1}, a′t 6= a, and (ii) a′k′−1 = b.

For each t ∈ {1, 2, ..., k′ − 2}, a′t BC
∗
a′t+1 and (a′t, a

′
t+1) 6= (b, a), so a′t B

C a′t+1; but then
(a′1, a

′
2, ..., a

′
k′−1) is a C-path from a to b, contradicting that there is no C-path from a to b.

Since there are no C∗-cycles, thus by the Cycle Lemma C∗ is rationalizable, so there
is P ∗ ∈ PC∗ . By construction of C∗, b P ∗ a. Clearly PC∗ ⊆ PC, so P ∗ ∈ PC, as desired. �

16To avoid confusion, it is standard in graph theory to require that the members of a path be distinct,
and also to require that a cycle has at least three members whose first k − 1 members are distinct. We
do not do so here: these additional requirements have no relevance to our proofs, and more importantly
we want to remain consistent with Chambers and Echenique (2016) to use one of their results.
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Appendix B: Proofs of Play and Continuation Lemmas

In this appendix, we use the Cycle Lemma to provide two lemmas about public menu
mechanisms (the Play Lemma and the Continuation Lemma), both of which are used in
both proofs of our main results.

The first lemma provides conditions guaranteeing that for each play, each agent has
a type for which the convention requires he always remain on the play:

Play Lemma: Fix a rich environment, a non-repeating public menu mechanism, and a
preferential convention. For each π ∈ Π and each i ∈ N , there is θi ∈ Θi such that for
each h ∈ Hi ∩ π, [Si(θi)](h) = αh(π).

Proof: Let π ∈ Π and let i ∈ N . To begin, we first show that i reveals no cycles along π.
Indeed, define the choice space (Xi,M, C) by:

• M ≡ {Xi(h)|h ∈ Hi ∩ π}; and

• for each h ∈ Hi ∩ π, C(Xi(h)) ≡ αh(π).

We claim there is no C-cycle.
Assume, by way of contradiction, there is a C-cycle (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Xκ

i . For
each t ∈ {1, 2, ..., k−1}, atBC at+1, so there is ht ∈ Hi∩π such that at, at+1 ∈ Xi(ht) and
C(Xi(ht)) = at. Since {ht} ⊆ π, thus {ht} has a member h≺ which precedes the others.
Since a1 = ak, thus there is t∗ ∈ {1, 2, ..., k − 1} such that C(Xi(h≺)) = at∗+1. Since
C(Xi(ht∗)) = at∗ 6= at∗+1, thus h≺ 6= ht∗ , so h≺ ≺ ht∗ . But then there is π′ ∈ Π such that
h≺, ht∗ ∈ π′ and αh≺(π′) = αht∗ (π′) = at∗+1, contradicting that G is non-repeating.

Since there are no C-cycles, thus by the Cycle Lemma C is rationalizable, so there is
P ∈ PC. Since the environment is rich, thus there is θi ∈ Θi such that Ri(θi)= P . Since
Ri(θi) is strict (and therefore requires no tie-breaking), thus for each h ∈ Hi∩π, we have

[Si(θi)](h) = argmaxRi(θi)Xi(h) as S is preferential and Ri(θi) is strict

= argmaxPXi(h) by construction of θi

= C(Xi(h)) as P ∈ PC
= αh(π) by construction of C,

as desired. �

The second lemma involves continuation strategies:

Definition: Fix an environment and a public menu mechanism. For each h ∈ H, each
i ∈ N , and each si ∈ Si, define si�h to be restriction of si to {h′ ∈ Hi|h′ % h}; we refer
to this as a continuation strategy (at h for i).

In particular, for each history, each agent, and each type, the convention specifies a
continuation strategy. The second lemma provides conditions guaranteeing that there is
a type that requires the agent to (i) continue toward the given history whenever possible,
and (ii) conform to the specified continuation strategy whenever possible:

Continuation Lemma: Fix a rich environment, a non-repeating public menu mecha-
nism, and a preferential convention. For each h ∈ H, each i ∈ N , and each θi ∈ Θi,
there is θ∗i ∈ Θi such that
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(i) for each h′ ∈ Hi such that h′ ≺ h, we have [Si(θ∗i )](h′) = αh
′
(h); and

(ii) Si(θ∗i )�h = Si(θi)�h.

Proof: Let h ∈ H, let i ∈ N , and let θi ∈ Θi. If {h′ ∈ Hi|h′ ≺ h} = ∅ then we are
done; thus let us assume {h′ ∈ Hi|h′ ≺ h} 6= ∅. Define H% ⊆ Hi and the choice space
(Xi,M%, C%) by:

• H% ≡ {h′ ∈ Hi|h′ % h};

• M% ≡ {Xi(h
′)}h′∈H%

; and

• for each h′ ∈ H%, C%(Xi(h
′)) ≡ [Si(θi)](h′).

Define H≺ ⊆ Hi and the choice space (Xi,M, C) by:

• H≺ ≡ {h′ ∈ Hi|h′ ≺ h};

• M ≡ {Xi(h
′)}h′∈H≺∪H%

; and

• for each h′ ∈ H≺, C(Xi(h
′)) ≡ αh

′
(h); and for each h′ ∈ H%, C(Xi(h

′)) ≡ [Si(θi)](h′).

Observe that for each h′ ∈ H%, C(Xi(h
′)) = C%(Xi(h

′)).
First, we claim there are no C%-cycles. Indeed, since S is preferential, thus there is

Pθi ∈ Pi such that for each h′ ∈ Hi, [Si(θi)](h′) = argmaxPθi
Xi(h

′); this Pθi is easily con-

structed from Ri(θi) and the tie-breaker τi(θi). Since Pθi ∈ PC% , thus C% is rationalizable,
so by the Cycle Lemma there are no C%-cycles.

Second, we claim there are no C-cycles. Indeed, assume, by way of contradiction,
there is a C-cycle (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Xκ

i . For each t ∈ {1, 2, ..., k− 1}, atBC at+1, so
there is ht ∈ H≺ ∪H% such that at, at+1 ∈ Xi(ht) and C(Xi(ht)) = at. Because there are
no C%-cycles, thus there is t∗ ∈ {1, 2, ..., k − 1} such that ht∗ ∈ H≺; it follows that {ht}
has a member h≺ which precedes the others. From here, the argument from the proof of
the Play Lemma establishes the contradiction.

Since there are no C-cycles, thus by the Cycle Lemma C is rationalizable, so there is
P ∈ PC. Since the environment is rich, thus there is θ∗i ∈ Θi such that Ri(θ

∗
i ) = P . For

each h′ ∈ H≺ ∪H%,

[Si(θ∗i )](h′) = argmaxRi(θ∗i )Xi(h
′) as S is preferential and Ri(θ

∗
i ) is strict

= argmaxPXi(h
′) by construction of θ∗i

= C(Xi(h
′)) as P ∈ PC.

Thus by construction of C,
(i) for each h′ ∈ Hi such that h′ ≺ h, we have [Si(θ∗i )](h′) = αh

′
(h); and

(ii) for each h′ ∈ H%, [Si(θ∗i )](h′) = [Si(θi)](h′), so Si(θ∗i )�h = Si(θi)�h.
Since h ∈ H, i ∈ N , and θi ∈ Θi were arbitrary, we are done. �

Appendix C: Proof of Theorem 1

In this appendix, we prove Theorem 1.

Theorem 1: For each rich environment, each strategy-proof rule, each non-repeating
public menu mechanism, and each preferential convention that is compatible with the
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rule, the public menu mechanism is an ex-post perfect implementation of the rule via the
convention.

Proof: Let θ ∈ Θ, let i ∈ N , let h ∈ Hi, and let si ∈ Si. Define a, b ∈ Xi by

a ≡ X h
i (S(θ)), and

b ≡ X h
i (si,S−i(θ−i)).

We want to show a Ri(θi) b. If a = b then we are done, so assume a 6= b.
Define πa ≡ πh(S(θ)), define πb ≡ πh(si,S−i(θ−i)), and define H≺ ≡ {h′ ∈ Hi|h′ ≺ h}.

Define the choice space (Xi,Ma, Ca) by:

• Ma ≡ {Xi(h
′)}h′∈Hi∩πa ; and

• for each h′ ∈ Hi ∩ πa, Ca(Xi(h
′)) ≡ αh

′
(πa).

Define the choice space (Xi,Mb, Cb) by:

• Mb ≡ {Xi(h
′)}h′∈Hi∩πb ; and

• for each h′ ∈ Hi ∩ πb, Cb(Xi(h
′)) ≡ αh

′
(πb).

By the argument used in the proof of the Play Lemma, both Ca and Cb are rationalizable.
Let Pa ∈ PCa and let Pb ∈ PCb . Since the environment is rich, thus there are θai , θ

b
i ∈ Θi

such that Ri(θ
a
i )= Pa and Ri(θ

b
i )= Pb. By the Continuation Lemma, for each j ∈ N\{i},

there is θ∗j ∈ Θj such that

(i) for each h′ ∈ Hj such that h′ ≺ h, we have [Sj(θ∗j )](h′) = αh
′
(h); and

(ii) Sj(θ∗j )�h = Sj(θj)�h.
By construction, πa = π(S(θai , θ

∗
−i)) and πb = π(S(θbi , θ

∗
−i)), so by f -compatibility, a =

Xi(S(θai , θ
∗
−i)) = fi(θ

a
i , θ
∗
−i) and b = Xi(S(θbi , θ

∗
−i)) = fi(θ

b
i , θ
∗
−i). By strategy-proofness,

a = fi(θ
a
i , θ
∗
−i)

Ri(θ
a
i ) fi(θ

b
i , θ
∗
−i)

= b,

so a Pa b. By a symmetric argument, b Pb a. Since Pa ∈ PCa and Pb ∈ PCb were arbitrary,
thus by the Path Lemma, there are (i) a Ca-path from a to b, (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Xκ

i ,
and (ii) a Cb-path from b to a, (b1, b2, ..., bk′) ∈ ∪κ∈N\{1}Xκ

i . For each t ∈ {1, 2, ..., k − 1},
at BCa at+1, so there is hat ∈ Hi ∩ πa such that at, at+1 ∈ Xi(h

a
t ) and Ca(Xi(h

a
t )) = at.

Similarly, for each t ∈ {1, 2, ..., k′ − 1}, bt BCb bt+1, so there is hbt ∈ Hi ∩ πb such that
bt, bt+1 ∈ Xi(h

b
t) and Cb(Xi(h

b
t)) = bt.

Assume, by way of contradiction, {hat } ∩ H≺ 6= ∅. Since {hat } ⊆ πa, thus it has
a member ha≺ which precedes the others. It must be that ha≺ = ha1; else there is t ∈
{1, 2, ..., k − 2} such that Ca(Xi(h

a
≺)) = at+1 and C(Xi(h

a
t )) = at 6= at+1, so ha≺ 6= hat ,

so ha≺ ≺ hat , so there is π ∈ Π such that ha≺, h
a
t ∈ π and αh

a
≺(π) = αh

a
t (π) = at+1,

contradicting that G is non-repeating. By the same argument, since {hbt} ⊆ πb, thus it has
a member hb≺ which precedes the others, and necessarily hb≺ = hb1. Since {hat } ∩H≺ 6= ∅,
thus ha1 ∈ H≺, so ha1 ∈ πb and a = αh

a
1 (πb). Since a 6= αh

b
k′−1(πb), thus ha1 6= hbk′−1, so

either ha1 ≺ hbk′−1 or hbk′−1 ≺ ha1. It must be that hbk′−1 ≺ ha1; else there is π′ ∈ Π such that
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ha1, h
b
k′−1 ∈ π′ and αh

a
1 (π′) = αh

b
k′−1(π′) = a, contradicting that G is non-repeating. Then

hb1 ≺ hbk′−1 ≺ ha1. But by a symmetric argument, ha1 ≺ hb1, contradicting that hb1 ≺ ha1.
Thus {hat } ∩ H≺ = ∅. Since S is preferential, thus there is τi(θi) ∈ Pi such that for

each h′ ∈ Hi,

[Si(θi)](h′) = argmaxτi(θi)[argmaxRi(θi)Xi(h
′)].

Define Pθi ∈ Pi by a1 Pθi a2 if and only if (i) a1 Pi(θi) a2, or (ii) a1 Ii(θi) a2 and a1τi(θi)a2.
Define the choice space (Xi,M, C) by:

• M ≡ {Xi(h
′)}h′∈(Hi∩πa)\H≺ ; and

• for each h′ ∈ (Hi ∩ πa)\H≺, C(Xi(h
′)) ≡ αh

′
(πa).

Since πa = πh(S(θ)), thus Pθi ∈ PC, so C is rationalizable. Since {hat } ∩ H≺ = ∅, thus
{hat } ⊆ (Hi ∩ πa)\H≺, so there is a C-path from a to b. Since Pθi ∈ PC, thus by the
Path Lemma, a Pθi b. Altogether, then, by construction we have a Ri(θi) b, as desired.

To conclude, since i ∈ N , h ∈ Hi, and si ∈ Si were arbitrary, thus S(θ) ∈ SPE(G,R(θ)).
Since θ ∈ Θ was arbitrary, thus S satisfies ex-post perfection. By f -compatibility, G is an
ex-post perfect implementation of f via S. �

Appendix D: Proof of Theorem 2

In this appendix, we prove Theorem 2.

Theorem 2: For each rich and strict environment, each group strategy-proof rule, each
non-repeating public menu mechanism, and each preferential convention that is compatible
with the rule, the public menu mechanism is both an ex-post perfect implementation of
the rule and a full subgame perfect implementation of the rule.

Proof: By Theorem PT, f is strategy-proof and non-bossy. By Theorem 1, G is an
ex-post perfect implementation of the rule.

Let θ ∈ Θ, let s∗ ∈ SPE(G,R(θ)), and define sθ ≡ S(θ). By Theorem 1, sθ ∈
SPE(G,R(θ)) and X (sθ) = f(θ). To prove that X (s∗) = X (sθ), we use a version of
backwards induction, proceeding by induction on history length. In particular, for each
h ∈ H, define the length of h, `(h) ≡ maxπ∈Π |π ∩{h′ ∈ H|h′ % h}|; this is the maximum
cardinality of a play in the subgame that starts at h.

For the base step, for each h ∈ H such that `(h) = 1, we have h ∈ Z, so X h(s∗) =
X h(sθ). For the inductive step, assume L ∈ N is such that for each h ∈ H such that
`(h) ≤ L, we have X h(s∗) = X h(sθ); and let h ∈ H such that `(h) = L + 1. Define
i ≡ P(h), let h∗ be the immediate successor of h identified by s∗, and let hθ be the
immediate successor of h identified by sθ. Since `(h∗) ≤ L and `(hθ) ≤ L, thus

X h∗(sθ) = X h∗(s∗) by the inductive hypothesis as `(h∗) ≤ L

Ri(θi) X hθ(s∗) as s∗ ∈ SPE(G,R(θ))

= X hθ(sθ) by the inductive hypothesis as `(hθ) ≤ L.

Since sθ ∈ SPE(G,R(θ)), thus X hθ(sθ) Ri(θi) X h∗(sθ). Altogether, we have X h∗(sθ) Ii(θi)
X hθ(sθ).
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To conclude the inductive step, we claim X h(s∗) = X h(sθ). Indeed, define π∗ ≡
πh
∗
(sθ) and πθ ≡ πh

θ
(sθ). By the Play Lemma, there is θ∗i ∈ Θi such that for each

h′ ∈ Hi ∩ π∗, [Si(θ∗i )](h′) = αh
′
(π∗). By the Continuation Lemma, for each j ∈ N , there

is θhj ∈ Θj such that

(i) for each h′ ∈ Hj such that h′ ≺ h, we have [Sj(θhj )](h′) = αh
′
(h); and

(ii) Sj(θhj )�h = Sj(θj)�h.
By construction, π∗ = π(S(θ∗i , θ

h
−i)) and πθ = π(S(θh)), so by f -compatibility, X h∗(sθ) =

X (S(θ∗i , θ
h
−i)) = f(θ∗i , θ

h
−i) and X hθ(sθ) = X (S(θh)) = f(θh). Then f(θ∗i , θ

h
−i) Ii(θi) f(θh),

so by strictness, fi(θ
∗
i , θ

h
−i) = fi(θ

h). By non-bossiness, f(θ∗i , θ
h
−i) = f(θh), so X h∗(sθ) =

X hθ(sθ). Altogether, then,

X h(s∗) = X h∗(s∗) by definition of h∗

= X h∗(sθ) by the inductive hypothesis as `(h∗) ≤ L

= X hθ(sθ) by the above argument

= X h(sθ) by definition of hθ,

as desired.
By induction, for each L ∈ N and each h ∈ H such that `(h) = L, we have X h(s∗) =

X h(sθ). Since (i) for each i ∈ N , Xi is finite; and (ii) G is non-repeating; thus the initial
history h∅ is such that `(h∅) ∈ N, so X (s∗) = X (sθ) = f(θ). Since sθ ∈ SPE(G,R(θ)),
since s∗ ∈ SPE(G,R(θ)) was arbitrary, and since θ ∈ Θ was arbitrary, we are done. �

Appendix E: Definition of mechanism

In this appendix, we formally define mechanisms:

Definition: Fix an environment. A mechanism is a tupleG = (H,-,P,A, α, (Ii)i∈N ,X ),
where

• H is the set of histories and - is the partial order on H representing precedence.
We require that (H,-) is a meet-semilattice tree.17 For each h ∈ H, we let σ(h)
denote the set of immediate successors of h. A play is a maximal chain, which gives
a complete description of a sequence of choices; we write π for a play and Π for
the set of plays. A terminal history is a history with no successor; we write z for a
terminal history and Z for the set of terminal histories.

• P : H\Z → N is the player function, which associates each non-terminal history
with the agent who selects an action at that history. For each i ∈ N , we let
Hi ≡ {h ∈ H\Z|P(h) = i} denote the histories that belong to i.

• A is the set of actions and α : ∪H\Zσ(h) → A is the action function, which at
each non-terminal history h associates each immediate successor h′ ∈ σ(h) with
the action taken to reach it. We require that at any non-terminal history, each

17These conditions guarantee that choices always determine a unique maximal chain, guarantee that
there is a unique initial history which precedes all others, and allow an action to be viewed as selecting an
immediate successor. For details about these order-theoretic concepts (meet-semilattice, tree, successor,
immediate successor, and maximal chain) in the context of extensive game forms, see Alós-Ferrer and
Ritzberger (2016) and Mackenzie (2019).
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available action determines a unique next history: for each h ∈ H\Z and each
pair h′, h′′ ∈ σ(h), α(h′) 6= α(h′′). For each non-terminal history h, we let A(h) ≡
{α(h′)|h′ ∈ σ(h)} denote the actions available at h.

For each i ∈ N , each h ∈ Hi, and each π ∈ Π such that h ∈ π, we let αh(π) denote
the action taken at h to remain on π. Similarly, for each i ∈ N , each h ∈ Hi,
and each h′ ∈ H such that h ≺ h′, we let αh(h′) denote the action taken at h to
continue toward h′. It is straightforward to show that both αh(π) and αh(h′) are
well-defined.

• for each i ∈ N , Ii is the information partition for i, which specifies the information
sets partitioning Hi. We require that for each pair h, h′ in the same information set
Ii, the same actions are available: A(h) = A(h′). We write A(Ii) for the actions
A(h) available at each history h ∈ Ii. Across all histories in a given information
set Ii, i must behave the same way.

• X : Π→ X is the outcome function, which associates each play with an outcome.

For convenience, whenever we refer to a generic mechanism we implicitly assume all of
this notation.
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Barberà, Salvador, Sonnenschein, Hugo, and Zhou, Lin (1991). “Voting by
Committees.” Econometrica 59, 595-609.

Bergemann, Dirk and Hörner, Johannes (2018). “Should First-Price Auctions Be
Transparent?” American Economic Journal: Microeconomics 10, 177-218.

33



Bergemann, Dirk and Morris, Stephen (2005). “Robust mechanism design.”
Econometrica 73, 1771-1813.

Blackwell, David (1951). “Comparison of Experiments.” In: Proceedings of the Sec-
ond Berkeley Symposium on Mathematical Statistics and Probability. Editor: Neyman,
Jerzy. Berkeley, California: University of California Press. Pages 93-102.
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Pápai, Szilvia (2000). “Strategyproof assignment by hierarchical exchange.” Economet-
rica 68, 1403-1433.

Pycia, Marek and Troyan, Peter (2019). “A Theory of Simplicity in Games and
Mechanism Design.” Working paper.
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