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Abstract

In infinitely repeated n-player games, we introduce a notion of degree-
K subgame perfect Nash equilibria, in which any set of players whose size
is up to K can coalitionally deviate and can transfer their payoffs within
the coalition. If we only assume that players’ actions are observable, a
coalitional deviation with hidden deviators who play as in the equilibrium
cannot be detected by the other players. Hence we consider two models
in which the hidden deviators can and cannot be detected, respectively.
In the first model, there is an observer who can detect any coalitional de-
viation and report it to all players. We show an extension of the standard
folk theorem; all feasible payoff vectors in which the sum of payoffs within
any feasible coalition is strictly larger than the counterpart of the minmax
value defined for the coalition arise as a degree-K subgame perfect Nash
equilibrium if players are sufficiently patient. In the second model where
the hidden deviators cannot be distinguished, we characterize degree-K
subgame perfect equilibrium payoff vectors under patience by strategies
which punish all players after any deviation. Finally, we adopt a new ap-
proach to characterize degree-n subgame perfect Nash equilibrium payoff
vectors in the first model, since the punishment in the above folk theorem
does not work when the grand coalition is feasible.
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1 Introduction

The folk theorem which is well known in repeated game theory, states that in
an infinitely repeated game with perfect monitoring any feasible and individ-
ually rational payoff vector arises as a subgame perfect Nash equilibrium with
sufficiently small discounting. And the subgame perfect Nash equilibrium states
that no individual could improve his payoff by any deviation in any subgame of
an infinitely repeated game.

This paper considers a notion of equilibrium in which coalitional deviations
are feasible in infinitely repeated games. More specifically, in the equilibrium
no coalition up to some size could improve its payoff by any deviation in any
subgame. Futher, this paper analyzes the equilibrium payoff vectors with suffi-
ciently small discounting.

Sometimes players can arrange mutually beneficial deviations in a standard
subgame perfect Nash equilibrium, i.e., the equilibrium is unstable if coalitional
deviations are allowed. The following 3-player prisoners’ dilemma illustrates the

Player 1

Player 2
C D

C 3, 3, 3 1, 4, 1
D 4, 1, 1 2, 2,−1

Player 3 chooses C

Player 1

Player 2
C D

C 1, 1, 4 −1, 2, 2
D 2,−1, 2 0, 0, 0

Player 3 chooses D

Figure 1: A 3-player prisoners’ dilemma

intuition. Clearly, (D,D,D) is the unique Nash equilibrium of this game and
each player’s equilibrium payoff is 0. However, if both player 1 and player 2
coalitionally deviate and choose C simultaneously, each of them gets payoff 1,
i.e, they could mutually benefit from the coalitional deviation. Thus the unique
Nash equilibrium becomes unstable as long as the deviations by two players are
feasible.

This example further shows that the trivial subgame perfect Nash equilib-
rium in which all players play the unique Nsah equilibrium (D,D,D) in every
period also becomes unstable. This indicates that not all the feasible and indi-
vidually rational payoff vectors can arise as equilibria.

Hence, we introduce a notion of equilibrium which represents the degree of
stability against coalitional deviations in an infinitely repeated n-player game,
that is the degree-K subgame perfect Nash equilibrium, where K ∈ N and K ≤
n. In a degree-K subgame perfect Nash equilibrium, deviations by all coalitions
whose size is up to K are allowed. When coalitions are taken into account, it is
natural to assume that players in a coalition can transfer their payoffs. Thus,
players base their decisions as to whether to enter into a coalition on the sum of
payoffs achieved by the coalition as a whole and not on their individual payoffs.
Thus a degree-K subgame perfect Nash equilibrium is defined as a strategy
profile such that no feasible coalition could improve its sum of payoffs by any
deviation.
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Notice that the definition of degree-1 subgame perfect Nash equilibria is the
same as the definition of subgame perfect Nash equilibria. The subgame perfect
Nash equilibrium has been well studied in the infinitely repeated games with
perfect monitoring. Fudenberg and Maskin (1986, 1991) show that the folk
theorem holds if n = 2 or if a full dimensionality condition is satisfied. And
Abreu et al. (1994) find the nonequivalent utility (NEU) condition which is a
more general sufficient condition. NEU requires that for no two players, one’s
stage game payoff function be a positive affine transformation of the other’s.
Further, Wen (1994) introduces a concept of effective minmax payoffs and shows
that any feasible payoff vector can arise as a subgame perfect Nash equilibrium
if and only if it Pareto dominates the effective minmax payoff vector.

Therefore, we focus on the case that K ≥ 2 in this paper. However, a
difficulty arises in an infinitely repeated game with perfect monitoring when
K ≥ 2. With perfect monitoring players can only observe the other players’
actions, so a coalitional deviation does not reveal the hidden deviators of the
coalition who play as in the equilibrium. Thus, players may not distinguish
the deviating coalition with perfect monitoring. Consider the above 3-player
prisoners’ dilemma and suppose that (D,D,D) should be played in some period
of a degree-2 subgame perfect Nash equilibrium. Suppose also that the realized
action profile is (C,D,D). From player 3’ perspective, there is no doubt that
player 1 is a deviator but whether the deviating coalition is {1} or {1, 2} (so
player 2 is a hidden deviator) is indistinguishable.

In this paper, we analyze two models, called strengthened perfect monitor-
ing and perfect monitoring, respectively. In a model with strengthened perfect
monitoring, we assume that there exists an observer who can detect the de-
viating coalition and reports it to all players in every period. In this model,
a degree-K subgame perfect Nash equilibrium is constructed by an idea that
whenever a feasible coalition is reported as deviators all players switch to punish
the coalition. In order to enable all players to play those punishments, we extend
NEU to the degree-K nonequivalent utility (Degree-K NEU) condition, that is
no pair of coalitions whose sizes are up to K have equivalent utility functions,
where a coalition’s utility function is defined as the sum of its members’ utility
functions. In a model with perfect monitoring, a degree-K subgame perfect
Nash equilibrium is constructed by an idea that all players switch for a specified
number of periods to punish all of them after any deviation, since the hidden
deviators cannot be distinguished.

Here are our results. A coalition always has the option of playing a best
response to the actions chosen by the rest of the players. Thus we define the
minmax payoff of a coalition as the smallest best response sum of payoffs of the
coalition. We call a payoff vector is degree-K rational if the sum of payoffs within
any feasible coalition is strictly larger than its minimax payoff. Clearly, there is
no degree-n rational payoff vector, so we focus on the case n > K ≥ 2. Then we
show that any feasible and degree-K rational payoff vector can arise as a degree-
K subgame perfect Nash equilibrium with strengthened perfect monitoring if
degree-K NEU is satisfied.

In the model with perfect monitoring, a payoff vector is called degree-K
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simultaneously punishable if a punishment action profile exists such that the sum
of payoffs within any feasible coalition is strictly larger than the best response
total payoff of the coalition from the punishment action profile. Then we find
that any feasible and degree-K simultaneously punishable payoff vectors can
arise as a degree-K subgame perfect Nash equilibrium with perfect monitoring.
Note that the result does not require NEU or its extension.

Finally, we study degree-n subgame perfect Nash equilibria. Since any payoff
vector is neither degree-n rational nor degree-n simultaneously punishable, we
adopt a new approach. Note that degree-n subgame perfect Nash equilibria play
only action profiles which maximize the sum of all player’s payoffs. Hence, we
define a new minmax value of a non-grand coalition as the smallest best response
sum of payoffs of the coalition among all action profiles which maximizes the
sum of all players’ payoffs. We call a payoff vector that maximizes the sum of all
players’ payoffs degree-n weakly rational if the sum of payoffs within any non-
grand coalition is greater than the new minmax value of the coalition defined
as above.

Then we find that if the set of feasible and degree-n weakly rational payoff
vectors satisfies degree-(n− 1) NEU, any payoff vector in the set can arise as a
degree-n subgame perfect Nash equilibrium with strengthened perfect monitor-
ing. This result does not extend to perfect monitoring except the case of two
players. In 2-player infinitely repeated games, strengthened perfect monitoring
and perfect monitoring are equivalent, because there is no hidden deviator when
a player finds a deviation.

Our paper isrelated to both the literature on coalitions and the literature on
renegotiation-proof equilibria. Within the former literature, Rubinstein (1980)
provides a concept of strong perfect equilibria which requires that in a su-
pergame no coalition can make all of its members better off by any deviation.
Horniacek (1996) weakens the concept by requiring that no coalition can make
at least one of its members better off without making some other member worse
off by any deviation. He shows that this sort of equilibrium can be approximat-
ed in a discounted supergame. In this paper, we assume that deviators’ payoffs
are transferable, therefore, no feasible coalition could make a Kaldor-Hicks im-
provement by any deviation in a degree-K subgame perfect Nash equilibrium.
Bernheim et al. (1987) also deal with coalitional deviations but they restrict
attention to one-shot games and extensive form games with a finite number of
stages. They propose a notion of coalition-proof Nash equilibrium in which no
coalition can make a mutually beneficial, self-enforcing joint deviation from it.
Different from them, we deal with games with infinite numbers of stages.

Within the literature on renegotiation-proofness in repeated games, papers
dealing with the stability of subgame perfect Nash equilibria only consider uni-
lateral deviations. Farrell and Maskin (1989) propose the concept of renegotiation-
proofness which requires that no continuation payoff be Pareto dominated by
another continuation payoff. They conjecture that the renegotiation-proofness
requirement generally would greatly reduce the set of subgame perfect Nash
equilibrium payoff vectors, especially in a repeated prisoners’ dilemma since the
standard punishment by the trigger strategies will be excluded by the concept.
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However, van Damme (1989) shows that in a repeated prisoners’ dilemma re-
quiring renegotiation-proofness does not reduce the set at all by using strate-
gies where a punisher receives reward, i.e., the conjecture is wrong. Pearce
(1987) and Benoit and Krishna (1993) extend the concept to infinitely repeated
games with imperfect monitoring and finitely repeated games respectively. Un-
like them, we deal with the stability of the subgame perfect Nash equilibrium
by concerning coalitional deviations. Namely, the question we mentioned at the
beginning will still be a question in those papers.

The rest of this paper is organized as follows. In section 2, we give the
definition of the degree-K subgame perfect Nash equilibrium and characterize
its necessary and sufficient condition. In section 3, we analyze the infinitely
repeated games with strengthened perfect monitoring. In section 4, we study
the infinitely repeated games with perfect monitoring. In section 5, we analyze
degree-n subgame perfect Nash equilibria. Section 6 concludes.

2 Degree-K subgame Nash perfect equilibria

Consider a finite n-player game in normal form G = {N, (Ai)i∈N , (ui)i∈N},
where N = {1, 2, .., n} denotes a finite set of players, Ai denotes the set of pure
actions of player i, and ui : A → R is this player’s payoff function with A =∏

i∈N Ai. Given a set X, let ∆(X) denote the set of probability distributions
over X. Therefore, Si = ∆(Ai) denotes the set of mixed actions of player i, and
S =

∏
i∈N Si denotes the set of mixed action profiles.1 The payoff function is

extended to mixed actions by taking expectations.
We consider an infinitely repeated game, where the set of players play the

stage game G over periods t = 0, 1, 2, .... For δ ∈ (0, 1) denote by G(δ) the
infinite repetition of G in which all players discount future payoffs with δ. We
assume that mixed actions are observable at the end of each period t. And we
also assume that at the end of each period t, all players can observe some other
public information from a set which is independent of t. Thus, the set of period
t ≥ 0 histories, Ht with typical element ht, has the form Ht = Zt for some set
Z, and typical element of Z contains a mixed action profile.2 Here we define the
initial history H0 to be an arbitrary singleton. The set of all possible histories
is H =

∪∞
t=0 H

t.
Let σi : H → Si denote player i’s strategy in G(δ) and let Σi denote the

set of strategies of player i. Since any history includes all actions in the past
periods, there is no loss of generality when we restrict a player’s strategy to be
a function from H. Σ = Πi∈NΣi is the set of strategy profiles, with typical
element σ. Player i’s discounted payoff from a strategy profile σ is defined by

gi(σ) = (1− δ)

∞∑
t=0

δtui(s(t)),

1We do not take correlated actions into account in this paper.
2For instance, standard perfect monitoring with observable mixed actions has Z = S.
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where s(t) is the realized mixed action profile in period t. For any strategy
profile σ, player i’s continuation strategy induced by ht, denoted by σi|ht, is
given by,

σi|ht(hτ ) = σi(h
thτ ), ∀hτ ∈ H

where hthτ is the concatenation of the history ht followed by the history hτ .
In this paper, we consider the coalitional deviation by multiple players is

allowed. Thus let CK with typical element c be the set of non-empty subsets
of N which have K or less elements, where K ∈ N . Then for each c ∈ CK ,
we set Yc = Πi∈cYi, Y−c = Πi∈N\cYi, where Y ∈ {a, s, σ,A, S,Σ} and set
uc(·) =

∑
i∈c ui(·) and gc(·) =

∑
i∈c gi(·). In this paper, we regard any notation

with subscript {i} as the one with subscript i, where i ∈ N . For example we
use both ai and a{i}. We assume that players’ payoffs are transferable in a
coalition, i.e., the players of a coalition are only concerned about the sum of
payoffs achieved by the coalition. Therefore, we define degree-K Nash equilibria
as following.

Definition 1. (Degree-K Nash equilibria) For K ∈ N , the strategy profile σ is
a degree-K Nash equilibrium of G(δ), if for any c ∈ CK and strategy σ′

c ∈ Σc,

gc(σ) ≥ gc(σ
′
c, σ−c).

Notice that when K = 1, the definition is the same with the definition
of Nash equilibrium, i.e., a Nash equilibrium is a degree-1 Nash equilibrium
under our definition. Similarly to the Nash equilibrium, this definition imposes
no optimality condition in any subgame. Thus, in the following definition, we
strengthen the degree-K Nash equilibrium by imposing the sequential rationality
requirement that behavior is optimal in all circumstances, not only those that
arise in equilibrium but also those that arise out of equilibrium.

Definition 2. (Degree-K subgame perfect Nash equilibria) For K ∈ N , the
strategy profile σ is a degree-K subgame perfect Nash equilibrium of G(δ) if for
any ht ∈ H, σ|ht is a degree-K Nash equilibrium of G(δ).

A subgame perfect Nash equilibrium is a degree-1 subgame perfect Nash
equilibrium under our definition. Namely, we extend the subgame perfect Nash
equilibrium by requiring coalitional rationalities. Here, the degree-K subgame
perfect Nash equilibrium characterizes a stable equilibrium in which all coali-
tions whose size is up to K are allowed and players in those coalitions can
transfer their payoffs. From another point of view, this notion also represents
the degree of stability of an equilibrium strategy profile. That is if a strategy
profile σ is a degree-K subgame perfect Nash equilibrium but not a degree-
(K+1) subgame perfect Nash equilibrium, we may say the degree of stability of
σ is K. According to the definition, the following proposition is straightforward.

Proposition 1. For K ∈ N , a strategy profile σ is a degree-K subgame perfect
Nash equilibrium of G(δ), then for any K ′ ≤ K, σ is a degree-K ′ subgame
perfect Nash equilibrium of G(δ).
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Proof. The proposition holds by Definition 2.

To confirm that a strategy profile σ is a degree-K subgame perfect Nash
equilibrium, we need to check whether an infinite number of strategy profiles are
degree-K Nash equilibria. Similarly to the subgame perfect Nash equilibrium,
in order to limit the number of alternative strategies that must be checked we
introduce a one-shot coalitional deviation principle which is an extension of the
one-shot deviation principle. Before stating the one-shot coalitional deviation
principle, we first define a one-shot coalitional deviation.

Definition 3. (One-shot coalitional deviation) For c ∈ Cn, a strategy profile
σ′
c ̸= σc is a one-shot coalitional deviation for a coalition c from strategy profile

σc if for any t ≥ 1 and ht ∈ Ht

σ′
c(h

t) = σc(h
t).

Here, the strategy σ′
c plays identically to σc in every period other than

period 0. Then the following principle allows us to restrict attention to consider
alternative strategies that coalitionally deviate from the equilibrium strategy
once and then return to it.

Theorem 1. (One-shot coalitional deviation principle) A strategy profile σ is a
degree-K subgame perfect Nash equilibrium if and only if for any t ≥ 0, ht ∈ Ht,
c ∈ CK , and one-shot coalitional deviation σ′

c|ht from strategy profile σc|ht,

gc(σ|ht) ≥ gc(σ
′
c|ht, σ−c|ht), (1)

where σ−c ∈ Σ−c.

Proof. Clearly, the necessity is self-evident. Therefore, it suffices to show the
contraposition of the sufficiency. Suppose that a profile σ is not a degree-K
subgame perfect Nash equilibrium, so there exist a history ht ∈ Ht, a coalition
c ∈ CK , and a strategy profile σ′

c, such that

gc(σ|ht) < gc(σ
′
c|ht, σ−c|ht).

Fix ε ∈ (0, gc(σ
′
c|ht, σ−c|ht)− gc(σ|ht)) and let

∆c = max
a∈A,a′∈A

{uc(a
′)− uc(a)}. (2)

Then let T be large enough such that

(1− δ)
∞∑

s=T

δs∆c < ε. (3)

For all τ = 0, 1, ..., T , we define a strategy στ
c = (στ

i )i∈c ∈ Σc as following:

στ
i (h

s) =

{
σ′
i|ht(hs) if s < τ

σi|ht(hs) if s ≥ τ
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for any i ∈ c. Then, by (2) and (3),

gc(σ|ht) < gc(σ
T
c , σ−c|ht),

so

T∑
τ=1

{gc(στ
c , σ−c|ht)− gc(σ

τ−1
c , σ−c|ht)} = gc(σ

T
c , σ−c|ht)− gc(σ|ht) > 0.

Thus, there must exist T ′ ∈ {0, 1, ..., T − 1} such that

gc(σ
T ′+1
c , σ−c|ht)− gc(σ

T ′

c , σ−c|ht) > 0.

Notice that strategy σT ′+1
c agrees with σT ′

c over the first T ′ periods, thus there
exists a history hT ′

such that

gc(σ
T ′+1
c |hT ′

, σ−c|hthT ′
) > gc(σ

T ′

c |hT ′
, σ−c|hthT ′

). (4)

Note that by the definitions of σT ′+1
c and σT ′

c , σT ′

c |hT ′
= σc|hthT ′

and σT ′+1
c |hT ′

is a one-shot joint deviation from σc|hthT ′
. Therefore, (4) implies that (1) will

not hold by a one-shot coalitional deviation.

So far, we defined the basic equilibrium concepts and showed that it could
be examined by the one-shot coalitional deviation principle. As we argued in
the introduction, the degree-1 subgame perfect Nash equilibrium is well studied
by Fudenberg and Maskin (1986, 1991), Abreu et al. (1994) and Wen (1994).
Hence, we focus on the case that K ≥ 2 in this paper.

However, when K ≥ 2 a difficulty arises if we assume that all players can
only observe the mixed action profile chosen at the end of each period, i.e.,
the perfect monitoring. Consider a degree-K subgame perfect Nash equilibrium
under perfect monitoring, and suppose K ′ players played differently from the
equilibrium at the end of some period, whereK ≥ 2 andK > K ′. Generally, it is
possible that there exist some hidden deviators who play as in the equilibrium
but belong to the deviating coalition with the K ′ players. Obviously, it is
crucial for constructing equilibrium strategies whether hidden deviators could be
distinguished or not. Thus, in the following two sections, we consider two models
in which hidden deviators can be distinguished and cannot be distinguished,
respectively.

3 Strengthened perfect monitoring

We first consider a model with strengthened perfect monitoring, in which hidden
deviators could be distinguished. We assume that there exists an observer who
can detect any deviating coalition c ∈ Cn and report r = c to all players at the
end of each period. Here we assume that mixed actions are observable ex post
by the observer. Hence, at the end of each period each player can observe not
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only the other players’ mixed actions but also the observer’s report. Therefore,
all players are able to know the members of the deviating coalition.

We suppose that if there is no deviator in a period, the observer reports
r = ∅ to all players in that period. So the observer’s report r is an element of
ℜ = Cn

∪
{∅}. A history ht ∈ Ht includes thus a list of t reports, identifying

the reports submitted in periods 0 through t − 1. Then the set of period t ≥
0 histories is given by Ht = (S × ℜ)t, where (S × ℜ)t with typical element
((s(0), r(0)), (s(1), r(1)), ..., (s(t−1), r(t−1))) to be the t-fold product of (S×ℜ)
and we define (S ×ℜ)0 to be an arbitrary singleton.

Now, we begin to characterize players’ payoffs consistent with equilibrium
behavior in this model. Let coX be the convex hull of a given set X and
u(·) = (u1(·), u2(·), ..., un(·)), so that the set of feasible payoff vectors can be
denoted by

V = co{u(a) : a ∈ A}.

Then we define the minmax payoff for each coalition. For a vector v ∈ Rn, let

vc =
∑
i∈c

vi

and
v−c =

∑
i∈Cn\c

vi,

where c ∈ Cn.
Note that a coalition c ∈ Cn always has the option of playing a best response

to the actions chosen by the rest of the players. Therefore, by the assumption
of transferable payoffs, the sum of payoffs in the stage game for coalition c to
guarantee is the smallest best response sum of payoffs among all action profiles,
i.e., coalition c’s minmax payoff is

vc = min
s−c∈S−c

max
ac∈Ac

uc(ac, s−c).

Denote mc be a minmax profile for coalition c, that is

vc = uc(m
c) = max

ac∈Ac

uc(ac,m
c
−c).

Then for K ∈ N , we call a payoff vector v degree-K rational if for any c ∈ CK ,

vc > vc.

We define the set of feasible and degree-K rational payoff vectors by

V K = {v ∈ V : vc > vc ∀c ∈ CK}.

Intuitively, as K rises V K shrinks, since it requires more stringent coalitional
rationalities, as is shown in the following proposition.

Proposition 2. V K ⊆ V K′
for any K ′ ≤ K and V n = ∅.
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Proof. The former statement holds by the definition of V K . For the latter
statement, if there were v ∈ V n, then vN > vN = maxa∈A uN (a), a contradic-
tion to v ∈ V .

In the 3-player prisoners’ dilemma in the introduction, the minmax profile
for player 1 is (D,D,D) and the minmax profile for a coalition of player 1 and
player 2 is (C,C,D). Thus v{1} = u1(D,D,D) = 0 and v{1,2} = u1(C,C,D) +
u2(C,C,D) = 2. Hence by the symmetry, payoff vectors such as (1, 1, 1) is
feasible and degree-1 rational but is not feasible and degree-2 rational. In fact,
some inefficient payoff vectors will be eliminated from the set of feasible and
degree-K rational payoff vectors as K increases for many infinitely repeated
games.

However, there exist some cases in which V K does not shrink as K rises.
Consider the following 3-player Cournot competition game. In the game, player
i can decide his production ai ∈ R and his payoff is given by ui(a) = ai(Q −
a1 − a2 − a3 − b), where i ∈ {1, 2, 3} and Q > b > 0. Clearly, if player i decides
to produce nothing, his payoff is 0. And if he decides to produce ai = Q − b,
then other players’ payoffs are at most 0. Hence both the minmax payoff for
one player and the minmax payoff for a coalition of two players are 0, i.e.,
V 1 = V 2 ̸= ∅ in an infinitely repeated 3-player Cournot competition game.

The case that there are only two players is well studied by Fudenberg and
Maskin (1986) and we state their conclusion by the following theorem.

Theorem 2. If n = 2, then for any v ∈ V 1, there exists δ ∈ (0, 1) such that for
all δ ∈ (δ, 1), v is a degree-1 subgame perfect Nash equilibrium payoff vector of
G(δ) with strengthened perfect monitoring.

Proof. See Fudenberg and Maskin (1986)’s Theorem 1.

Fudenberg and Maskin (1986) construct an equilibrium strategy by using a
joint punishment. That is, all players play a mutual minmax action profile long
enough to wipe out any gain of a deviator whenever deviation happens. How-
ever, in the case that there are three or more players there may not exist such
a convenient punishment which could simultaneously punish every player and
minmax any deviator’s payoff. Hence we need to change the idea of constructing
an equilibrium strategy in the case that there are three or more players. Since
the members of a deviating coalition can be distinguished, if a coalition deviates,
the coalition can be minmaxed by the other players. To support our idea, we
extend Abreu et al. (1994)’s NEU condition to a degree-K nonequivalent utility
condition (degree-K NEU condition) which is defined as follows.

Definition 4. (Degree-K NEU) For K ∈ N , a convex set X ⊂ Rn satisfies the
degree-K NEU condition if for any coalition c ∈ CK and c′ ∈ CK\c there does
not exist α ≥ 0 and β ∈ R such that xc = αxc′ + β for all x ∈ X.

If the feasible payoff vectors set V satisfies degree-1 NEU, then it satisfies
NEU.3 Here, we define the degree-K NEU, because it is a necessary and sufficient

3NEU does not imply degree-1 NEU, because NEU allows one player to be indifferent over
all actions, i.e., vi is constant on X for some i.
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condition for the following lemma which supports our result.

Lemma 1. For K ∈ N , if a convex set X ⊂ Rn satisfies degree-K NEU if
and only if there exists a set {xc}c∈CK ⊆ X such that for any c ∈ CK and
c′ ∈ CK\c,

xc
c < xc′

c .

Proof. We prove this lemma by Abreu et al. (1994)’s approach. For the suf-
ficiency, we first show that for each pair of coalitions c and c′ ̸= c there
exist xcc′ ∈ X and xc′c ∈ X such that xcc′

c < xcc′

c′ and xc′c
c′ > xc′c

c . Let
Xcc′ = {(xc, xc′) : x ∈ X}. Then one of the following two conditions holds,
since the stage game G satisfies degree-K NEU.
(i) dimXcc′ = 2;
(ii) dimXcc′ = 1 and Xcc′ is a line with negative slope.
No matter which condition holds there exist χc ∈ Xcc′ and χc′ ∈ Xcc′ such that
χc
c < χc′

c and χc′

c′ < χc
c′ . By the definition of Xcc′ , there exist xcc′ ∈ X and

xc′c ∈ X such that (xcc′

c , xcc′

c′ ) = χc and (xc′c
c , xc′c

c′ ) = χc′ , respectively. Further,

xcc′ and xc′c satisfy xcc′

c < xc′c
c and xc′c

c′ < xcc′

c′ .
Now we show the existence of the set {xc}c∈CK

. By the above proof, for each
pair of coalitions c′ ∈ CK and c′′ ∈ CK\c′ there exist xc′c′′ ∈ V and xc′′c′ ∈ V
such that xc′c′′

c′ < xc′′c′

c′ and xc′′c′

c′′ < xc′c′′

c′′ . For each coalition c ∈ CK , order the

|CK | × |CK − 1| payoff vectors xc′c′′ in increasing size (break ties arbitrarily)
from the point of view of coalition c, and assign these ordered vectors strictly
decreasing weights θι > 0, ι = 1, 2, ..., |CK | × |CK − 1|, summing to one. Let xc

be the resulting convex combination of the |CK |× |CK − 1| payoff vectors xc′c′′ .
By the sequence inequality, xc

c < xc′

c for any c′ ∈ CK\c.
For the necessity, suppose that X does not satisfy degree-K NEU, i.e., for

some coalition c ∈ CK and c′ ∈ CK\c there exist α ≥ 0 and β ∈ R such that
xc = αxc′ + β for all x ∈ X. If α = 0, then xc = β for all x ∈ X. If α > 0,
then xc = αxc′ + β for all x ∈ X, i.e., xc and xc′ are positively correlated.
Obviously, no matter which condition holds there does not exist such a set
{xc}c∈CK

⊆ X.

Before stating our result, let us introduce two more lemmas which support
our result.

Lemma 2. For any α > β ≥ 0, there exists δ̄ ∈ (0, 1) such that for any
δ ∈ (δ̄, 1), there exists a natural number l such that

α >
δl

1− δl
> β. (5)

Proof. If β = 0, (5) holds for for any natural number l > logδ
α

α+1 . If β > 0, for

any δ ∈ ( (α+1)β
α(β+1) , 1),

logδ
β

β + 1
− logδ

α

α+ 1
> 1.

11



Notice that logδ
α

α+1 > 0, so there exists a natural number l such that

logδ
β

β + 1
> l > logδ

α

α+ 1
.

Then (5) holds, since δ ∈ (0, 1).

Lemma 3. For all ε > 0 and all A′ ⊆ A, there exist δ ∈ (0, 1) such that for all
δ ∈ (δ, 1) and all v ∈ co{u(a) : a ∈ A′}, there exists a sequence of action profiles
whose discounted average payoffs are v and whose continuation payoffs at any
time t are within ε of v.

Proof. See Mailath and Samuelson (2006)’s lemma 3.7.2.

Now we can show that all payoff vectors in V K arise as a degree-K subgame
perfect Nash equilibrium with strengthened perfect monitoring if V K satisfies
degree-K NEU and if the players are sufficiently patient. The idea behind the
proof of the following theorem is simple. If a coalition deviates, the coalition
is minmaxed by the other players long enough to wipe out any gain from its
deviation. To induce the other players minmax the deviating coalition, the
equilibrium gives a “reward” after minmaxing periods. The degree-K NEU
ensures that the continuation strategies with the reward can be constructed.

Theorem 3. In the case n ≥ 3 and K < n, if V K satisfies degree-K NEU, then
for any v ∈ V K , there exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1), v is a degree-K
subgame perfect Nash equilibrium payoff vector of G(δ) with strengthened perfect
monitoring.

Proof. Fix any v ∈ V K . By Lemma 1, there exists a set {xc}c∈CK ⊆ V K such
that for any c ∈ CK and c′ ∈ CK\{c}

xc
c < xc′

c .

For each c ∈ CK , fix a payoff vector yc ∈ V which satisfies ycc = mina∈A uc(a).
Now for each c ∈ CK , consider this payoff vector

(1− η)v + ηζxc + η(1− ζ)yc

where η ∈ (0, 1) and ζ ∈ (0, 1). Then for any c ∈ CK and c′ ∈ CK\{c},

(1− η)vc + ηζxc
c + η(1− ζ)ycc < (1− η)vc + ηζxc′

c + η(1− ζ)yc
′

c ,

due to ycc = mina∈A uc(a) and xc
c < xc′

c . Because v ∈ V K and xc ∈ V K , so for
all c ∈ CK and c′ ∈ CK , vc′ > vc′ and xc

c′ > vc′ . Hence there exists η̄ > 0 such
that for any η ∈ (0, η̄)

(1− η)vc′ + ηζxc
c′ + η(1− ζ)ycc′ > vc′ ,

for any c ∈ CK and c′ ∈ CK , i.e.,

(1− η)v + ηζxc + η(1− ζ)yc ∈ V K

12



for all c ∈ CK . By ycc = mina∈A uc(a) ≤ vc < vc, there must exist ζ̄ > 0 such
that for any ζ ∈ (0, ζ̄) and any η ∈ (0, 1),

(1− η)vc + η(ζxc
c + (1− ζ)ycc) < vc,

for all c ∈ CK .
Fix η ∈ (0, η̄) and ζ ∈ (0, ζ̄) and let vc = (1 − η)v + ηζxc + η(1 − ζ)yc for

each c ∈ CK . Then
vc ∈ V K , (6)

vcc < vc, (7)

and for any c′ ∈ CK\{c}
vcc < vc

′

c . (8)

Due to (6) and (8), there exists ε̄ > 0 such that for any ε ∈ (0, ε̄),

min
c∈CK

vcc − vc − |c|ε
|c|ε

> max
c∈CK ,c′∈CK\{c}

{v
c
c − uc(m

c′)− |c|ε
vc′c − vcc + |c|ε

, 0}.

Further, fix ε ∈ (0, ε̄). By Lemma 2, there exists δ1 > 0 for every δ ∈ [δ1, 1),
there exists a natural number l such that

min
c∈CK

vcc − vc − |c|ε
|c|ε

>
δl

1− δl
> max

c∈CK ,c′∈CK\{c}

vcc − uc(m
c′)− |c|ε

vc′c − vcc + |c|ε
.

Then for any c ∈ CK and any c′ ∈ CK\{c},

(1− δl)uc(m
c′) + δlvc

′

c > vcc − |c|ε > (1− δl)vc + δlvcc . (9)

Hence there exists δ2 ∈ [δ1, 1) such that for every δ ∈ [δ2, 1)

vcc − |c|ε > (1− δ)max
a∈A

uc(a) + δ{(1− δl)vc + δlvcc}. (10)

By Lemma 3, there exists δ ∈ [δ2, 1) such that for every δ ∈ [δ, 1), there
exist a sequence of action profiles π∅ = {s∅(t)}∞t=0 and |CK | sequences of action
profiles πc = {sc(t)}∞t=0 (c ∈ CK) which satisfy the following equalities and
inequalities:

(1− δ)
∞∑
t=0

δtu(s∅(t)) = v (11)

(1− δ)

∞∑
t=0

δtui(s
∅(T + t)) > vi − ε ∀i ∈ N ∀T ≥ 1 (12)

sc(t) = mc ∀t < l

(1− δ)
∞∑
t=0

δtu(sc(l + t)) = vc (13)

13



(1− δ)
∞∑
t=0

δtui(s
c(T + t)) > vci − ε ∀i ∈ N ∀T > l. (14)

Consider the following strategy profile σ∗:
(A) All players play following π∅ in each period until r ∈ CK is reported;4

(B) Whenever c ∈ CK is reported, then all players start to play following πc

from the next period until another r′ ∈ CK is reported.5

Now we use the one-shot coalitional deviation principle to show that σ∗

is a degree-K subgame perfect Nash equilibrium strategy profile. Suppose a
coalition c ∈ CK chooses a one-shot coalitional deviation in period t ≥ 0. Notice
that for any history ht ∈ Ht, if all players play following σ∗|ht, they should play
s∅(t) or sc

′
(t′) in period t, where c′ ∈ CK and t′ ≥ 0.

First, if they should play s∅(t) or sc
′
(t′) in period t, where t′ ≥ l, then the

coalition’s sum of continuation payoffs by a one-shot coalitional deviation is less
than

vcc − |c|ε < gc(σ
∗|ht),

due to (7), (8) and (10)-(14). Second, if they should play sc
′
(t′) in period t,

where t′ < l and c′ ̸= c, then the coalition’s sum of continuation payoffs by a
one-shot coalitional deviation is less than

vcc − |c|ε,

due to (10). But if uc(m
c′) < vc

′

c , we have

gc(σ
∗|ht) = (1− δl−t′)uc(m

c′) + δl−t′vc
′

c ≥ (1− δl)uc(m
c′) + δlvc

′

c > vcc − |c|ε

due to (9), and if uc(m
c′) ≥ vc

′

c , wa also have

gc(σ
∗|ht) = (1− δl−t′)uc(m

c′) + δl−t′vc
′

c ≥ vc
′

c > vcc − |c|ε,

due to (8). Third, if they should play sc(t′) in period t, where t′ < l, then the
coalition’s sum of continuation payoffs by a one-shot coalitional deviation is at
most

(1−δ)uc(m
c)+δ{(1−δl)uc(m

c)+δlvcc} < (1−δl−t′)uc(m
c)+δl−t′vcc = gc(σ

∗|ht),

due to (6).
Therefore, if all players play following the strategy profile σ∗, for any history

ht ∈ Ht no feasible coalition could benefit from a one-shot coalitional deviation,
i.e., σ∗ is a degree-K subgame perfect Nash equilibrium strategy profile. There-
fore any v ∈ V K is a degree-K subgame perfect Nash equilibrium payoff vector
of G(δ) with strengthened perfect monitoring.

4If r ∈ Cn\CK is reported, we suppose that all players ignore the report and continue to
play following π∅.

5As in the former footnote, we suppose that any report r′ ∈ Cn\CK is ignored.
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Compared to Fudenberg and Maskin (1986)’s full dimensionality condition,
degree-K NEU is a weaker sufficient condition. In fact, there are many games
which satisfy degree-K NEU but do not satisfy the full dimensionality condition,
for example constant-sum games. In other words, Theorem 3 applies to some
infinitely repeated constant-sum games.

Consider the following 5-player constant-sum game. In the game, each play-
er chooses two of the rest players and give each of them 1 dollar. Each player’s
payoff is the revenue of himself at the end of the game. If a player receives noth-
ing, then his payoff is -2 and his worst payoff in the game is also -2. Therefore,
a player’s minmax payoff is -2 and

V 1 = {(v1, v2, v3, v4, v5) : v1 + v2 + v3 + v4 + v5 = 0, vi > −2∀i}

by the symmetry of the game. It is easy to see that V 1 satisfies degree-1 NEU,
so all payoff vectors in V 1 arise as degree-1 subgame perfect Nash equilibrium
with strengthened perfect monitoring.

A 2-player coalition can give one dollar each other, but if they receive nothing
from the other players, the coalition’s sum of payoffs is -2. In fact, the other
players can give nothing to the coalition. Therefore, any 2-player coalition’s
minmax payoff is -2 and

V 2 = {(v1, v2, v3, v4, v5) : v1+v2+v3+v4+v5 = 0, vi > −2∀i, vi+vj > −2∀j ̸= i}

by the symmetry of the game. Note that V 2 is non-empty, because (0, 0, 0, 0, 0) ∈
V 2. Therefore all payoff vectors in V 1 arise as degree-1 subgame perfect Nash
equilibrium with strengthened perfect monitoring, since V 2 satisfies degree-2
NEU.

A 3-player coalition can give nothing to the other players, since any member
of the coalition can give the other two members one dollar. And the coali-
tion must receive two dollars from the other players, so any 3-player coalition’s
minmax payoff is 2 and V 3 is empty.

4 Perfect monitoring

In this section, we consider the perfect monitoring, i.e., each player can only
observe the other players’ mixed actions. Hence, the hidden deviators who play
as in the equilibrium cannot be distinguished. Then a history ht ∈ Ht is thus a
list of t mixed action profiles, identifying the mixed actions played in periods 0
through t− 1. And the set of period t ≥ 0 histories is given by Ht = St, where
St with typical element (s(0), s(1), ..., s(t−1)) to be the t-fold product of S and
we define S0 to be an arbitrary singleton.

In a model with strengthened perfect monitoring, the observer reveals all
members of the deviating coalition, including those who play as in the equilibri-
um. However, in a model with perfect monitoring, a coalitional deviation does
not reveal the members of the coalition who play as in the equilibrium. This is
because players can only observe the other players’ mixed actions with perfect
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monitoring. Notice that a deviator who plays against the equilibrium forms
the deviating coalition if only coalitions whose size is 1 are feasible. Therefore,
the degree-1 subgame perfect Nash equilibrium payoff vectors sets are the same
both with strengthened perfect monitoring and with perfect monitoring.

Theorem 4. If n = 2 and V 1 ̸= ∅ or if V 1 satisfies degree-1 NEU, then for
any v ∈ V 1, there exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1), v is a degree-1
subgame perfect Nash equilibrium payoff vector of G(δ) both with strengthened
perfect monitoring and with perfect monitoring.

Proof. This theorem holds by Theorems 2 and 3.

Now we focus on the case that n > K ≥ 2 since V n = ∅. As we argued,
a coalitional deviation does not reveal the members of the coalition who play
as in the equilibrium. So in some period of a degree-K subgame perfect Nash
equilibrium, if the number of players who play differently from the equilibrium
is less than K, any feasible coalition which contains those players may be the
deviating coalition.

Recall the equilibrium strategy which is constructed by Fudenberg and Maskin
(1986) in Theorem 2. In the equilibrium strategy, all players will play a mutual
minmax action profile long enough to wipe out any gain of a deviator whenever
deviation happens. Here, we apply the idea to solve the above problem, i.e.,
whenever deviation happens, all players switch to play an action profile s long
enough to punish everyone, where s ∈ S. However, there may not exist an
action profile s which can simultaneously punish every player with his minmax
value when n ≥ 3.

Here, we first characterize the degree-K subgame perfect Nash equilibrium
payoffs which can be achieved by using a given s ∈ S as simultaneous punish-
ment. Since a coalition c ∈ Cn always has the option of playing a best response
to s−c, its sum of payoffs is at least

vsc = max
ac∈Ac

uc(ac, s−c).

Therefore a payoff vector v which can be achieved by s should satisfy

vc > vsc

for any c ∈ CK and we call the payoff vector v degree-K simultaneously pun-
ishable with respect to s.

Then for a given mixed action profile s ∈ S, the set of feasible and degree-K
simultaneously punishable payoff vectors with respect to s can be defined by

V K
s = {v ∈ V : vc > vsc∀c ∈ CK},

and the set of feasible and degree-K simultaneously punishable payoff vectors
is ∪

s∈S

V K
s =

∪
s∈S

{v ∈ V : vc > vsc∀c ∈ CK},
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where K ∈ N . Intuitively,
∪

s∈S V K
s shrinks as K rises, since it requires more

stringent coalitional rationalities.
Notice that not all payoff vectors in V K can be achieved by the idea, since not

all feasible coalitions could be simultaneously and extremely punished. However,
if there exists a mixed action profile s which simultaneously minmax all coali-
tions whose size is up to K, then V K

s = V K , where K ∈ N . Recall the 3-player
Cournot competition game and consider the action profile s = (Q−b,Q−b.Q−b).
If a player decides to produce Q − b, the best response of any other player is
producing nothing, i.e., vsc = 0 for any c ∈ C2. Then we have V K

s = V K for
K = 1, 2.

Proposition 3. For any K > K ′,
∪

s∈S V K
s ⊆

∪
s∈S V K′

s .
∪

s∈S V K
s ⊆ V K for

all K ∈ N and
∪

s∈S V n
s = V n = ∅.

Proof.
∪

s∈S V K
s ⊆

∪
s∈S V K′

s holds by the definition of
∪

s∈S V K
s . For a given

s ∈ S, we have

vc > vsc

= max
ac∈Ac

uc(ac, s−c)

≥ min
s−c∈S−c

max
ac∈Ac

uc(ac, s−c)

= vc,

for any v ∈ V K
s , so v ∈ V K , i.e., V K

s ⊆ V K . Therefore
∪

s∈S V K
s ⊆ V K for any

K ∈ N . Since V n = ∅,
∪

s∈S V n
s = V n = ∅.

In fact, all payoff vectors in
∪

s∈S V K
s can arise as degree-K subgame perfect

Nash equilibria with perfect monitoring by the idea of simultaneous punishment.
And we show this result without degree-K NEU.

Theorem 5. In the case n > K ≥ 2, for any v ∈
∪

s∈S V K
s there exists δ ∈ (0, 1)

such that for all δ ∈ (δ, 1), v is a degree-K subgame perfect Nash equilibrium
payoff vector of G(δ) with perfect monitoring.

Proof. Suppose v ∈ V K
s , where s ∈ S. By the definition of V K

s and the definition
of vsc, we have

vc > vsc = max
ac∈Ac

uc(ac, s−c) ≥ uc(s) (15)

for any c ∈ CK . Due to vi > ui(s) for any i ∈ N , there exists ε̄ > 0 such that
for any ε ∈ (0, ε̄)

min
i∈N

{vi − ui(s)− ε

ε
} > max

c∈CK

{v
s
c − uc(s)

vc − vsc
} ≥ 0.

Further, fix ε ∈ (0, ε̄), by Lemma 2, there exists δ1 ∈ (0, 1) such that for every
δ ∈ [δ1, 1), there exists a natural number l such that

min
i∈N

{vi − ui(s)− ε

ε
} >

δl

1− δl
> max

c∈CK

{v
s
c − uc(s)

vc − vsc
}.

17



Then for any c ∈ CK ,
(1− δl)uc(s) + δlvc > vsc (16)

and for any i ∈ N
vi − ε > (1− δl)ui(s) + δlvi.

Hence there exists δ2 ∈ [δ1, 1) such that for any δ ∈ [δ2, 1) and any c ∈ Ck,

vc − |c|ε > (1− δ)max
a∈A

uc(a) + δ{(1− δl)uc(s) + δlvc}. (17)

By Lemma 3, there exists δ ∈ (δ2, 1) such that for all δ ∈ [δ, 1), there exist 2
sequences of action profiles π̂z = {sz(t)}∞t=0 (z = 0, 1) which satisfy the following
equalities and inequalities.

(1− δ)
∞∑
t=0

δtu(s0(t)) = v (18)

(1− δ)

∞∑
t=0

δtui(s
0(T + t)) > vi − ε ∀i ∈ N ∀T ≥ 1 (19)

s1(t) = s ∀t < l

s1(t) = s0(t− l) ∀t ≥ l (20)

Now consider the following strategy profile σ∗:
(A) All players play following π̂0 in each period if all players continued

playing following π̂0.
(B) If there are at most K players who play differently from π̂z, then all

players start to play following π̂1 in each period if all players continued playing
following π̂1, where z = 0, 1.6

Finally, we show that σ∗ is a degree-K subgame perfect Nash equilibrium
strategy profile by using the one-shot coalitional deviation principle. Suppose a
coalition c ∈ CK chooses a one-shot coalitional deviation in period t ≥ 0. Notice
that for any history ht ∈ Ht, if all players play following σ∗|ht, they should play
s0(t) or s1(t′), where t′ ≥ 0, in period t.

On the one hand, if they should play s0(t) or s1(t′) in period t, where
t′ ≥ l, then the coalition’s sum of continuation payoffs by a one-shot coalitional
deviation is at most

vc − |c|ε < gc(σ
∗|ht),

due to (17)-(20). On the other hand, if they should play s1(t′) in period t, where
t′ < l, then the coalition’s sum of continuation payoffs by a one-shot coalitional
deviation is at most

(1− δ) max
ac∈Ac

uc(ac, s−c) + δ{(1− δl)uc(s) + δlvc} < (1− δl)uc(s) + δlvc

≤ (1− δl−t′)uc(s) + δl−t′vc

= gc(σ
∗|ht)

6Similarly to the former equilibrium construction, we suppose that all players ignore any
coalitional deviation in which there are more than K players who play differently from π̂1 and
continue to play π̂1.
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due to (15) and (16).
Therefore, if all players play following the strategy profile σ∗, for any history

ht ∈ Ht, no feasible coalition can benefit from a one-shot coalitional deviation,
i.e., σ∗ is a degree-K subgame perfect Nash equilibrium strategy profile. There-
fore any v ∈

∪
s∈S V K

s can arise as a degree-K subgame perfect Nash equilibrium
with perfect monitoring.

Although we show the above theorem without degree-K NEU, one may won-
der if the set of feasible and degree-K simultaneously punishable payoff vectors
might be empty in any infinitely repeated games which do not satisfy the degree-
K NEU condition. Consider the following 3-player game from Fudenberg and
Maskin (1986).

Player 1

Player 2
Y es No

Y es 1, 1, 1 0, 0, 0
No 0, 0, 0 0, 0, 0

Player 3 chooses Y es

Player 1

Player 2
Y es No

Y es 0, 0, 0 0, 0, 0
No 0, 0, 0 1, 1, 1

Player 3 chooses No

Figure 2: 3-player game

In the game, each player faces the same binary question. Each of them will be
rewarded 1 dollar if their answers are the same, and get nothing if their answers
are not the same. Note that the three players have the same payoffs, so this game
does not satisfy degree-K NEU, where K = 1, 2, 3. Consider an action profile s
in which all players choose the two answers with equal probability. It is easy to
know that s is a Nash equilibrium action profile, so V 1

s = {(b, b, b) : b ∈ (0.25, 1]}.
For any s′ ∈ S\s, there must exist two players and an answer such that the
probability for both of them to choose the answer is larger than 0.25. Then
the best response of the the remaining player is to choose the answer with
probability 1. Because the three players have the same payoffs, V 1

s′ ⊂ V 1
s , i.e.,∪

s∈S

V 1
s = V 1

s = {(b, b, b) : b ∈ (0.25, 1]}.

For the action profile s and any coalition c containing two players, the best
response of the coalition is to take the same action. So V 2

s = {(b, b, b) : b ∈
(0.5, 1]}. For any s′ ∈ S\s, there must exist one player who chooses some
answer with probability greater than 0.5. Then the best response of the other
two players is to choose that answer with probability 1. Because the three
players have the same payoffs, V 2

s′ ⊂ V 2
s , i.e.,∪

s∈S

V 2
s = V 2

s = {(b, b, b) : b ∈ (0.5, 1]}.

This example shows that failure of degree-K NEU is consistent with non-
emptiness of

∪
s∈S V K

s for K < n.
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5 Degree-n subgame perfect Nash equilibria

So far, we have characterized the degree-K subgame perfect Nash equilibrium
payoff vectors under strengthened perfect monitoring and perfect monitoring,
where K < n. The approach does not apply to the degree-n subgame perfect
NAsh equilibrium because

∪
s∈S V n

s = V n = ∅. However, it does not mean
that there does not exist any degree-n subgame perfect Nash equilibrium payoff
vector. Notice that any degree-n subgame perfect Nash equilibrium continuation
payoff at any history maximizes the sum of all players’ payoffs. Hence, in this
section, we provide a new approach to characterize the conditions for equilibrium
payoff vectors.

At first, we consider an infinitely repeated game with strengthened perfect
monitoring. Let

S̄ = {s ∈ S|uN (s) = max
a∈A

uN (a)}

and
W = co{u(s) : s ∈ S̄}.

Note that in the stage game the maximum sum of all players’ payoffs is maxa∈A uN (a),
i.e, W is the set of payoff vectors which maximizes the sum of payoffs of the
grand coalition. Therefore, at any history of a degree-n subgame perfect Nash
equilibrium, the prescribed action profile must belong to S̄. Because a coalition
c ∈ Cn−1 always has the option of playing a best response to the actions chosen
by the rest of the players, in a degree-n subgame perfect Nash equilibrium the
coalition c’s smallest sum of payoffs consistent with optimization is

wc = min
s−c∈S̄−c

max
ac∈Ac

uc(ac, s−c).

Define m̄c ∈ S̄ as a profile which satisfies

wc = uc(m̄
c
c, m̄

c
−c) = max

ac∈Ac

uc(ac, m̄
c
−c),

where c ∈ Cn−1. Then the set of feasible and degree-n weakly rational payoff
vectors can be defined by

Wn = {v ∈ W : vc > wc∀c ∈ Cn−1}.

As we argued, a degree-n subgame perfect Nash equilibrium specifies an
action profile in S̄ at any history. Then the grand coalition will not deviate in
any period. Therefore, we effectively consider a degree-(n− 1) subgame perfect
Nash equilibrium strategy in which any action profile at any history belongs to
S̄. Then we can show that if Wn satisfies degree-(n−1) NEU, then any v ∈ Wn

can arise as a degree-n subgame perfect Nash equilibrium with strengthened
perfect monitoring.

Theorem 6. If Wn satisfies degree-(n − 1) NEU, then for any v ∈ Wn, there
exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1), v is a degree-n subgame perfect Nash
equilibrium payoff vector of G(δ) with strengthened perfect monitoring.
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Proof. Fix any v ∈ Wn. By Lemma 1, there exists a set {xc}c∈Cn−1
⊆ Wn such

that for any c ∈ Cn−1 and c′ ∈ Cn−1\{c}

xc
c < xc′

c ,

since Wn satisfies degree-(n − 1) NEU. For each c ∈ Cn−1, fix a payoff vector
yc ∈ Wn which satisfies ycc = mins∈S̄ uc(s). Now for each c ∈ Cn−1, consider
this payoff vector

(1− η)v + ηζxc + η(1− ζ)yc

where η ∈ (0, 1) and ζ ∈ (0, 1). Then for any c ∈ Cn−1 and c′ ∈ Cn−1\{c},

(1− η)vc + ηζxc
c + η(1− ζ)ycc < (1− η)vc + ηζxc′

c + η(1− ζ)yc
′

c ,

due to ycc = mins∈S̄ uc(s) and xc
c < xc′

c . So for all c ∈ Cn−1 and c′ ∈ Cn−1,
vc′ > wc′ and xc

c′ > wc′ , since v ∈ Wn and xc ∈ Wn. Hence there exists η̄ > 0
such that for any η ∈ (0, η̄)

(1− η)vc′ + ηζxc
c′ + η(1− ζ)ycc′ > wc′ ,

for all c ∈ Cn−1 and c′ ∈ Cn−1, i.e., (1− η)v + ηζxc + η(1− ζ)yc ∈ Wn for all
c ∈ Cn−1. By ycc = mins∈S̄ uc(s) ≤ wc < vc, there must exist ζ̄ > 0 such that
for any ζ ∈ (0, ζ̄),

(1− η)vc + η(ζxc
c + (1− ζ)ycc) < vc,

for all c ∈ Cn−1.
Therefore, fix η ∈ (0, η̄) and ζ ∈ (0, ζ̄) and let vc = (1−η)v+ηζxc+η(1−ζ)yc

for each c ∈ Cn−1. Then vc ∈ Wn and

vcc < vc (21)

and for any c′ ∈ Cn−1\{c}
vcc < vc

′

c . (22)

For any c ∈ Cn−1, since vc ∈ Wn, we have

vcc > wc = uc(m̄
c). (23)

Then there exists ε̄ > 0 such that for any ε ∈ (0, ε̄),

min
c∈Cn−1

vcc − uc(m̄
c)− |c|ε

|c|ε
> max

c∈Cn−1,c′∈Cn−1\{c}
{v

c
c − uc(m̄

c′)− |c|ε
vc′c − vcc + |c|ε

, 0},

due to (23) and (24). Further, fix ε ∈ (0, ε̄), by Lemma 2, there exists δ1 > 0
for every δ ∈ [δ1, 1), there exists a natural number l such that

min
c∈Cn−1

vcc − uc(m̄
c)− |c|ε

|c|ε
>

δl

1− δl
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and
δl

1− δl
> max

c∈Cn−1,c′∈Cn−1\{c}

vcc − uc(m̄
c′)− |c|ε

vc′c − vcc + |c|ε
.

Then for any c ∈ Cn−1 and any c′ ∈ Cn−1\{c},

vcc − |c|ε > (1− δl)uc(m̄
c) + δlvcc

and
(1− δl)uc(m̄

c′) + δlvc
′

c > vcc − |c|ε. (24)

Hence there exists δ2 ∈ [δ1, 1) such that for every δ ∈ [δ2, 1)

vcc − |c|ε > (1− δ)max
a∈A

uc(a) + δ{(1− δl)uc(m̄
c) + δlvcc} (25)

for any c ∈ Cn−1.
From Lemma 3, there exists δ ∈ [δ2, 1) such that for every δ ∈ [δ, 1), there

exist a sequence of action profiles π̄∅ = {s∅(t)}∞t=0 and |Cn−1| sequences of
action profiles π̄c = {sc(t)}∞t=0 (c ∈ Cn−1) which satisfy the following equalities
and inequalities:

(1− δ)

∞∑
t=0

δtu(s∅(t)) = v (26)

(1− δ)
∞∑
t=0

δtui(s
∅(T + t)) > vi − ε ∀i ∈ N ∀T ≥ 1 (27)

sc(t) = m̄c ∀t < l

(1− δ)
∞∑
t=0

δtu(sc(l + t)) = vc (28)

(1− δ)
∞∑
t=0

δtui(s
c(T + t)) > vci − ε ∀i ∈ N ∀T > l. (29)

Consider the following strategy profile σ∗:
(A) All players play following π̄∅ in each period until r ∈ Cn−1 is reported;7

(B) Whenever if c ∈ Cn−1 is reported, then all players start to play following
πc from the next period until another r′ ∈ Cn−1 is reported.8

Now we show that σ∗ is a degree-n subgame perfect Nash equilibrium strat-
egy profile by using the one-shot coalitional deviation principle. Note that for
any history ht ∈ Ht, if all players play following σ∗|ht, then

gN (σ∗|ht) = max
a∈A

uN (a),

i.e., the grand coalition cannot benefit from any one-shot coalitional deviation.
Suppose a coalition c ∈ Cn−1 chooses a one-shot coalitional deviation in period

7If r = cn is reported, we suppose that all players ignore the report and continue to play
following π̄∅.

8As in the former footnote, we suppose that the report r = cn is ignored.
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t ≥ 0. Notice that for any history ht ∈ Ht, if all players play following σ∗|ht, in
period t they should play s∅(t) or sc

′
(t′), where c′ ∈ Cn−1 and t′ ≥ 0.

First, if they should play s∅(t) or sc
′
(t′) in period t, where t′ ≥ l, then the

coalition’s sum of continuation payoffs by a one-shot coalitional deviation is less
than

vcc − |c|ε < gc(σ
∗|ht),

due to (21), (22) and (26)-(29). Second, if they should play sc
′
(t′) in period t,

where t′ < l and c′ ̸= c, then the coalition’s sum of continuation payoffs by a
one-shot coalitional deviation is less than

vcc − |c|ε,

due to (25). But if uc(m̄
c′) < vc

′

c , we have

gc(σ
∗|ht) = (1− δl−t′)uc(m̄

c′) + δl−t′vc
′

c ≥ (1− δl)uc(m̄
c′) + δlvc

′

c > vcc − |c|ε

due to (24), and if uc(m̄
c′) ≥ vc

′

c , we also have

gc(σ
∗|ht) = (1− δl−t′)uc(m̄

c′) + δl−t′vc
′

c ≥ vc
′

c > vcc − |c|ε

due to (22). Third, if they should play sc(t′) in period t, where t′ < l, then the
coalition’s sum of continuation payoffs by a one-shot coalitional deviation is at
most

(1− δ)wc + δ{(1− δl)uc(m̄
c) + δlvcc} < (1− δl)uc(m̄

c) + δlvcc

≤ (1− δl−t′)uc(m̄
c) + δl−t′vcc

= gc(σ
∗|ht),

due to (23).
Therefore, if all players play following the strategy profile σ∗, for any history

ht ∈ Ht no coalition could benefit from a one-shot coalitional deviation, i.e., σ∗

is a degree-n subgame perfect Nash equilibrium strategy profile. Therefore any
v ∈ Wn is a degree-n subgame perfect Nash equilibrium payoff vector of G(δ)
with strengthened perfect monitoring.

Now consider an infinitely repeated game with perfect monitoring. Unfor-
tunately, since players cannot distinguish hidden deviators, it is difficult to find
a degree-n subgame perfect Nash equilibrium in this model expect the case
n = 2. In that case, perfect monitoring is equivalent to strengthened perfect
monitoring, and we have the following results.

Theorem 7. If n = 2 and W 2 satisfies degree-1 NEU, then for any v ∈ W 2,
there exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1), v is a degree-2 subgame perfect
Nash equilibrium payoff vector of G(δ) with perfect monitoring.

Proof. It holds by Theorem 6.
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Player 1

Player 2
C D

C 0, 3 1, 1
D b1, b2 3, 0

Figure 3: An example of non-empty W 2

Here, we give an example where the set Wn is non-empty. Consider the
2-player game in Figure 3, where b1 + b2 < 3, b1 > 0 and b2 > 0.

Clearly, S̄ = {(C,C), (D,D)} and W = {(v1, v2) ∈ R2
+ : v1 + v2 = 3}. For

player 1, the action C is dominated by the action D, and for player 2 the action
D is dominated by the action C, since b1 > 0 and b2 > 0. Therefore,

W 2 = {(v1, v2) : v1 + v2 = 3, vi > bi∀i ∈ {1, 2}}.

6 Conclusion

We introduced a notion of equilibrium, that is the degree-K subgame perfect
Nash equilibrium which is an extension of subgame perfect Nash equilibrium.
In the equilibrium, the deviations by any coalition whose size is up to K are
allowed, and in a coalition we assumed that players’ payoffs are transferable.
We showed that whether a strategy profile is a degree-K subgame perfect Nash
equilibrium or not can be confirmed by the one-shot coalitional deviation prin-
ciple which is an extension of one-shot deviation principle. We focused on the
case that K ≥ 2, since the degree-1 subgame perfect Nash equilibrium is well
studied by previous researches.

When K ≥ 2, there may exist hidden deviators, so we studied two mod-
els where the hidden deviators can and cannot be distinguished, respectively.
We first studied an infinitely repeated n-player game with strengthened perfect
monitoring. In this model, we assumed that there is an observer who is able
to detect a deviating coalition and reports it to all players. We constructed a
degree-K subgame perfect Nash equilibrium by the idea that whenever a feasi-
ble coalition is reported by the observer, the coalition is minmaxed by the other
players long enough to wipe out any gain from its deviation. Then if the set of
feasible and degree-K rational payoff vectors satisfies degree-K NEU, we show
that any payoff vectors in that set can arise as a degree-K subgame perfect Nash
equilibrium with strengthened perfect monitoring.

Then, we analyzed an infinitely repeated n-player game with perfect mon-
itoring. Because a deviation does not reveal all members of the coalition, we
constructed a degree-K subgame perfect Nash equilibrium by a simple idea
that whenever any deviation by a feasible coalition happens, all players switch
to play a joint punishment path to punish everyone. And we showed any payoff
vector which is feasible and degree-K simultaneously punishable can arise as a
degree-K subgame perfect Nash equilibrium with perfect monitoring.

Finally, we studied degree-n subgame perfect Nash equilibria by providing
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a new approach to characterize the candidates of the equilibrium payoff vec-
tors. We found that the action profile at any history of any equilibrium must
maximize the grand coalition’s sum of payoffs, to prevent a deviation by the
grand coalition. And we showed that all payoff vectors in the set of feasible and
degree-n weakly rational payoff vectors can arise as a degree-n subgame perfect
Nash equilibrium with strengthened perfect monitoring, if degree-(n− 1) NEU
is satisfied. We do not have a counterpart of this result for perfect monitoring,
except for the case n = 2, where strengthened perfect monitoring and perfect
monitoring are equivalent.

It would be interesting to extend the analysis developed here by assuming
players’ payoffs are not transferable in a coalition. Then players base their
decisions as to whether to enter into a coalition on their individual payoffs as
coalition members. Intuitively, in this case, the hidden deviators can be ignored
since if the deviator who can be observed in a coalition is punished, the coalition
will not deviate from a desired path. Namely, it may be that more payoff vectors
can arise as equilibria even with perfect monitoring.

Recall the 3-player game in Figure 2. Fudenberg and Maskin (1986) use this
game to show that the folk theorem will fail if no restriction is imposed on the set
of feasible and degree-1 rational payoff vectors. They showed that each player’s
payoff must be at least 0.25 in any equilibrium, while each player’s minmax
payoff is 0. Notice that the payoff vector set is exactly the set of feasible and
degree-1 simultaneously punishable payoff vectors and we do not impose any
restriction on the set. Thus another interesting extension is to analyze the
relationship between the set of feasible and degree-K rational payoff vectors
and the set of feasible and degree-K simultaneously punishable payoff vectors.
We leave the challenging work for future research.
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