
 

 
 

 
Kyoto University, 
Graduate School of Economics 
Discussion Paper Series 

 
 
 
 
 
 
 
 

Ex post fairness and ex ante fairness in social 
preferences under risk 

 
 

 
 
 
 
 
 

Seiji Takanashi 
 
 
 
 
 
 

Discussion Paper No. E-20-006 
 
 
 
 
 

Graduate School of Economics 
 Kyoto University 

Yoshida-Hommachi, Sakyo-ku  
Kyoto City, 606-8501, Japan 

 
 
 

January, 2021 



Ex post fairness and ex ante fairness in social
preferences under risk

Seiji Takanashi *

January 15, 2021

Abstract

We extend the domain of social preferences, which depend on not only one’s
outcomes but also vectors of outcomes of all other agents, from deterministic out-
come vectors to lotteries over outcome vectors. First, we axiomatically charac-
terize a class of utility functions which satisfies the expected utility theory and
reversal of order as far as these two requirements are consistent with ex post fair-
ness and ex ante fairness. Based on this class, we characterize three classes of
utility functions which additionally satisfy ex ante fairness, inequality-aversion,
and ex post fairness for probability mixture, respectively. Finally, we characterize
our main class of utility functions which satisfies these axioms. Saito (2013) also
axiomatizes social preferences on lotteries over the outcome vectors which are an
extension of the utility functions proposed by Fehr and Schmidt (1999). We char-
acterize a wider class of utility functions which explains heterogeneous attitudes
of how much the decision maker cares about ex ante fairness and ex post fairness
toward each agent. Moreover, we provide an additional axiom under which our
class of utility functions coincides with Saito’s class of utility functions. We reveal
that the axiom requires that the attitudes are the same among all the agents.
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1 Introduction

People sometimes desire not only to get their payoffs but also to realize fairness.

To model these people’s tendency, Fehr and Schmidt (1999) and Bolton and Ocken-

fels (2000) present respective classes of preference relations called social preferences,

which depend on not only one’s own outcomes but also the vectors of outcomes of all

other people. The utility functions which represent the preferences reflect fairness of

realized outcome vectors in the sense that given one’s outcome, their utility maximizes

when all other people have the same outcome as them. However, the functions are de-

fined only on vectors of deterministic outcomes, and we are interested in extending the

domain of the functions to lotteries over outcome vectors.

When we extend social preferences to the lotteries, two notions of fairness are re-

vealed: ex post fairness and ex ante fairness. Ex post fairness means fairness of real-

ized outcome vectors, analyzed by Fehr and Schmidt (1999) and Bolton and Ockenfels

(2000). In contrast, ex ante fairness is a concept in which people compare each other’s

opportunities and dislike the difference between the opportunities.

Saito (2013) provides an example that captures some features of interaction between

ex post fairness and ex ante fairness,1 developed from a classical example of Machina

(1989). X and Y are brothers and are huge fans of football. Consider that X has

one football ticket. He can use the ticket or can flip a coin to decide who gets to go.

Whatever X chooses, they cannot get an equal outcome, but if X chooses to flip a coin,

the opportunity to get the ticket is equal. Namely, the expected value of X is equal to

that of Y.

To study ex post fairness and ex ante fairness, Fudenberg and Levine (2012) investi-

gate axiomatization of social preferences under risk. They present an axiom of ex post

fairness and axioms of ex ante fairness. The axiom of ex post fairness is consistent with

the independence axiom, and the axioms of ex ante fairness are inconsistent with the

independence axiom. Moreover, they propose a class of utility functions which satisfies

both ex ante fairness and ex post fairness. The utility functions are a convex combina-

tion between the expected value of a Fehr-Schmidt utility and the Fehr-Schmidt utility

1In fact, Saito (2013) does not use the terminology of ex ante fairness or ex post fairness but uses
“ equality of opportunity”or“ equality of outcome.”We regard equality of opportunity as ex ante
fairness and regard equality of outcome as ex post fairness.
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of the expected values.

Our goal is to characterize the preferences which satisfy both ex ante fairness and ex

post fairness by a class of utility functions while preserving the expected utility theory

as far as possible. For that purpose, we assume that the preferences are a weak order

and continuous because they are consistent with ex ante fairness and ex post fairness.

Based on the results of Fudenberg and Levine (2012), we preserve the independence

axiom in each range where a set of the agents whose expected values are less than

the decision maker is constant. This is because ex ante fairness is consistent with the

independence in each range. Particularly, this is consistent with the above example: X

is better off in one outcome vector and is worse off in the other.

In addition, we assume that evaluations of the decision maker are not affected by

risk as far as it is consistent with ex ante fairness and ex post fairness. This is because

our interest is only fairness-related behaviors under risk, not other behaviors of risk, so

we want to focus on these two issues of fairness. More precisely, we can rephrase this

as follows. Consider a lottery with two outcome vectors, and assume these two outcome

vectors give a disadvantage to the same set of agents. This lottery can be regarded as

the compound lottery which consists of two lotteries: the binary lottery whose outcome

vectors are the two in the original lottery and the lottery whose outcome vectors are all

other vectors in the original lottery.

Next, consider another lottery which is obtained by modifying the compound lottery

in the following way. The binary lottery in the compound lottery is replaced with the

outcome vector which gives each agent the expected value of the binary lottery. Since

the lottery modified in this way and the original lottery give a disadvantage to the same

set of agents in expectation, ex ante fairness is not an issue. Furthermore, since the two

outcome vectors and the outcome vector of the expected values of the binary lottery

give a disadvantage to the same set of agents, ex post fairness is not an issue. Since the

modified lottery and the original lottery have the same vectors of the expected values,

we assume these two lotteries are indifferent. In other words, we assume risk-neutrality

as far as it is consistent with ex ante fairness and ex post fairness. Nevertheless, this

kind of axiom is known as“ reversal of order”as stated in Epstein et al. (2007) and

Seo (2009). Therefore, we use the terminology reversal of order.

Our results are as follows. First, we propose three axioms, which require that the

3



preferences satisfy the expected utility theory and reversal of order unless these two

requirements are inconsistent with ex post fairness or ex ante fairness. By these three

axioms, we characterize a class of utility functions without axioms about fairness. This

class has the potential to express various kinds of fairness by adding proper axioms.

We propose three axioms about fairness; ex ante fairness, inequality-aversion, and ex

post fairness for probability mixture.2 Based on the above class, we characterize three

respective classes of utility functions, which additionally satisfy each axiom. Finally,

we characterize our main class of utility functions, putting all these axioms together.

We name this class the PAI model standing for ex post fairness for probability mixture,

ex ante fairness, and inequality-aversion.

The PAI model can be described as follows. We assume that a vector of all agents’

outcomes is stochastically determined, and we express it by a finite lottery over Rn,

where n is a number of agents. Let P be a finite lottery over Rn, Pi be the marginal

distribution of the i-th component of P for any agent i, and L be the set of all fi-

nite lotteries on Rn. We characterize the following class of utility functions: for

(αi,+, αi,−, βi,+, βi,−)i∈N\{1} such that αi,− ≥ 0, βi,+ ≥ 0, αi,++βi,+ ≥ 0, αi,−+βi,− ≥

0, and αi,− − αi,+ = βi,+ − βi,− ≥ 0 for any i ∈ N \ {1},

u(P ) =
∑

x∈supp(P )

vSP
(x)P (x),

where SP = {i ∈ N \ {1}|E(Pi) ≥ E(P1)} and

vS(x) = x1 −
∑
i∈S

[αi,−max{xi − x1, 0}+ βi,−max{x1 − xi, 0}]

−
∑

i∈N\S

[αi,+max{xi − x1, 0}+ βi,+max{x1 − xi, 0}]

for any S ⊂ N .

The PAI model can be interpreted as follows. The decision maker changes her von

Neumann-Morgenstern utility functions, depending on whether the expected value of

the decision maker is smaller or larger than that of the other agents. Since βi,+ ≥ 0, the

decision maker (weakly) sympathizes with the agents whose outcome levels are less

than hers, and since αi,− ≥ 0, the decision maker (weakly) envies the agents whose

2In this paper, we propose two concepts of ex post fairness, inequality-aversion and ex post fairness
for probability mixture, as we will state later.
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outcome levels are more than hers. By this condition, a PAI model reduces to a Fehr-

Schmidt utility function for deterministic outcomes.

The paper most similar to ours is Saito (2013). Saito (2013) axiomatically charac-

terizes the preferences which are represented by the class of utility functions that are

proposed by Fudenberg and Levine (2012), and are a convex combination between the

expected value of a Fehr-Schmidt utility and the Fehr-Schmidt utility of the expected

values. He calls this class the expected inequality-averse (EIA) model and explains the

experimental results that people may want to equalize probabilities of winning a good.

His approach consists of two parts. The first part is devoted to characterizing the

class of the Fehr-Schmidt utility functions in deterministic outcomes, which is a differ-

ent approach from Rohde (2010) that also characterizes the class of the Fehr-Schmidt

utility functions. In the second part, he provides two axioms to characterize a convex

combination between the expected value of a utility function and the utility function

of the expected values. One is a weak independence axiom, and the other is an axiom

called“ dominance.”To understand dominance, consider two lotteries. If one is supe-

rior to the other from the viewpoints of both ex ante fairness and ex post fairness, one

is preferred over the other. In Saito’s characterization, ex ante fairness and ex post fair-

ness are not directly assumed, and it is an open question that when we directly assume

ex ante fairness and ex post fairness what kinds of classes of utility functions can be

characterized. The PAI model is an answer to the question.

In fact, the EIA model is a special case of the PAI model, and the following example

gives an important difference. Consider a trio in an organization, Edgar, Allan, and Poe.

Edgar is the boss of Allan and Poe and is wondering who is suitable to give a risky task.

If they do their daily task, they can get 1 thousand dollars. If they succeed in the risky

task, they can get 2 thousand dollars, but if they fail, they get nothing. The probability

of the success and the failure is 1/2 respectively. Let PA be a lottery which gives 2 or 0

for Allan with probability 1/2 respectively and gives 1 for the two others. Similarly, let

P P be a lottery which gives 2 or 0 for Poe with probability 1/2 respectively and gives 1

for the two others.

In this case, PA is indifferent to P P under the EIA model. This is a very natural

result, but consider the following additional assumption. The organization is small

enough for all the people in it to know each other’s tasks. In contrast, outcomes of the
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tasks are not always known by all. Also, the people in it care equally about Allan and

Poe. Allan is talkative and tells the other people the outcome of his task, and Poe is

shy and cannot tell the other people the outcome of his task. Then, many people are

aware of Allan’s outcome and may envy or sympathize with him, but they are relatively

unaware of Poe’s unfair outcome in the sense of ex post fairness. This assumption may

make Edgar treat Allan and Poe differently because Edgar may care about the others’

evaluation or social images. If he chooses PA, the others are clearly aware of the unfair

choice in the sense of ex post fairness.

There is a tendency that people want to be perceived as fair, as Andreoni and Bern-

heim (2009) show. In other words, when there is an audience, many people want to

equalize the outcomes, as Andreoni and Petrie (2004) and Rege and Telle (2004) also

point out, which can be understood as one of the“audience effects”in psychology. This

leads Edgar to put weight strongly on ex post fairness for Allan, and then Edgar strictly

prefers P P to PA. The EIA model cannot explain this variety of Edgar’s preferences,

but the PAI model can.

Moreover, some papers show that people’s decisions depend on who is affected

by the decisions in risky and social situations. For example, Montinari and Rancan

(2018) and Müller and Rau (2019) experimentally find out that people’s decisions are

influenced by social distance or social context in risky and social situations. Similarly,

Long and Krause (2017) point out that decisions of people depend on the age or social

proximity of others when they are affected by the decisions through two surveys. In

particular, Montinari and Rancan (2018) show that on average, individual behaviors

are closer to maximizing the expected value when deciding on behalf of a friend rather

than a stranger. Namely, people may place more importance on ex ante fairness when

deciding on behalf of a friend. However, the EIA model cannot explain this kind of

behavior because how much the decision maker cares about ex ante fairness and ex

post fairness toward the other agents does not differ across the agents. The PAI model

relaxes this point and may explain various behaviors in the laboratory experiments.

Other papers related to ours are as follows. Many papers including Cappelen et al.

(2013) and Brock et al. (2013) experimentally confirm that people care about not only

ex post fairness but also ex ante fairness. Karni and Safra (2002) and Borah (2020)

examine morals or fairness with axiomatic characterizations against the backdrop of
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Harsanyi’s impartial observer setting (e.g. Harsanyi (1953) and Harsanyi (1955)), while

our paper has a different setting. Saito (2015) investigates altruism and impure altruism

with axiomatic characterizations. This paper is interested in distinguishing altruism

from impure altruism (and distinguishing selfishness from impure selfishness), which is

not our goal. Rohde (2010) characterizes the class of the Fehr-Schmidt utility functions

in deterministic outcomes, but she does not take risk into account.

This paper is structured as follows. In Section 2, we will propose axioms and char-

acterize several classes of utility functions. In Section 3, we will examine the relation-

ship between our paper and Saito (2013).

2 Representation theorems

We consider a set of n agents {1, 2, . . . , n}, and let agent 1 be the decision maker. We

will define lotteries over Rn which represent random vectors of outcomes of n agents.

Definition 1. P : Rn → R is a lottery if and only if

1. P (x) ≥ 0 for all x ∈ Rn,

2. there exists a finite subset A ⊂ Rn such that P (x) = 0 for all x ∈ Ac, and

3.
∑

x∈supp(P ) P (x) = 1, where supp(P ) = {(x1, . . . , xn) ∈ Rn|P (x1, . . . , xn) >

0}.

Let L denote the set of all lotteries. If (x1, . . . , xn) ∈ Rn is realized, we assume

agent i gets xi for any i = 1, . . . , n. A lottery is a discrete probability distribution over

Rn with a finite support. Let Pi be the marginal distribution of the i-th component of P

for any agent i. We define γP ⊕(1−γ)Q for any P ∈ L, any Q ∈ L, and any γ ∈ [0, 1]

as {γP ⊕ (1− γ)Q}(x) = γP (x) + (1− γ)Q(x) for any x ∈ Rn. For any P ∈ L and

any function f : Rn → R, let E(Pi) be the expected value of Pi for any i ∈ N , and let

EP (f) =
∑

x∈suppP f(x)P (x).

We will define expected quasi-comonotonicity, which is explained as follows. Con-

sider that two lotteries are expectedly quasi-comonotonic. Then, if one lottery gives an

agent more in expectation compared to the decision maker, the other lottery also gives

the agent more in expectation, and vice versa.
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Definition 2. Let P,Q ∈ L. P and Q are expectedly quasi-comonotonic if and only if

there is no i ∈ N such that {E(Pi)− E(P1)}{E(Qi)− E(Q1)} < 0 holds.

This definition is an extension of the definition of quasi-comonotonicity in Saito

(2013). He defines it only on Rn, but we define expected quasi-comonotonicity on

the set of the lotteries, L. For each lottery, let a set of the agents whom the lottery

gives more compared to the decision maker in expectation be called expectedly richer

agents, denoted by Sr
P = {i ∈ N \ {1}|E(Pi) > E(P1)}. Similarly, let a set of

the agents whom the lottery gives equally in expectation be called expectedly equal

agents, denoted by Se
P = {i ∈ N \ {1}|E(Pi) = E(P1)}, and let a set of the agents

whom the lottery gives less in expectation be called expectedly poorer agents, denoted

by Sp
P = {i ∈ N \ {1}|E(Pi) < E(P1)}. By using these notations, the definition of

expected quasi-comonotonicity can be rephrased as follows. P,Q ∈ L are expectedly

quasi-comonotonic if and only if Sr
P ∩ Sp

Q = ∅ and Sp
P ∩ Sr

Q = ∅.

Notice that we can classify the lotteries into the ranges where a set of expectedly

poorer agents is common. For any range, any probability mixture of two lotteries in

the range are in that range, and any two lotteries in the range are expectedly quasi-

comonotonic.

Next, we consider a preference relation ⪰ on L of the decision maker. We present

some axioms of the preference relation which will be used. We sometimes write

(x1, . . . , xn) ∈ Rn as the lottery whose outcome vector is (x1, . . . , xn) with a prob-

ability of 1.

The following axiom requires that ⪰ is a weak order and continuous, and they are

two of the three axioms of the expected utility theory. In addition, the axiom requires

that the better an outcome is, the more preferred the outcome vector which gives all the

agents the outcome is.

Axiom 1 (Rationality). A preference relation ⪰ is a weak order, continuous3, and

monotonic in equal outcome vectors, that is, (x, . . . , x) ≻ (y, . . . , y) if and only if

x > y.
3This continuity is assumed with respect to probability mixture. Namely, if P ≻ Q and Q ≻ R, there

exist some η, θ ∈ (0, 1) such that

ηP ⊕ (1− η)R ≻ Q ≻ θP ⊕ (1− θ)R.
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This axiom is almost identical to the“ Rationality”axiom in Saito (2013). The

difference is as follows. We assume continuity with respect to probability mixture, but

Saito (2013) assumes it with respect to not only probability mixture but also outcome

mixture.

The expected utility theory assumes the independence axiom, but Fudenberg and

Levine (2012) point out that ex ante fairness is not consistent with the independence

axiom. Nevertheless, we preserve the independence in each range where any two lot-

teries are expectedly quasi-comonotonic, as the next axiom requires.

Axiom 2 (Expectedly quasi-comonotonic independence for probability mixture). If

P,Q,R ∈ L satisfy that any pair among P,Q, and R are expectedly quasi-comonotonic

and that P ≻ Q,

γP ⊕ (1− γ)R ≻ γQ⊕ (1− γ)R

for any γ ∈ (0, 1).

Next, we propose the following axiom about reversal of order.

Axiom 3 (Quasi-comonotonic reversal of order). Suppose x, y ∈ Rn are expectedly

quasi-comonotonic. For any P ∈ L and any λ ∈ [0, 1],

λP ⊕ (1− λ){γx+ (1− γ)y} ∼ λP ⊕ (1− λ){γx⊕ (1− γ)y}

holds for any γ ∈ (0, 1).4

Since x, y ∈ Rn are (expectedly) quasi-comonotonic, any pair among x, y, and γx+

(1−γ)y are (expectedly) quasi-comonotonic. Additionally, λP⊕(1−λ){γx+(1−γ)y}

and λP ⊕ (1− λ){γx⊕ (1− γ)y} are also expectedly quasi-comonotonic. Therefore,

when comparing these two lotteries, ex ante fairness and ex post fairness are not issues.

As stated in the introduction, our interest is fairness-related behaviors under risk but not

other behaviors under risk, and these two lotteries have the same vectors of the expected

values. To get a parsimonious model, we propose this axiom, which requires that these

two lotteries are indifferent. In fact, this axiom is mathematically very similar to the

4In fact, our statements we will prove hold even if this axiom is weakened as follows. The indifference
holds only when for any γ ∈ [0, 1], any pair among λP ⊕ (1 − λ)x, λP ⊕ (1 − λ)y, and λP ⊕ (1 −
λ){γx⊕(1−γ)y} are expectedly quasi-comonotonic. We adopt the original axiom because the additional
assumption has little interpretation.
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axiom of“ Indifference to Mixture Timing of Constant Acts”proposed by Ke and

Zhang (2020) in the context of ambiguity-aversion. The difference is that they assume

reversal of order between any act and a constant act, but we assume it between two

(expectedly) quasi-comonotonic outcome vectors.

By these three axioms, we can characterize the following class of utility functions.

Theorem 1. ⪰ on L satisfies Axioms 1, 2, and 3 if and only if there exist (αi,+, αi,−, βi,+, βi,−)i∈N\{1}

such that

1. ⪰ is represented by

u(P ) =
∑

x∈supp(P )

vSP
(x)P (x),

where SP = {i ∈ N \ {1}|E(Pi) ≥ E(P1)} and

vS(x) = x1 −
∑
i∈S

[αi,−max{xi − x1, 0}+ βi,−max{x1 − xi, 0}]

−
∑

i∈N\S

[αi,+ max{xi − x1, 0}+ βi,+max{x1 − xi, 0}]

for any S ⊂ N , and

2. αi,− − αi,+ = βi,+ − βi,− for any i ∈ N \ {1}.

Proof. See Appendix A.1.

This class of utility functions characterizes the preference relation which satisfies

the expected utility theory and reversal of order unless these two requirements are in-

consistent with ex ante fairness or ex post fairness. An interpretation of this is that

the decision maker evaluates a realizing outcome by vSP
, where SP is a set of the

agents who are not the expectedly poorer agents. In other words, the decision maker

changes her von Neumann-Morgenstern utility functions, depending on who the ex-

pectedly poorer agents are. This class of utility functions is similar to the class of the

expected utility of which von Neumann-Morgenstern utility is a Fehr-Schmidt utility

function:

EP (U
FS) =

∑
x∈supp(P )

UFS(x)P (x),
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where UFS , the utility function proposed by Fehr and Schmidt (1999), is

UFS(x) = x1 −
n∑

i=2

(αi max{xi − x1, 0}+ βi max{x1 − xi, 0}),

where αi ≥ 0 and βi ≥ 0 for any i = 1, . . . , n. The difference between these two

classes can be captured by comparison of vS and UFS .

Both vS and UFS have two parts, the self-interest part and the part that changes in

proportion to the differences between her outcome and those of the others. The coeffi-

cients of proportionality depend on each agent. Also, the coefficients of proportionality

for each agent also depend on whether the outcome gives more or fewer to the agent

compared to the decision maker. α with respective subscripts represents the coefficients

when the outcome gives more, and β with respective subscripts represents the coeffi-

cients when the outcome gives fewer. Then, if these coefficients are not negative, α

means a degree of envy, and β means a degree of sympathy by the definitions of vS and

UFS .

The differences between vS and UFS are the following two points. First, the coef-

ficients for each agent in vS depend on whether the agent is expectedly poorer or not,

but not in UFS . The coefficients when agent i is expectedly poorer are αi,+ and βi,+,

and the coefficients when agent i is not expectedly poorer are αi,− and βi,−.

Second, the coefficients of proportionality in UFS cannot be negative but can be

negative in vS . In contrast, the parameter condition of vS is only αi,− − αi,+ =

βi,+−βi,−. By this condition, this class of utility functions does not depend on whether

the coefficients for the expectedly equal agents are (αi,+, βi,+) or (αi,−, βi,−). In other

words, if S ⊂ N includes all the expectedly richer agents and does not include any ex-

pectedly poorer agent, u(P ) =
∑

x∈supp(P ) vS(x)P (x) holds, as Lemma 3 in Appendix

A1 shows.

We propose this class as the broadest one in this paper, and this class has the po-

tential to explain various fairness-related behaviors by adding proper axioms. We will

propose the following three axioms, which express kinds of fairness. The first axiom

requires ex ante fairness.

Axiom 4 (Ex ante fairness). If P,Q ∈ L satisfy P ∼ Q, then for any γ ∈ (0, 1),

γP ⊕ (1− γ)Q ⪰ P ∼ Q.
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The meanings of Axiom 4 are as follows. There are two indifferent lotteries, P

and Q. Under Axioms 1 and 2, if P and Q are expectedly quasi-comonotonic, γP ⊕

(1 − γ)Q ∼ P ∼ Q holds. Then, this axiom is effective only when P and Q are not

expectedly quasi-comonotonic, so assume that. In this case, there exists an agent such

that compared to the agent, one lottery gives more to the decision maker in expectation,

but the other lottery gives fewer to the decision maker in expectation. Axiom 4 requires

that the decision maker (weakly) wants to select the two lotteries stochastically. This

axiom comes from Machina’s example which is the original version of Saito’s example

in the introduction. In addition, this axiom is mathematically the same as“Uncertainty

Aversion”as stated by Gilboa and Schmeidler (1989).

The second axiom expresses inequality-aversion. Let (x, (y)−i) denote a vector of

Rn which gives x only to agent i and gives y to all other agents.

Axiom 5 (Inequality-aversion). For any i ∈ N \ {1}, (0, . . . , 0) ⪰ (1, (0)−i) and

(0, . . . , 0) ⪰ (−1, (0)−i) hold.

This axiom means that the decision maker (weakly) envies the agents whose out-

come levels are more than hers, and the decision maker (weakly) sympathizes with the

agents whose outcome levels are fewer than hers, as is a property of the Fehr-Schmidt

utility functions. This axiom is identical to the axiom of inequality-aversion, which

is also assumed by Saito (2013). Notice that this axiom expresses a part of the con-

cept of ex post fairness in the sense that equality of outcomes is (weakly) preferred.

Additionally, this axiom does not treat a lottery essentially.

See the third axiom, which expresses ex post fairness under risk.

Axiom 6 (Ex post fairness for probability mixture). If P,Q ∈ L satisfy supp(P ) =

{(0, . . . , 0), (1, . . . , 1)}, supp(Q) = {(0, (1)−i), (1, (0)−i)}, and P (0, . . . , 0) = Q(1, (0)−i) =

P (1, . . . , 1) = Q(0, (1)−i) = 1/2 for any i ̸= 1, P ⪰ Q holds.

This axiom is adequate to call ex post fairness in the sense that equality of outcomes

is (weakly) preferred even if an expected value of the decision maker is the same as

those of the other agents. This axiom is an extension of the axiom of ex post fairness

proposed by Fudenberg and Levine (2012). They propose their ex post fairness only

when n = 2, and we extend it to the general number. Both inequality-aversion and

ex post fairness for probability mixture are a part of the concept of ex post fairness,

12



but inequality-aversion does not treat lotteries. To supplement inequality-aversion, we

need this axiom, which treats lotteries.

We can show the following three propositions corresponding to the above three

axioms respectively, based on Theorem 1. By the first proposition, we characterize the

preferences which satisfy ex ante fairness in addition to Axioms 1, 2, and 3 by a class

of utility functions.

Proposition 1. ⪰ on L satisfies Axioms 1, 2, 3, and 4 if and only if there exist

(αi,+, αi,−, βi,+, βi,−)i∈N\{1} such that

1. ⪰ is represented by

u(P ) =
∑

x∈supp(P )

vSP
(x)P (x),

where SP = {i ∈ N \ {1}|E(Pi) ≥ E(P1)} and

vS(x) = x1 −
∑
i∈S

[αi,−max{xi − x1, 0}+ βi,−max{x1 − xi, 0}]

−
∑

i∈N\S

[αi,+ max{xi − x1, 0}+ βi,+max{x1 − xi, 0}]

for any S ⊂ N , and

2. αi,− − αi,+ = βi,+ − βi,− ≥ 0 for any i ∈ N \ {1}.

Proof. See Appendix A.2.

The differences between Theorem 1 and this proposition are the parameter condi-

tions, αi,− − αi,+ ≥ 0 and βi,+ − βi,− ≥ 0. αi,− − αi,+ ≥ 0 requires that if a lottery

gives fewer to agent i than to the decision maker in expectation, she exhibits a forgiving

attitude toward agent i even though the decision maker’s outcome is less than that of

agent i. Similarly, βi,+ − βi,− ≥ 0 requires that if a lottery gives more to agent i than

to the decision maker in expectation, she feels less sympathy even when the decision

maker’s outcome is larger than that of agent i.

By the following second proposition, we characterize the preferences which satisfy

inequality-aversion in addition to Axioms 1, 2, and 3 by a class of utility functions.

Proposition 2. ⪰ on L satisfies Axioms 1, 2, 3, and 5 if and only if there exist

(αi,+, αi,−, βi,+, βi,−)i∈N\{1} such that

13



1. ⪰ is represented by

u(P ) =
∑

x∈supp(P )

vSP
(x)P (x),

where SP = {i ∈ N \ {1}|E(Pi) ≥ E(P1)} and

vS(x) = x1 −
∑
i∈S

[αi,−max{xi − x1, 0}+ βi,− max{x1 − xi, 0}]

−
∑

i∈N\S

[αi,+max{xi − x1, 0}+ βi,+max{x1 − xi, 0}]

for any S ⊂ N , and

2. αi,− ≥ 0, βi,+ ≥ 0, and αi,− − αi,+ = βi,+ − βi,− for any i ∈ N \ {1}.

Proof. (⇒) By the proof of Theorem 1, we only have to prove βi,+ ≥ 0 and αi,− ≥ 0

for any i ∈ N \ {1}. Fix i ̸= 1 arbitrarily. By Axiom 5,

(0, . . . , 0) ⪰ (1, (0)−i) ⇔ u(0, . . . , 0) ≥ u(1, (0)−i)

⇔ 0 ≥ −αi,−

⇔ αi,− ≥ 0

holds. Similarly to the above, we can show βi,+ ≥ 0.

(⇐) We only have to check Axiom 5 by the proof of Theorem 1, and it is easy to make

sure that the utility functions satisfy Axiom 5 in the same way as the above discussion.

The differences between Theorem 1 and this proposition are the parameter condi-

tions, αi,− ≥ 0 and βi,+ ≥ 0. By these parameter conditions, these utility functions

reduce into a Fehr-Schmidt utility function on Rn, and the parameter conditions cor-

respond to the parameter conditions of the Fehr-Schmidt utility functions, αi ≥ 0 and

βi ≥ 0. Consequently, αi,− expresses a degree of envy, and βi,+ expresses a degree of

sympathy in deterministic situations.

By the following third proposition, we characterize the preferences which satisfy

ex post fairness for probability mixture in addition to Axioms 1, 2, and 3 by a class of

utility functions.

Proposition 3. ⪰ on L satisfies Axioms 1, 2, 3, and 6 if and only if there exist

(αi,+, αi,−, βi,+, βi,−)i∈N\{1} such that
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1. ⪰ is represented by

u(P ) =
∑

x∈supp(P )

vSP
(x)P (x),

where SP = {i ∈ N \ {1}|E(Pi) ≥ E(P1)} and

vS(x) = x1 −
∑
i∈S

[αi,−max{xi − x1, 0}+ βi,− max{x1 − xi, 0}]

−
∑

i∈N\S

[αi,+max{xi − x1, 0}+ βi,+max{x1 − xi, 0}]

for any S ⊂ N , and

2. αi,++βi,+ ≥ 0, αi,−+βi,− ≥ 0, and αi,−−αi,+ = βi,+−βi,− for any i ∈ N \{1}.

Proof. (⇒) By the proof of Theorem 1, we only have to prove αi,+ + βi,+ ≥ 0 and

αi,− + βi,− ≥ 0 for any i ∈ N \ {1}. Fix i ̸= 1 arbitrarily. Assume that P,Q ∈ L

satisfy supp(P ) = {(0, . . . , 0), (1, . . . , 1)}, supp(Q) = {(0, (1)−i), (1, (0)−i)}, and

P (0, . . . , 0) = Q(1, (0)−i) = P (1, . . . , 1) = Q(0, (1)−i) = 1/2. Then,

P ⪰ Q ⇔ u(P ) ≥ u(Q)

⇔ P (0, . . . , 0)vN\{1}(0, . . . , 0) + P (1, . . . , 1)vN\{1}(1, . . . , 1)

≥ Q(1, (0)−i)vN\{1}(1, (0)−i) +Q(0, (1)−i)vN\{1}(0, (1)−i)

⇔ 1

2
{vN\{1}(0, . . . , 0)− vN\{1}(1, (0)−i)}

+
1

2
{vN\{1}(1, . . . , 1)− vN\{1}(0, (1)−i)} ≥ 0

⇔ αi,− + βi,− ≥ 0

holds by Axiom 6. Since αi,−−αi,+ = βi,+−βi,−, αi,−+βi,− ≥ 0 and αi,++βi,+ ≥ 0

for all i ∈ N \ {1}.

(⇐) We must only check Axiom 6 by the proof of Theorem 1, and it is easy to make

sure that the utility functions satisfy Axiom 6 in the same way as the above discussion.

The differences between Theorem 1 and this proposition are the parameter con-

ditions, αi,+ + βi,+ ≥ 0 and αi,− + βi,− ≥ 0. To understand the parameter con-

ditions of αi,+ + βi,+ ≥ 0 and αi,− + βi,− ≥ 0, consider the following example.

There are two agents called agent 1 and agent 2, and agent 1 is the decision maker.
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Consider 1
2
(1,−1) ⊕ 1

2
(−1, 1). The vector of the expected values of this lottery is

(0, 0). If we assume Axioms 1, 2, and 3 but not Axiom 6, there can be the preference,
1
2
(1,−1)⊕ 1

2
(−1, 1) ≻ (0, 0). This is because

u

(
1

2
(1,−1)⊕ 1

2
(−1, 1)

)
=

1

2
(1− 2β2,−) +

1

2
(−1− 2α2,−) = −(α2,− + β2,−),

and −(α2,−+β2,−) can be positive if we do not assume Axiom 6. (Notice that u(0, 0) =

0.) The outcomes for agent 1 of the lottery 1
2
(1,−1) ⊕ 1

2
(−1, 1) never equal to those

for agent 2, but the outcome for agent 1 of the lottery (0, 0) always equals to that for

agent 2. Both of the vectors of the expected values of these two lotteries are (0, 0).

Therefore, if agent 1 prefers 1
2
(1,−1) ⊕ 1

2
(−1, 1) to (0, 0), agent 1 prefers tossing a

coin. However, (0, 0) is preferred from the viewpoint of ex post fairness because the

outcome for agent 1 are the same as that for agent 2. To avoid kinds of preferences

which satisfy 1
2
(1,−1)⊕ 1

2
(−1, 1) ≻ (0, 0), Axiom 6 is required.

Notice that both Axiom 5 and Axiom 6 express the tendency of people to dislike

unequal outcomes, but the axiom of inequality-aversion does not deal with the lotteries

essentially. The above issue is raised only when we take the lotteries into account. That

is why we need Axiom 6, which supplements Axiom 5.

By putting these propositions together, we can show the following theorem as our

main theorem. We name the following class of utility functions the PAI model stand-

ing for three axioms, ex post fairness for probability mixture, ex ante fairness, and

inequality-aversion.

Theorem 2. ⪰ on L satisfies Axioms 1, 2, 3, 4, 5, and 6 if and only if there exist

(αi,+, αi,−, βi,+, βi,−)i∈N\{1} such that

1. ⪰ is represented by

u(P ) =
∑

x∈supp(P )

vSP
(x)P (x),

where SP = {i ∈ N \ {1}|E(Pi) ≥ E(P1)} and

vS(x) = x1 −
∑
i∈S

[αi,−max{xi − x1, 0}+ βi,−max{x1 − xi, 0}]

−
∑

i∈N\S

[αi,+ max{xi − x1, 0}+ βi,+max{x1 − xi, 0}]

for any S ⊂ N , and

16



2. αi,− ≥ 0, βi,+ ≥ 0, αi,+ + βi,+ ≥ 0, αi,− + βi,− ≥ 0, and αi,− − αi,+ =

βi,+ − βi,− ≥ 0 for any i ∈ N \ {1}.

Proof. We can show this theorem by the proofs of Theorem 1 and Propositions 1, 2,

and 3.

The PAI model satisfies the properties of the classes in Theorem 1 and Propositions

1, 2, and 3. In particular, the PAI model satisfies inequality-aversion, ex post fairness

for probability mixture, and ex ante fairness, and depending on who the expectedly

poorer agents are, the decision maker’s von Neumann-Morgenstern utility functions

are changed.

The following proposition implies that the PAI model can be rewritten as a mini-

mization by Axioms 1, 2, 3, and 4.

Proposition 4. ⪰ on L satisfies Axioms 1, 2, 3, and 4 if and only if there exist

(αi,+, αi,−, βi,+, βi,−)i∈N\{1} such that

1. ⪰ is represented by

u(P ) = min
S⊂N\{1}

∑
x∈supp(P )

vS(x)P (x),

where

vS(x) = x1 −
∑
i∈S

[αi,−max{xi − x1, 0}+ βi,− max{x1 − xi, 0}]

−
∑

i∈N\S

[αi,+max{xi − x1, 0}+ βi,+max{x1 − xi, 0}]

for any S ⊂ N , and

2. αi,− − αi,+ = βi,+ − βi,− ≥ 0 for any i ∈ N \ {1}.

Proof. By Proposition 1, we only have to show∑
x∈supp(P )

vSP
(x)P (x) ≤

∑
x∈supp(P )

vT (x)P (x) for any T ⊂ N \ {1},

where SP = {i ∈ N \ {1}|E(Pi) ≥ E(P1)}. By the inequality of (A2) in the proof of

Proposition 1, we can show the above inequality. (Let T = SγP⊕(1−γ)Q.)
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For any x ∈ Rn, S = {i ∈ N \ {1} | xi ≥ x1} minimizes vS(x) because

αi,− − αi,+ ≥ 0 and βi,+ − βi,− ≥ 0. Intuitively, this proposition extends this re-

sult to the lotteries. Notice that by construction, the PAI model can also be rewritten as

this description with the proper parameter conditions.

3 The relationship with Saito (2013)

Saito (2013) also examines ex ante fairness and ex post fairness and characterizes the

following class of utility functions, which is called an expected inequality-averse model

(α, β, δ) ∈ Rn−1
+ × Rn−1

+ × [0, 1] (an EIA model in short). For any lottery P ∈ L,

V (P ) = δUFS(E(P1), . . . , E(Pn)) + (1− δ)EP (U
FS),

where UFS is a Fehr-Schmidt utility function:

UFS(x) = x1 −
n∑

i=2

(αimax{xi − x1, 0}+ βi max{x1 − xi, 0}),

where αi ≥ 0 and βi ≥ 0 for all i ∈ N . The term UFS(E(P1), . . . , E(Pn)) satisfies ex

ante fairness, and the term EP (U
FS) satisfies ex post fairness. Then, δ is a degree of

how much the decision maker cares about ex ante fairness relative to ex post fairness.

Obviously, the EIA model is a general case of the class of the Fehr-Schmidt utility

functions. In fact, this model is a special case of the PAI model, as the following

proposition shows.

Proposition 5. For any EIA model, there exists a PAI model such that the utility func-

tion of the EIA model coincides with that of the PAI model.

Proof. See Appendix A.3.

By the proof of this theorem,
αi,− = αi

βi,− = −δαi + (1− δ)βi

αi,+ = −δβi + (1− δ)αi

βi,+ = βi
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for all i ̸= 1. Then, αi,+ is a convex combination of αi and −βi. Similarly, βi,− is a

convex combination of −αi and βi. By this theorem, the EIA model can be also inter-

preted as stated in Section 2. Namely, the decision maker changes her von Neumann-

Morgenstern utility functions, depending on who the expectedly poorer agents are.

We will consider the axiomatic differences between the PAI model and the EIA

model. The axiomatic differences can be exposed by the following axiom.

Axiom 7. For any i ∈ N \ {1}, let Qi ∈ L satisfy supp(Qi) = {(0, (1)−i), (1, (0)−i)}

and 1/2 = Qi(0, (1)−i) = Qi(1, (0)−i). There exists δ ∈ [0, 1] such that for any

i ∈ N \ {1},

Qi ∼ δ(E(Qi
1), . . . , E(Qi

n))⊕ (1− δ)(EQi(e), . . . , EQi(e)),

where e : Rn → R satisfies x ∼ (e(x), . . . , e(x))5.

Under Axioms 1, 2, 3, 4, and 6, we can show that (E(Qi
1), . . . , E(Qi

n)) ⪰ Qi ⪰

(EQi(e), . . . , EQi(e)) always holds for any i ∈ N \{1}. This is because αi,−+βi,− ≥ 0

and βi,+−βi,− ≥ 0. Then, there exists δi ∈ [0, 1] such that Qi ∼ δi(E(Qi
1), . . . , E(Qi

n))⊕

(1 − δi)(EQi(e), . . . , EQi(e)). This axiom states that there is a common parameter δ

among Qi for any i ∈ N \ {1}. Therefore, this axiom does not restrict preferences

when n = 2.

Assuming this axiom in addition to Axioms 1, 2, 3, 4, 5, and 6, we get the same

class of utility functions as Saito (2013). We first characterize the preferences which

satisfy these axioms by a class of utility functions. We call the class of utility functions

the PAI+ model.

Proposition 6. ⪰ on L satisfies Axioms 1, 2, 3, 4, 5, 6, and 7 if and only if there exist

(αi,+, αi,−, βi,+, βi,−)i∈N\{1} such that

1. ⪰ is represented by

u(P ) =
∑

x∈supp(P )

vSP
(x)P (x),

5e(x) is well-defined in both Saito’s utility functions and ours.
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where SP = {i ∈ N \ {1}|E(Pi) ≥ E(P1)} and

vS(x) = x1 −
∑
i∈S

[αi,−max{xi − x1, 0}+ βi,−max{x1 − xi, 0}]

−
∑

i∈N\S

[αi,+ max{xi − x1, 0}+ βi,+max{x1 − xi, 0}] ,

for any S ⊂ N , and

2. αi,++βi,+ ≥ 0, βi,+ ≥ 0, αi,−+βi,− ≥ 0, αi,− ≥ 0, αi,−−αi,+ = βi,+−βi,− ≥ 0,

and (αj,−+βj,+)(αi,−−αi,+) = (αi,−+βi,+)(αj,−−αj,+) for any i, j ∈ N \{1}.

Proof. See Appendix A.4.

The PAI+ model is the same as the EIA model. See the following proposition.

Proposition 7. For any PAI+ model, there exists an EIA model such that the utility

function of the EIA model coincides with that of the PAI+ model.

Proof. Assume {
αi = αi,−

βi = βi,+

for any i ∈ N\{1}. In addition, if we can pick any i ∈ N\{1} such that αi,−+βi,+ ̸= 0,

assume that

δ =
αi,− − αi,+

αi,− + βi,+

.

Notice that δ ∈ [0, 1] because αi,− − αi,+ ≥ 0 and αi,+ + βi,+ ≥ 0. Since (αj,− +

βj,+)(αi,− −αi,+) = (αi,− + βi,+)(αj,− −αj,+) for any i, j ∈ N \ {1}, βj,− = −δαj +

(1− δ)βj and αj,+ = −δβj + (1− δ)αj hold for any j ∈ N . Therefore, we can prove

this proposition by the proof of Proposition 5.

If αi,− + βi,+ = 0 for any i ∈ N \ {1}, αi,− = 0 and βi,+ = 0 because αi,− ≥ 0

and βi,+ ≥ 0. Then, αi,+ = 0 and βi,− = 0 because αi,+ + βi,+ ≥ 0, αi,− + βi,− ≥ 0,

and αi,− − αi,+ = βi,+ − βi,− ≥ 0. In this case, the PAI+ model is the same as the EIA

model when αi = 0 and βi = 0. Notice that the EIA model does not depend on δ in

this case.
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By Propositions 5, 6, and 7, the PAI+ model coincides with the EIA model. When

n = 2, Axiom 7 does not restrict preferences, and the PAI+ model coincides with the

EIA model without Axiom 7. In other words, when n = 2, the PAI model coincides

with the EIA model.

By the proof of Proposition 7, since δ =
αi,−−αi,+

αi,−+βi,+
, δ ∈ [0, 1] does not hold without

Axioms 4 and 6. Therefore, even if we assume Axioms 1, 2, 3, and 7, we cannot

characterize a meaningful class of utility functions differently from Propositions 1, 2,

and 3.

To describe the differences between the PAI model and the EIA model intuitively,

we will revisit the example we introduce in the introduction. There are three people,

Edgar, Allan, and Poe. The outcome (x, y, z) ∈ R3 means that Edgar gets x, Allan gets

y, and Poe gets z. Let us consider Edgar’s preferences. Assume that (1, 2, 1) ∼ (1, 1, 2)

and (1, 0, 1) ∼ (1, 1, 0). In this case, PA = 1
2
(1, 2, 1)⊕ 1

2
(1, 0, 1) is indifferent to P P =

1
2
(1, 1, 2)⊕ 1

2
(1, 1, 0) for Edgar under any EIA model because EPA(UFS) = EPP (UFS)

and UFS(E(PA
1 ), . . . , E(PA

n )) = UFS(E(P P
1 ), . . . , E(P P

n )) hold. However, under the

PAI model, Edgar can prefer P P to PA. Assume β2,− > β3,−. Since α2,− = α3,− by

(1, 2, 1) ∼ (1, 1, 2),

P P ≻ PA

⇔ 1

2
(1− α3,−) +

1

2
(1− β3,−) >

1

2
(1− α2,−) +

1

2
(1− β2,−)

⇔ β2,− > β3,−.

Therefore, P P ≻ PA holds when α2,− = α3,− and β2,− > β3,−. Therefore, the EIA

model cannot explain Edgar’s preferences but the PAI model can.

A Appendix

A.1 The proof of Theorem 1

(⇒) For all S ⊂ N \ {1}, define LS = {P ∈ L|E(Pi) ≥ E(P1) for all i ∈ S} ∩ {P ∈

L|E(Pi) ≤ E(P1) for all i ∈ N \ (S ∪ {1})}. Notice that for any S ⊂ N \ {1},

γP ⊕ (1− γ)Q is in LS for any P ∈ LS , any Q ∈ LS , and any γ ∈ [0, 1]. In addition,

any P ∈ LS and any Q ∈ LS are expectedly quasi-comonotonic for any S ⊂ N \ {1}.

Besides, L = ∪S⊂N\{1}LS .
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By Axioms 1 and 2, the preference relation ⪰ is a weak order, continuous, and

independent in LS for any S ⊂ N \ {1}. Then, for any S ⊂ N \ {1}, there exists a von

Neumann-Morgenstern utility function vS : Rn → R such that uS : LS → R represents

⪰ in LS , where

uS(P ) =
∑

x∈supp(P )

vS(x)P (x).

In addition, we can assume that vS(1, . . . , 1) = 1 and vS(−1, . . . ,−1) = −1 be-

cause positive affine transformation of vS preserves the preference relation. Thus,

uS(1, . . . , 1) = 1 and uS(−1, . . . ,−1) = −1 hold.

We will prove (i) for any S ⊂ N \ {1} and any γ ∈ (0, 1), if x, y ∈ Rn are

expectedly quasi-comonotonic,

vS(γx+ (1− γ)y) = γvS(x) + (1− γ)vS(y) (A1)

holds, and (ii) for any S ⊂ N \{1}, any x ∈ Rn, and any a ∈ [0,∞), vS(ax) = avS(x).

To prove (i), we will show the next lemma.

Lemma 1. For any k ∈ Z>0, any P 1, . . . , P k ∈ L, any λ ∈ (0, 1), and any T ⊂ N\{1},

there exists P ∈ LT such that λP ⊕ (1− λ)P j ∈ LT for any j = 1, . . . , k.

Proof. Select y = (y1, . . . , yn) ∈ Rn so that yi > y1 + maxj=1,...,k
(1−λ)(E(P j

1 )−E(P j
i ))

λ

for any i ∈ T and yi < y1 + minj=1,...,k
(1−λ)(E(P j

1 )−E(P j
i ))

λ
for any i ∈ N \ (T ∪ {1}).

Then, for any j = 1, . . . , k,

yi > y1 +
(1− λ)(E(P j

1 )− E(P j
i ))

λ

⇔ λ(yi − y1) + (1− λ)(E(P j
i )− E(P j

1 )) > 0

⇔ E((λy ⊕ (1− λ)P j)i) > E((λy ⊕ (1− λ)P j)1)

for any i ∈ T . Similarly, E((λy ⊕ (1 − λ)P j)i) < E((λy ⊕ (1 − λ)P j)1) for any

i ∈ N \ (T ∪ {1}). Therefore, λy ⊕ (1− λ)P j ∈ LT holds for any j = 1, . . . , k.

Fix S ⊂ N\{1} and γ ∈ (0, 1) arbitrarily, and fix any x, y ∈ Rn such that x, y ∈ Rn

are expectedly quasi-comonotonic. By Lemma 1, there exist P ∈ LS and λ ∈ (0, 1)

such that λP ⊕ (1−λ){γx+(1− γ)y} ∈ LS and λP ⊕ (1−λ){γx⊕ (1− γ)y} ∈ LS .

By Axiom 3,

uS(λP ⊕ (1− λ){γx+ (1− γ)y}) = uS(λP ⊕ (1− λ){γx⊕ (1− γ)y}).
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Since

uS(λP⊕(1−λ){γx+(1−γ)y}) = λ
∑

x′∈supp(P )

vS(x
′)P (x′)+(1−λ)vS(γx+(1−γ)y)

and

uS(λP ⊕ (1− λ){γx⊕ (1− γ)y})

= λ
∑

x′∈supp(P )

vS(x
′)P (x′) + (1− λ)γvS(x) + (1− λ)(1− γ)vS(y)

hold, vS(γx+ (1− γ)y) = γvS(x) + (1− γ)vS(y). Therefore, we proved (i).

By (A1), uS(0, . . . , 0) = 0 because uS(1, . . . , 1) = 1 and uS(−1, . . . ,−1) = −1

for any S ⊂ N \ {1}. Therefore, (A1) shows that for any x ∈ Rn and any a ∈ [0, 1],

uS(ax+ (1− a)(0, . . . , 0)) = auS(x) + 0 = auS(x)

for any S ⊂ N \ {1} because (0, . . . , 0) is in LT for any T ⊂ N \ {1}. Similarly,

for any x ∈ Rn and any a ∈ (1,∞), x = 1
a
(ax) + (1 − 1

a
)(0, . . . , 0) holds, and then

uS(x) = 1
a
uS(ax) for any S ⊂ N \ {1}. Hence, vS(ax) = avS(x) holds for any

S ⊂ N \ {1}. Therefore, we proved (ii).

Define αi,S = −vS((0)−i, 1) and βi,S = −vS((0)−i,−1) for any i ∈ N and any

S ⊂ N \ {1}. By (i) and (ii), for any x, y ∈ Rn where x and y are expectedly quasi-

comonotonic, vS(x+ y) = vS(x) + vS(y) for any S ⊂ N \ {1}. Since

x = (x1, . . . , x1) +
n∑

i=2

((0)−i, xi − x1)

holds,

vS(x) = vS(x1, . . . , x1) + vS(
n∑

i=2

((0)−i, xi − x1))

= vS(x1, . . . , x1) +
n∑

i=2

vS((0)−i, xi − x1)

for any x = (x1, . . . , xn) ∈ Rn and any S ⊂ N \ {1}. Since (x1, . . . , x1) and∑n
i=2((0)−i, xi − x1) are expectedly quasi-comonotonic, the first equality holds, and

since ((0)−j, xj − x1) and
∑n

i=j+1((0)−i, xi − x1) are expectedly quasi-comonotonic

for any j = 2, . . . , n− 1, the second equality holds. Therefore,

vS(x) = x1 −
n∑

i=2

αi,S max{xi − x1, 0} −
n∑

i=2

βi,S max{x1 − xi, 0}.
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Define u : L → R as

u(P ) = uSP
(P )

for any P ∈ L, where SP = {i ∈ N \ {1} | E(Pi) ≥ E(P1)}. We will show that

P ≻ Q if and only if u(P ) > u(Q). To prove that, we will first show the following

lemma.

Lemma 2. For any P ∈ L, there exists xP ∈ R such that uS(P ) = uS(xP , . . . , xP ) =

xP for any S ⊂ N which satisfies P ∈ LS .

Proof. Let E = {(x, . . . , x) ∈ Rn|x ∈ R}. For any x ∈ R and any S ⊂ N ,

uS(x, . . . , x) = x holds because (ii), uS(1, . . . , 1) = 1, and uS(−1, . . . ,−1) = −1.

Then, uS(E) = R for any S ⊂ N . Thus, for any P ∈ L and any S ⊂ N which

satisfies P ∈ LS , there exists xP ∈ R such that uS(P ) = uS(xP , . . . , xP ) = xP . Since

(xP , . . . , xP ) ∈ LS for any S ⊂ N and P ∼ (xP , . . . , xP ) by the definition of uS , for

any P ∈ L, there exists xP ∈ R such that uS(P ) = uS(xP , . . . , xP ) = xP for any

S ⊂ N which satisfies P ∈ LS . Then, we complete the proof.

Consider P,Q ∈ L. By Lemma 2, there exists xP ∈ R such that uSP
(P ) =

uSP
(xP , . . . , xP ) = xP = uSQ

(xP , . . . , xP ) holds. Since (xP , . . . , xP ) ∈ LSP
∩ LSQ

,

P ∼ (xP , . . . , xP ) ≻ Q if and only if u(P ) = u(xP , . . . , xP ) > u(Q) by the definition

of u. Therefore, we proved that u satisfies P ≻ Q if and only if u(P ) > u(Q).

Before we will show the condition of the parameters, we will show that αi,S depends

only on whether i ∈ S or not and that βi,S also depends only on whether i ∈ S or not.

Fix i ∈ N \ {1} arbitrarily. By Lemma 2, there exists x(1,(0)−i) ∈ R such that for any

S, T ⊂ N \ {1} where (1, (0)−i) ∈ LS ∩ LT ,

uS(1, (0)−i) = 0− αi,S = x(1,(0)−i) = uT (1, (0)−i) = 0− αi,T .

Thus, αi,S = αi,T . Therefore, for any S ⊂ N \ {1} which includes i, αi,S can be

redefined by one number, αi,−.

Similarly, there exists x(−1,(0)−i) ∈ R such that for any S, T ⊂ N \ {1} where

(−1, (0)−i) ∈ LS ∩ LT ,

uS(−1, (0)−i) = 0− βi,S = x(−1,(0)−i) = uT (−1, (0)−i) = 0− βi,T
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by Lemma 2. Thus, βi,S = βi,T . Therefore, for any S ⊂ N \ {1} which does not

include i, βi,S can be redefined by one number, βi,+.

Let P̌ = 1
2
(1, (0)−i)⊕ 1

2
(−2, (0)−i). There exists xP̌ ∈ R such that for any S, T ⊂

N \ {1} where P̌ ∈ LS ∩ LT ,

uS(P̌ ) =
1

2
(−αi,S) +

1

2
(−2βi,S) = xP̌ = uT (P̌ ) =

1

2
(−αi,T ) +

1

2
(−2βi,T )

by Lemma 2. Thus, since βi,S = βi,T , αi,S = αi,T holds. Therefore, for any S ⊂

N \ {1} which does not include i, αi,S can be redefined by one number, αi,+.

Let P̂ = 1
2
(−1, (0)−i)⊕ 1

2
(2, (0)−i). There exists xP̂ ∈ R such that for any S, T ⊂

N \ {1} where P̂ ∈ LS ∩ LT ,

uS(P̂ ) =
1

2
(−βi,S) +

1

2
(−2αi,S) = xP̂ = uT (P̂ ) =

1

2
(−βi,T ) +

1

2
(−2αi,T )

by Lemma 2. Thus, since αi,S = αi,T , βi,S = βi,T . Therefore, for any S ⊂ N \ {1}

which includes i, βi,S can be redefined by one number, βi,−.

Finally, we will show the condition of the parameters. Fix i ∈ N \ {1} arbitrarily.

Consider the lottery P̄ = 1
2
(1, (0)−i) ⊕ 1

2
(−1, (0)−i), which is in LS for any S ⊂

N \ {1}. When we pick S, T ⊂ N where i /∈ S and i ∈ T ,

uS(P̄ ) = −1

2
αi,+ − 1

2
βi,+

and

uT (P̄ ) = −1

2
αi,− − 1

2
βi,−

hold. By Lemma 2, there exists xP̄ such that uS(P̄ ) = xP̄ = uT (P̄ ), and then,

αi,+ + βi,+ = αi,− + βi,−.

Therefore, αi,− − αi,+ + βi,− − βi,+ = 0 holds for all i ∈ N \ {1}.

(⇐)

To prove that u satisfies the axioms, we will first show the following lemma. For

any P ∈ L, let uS(P ) =
∑

x∈supp(P ) vS(x)P (x).

Lemma 3. For any P ∈ L, if S ⊂ N satisfies Sr
P ⊂ S and S ∩Sp

P = ∅, u(P ) = uS(P )

holds. In particular, for any P ∈ L, u(P ) = uS(P ), where S satisfies P ∈ LS .
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Proof. Notice that SP = Sr
P ∪ Se

P . In addition, for any S ⊂ N , if Sr
P ⊂ S and

S ∩ Sp
P = ∅, then S \ Sr

P ⊂ Se
P . First, we will show that

uS(P ) = uS∪{ie}(P )

for any ie ∈ Se
P and any S ⊂ N where Sr

P ⊂ S and S ∩ Sp
P = ∅.

If ie ∈ S, it is obvious, and then, assume ie /∈ S.

uS(P )− uS∪{ie}(P ) =
∑

x∈supp(P )

(vS(x)− vS∪{ie})P (x)

=
∑

x∈supp(P )

[(αie,− − αie,+)max{xie − x1, 0}

+ (βie,− − βie,+)max{x1 − xie , 0}]P (x)

=
∑

x∈supp(P )

[(αie,− − αie,+)(max{xie − x1, 0} −max{x1 − xie , 0})]P (x)

=(αie,− − αie,+)
∑

x∈supp(P )

(xie − x1)P (x) = 0

holds because the last equality comes from ie ∈ Se
P . We can repeat this manipulation,

and then, we complete the proof.

First, we will check Axiom 1. We can easily show that ⪰ is a weak order and

monotonic in equal outcome vectors. We will show continuity. Let P,Q ∈ L satisfy

P ≻ Q. Define f : [0, 1] → R as follows:

f(α) = u(αP ⊕ (1− α)Q).

We only have to show f is continuous. For any S ⊂ N , let AS = {α ∈ [0, 1] |

αP ⊕ (1 − α)Q ∈ LS}. Notice that for any S ⊂ N , AS is a closed interval by the

definition of AS and LS . Additionally,
∪

S⊂N AS = [0, 1]. For any S ⊂ N , f is

continuous at α for any α ∈ AS by Lemma 3 and the definition of uS . Then, f is

continuous.

We will check Axiom 2. Consider P,Q,R ∈ L where any pair among P,Q, and R

are expectedly quasi-comonotonic. By Lemma 3, for any γ ∈ (0, 1),

u(γP ⊕ (1− γ)R) =
∑

x∈supp(γP⊕(1−γ)R)

vSr
γP⊕(1−γ)R

(x){γP ⊕ (1− γ)R}(x)

= γ
∑

x∈supp(P )

vSr
γP⊕(1−γ)R

(x)P (x) + (1− γ)
∑

x∈supp(R)

vSr
γP⊕(1−γ)R

(x)R(x)
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holds. Similarly, for any γ ∈ (0, 1),

u(γQ⊕ (1− γ)R) =
∑

x∈supp(γQ⊕(1−γ)R)

vSr
γQ⊕(1−γ)R

(x){γQ⊕ (1− γ)R}(x)

= γ
∑

x∈supp(Q)

vSr
γQ⊕(1−γ)R

(x)Q(x) + (1− γ)
∑

x∈supp(R)

vSr
γQ⊕(1−γ)R

(x)R(x)

holds.

Remind that P ′, Q′ ∈ L are expectedly quasi-comonotonic if and only if Sr
P ′ ∩

Sp
Q′ = ∅ and Sp

P ′ ∩ Sr
Q′ = ∅. Since P,R and Q,R are expectedly quasi-comonotonic,

Sr
P ⊂ Sr

γP⊕(1−γ)R and Sr
γP⊕(1−γ)R ∩ Sp

P = ∅. Then, uSr
γP⊕(1−γ)R

(P ) = uSr
P
(P )

holds by Lemma 3. Similarly, since Sr
Q ⊂ Sr

γQ⊕(1−γ)R and Sr
γQ⊕(1−γ)R ∩ Sp

Q = ∅,

uSr
γQ⊕(1−γ)R

(Q) = uSr
Q
(Q) holds. Additionally, since Sr

R ⊂ Sr
γP⊕(1−γ)R and Sr

γP⊕(1−γ)R∩

Sp
R = ∅, uSr

γP⊕(1−γ)R
(R) = uSr

R
(R) holds, and since Sr

R ⊂ Sr
γQ⊕(1−γ)R and Sr

γQ⊕(1−γ)R∩

Sp
R = ∅, uSr

γQ⊕(1−γ)R
(R) = uSr

R
(R) holds. Therefore,

u(γP ⊕ (1− γ)R)− u(γQ⊕ (1− γ)R) = γ

 ∑
x∈supp(P )

vSr
P
(x)P (x)−

∑
x∈supp(Q)

vSr
Q
(x)Q(x)


holds. Since

∑
x∈supp(P ) vSr

P
(x)P (x) = u(P ) and

∑
x∈supp(P ) vSr

Q
(x)Q(x) = u(Q) by

Lemma 3,

u(γP ⊕ (1− γ)R)− u(γQ⊕ (1− γ)R) > 0

holds because P ≻ Q. As a result, we proved u satisfies Axiom 2.

Next, we will show u satisfies Axiom 3. Suppose x, y ∈ Rn are expectedly quasi-

comonotonic. Fix P ∈ L and λ ∈ [0, 1] arbitrarily. Let Ṕ = λP ⊕ (1 − λ){γx +

(1 − γ)y} and P̀ = λP ⊕ (1 − λ){γx ⊕ (1 − γ)y}. Then, SṔ = SP̀ holds be-

cause (E(Ṕ1), . . . , E(Ṕn)) = (E(P̀1), . . . , E(P̀n)). By (i), since x and y are expectedly

quasi-comonotonic, vSṔ
(γx+ (1− γ)y) = γvSṔ

(x) + (1− γ)vSṔ
(y). Therefore,

u(Ṕ ) = λ
∑

x′∈supp(P )

vSṔ
(x′)P (x′) + (1− λ)vSṔ

(γx+ (1− γ)y)

= λ
∑

x′∈supp(P )

vSṔ
(x′)P (x′) + (1− λ){γvSṔ

(x) + (1− γ)vSṔ
(y)}

=
∑

x′∈supp(P̀ )

vSP̀
(x′)P̀ (x′) = u(P̀ ).

As a result, u satisfies Axiom 3.
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A.2 Proof of Proposition 1

(⇒) By the proof of Theorem 1, we only have to prove βi,+ − βi,− ≥ 0 (which is

equivalent to αi,− − αi,+ ≥ 0) for any i ∈ N \ {1}. Fix i ∈ N \ {1} arbitrarily.

For any αi,− and any βi,+, there exist a, b ∈ R such that a − αi,− = b − βi,+. Since

u(a+1, (a)−i) = a−αi,− and u(b−1, (b)−i) = b−βi,+, (a+1, (a)−i) ∼ (b−1, (b)−i).

Then,

a− αi,− = b− βi,+ =
1

2
(a− αi,−) +

1

2
(b− βi,+).

Since 1
2
(a+ 1, (a)−i)⊕ 1

2
(b− 1, (b)−i) ∈ LN\{1}, Lemma 3, and Axiom 4 hold,

1

2
(a+ 1, (a)−i)⊕

1

2
(b− 1, (b)−i) ⪰ (a+ 1, (a)−i)

⇔ 1

2
(a− αi,−) +

1

2
(b− βi,−) ≥

1

2
(a− αi,−) +

1

2
(b− βi,+)

⇔ βi,+ − βi,− ≥ 0,

which is what we want to show.

(⇐) We only have to check Axiom 4 by the proof of Theorem 1. Consider P,Q ∈ L

where P ∼ Q. We only have to prove that for any γ ∈ (0, 1),

u(γP ⊕ (1− γ)Q) ≥ γu(P ) + (1− γ)u(Q)

because γu(P ) + (1− γ)u(Q) = u(P ) = u(Q) for any γ ∈ (0, 1). We will prove

u(γP ⊕ (1− γ)Q)− γu(P )− (1− γ)u(Q)

=
∑

x∈supp(γP⊕(1−γ)Q)

[γP (x){vSγP⊕(1−γ)Q
(x)− vSP

(x)}+ (1− γ)Q(x){vSγP⊕(1−γ)Q
(x)− vSQ

(x)}]

= γ
∑

x∈supp(P )

P (x){vSγP⊕(1−γ)Q
(x)− vSP

(x)}

+ (1− γ)
∑

x∈supp(Q)

Q(x){vSγP⊕(1−γ)Q
(x)− vSQ

(x)} ≥ 0

for any γ ∈ (0, 1).
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Since αi,− − αi,+ = βi,+ − βi,− ≥ 0,

vSγP⊕(1−γ)Q
(x)− vSP

(x) =
∑

i∈SP \SγP⊕(1−γ)Q

[(αi,− − αi,+)max{xi − x1, 0}

+ (βi,− − βi,+)max{x1 − xi, 0}]

+
∑

i∈SγP⊕(1−γ)Q\SP

[(αi,+ − αi,−)max{xi − x1, 0}

+ (βi,+ − βi,−)max{x1 − xi, 0}]

=
∑

i∈SP \SγP⊕(1−γ)Q

(αi,− − αi,+)(max{xi − x1, 0} −max{x1 − xi, 0})

−
∑

i∈SγP⊕(1−γ)Q\SP

(αi,− − αi,+)(max{xi − x1, 0} −max{x1 − xi, 0})

=
∑

i∈SP \SγP⊕(1−γ)Q

(αi,− − αi,+)(xi − x1)

−
∑

i∈SγP⊕(1−γ)Q\SP

(αi,− − αi,+)(xi − x1)

for any x ∈ Rn. Then,

∑
x∈supp(P )

P (x){vSγP⊕(1−γ)Q
(x)− vSP

(x)} =
∑

x∈supp(P )

P (x)

 ∑
i∈SP \SγP⊕(1−γ)Q

(αi,− − αi,+)(xi − x1)

−
∑

i∈SγP⊕(1−γ)Q\SP

(αi,− − αi,+)(xi − x1)


=

∑
i∈SP \SγP⊕(1−γ)Q

(αi,− − αi,+)
∑

x∈supp(P )

P (x)(xi − x1)

−
∑

i∈SγP⊕(1−γ)Q\SP

(αi,− − αi,+)
∑

x∈supp(P )

P (x)(xi − x1)

≥ 0 (A2)

holds. The last inequality comes from the definition of SP . Similarly,∑
x∈supp(Q)

Q(x){vSγP⊕(1−γ)Q
(x)− vSQ

(x)} ≥ 0

holds. Therefore,

γ
∑

x∈supp(P )

P (x){vSγP⊕(1−γ)Q
(x)−vSP

(x)}+(1−γ)
∑

x∈supp(Q)

Q(x){vSγP⊕(1−γ)Q
(x)−vSQ

(x)} ≥ 0

for any γ ∈ (0, 1). As a result, we proved u satisfies Axiom 4.
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A.3 Proof of Proposition 5

Assume 
αi,− = αi

βi,− = −δαi + (1− δ)βi

αi,+ = −δβi + (1− δ)αi

βi,+ = βi.

Notice that αi,− ≥ 0, βi,+ ≥ 0, αi,+ + βi,+ ≥ 0, αi,− + βi,− ≥ 0, and αi,− − αi,+ =

βi,+ − βi,− ≥ 0 hold for any i ∈ N \ {1} because αi ≥ 0, βi ≥ 0, and δ ∈ [0, 1].

Consider P ∈ L. Then,

UFS(E(P1), . . . , E(Pn)) =
∑

x∈supp(P )

x1P (x)−
∑
i∈SP

αi

 ∑
x∈supp(P )

xiP (x)−
∑

x∈supp(P )

x1P (x)


−

∑
i∈N\(SP∪{1})

βi

 ∑
x∈supp(P )

x1P (x)−
∑

x∈supp(P )

xiP (x)


=

∑
x∈supp(P )


1 +

∑
i∈SP

αi −
∑

i∈N\(SP∪{1})

βi

x1P (x)−
∑
i∈SP

αixiP (x)

+
∑

i∈N\(SP∪{1})

βixiP (x)


=

∑
x∈supp(P )

P (x)

x1 −
∑
i∈SP

αi(xi − x1)−
∑

i∈N\(SP∪{1})

βi(x1 − xi)


=

∑
x∈supp(P )

P (x)

{
x1 −

∑
i∈SP

αi max{xi − x1, 0}+
∑
i∈SP

αi max{x1 − xi, 0}

−
∑

i∈N\(SP∪{1})

βi max{x1 − xi, 0}+
∑

i∈N\(SP∪{1})

βi max{xi − x1, 0}


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holds because xi − x1 = max{xi − x1, 0} −max{x1 − xi, 0}. In addition,

EP (U
FS) =

∑
x∈supp(P )

UFS(x)P (x)

=
∑

x∈supp(P )

P (x)

{
x1 −

∑
i∈N

αimax{xi − x1, 0} −
∑
i∈N

βi max{x1 − xi, 0}

}

=
∑

x∈supp(P )

P (x)

x1 −
∑
i∈SP

αi max{xi − x1, 0} −
∑

i∈N\(SP∪{1})

αi max{xi − x1, 0}

−
∑
i∈SP

βi max{x1 − xi, 0} −
∑

i∈N\(SP∪{1})

βi max{x1 − xi, 0}


holds. Therefore,

V (P ) =
∑

x∈supp(P )

P (x)

{
x1 −

∑
i∈SP

αi max{xi − x1, 0}

−
∑

i∈N\(SP∪{1})

{−δβi + (1− δ)αi}max{xi − x1, 0}

−
∑
i∈SP

{−δαi + (1− δ)βi}max{x1 − xi, 0} −
∑

i∈N\(SP∪{1})

βi max{x1 − xi, 0}


=

∑
x∈supp(P )

vSP
(x)P (x)

holds, and we proved the theorem.

A.4 Proof of Proposition 6

(⇒) By Theorem 2, we only have to show (αj,− + βj,+)(αi,− − αi,+) = (αi,− +

βi,+)(αj,−−αj,+) for any i, j ∈ N\{1}. Fix i, j ∈ N\{1} arbitrarily. (E(Qi
1), . . . , E(Qi

n)) =

(1
2
, . . . , 1

2
) and (EQi(e), . . . , EQi(e)) =

(
1−αi,−−βi,+

2
, . . . ,

1−αi,−−βi,+

2

)
hold. Then,

since there exists δ ∈ [0, 1] such that Qi ∼ δ(E(Qi
1), . . . , E(Qi

n))⊕(1−δ)(EQi(e), . . . , EQi(e))

by Axiom 7,

u(Qi) = u(δ(E(Qi
1), . . . , E(Qi

n))⊕ (1− δ)(EQi(e), . . . , EQi(e))

⇔ 1− βi,− − αi,−

2
=

δ

2
+

1− δ

2
(1− βi,+ − αi,−)

⇔ δ(βi,+ + αi,−) = αi,− − αi,+

holds. The first equivalence comes from u(0, (1)−i) = 1 − βi,+ and u(1, (0)−i) =

−αi,−. By Axiom 7, δ satisfies δ(βj,+ + αj,−) = αj,− − αj,+.
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If βi,+ + αi,− = 0, αi,− − αi,+ = 0. Then, (αj,− + βj,+)(αi,− − αi,+) = (αi,− +

βi,+)(αj,− − αj,+). Similarly, if βj,+ + αj,− = 0, (αj,− + βj,+)(αi,− − αi,+) = (αi,− +

βi,+)(αj,− − αj,+).

If βi,+ + αi,− > 0 and βj,+ + αj,− > 0, (αj,− + βj,+)(αi,− − αi,+) = (αi,− +

βi,+)(αj,− − αj,+) holds because δ =
αi,−−αi,+

αi,−+βi,+
=

αj,−−αj,+

αj,−+βj,+
.

(⇐) By Theorem 2, we only have to show Axiom 7. Since for any i ∈ N \ {1},

u(Qi) =
1− βi,− − αi,−

2

and

u(δ(E(Qi
1), . . . , E(Qi

n))⊕ (1− δ)(EQi(e), . . . , EQi(e))

= u

(
δ

(
1

2
, . . . ,

1

2

)
⊕ (1− δ)

(
1− αi,− − βi,+

2
, . . . ,

1− αi,− − βi,+

2

))
=

δ

2
+

1− δ

2
(1− βi,+ − αi,−)

for any δ ∈ [0, 1],

u(Qi) = u(δ(E(Qi
1), . . . , E(Qi

n))⊕ (1− δ)(EQi(e), . . . , EQi(e))

holds if and only if

δ(αi,− + βi,+) = αi,− − αi,+. (A3)

Then, we only have to show that there exists δ ∈ [0, 1] such that (A3) holds for any

i ∈ N \ {1}.

Fix i ∈ N \ {1} arbitrarily. First, assume 0 ≥ αi,− + βi,+. Since αi,− + βi,− ≥ 0,

βi,− − βi,+ ≥ αi,− + βi,− ≥ 0.

Since βi,+ − βi,− ≥ 0, βi,+ − βi,− = 0 and αi,− + βi,− = 0. Then, αi,− − αi,+ = 0 and

αi,− + βi,+ = 0 because βi,+ − βi,− = αi,− − αi,+. Therefore, if 0 ≥ αi,− + βi,+, (A3)

holds for any δ ∈ [0, 1].

Assume αi,−+βi,+ > 0. Let δ = αi,−−αi,+

αi,−+βi,+
. Since αi,−−αi,+ ≥ 0 and αi,++βi,+ ≥

0,

0 ≤ αi,− − αi,+

αi,− + βi,+

≤ 1.

By the above discussion, if there exists j ∈ N \{1} such that 0 ≥ αj,−+βj,+, δ(αj,−+

βj,+) = αj,−−αj,+ holds. In addition, if there exists j ∈ N \{1} such that αj,−+βj,+ >

32



0, δ = αj,−−αj,+

αj,−+βj,+
holds because (αj,−+βj,+)(αi,−−αi,+) = (αi,−+βi,+)(αj,−−αj,+).

Therefore, there exists δ ∈ [0, 1] such that (A3) holds for any i ∈ N \ {1}, and we

complete the proof.
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