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Abstract

Firms in traditional markets often compete in output à la Cournot. In this paper, we
consider Cournot platform competition in two-sided markets with single-, multi-, and
mixed-homing allocations and find that the markup and markdown terms are distorted
toward zero for (i) greater levels of platform competition and (ii) greater levels of single-
homing. Furthermore, we develop side specific conduct parameters that depend on the
underlying platform conduct as well as the homing allocation; these effectively extend
the monopoly platform Lerner indices from Armstrong (2006) and Weyl (2010) to the
general case of platform competition. Finally, we show that, in utter contrast to the
welfare results in traditional Cournot markets, greater Cournot platform competition
often decreases welfare across all feasible homing allocations.
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1 Introduction

The study of how firms compete was first introduced in the seminal work by Cournot (1838)

and Bertrand (1883). Since then, both models remain fundamental to the study of com-

petition with several generalizations between the two. One of these generalizations is the

conduct parameter approach which provides a single parameter that characterizes the level of

competition between firms (see Corts (1999), d’Aspremont and Dos Santos Ferreira (2009)

and Weyl and Fabinger (2013)). This allows for the consideration of many competition

structures in a simple framework.1

Given the importance of comparing outcomes across a variety of competition structures

in traditional markets, it is natural to consider such a comparison for platforms in two-sided

markets. While two-sided markets have received considerable attention (Rochet and Tirole

(2003), Caillaud and Jullien (2003), Armstrong (2006), Hagiu (2006) and Weyl (2010)), a

direct comparison across different types of competition structures remains largely absent in

the platform literature. This is because a substantial amount of the literature considers

horizontally differentiated platforms, a model pioneered by Armstrong (2006), where two

differentiated platforms compete in prices and market structure is effectively fixed due to

tractability concerns.

Given the extent to which competition structures vary across platform industries, the

consideration of alternative forms of platform conduct is important. In terms of Cournot

competition amongst platforms, the studies are few. Gabszewicz and Wauthy (2014) use

Cournot competition to consider vertical differentiation between platforms where agents

single-home. White and Weyl (2016) show that the Cournot game can be interpreted as a

special case of an insulated tariff game between platforms. However, both models consider

competition between two platforms and neither investigates how changes to platform market

structure impact equilibrium pricing and welfare. One paper that considers changes to

1For example, the conduct parameter approach can describe symmetric Cournot or Bertrand competition
of either the homogeneous or differentiated type.
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platform market structure is Correia-da Silva et al. (2019). They consider a model of Cournot

competition between more than two platforms and they determine the cases for which a

platform merger harms consumers and sellers. Unfortunately, their model assumes that all

agents single-home on both sides of the market. Instead, we allow for any homing allocation

to better understand how both the number of platforms and agent homing decisions impacts

platform conduct on each side of the market.

To better understand the impact of platform mergers, several studies consider platform

competition between more than two platforms. Indeed, Gautier and Lamesch (2021) high-

light the importance of studying platform mergers by categorizing how Google, Amazon,

Facebook, Amazon and Microsoft have acquired (as horizontal or vertical mergers) more

than 175 companies from 2015-2017. Reisinger et al. (2009), Alexandrov et al. (2011), An-

derson et al. (2012) and Anderson et al. (2019) consider N platforms using a Salop circle

approach; however, these models consider media or search platforms where indirect network

externalities do not exist between the two sides of the market. In contrast, Baranes et al.

(2019) consider how four platforms on the Salop circle compete, or merge, when network

externalities are present on both sides.

In a different vein, Sato (2021) uses an aggregative-games approach to study a merger

of multi-product firms in the presence of direct and indirect network externalities, and finds

that in the contexts of two-sided markets, the relative market size matters in evaluation of

a merger. Tan and Zhou (2021) also study the effects of platform entry (expressed as an

increase in the number of symmetric platforms) on welfare. In a similary manner, platform

asymmetry is allowed in Belleflamme et al. (2020). However, these studies assume all agents

single-home. Lastly, Liu et al. (2019) allow multi-homing on the consumer side in two-sided

markets and study the effects of platform competition on the prices on the consumer side as

well as on the seller side, assuming symmetric platforms and single-homing firms. They show

that results are crucially affected by whether consumers multi-home or not (conditional on
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all firms single-homing).2

One model that considers platform competition across homing allocations is that of

Jeitschko and Tremblay (2020). They consider price competition between homogeneous

platforms in a two-sided market where every agent, on each side of the market, makes en-

dogenous homing decisions. The main focus of Jeitschko and Tremblay’s (2020) study is

endogenous homing decisions and the resulting equilibrium allocations that arise when plat-

forms compete in prices.3 In terms of pricing, they find that the Bertrand Paradox occurs

with platforms setting prices on each side of the market equal to the corresponding marginal

costs. However, they only focus on the extreme case of homogeneous price competition

between platforms and they do not consider Cournot competition or a conduct parameter

approach to platform competition.4

We generalize the model of Jeitschko and Tremblay (2020) to propose a new framework

to study general implications of platform competition and homing decisions. This allow

us to make comparisons across platform conduct for any feasible homing allocation.5 For

the competitive bottleneck allocation (the commonly analyzed allocation where consumers

single-home and sellers multi-home) with Cournot competition, we find that competition

reduces the markup in the consumer price as well as the markdown in the seller price but

2Similar to platform mergers, Lefouili and Pinho (2020) consider platform collusion in a duopoly setting;
however, they only consider allocations where each side fully single-homes or fully multi-homes so that
mixed-homing allocations and comparative statics on homing are not considered.

3For example, they show that the competitive bottleneck allocation where all consumers single-home and
all firms multi-home is always an equilibrium. In addition, they show that mixed-homing allocations where
single-homing and multi-homing consumers as well as single-homing and multi-homing firms can also exist
in equilibrium.

4Another paper that allows for mixed-homing on both sides of the market is Bakos and Halaburda (2020)
who study platform competition à la Hotelling (1929) (see, e.g., Doganoglu and Wright (2006), Bryan and
Gans (2019), and Belleflamme and Peitz (2019) for additional studies on multi-homing). They show that the
effects of cross-subsidization are diminished when multi-homing takes place on both sides of the market. This
is because when multi-homing is allowed, aggressive pricing on one side (i.e., below-marginal-cost pricing,
giving subsidies to agents on this side) to lure more agents on the other side through cross-subsidization has
a limited role. Thus, aggressive pricing on one side does not pay to increase profits on the other side.

5Multi-homing on both sides was not considered in the seminal studies of platform competition such
as Rochet and Tirole (2003) and Armstrong (2006). Typically, it is assumed that all agents on both sides
single-home or that some agents may multi-home only on one side (the competitive bottleneck). This was
justified in the following manner: If all agents on one side multi-home, then any agent on the other side
would not gain by multi-homing.
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the markup to sellers and the markdown to consumers are consistent with the monopoly

platform pricing strategy. In the limit, this implies that greater platform competition results

in consumers being subsidized while sellers face markups. This pricing result coincides with

optimal pricing in competitive bottleneck models where the single-homing side of the market

faces a more competitive price than the multi-homing side (see Belleflamme and Peitz (2019)

for details).

This phenomenon, pricing distortions that depend on homing decisions, generalizes to

any feasible homing allocation. In particular, we find that a greater proportion of single-

homing consumers or sellers increases the extent to which competition distorts markups and

markdowns toward zero. This implies that with mixed-homing on both sides of the market,

greater platform competition results in both platform prices converging to their respective

marginal costs (a result that is consistent with the traditional Cournot model). Comparing

the mixed-homing and competitive bottleneck results we see that the assumption of an entire

side multi-homing generates a discontinuity in the optimal pricing strategy. This suggests

that caution should be taken we considering such an assumption.

To gain a better understanding of how platform competition and agent homing decisions

impact the extent of platform monopolization and cross-subsidization, we generalize our

model of Cournot platform competition to a model that utilizes the conduct parameter

approach to platforms. To the best of our knowledge, we are the first to attempt such

an exercise. We show that both platform conduct and agent homing allocations generate

side specific conduct parameters, and we find that greater single-homing on a particular

side decreases platform monopolization over that side while greater platform market power

increases monopolization over that side. We also show that, similar to the traditional market,

the side specific conduct parameters correlate to elasticity-adjusted Lerner indices and this

highlights the tractability of the conduct parameter approach to platform competition.

Finally, by investigating the welfare effects from changes in the number of competing

platforms we find that the similarities end between traditional and two-sided Cournot mar-
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kets. More specifically, we find that welfare is decreasing in the number of platforms across

a variety of allocations. This result is largely driven by platforms that shrink in size (and

thus their network effect surpluses), regardless of the underlying homing allocations, as the

number of competing platforms increases. Thus, even for those allocations where total par-

ticipation increases, greater platform competition can still be detrimental to welfare under

Cournot competing platforms.

2 A Refresher on Traditional Markets

Consider Cournot competition in a traditional market. Suppose that there are N competing

firms, denoted by X = 1, 2, ..., N , that sell homogeneous goods. Each firm chooses their

output qX for X = 1, 2, ..., N . Inverse demand for the product is given by: p = p(Q), where

p is the price, Q =
∑

qX is the total quantity, p(Q) is the downward sloping inverse demand

function, and ε = ∂Q
∂p

· p
Q

< 0 is the price elasticity of demand. Each firm has profit given

by πX = [p(Q)− c] · qX , where c denotes the marginal cost. Maximizing profit with respect

to firm X’s output yields a first-order condition given by ∂πX

∂qX
= p′(Q) · qX + [p(Q)− c] = 0.

Symmetry implies that qX = q = Q
N

for all X = 1, 2, ..., N , and so we have

1

N
=

p− c

p
· (−ε) or p = c +

1

N
· p

−ε
. (1)

The conduct parameter approach offers a more general model of symmetric imperfect

competition where, instead of explicitly defining interaction between firms, we require that

the Lerner index be equal to the elasticity normalized conduct parameter:

L :=
p− c

p
=

θ

−ε
∈ [0, 1] or p = c + θ · p

−ε
. (2)

Notice that conduct (i) equals zero under perfect competition so that p = c, (ii) equals one

under monopoly or full collusion, and (iii) equals 1
N

when N firms compete in output.
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3 A Two-Sided Market

In a two-sided market, two groups of agents (consumers and sellers)6 benefit from indirect

network externalities that exist across the two groups. For example, gamers benefit from

greater video game availability and game developers benefit from greater console ownership

(a.k.a. potential customers). Let the consumer side be denoted as Side 1 and the seller side

as Side 2, and suppose that there are N (symmetric) competing platforms.

3.1 Consumers and Sellers

First consider the consumer side of the market. Consumers benefit from interaction with

the seller side of the market, and some consumers benefit more from sellers than others.

For example, some consumers benefit more from apps (teens) than others (parents).7 Let

consumer types be denoted by τ1 ∈ [0, τ 1] and be distributed uniformly, and suppose that

consumers with lower τ1 types have greater network benefits than consumers with higher

τ1 types. Specifically, the utility from joining platform X, X = 1, 2, ..., N , exclusively for a

consumer of type τ1 is given by:

uX
1 (τ1) = α1(τ1) · qX2 − pX1 , (3)

where qX2 denotes the number of sellers on platform X, pX1 denotes the consumer price of

platform X, and α1(·) is a decreasing function that denotes the network externality received

by consumers.8

Now consider the seller side of the market. Sellers benefit from greater consumer par-

ticipation on a platform. Like consumers, sellers are heterogeneous in their network gains.

That is, we allow some sellers to be more successful than others (e.g., game developers differ

6Depending on the industry, a seller can be a content provider, game developer, book publisher, etc.
7Similar arguments can be made for consumer heterogeneity in game content for the gaming industry,

in video content for the video streaming industry, etc.
8Furthermore, suppose that α1(·) is twice continuously differentiable.

6



in terms of sales and profitability). Let seller types be denoted by τ2 ∈ [0, τ 2] and let sellers

be distributed uniformly. The utility from joining platform X, X = 1, 2, ..., N , exclusively

for a seller of type τ2 is given by:

uX
2 (τ2) = α2(τ2) · qX1 − pX2 , (4)

where qX1 denotes the number of consumers on platform X, pX2 denotes the seller price of

platform X, and α2(·) is a decreasing function that denotes the network externality received

by sellers.9

Consumers and sellers might have the option to multi-home (join more than one plat-

form). There are several issues that arise when modeling multi-homing. The most important,

and most difficult, is how to deal with duplicated interactions between the same buyer and

the same seller across multiple platforms.10 For example, if a video game is available on the

Xbox, then a multi-homing gamer might not benefit if that game is also available on the

Playstation but the gamer may benefit if the same game is on the Nintendo Switch because

the Switch is portable. Similarly, some advertisers might benefit from the same consumer

seeing their ad on Facebook and Instagram while other advertisers may not. To allow for

multi-homing, we assume that multi-homing agents do not benefit from duplication so that

an agent on Side i that multi-homes on a set of platforms, X ⊂ {1, 2, ..., N}, earns utility

uX
i (τi) = αi(τi) · τXj −

∑
X∈X

pXi ,

where τXj denotes the unique number of agents on Side j that participate across the X
platforms.11 In addition to this multi-homing utility specification, we detail further structure

on agent homing and equilibrium selection in Subsections 3.3 and 3.4.

9Furthermore, suppose that α2(·) is twice continuously differentiable.
10Bakos and Halaburda (2020) arguably do the best job of investigating this issue.
11This is known as “no double counting” in Bakos and Halaburda (2020) and is the most common

assumption in the limited literature on this issue.
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3.2 The Platforms

Each platform X, X = 1, 2, ..., N , obtains profit from both sides of the market so that

platform profits are expressed as:

ΠX = [pX1 − c1] · qX1 + [pX2 − c2] · qX2 , (5)

where ci ≥ 0 is the marginal cost to the platform for an additional Side i agent.

3.3 Platform Strategies and Market Clearing Conditions

Much like in traditional Cournot competition, we assume that each platform commits to

output choices for both sides of the market, taking the output choices of their competitors

as given. More specifically, platform X chooses qX1 and qX2 to maximize profits, taking the qY1

and qY2 for Y �= X as given. To utilize this approach, we require market clearing conditions

that satisfy demands on each of the two sides. Thus we impose the following conditions:

1. Given the quantity selections by all platforms, the Side 1 and Side 2 prices for each

platform are such that the marginal participating agent on each side of the market

earns zero utility from every platform.

2. Given the quantity selections and market clearing prices, each unit of output on each

side of the market is distributed to single-homing and multi-homing agents based on

the following rationing rule: (i) given that the lowest output on Side i is denoted by

qLi = min{q1i , ..., qNi }, an amount of (1− φi)q
L
i is allocated to multi-homing agents for

all the platforms where φi ∈ [0, 1] denotes the extent of single-homing activity, and (ii)

the remaining output is allocated randomly to single-homing agents.

It is helpful to breakdown each of these conditions. For Condition 1, note that the

“marginal participating agent” will always be an agent that single-homes. That is, from

Equations (3) and (4) and since uX
i ≤ ∑

X∈X uX
i for X ⊂ {1, 2, ..., N} and for i = 1, 2, we
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see that for every τ ′i such that uX
i (τ

′
i) ≥ 0 we have that uX

i (τ
′
i) ≥ 0 for some X ∈ X . This

implies the marginal participating agents will be given by setting Equations (3) and (4) equal

to zero.12 More specifically, let τ ∗i be the marginal participating agent on Side i, where τ ∗i is

given by

uX
i (τ

∗
i ) = 0 or pXi = αi(τ

∗
i ) · qXj , (6)

for all X = 1, ..., N . In this case, the τi ∈ [0, τ ∗i ] are interested in participating in the

market and the τ ∗i agent earns zero utility from every platform available. Lastly, Condition

1 requires that the entire market output on Side i, denoted by Qi =
∑N

X=1 q
X
i , be sold to the

τi ∈ [0, τ ∗i ] participating agents. Naturally, homing allocations will play an important role

in establishing the relationship between τ ∗i and Qi (e.g., if all agents on Side i single-home,

then τ ∗i = Qi), and we derive this relationship explicitly in the following subsection.

Given the market clearing prices, Condition 2 implies that outputs are first distributed to

some fraction of multi-homing agents and then distributed randomly to single-homing agents.

An assumption on output allocation, not uniform randomization specifically, is necessary

since some platforms might be more desirable than others. For example, if there are two

platforms (A and B) and Platform A has lots of games relative to Platform B (qA2 > qB2 ),

then market clearing prices will imply that pA1 = α1(τ
∗
1 )q

A
2 > α1(τ

∗
1 )q

B
2 = pB2 ; in this case,

the marginal consumer earns zero utility from either platform but all other participating

consumers, the τ1 ∈ [0, τ ∗1 ), prefer Platform A over Platform B. Thus, Condition 2 offers one

of many possible output distribution mechanisms that ensures that the output clears.13 Our

formulation is motivated by the fact that many desirable platforms face output distributional

problems in practice. For example, the Nintendo Switch, Playstation 5, and Xbox Series

X have had output shortages due to high demand (corresponding to Platform A in the

discussion above).14

12We assume that agents outside option from not joining a platform is valued at zero.
13A Pareto allocation where the low τ1s get Platform A (which maximizes consumer surplus) is another

output distribution specification that clears the market. In addition, such a Pareto allocation of outputs
would eliminate a black market that might be brought on by randomization

14Similarly, iPhone shortages have left some consumers with inferior cell phones in the past.
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Conditions 1 and 2 highlight the many ways in which the “homogeneous” Cournot model

for platform markets is much more complicated than for traditional ones. In particular, the

two-sided nature of platform competition can create differentiation between platforms (e.g.,

platforms that differ in size also differ in attractiveness to agents). As a result, we employ

these market clearing conditions to consider platform competition that captures the spirit

of traditional Cournot competition.

Finally note that we assume that the homing distribution (φ1, φ2) is known to the plat-

forms prior to choosing their output. While this assumption may appear strong, there are

many industries where platforms might know the distribution of agent homing prior to pro-

duction. For example, when gaming platforms like Microsoft, Nintendo, and Sony produce

a new video game console, they likely have an idea of the homing distribution based on the

homing distribution for the previous console generation.15

3.4 Agent Homing

A common feature in the literature on platform competition is to exogenously assume par-

ticular homing allocations between the two sides of the market.16 The most prevalent is the

competitive bottleneck allocation where all consumers are assumed to single-home and all

sellers are assumed to multi-home. To better understand how different homing allocations

impact our main results, we consider the scenario where the amount of single-homing on

each side of the market is defined by a parameter, φi, for i = 1, 2. This allows for extreme

allocations such as the competitive bottleneck allocation as well as more general allocations

of mixed-homing that remain feasible.

Specifically, suppose that there exist critical values τ̂i ∈ [0, τ ∗i ) for Side i = 1, 2 such that

only the agents with type τi ≤ τ̂i are willing to multi-home. As motivation for the direction

of the τi ≤ τ̂i inequality, note that if a multi-homing agent on Side i can choose to join all

15Similarly, smartphone platforms and video streaming platforms likely know the amount of consumer
and content multi-homing.

16See Belleflamme and Peitz (2019), Bakos and Halaburda (2020), Jeitschko and Tremblay (2020) and
Adachi et al. (2021) for exceptions.
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the platforms, then they obtain the utility

UM
i (τi) = αi(τi)τ

∗
j −

N∑
X=1

pXi = αi(τi)τ
∗
j − αi(τ

∗
i )Qj.

Similarly, if the agent single-homes, then the expected utility is given by

US
i (τi) = αi(τi)q

e
j − pei = αi(τi)q

e
j − αi(τ

∗
i )q

e
j ,

where pei is the expected membership fee, and qej ∈ [minX=1,...,N qXj ,maxX=1,...,N qXj ] is the

expected number of Side j agents a single-homing Side i agent interact with, which depends

on the rationing rule draw. Altogether, this implies that there exists a unique value τ̂i such

that Side i agents with τi ≤ τ̂i are willing to multi-home.

To ensure that our homing allocations follow those described by Condition 2, we assume

that the rationing rule that assigns multi-homing agents to platforms is Pareto efficient so

that the agents with the lowest type τi are assigned as the multi-homing agents (this is

the Pareto efficient rationing rule since agents with the lowest type earn the largest net-

work benefits); in this case, the τi ∈ [0, τMi ] multi-home, where τMi = (1 − φi)q
L
i with

qLi = min{q1i , ..., qNi }.17 Naturally, the micro-foundations within our multi-homing rationing

rule are valid so long as τ̂i > (1 − φi)q
L
i occurs in equilibrium. We acknowledge that these

assumptions on the ability to multi-home and the resulting allocation rule have a number of

ad-hoc features that deserve criticism. While this approach is far from ideal, it still general-

izes from the common approach of specifying a particular homing allocation for the entirety

of an analysis (e.g., the competitive bottleneck allocation) and it allows for comparative

statics on homing allocations to a certain extent — as we discuss in the next section (Condi-

tion (9)), not all homing allocations will be feasible in equilibrium under Cournot platform

17Our motivation for using the Pareto efficient rationing rule for multi-homing is to make our welfare
computations more tractable in Section 6. Another possible multi-homing rationing rule is where the (1 −
φi)q

L
i assignments are given randomly to the agents τi ≤ τ̂i that are willing to multi-home.
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competition.18

Altogether, we have that φi ∈ [0, 1] denotes the fraction of output that are sold to

single-homing agents on Side i, as defined by the platform with the lowest output on Side i

(qLi = min{q1i , ..., qNi }), so that a (1− φi)q
L
i amount of output for each platform is allocated

to agents that choose to join all the platforms, and the remaining qXi − (1 − φi)q
L
i portion

is allocated to single-homing agents. This implies that the number of unique agents who

multi-home is given by (1− φ)qLi , and that the number of unique agents on Side i that join

at least one platform is given by

τ ∗i = (1− φi)q
L
i︸ ︷︷ ︸

Multi-homing Agents

+
N∑

X=1

[qXi − (1− φi)q
L
i ],︸ ︷︷ ︸

Single-homing Agents

(7)

Note that if outputs are equal across platforms, then (i) a φi portion of each platform’s output

goes toward single-homers on Side i and the (1−φi) portion goes toward multi-homers on Side

i and (ii) we see that (φ1, φ2) = (1, 0) corresponds to the competitive bottleneck allocation.

4 The Two-Sided Market Cournot Equilibrium

Combined, Equations (6) and (7) effectively capture the aggregate inverse demands for Sides

1 and 2 that the platforms use to maximize profit. Given the extent of single-homing, (φ1, φ2),

the Cournot platform equilibrium prices are given by:

18In many ways, our ad hoc assumptions stem from the issue that we previously discuss in Subsection
3.1: How to deal with duplicated interactions between consumers and sellers that multi-home across plat-
forms? From a micro-founded perspective, the most desirable approach would be to develop a model with
duplication parameters on each side of the market that endogenously determine the (φ1, φ2) parameters
that we exogenously define. With such an approach one would expect that larger (smaller) benefits from
duplication would make multi-homing more (less) attractive. In this case a duplication parameter on Side
i that is close to one would correspond to a φi close to one. Unfortunately, existing studies by Bakos and
Halaburda (2020) and Jeitschko and Tremblay (2020) highlight how such an approach will produce multiple
equilibrium allocations since the homing decisions on one side of the market still impact the desirability of
multi-homing for the other side. For this reason, we move forward under the more exogenous structure of
homing allocations that we outline above.
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Proposition 1. If N platforms compete in output, then equilibrium prices in the symmetric

equilibrium are given by:

pGi = ci +
1

1 + (N − 1)φi

· pGi
−εi

− 1

1 + (N − 1)φj

· αj(τ
G
j )τ

G
j , (8)

where the superscript G denotes the equilibrium across general allocations, (φ1, φ2), and

εi =
∂Qi

∂pi
· pi
Qi

< 0 is the elasticity of demand on Side i.

First notice that each price equals the sum of three terms: (i) marginal cost, (ii) a

markup term, (iii) a markdown term that incorporates the network benefit to the other

side. Second, note that features from traditional Cournot pricing (Section 2) and monopoly

platform pricing are present in Equation (8). Specifically, traditional Cournot competition

results in markup distortions similar to those above; although now we see that homing

allocations impact this distortion in addition to the number of platforms. In addition, the

markdown term that is present in monopoly platform pricing now faces a similar distortion

of its own (one that depends on the number of competing platforms and homing allocations).

Altogether we see that greater platform competition reduces both markup and markdown

terms so that in the limit, and just like with traditional firms competing à la Cournot, the

platform pricing strategy approaches marginal cost pricing so long as at least some agents

single-home on both sides of the market: φ1, φ2 > 0. We present this result more formally as

a corollary:

Corollary 1. If at least some agents single-home on each side of the market (φ1, φ2 > 0),

then platform prices approach marginal costs as the number of platforms increase: N → ∞
implies that pGi → ci.

In many ways, this result highlights how multi-homing effectively gives platforms market

power. In the extreme, if all agents multi-home so that φ1 = φ2 = 0, then each platform

pursues the monopoly platform pricing strategy:19

19It is important to note that such an extreme result is largely driven by our simplifying assumption
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Corollary 2. If all agents multi-home on both sides of the market (φ1 = φ2 = 0), then every

platform offers monopoly platform prices: pGi = ci +
pGi
−εi

− αj(τ
G
j )τ

G
j .

An important caveat to the results above (and all of our results that follow), is that the

equilibrium prices (pG1 , p
G
2 ) and participation on the two sides (τG1 , τ

G
2 ) should satisfy the

condition that all the multi-homing agents have an incentive to do so. That is, whenever

φi < 1, we must have

UM
i ((1− φi)q

G
i ) = αi((1− φi)q

G
i )τ

G
j −NpGi ≥ α[(1− φi)q

G
i ]q

G
j − pGi = uS

i ((1− φi)q
G
i ), (9)

where τMi = (1 − φi)q
G
i represents that last agent type to multi-home. Note that if there

exists a φ′
i ∈ (0, 1) such that Condition (9) holds with equality, then Condition (9) fails for

all φi ∈ [0, φ′
i]. This implies that it is possible that allocations with substantial multi-homing

(with both φ1 and φ2 close to zero) will not exist. To this extent, our micro-foundations

on homing imply that not all mixed-homing allocations — in particular, those with greater

multi-homing on both sides of the market —may be feasible in a symmetric Cournot platform

equilibrium.20

Another important takeaway from Corollaries 1 and 2 is that pricing behavior is discon-

tinuous at the point where an entire side multi-homes. This is particularly important for

models that assume that an entire side multi-homes (as is commonly done in the competitive

bottleneck model). Given that an entire side always includes at least some single-homers in

practice (e.g., even in the smartphone market where nearly all app developers are on both

iOS and Android, some only develop for one of the two platforms), our findings suggest that

that a multi-homing agent will join every platform. At the same time, however, this result highlights how
multi-homing improves platform market power in the most extreme scenario. In addition, a more mild
approach still offers the same result: greater multi-homing (single-homing) results in weaker (stronger)
platform competition. To see this, note that comparative statics on φi reveal that greater single-homing
on Side i will (a) reduce the Side i markup term and (b) reduce the Side j markdown term. Thus, greater
single-homing on Side i reduces platform competition through both the markup and investment channels.

20To see Condition (9) impacting equilibrium existence in practice, note that in Figure 1 and in the Proof
of Proposition (6) we show that there are linear αi(·) such that some allocations do not occur as Cournot
platform equilibrium.
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caution should be taken when modeling such allocations. To see this discontinuity explicitly

for the competitive bottleneck allocation and to observe how differences in homing alloca-

tions impact optimal pricing strategies, consider the case where all consumers single-home

(φ1 = 1) and all sellers multi-home (φ2 = 0):

Corollary 3 (The Competitive Bottleneck). The Cournot platform pricing strategies under

the competitive bottleneck allocation are given by:

pCB
1 = c1 +

1

N
· p

CB
1

−ε1
− α2(τ

CB
2 )τCB

2 , (10)

pCB
2 = c2 +

pCB
2

−ε2
− 1

N
· α1(τ

CB
1 )τCB

1 . (11)

where superscript CB denotes the competitive bottleneck equilibrium.

In this case we see that the asymmetric homing decisions distort prices across the two

sides. On the consumer side where single-homing occurs, greater competition reduces the

markup term but does not impact the markdown term. In contrast, on the seller side where

multi-homing occurs, greater competition reduces the markdown term but does not impact

the markup term. Thus, as competition increases, prices diverge so that the consumer price

includes no markup and the seller price includes no markdown.21 In this case, Cournot

competition results in a straddle pricing equilibrium (where p1 > c1 and p2 < c2) which

Jeitschko and Tremblay (2020) show to be the only pricing strategy where platforms that

compete in price a la Bertrand can earn profit. Thus, even in the limit, N Cournot competing

platforms might earn profit under the competitive bottleneck allocation.

21Such pricing distortions across homing decisions is consistent with the previous literature where plat-
forms compete for single-homers and have market power over the multi-homers (e.g., Rochet and Tirole
(2003), Armstrong (2006) and Hagiu (2006)).
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5 The Conduct Parameter Approach to Platforms

As shown in Section 2, there is an isomorphic relationship between the conduct parameter

approach and Cournot competition in traditional markets. More explicitly, we see that

the traditional market equilibrium prices given by Equations (1) and (2) coincide when

θ = 1
N
. Given that the conduct parameter captures the extent of monopolization, our

results from Section 4 suggest that homing decisions will impact conduct across the two sides

of the market. To investigate the relationship between conduct and homing, we maintain

consistency with the traditional market and suppose that platform level conduct, θ, is given

by θ = 1
N
. Thus, our results from Proposition 1 imply that

Corollary 4 (Conduct Parameter Prices). If θ = 1
N
captures the platform conduct parameter,

then platform pricing strategies are characterized by

pGi = ci + θi · pGi
−εi

− θj · αj(τ
G
j )τ

G
j , (12)

where i, j = 1, 2, j �= i, and θi :=
1

1+( 1
θ
−1)φi

∈ [0, 1] represents the Side i specific conduct

parameter.

By formulating platform pricing strategies using the conduct parameter approach, we

see that side specific conduct parameters emerge: θi = 1

1+( 1
θ
−1)φi

for Side i = 1, 2. In

particular, note that θi ∈ [0, 1] and it depends on both Side i’s homing allocation (φi)

and the underlying platform conduct (θ). Furthermore, a θi → 0 matches the case where

platforms have no market power on Side i, since the markup term goes to zero, and θi → 1

matches the case where platforms have monopoly power on Side i, since the markup term

approaches the monopoly markup. To see how homing and platform conduct impact side

specific conduct, note that ∂θi
∂φi

< 0 implies that greater single-homing on Side i increases

Side i market power and ∂θi
∂θ

> 0 implies that greater platform market power (through fewer

competing platforms) increase Side i market power. Both of these effects align with our
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intuition.22

The side specific conduct parameters that naturally arise in this setting also allow us

to better compare the approach across the two models (traditional and two-sided markets).

That is, by comparing Equations (2) and (12) we see that the conduct approach to platform

competition offers a natural extension to traditional markets by including the across the

market markdown term that is normalized by the corresponding side specific parameter:

p∗ = c+θ · p∗
−ε

for traditional markets corresponds to pGi = ci+θi · pGi
−εi

−θj ·αj(τ
G
j )τ

G
j for two-

sided markets, where θi =
1

1+( 1
θ
−1)φi

∈ [0, 1] represents the Side i specific conduct parameter.

In many ways, this highlights (1) the similarities between traditional and two-sided market

pricing and (2) the consistency of the monopoly platform pricing strategy in generalizing to

other forms of oligopoly platform pricing.

One of the main purposes of the conduct parameter in traditional markets is its connection

to the Lerner index: L ≡ p−c
p

= θ
−ε

as shown in Equation (2). Naturally, we would like to

derive a similar relationship for the two-sided market case. To do so, note that Armstrong

(2006) and Weyl (2010) derive the modified version of the Lerner index for two-sided markets

with a monopoly platform. In the context of our model, they show that a monopoly platform

sets prices so that LAW
i ≡ pi−ci+αj(τj)τj

pi
= 1

−εi
for i, j = 1, 2 and i �= j. This ensures the

traditional Lerner relationship, where L = 1
−ε
, for a monopoly platform. Adapting our

pricing results from Corollary 4, we generalize the Lerner indices proposed by Armstrong

(2006) and Weyl (2010) to include platform competition so that

L2SM
i :=

pi − ci + θj · αj(τj)τj
pi

=
θi
−εi

. (13)

Notice that Equation (13) bears resemblance to both the traditional Lerner index formula

with conduct
(
L ≡ p−c

p
= θ

−ε

)
and the two-sided market Lerner index formula for a monopoly

22As a followup on Corollary 3 (the competitive bottleneck allocation), note that φ1 = 1 and φ2 = 0 imply

that θ1 = θ and θ2 = 0. In this case, competitive bottleneck prices reduce to pCB
1 = c1+θ · pCB

1

−ε1
−α2(τ

CB
2 )τCB

2

and pCB
2 = c2 +

pCB
2

−ε2
− θ · α1(τ

CB
1 )τCB

1 which clearly mirror Equations (10) and (11).

17



platform derived by Armstrong (2006) and Weyl (2010)
(
LAW
i ≡ pi−ci+αj(τj)τj

pi
= 1

−εi

)
. Com-

paring to the traditional market formula, we see that the two-sided market Lerner definition

results in the same elasticity formula as the elasticity formula for the traditional market: θi
−εi

mirrors θ
−ε
. At the same time, the two-sided market Lerner definition includes the across

network markdown term as in Armstrong (2006) and Weyl (2010), but with the inclusion

of the side specific conduct parameter that impacts the network markdown term. Thus, we

generalize the existing Lerner indices to consider two-sided markets with platform competi-

tion. Furthermore, by allowing for platform competition, we see that the two-sided market

Lerner index formula depends on the side specific conduct parameters (which depend on the

underlying platform conduct and the homing allocation). This implies that both platform

competition and homing allocations are important considerations when formulating Lerner

indices in platform industries.

6 Merger and Welfare Implications

The approach that we have selected enables us to consider comparative statics relating to

platform mergers. In particular, we are interested in how changes in the number of platforms,

N , impacts equilibrium pricing and welfare. It has been well established that a welfare

tradeoff occurs with greater platform competition: more platforms result in (1) lowers prices

which improves welfare and (2) reduces an individual platform’s size which decreases the

accumulation of network effects and harms welfare. To definitively sign comparative statics

and to make welfare comparisons, we require closed form solutions. Thus we make simplify

assumptions on functional forms so that network externalities are linear in agent type (so

that α
′′
i (·) = 0) and we also assume marginal costs are zero (c1 = c2 = 0). These simplifying

assumptions are not uncommon in the literature (as in for example, the base models of Katz

and Shapiro (1985), Cabral (2011), Jullien (2011), Adachi and Tremblay (2020), Bakos and

Halaburda (2020), and Halaburda et al. (2020)).
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Based on our results so far, it is natural to think that agent homing allocations will

impact the welfare tradeoff. As result, we start by considering the simple case of platform

competition under the competitive bottleneck allocation and then we turn to the case of

general homing allocations.

6.1 The Competitive Bottleneck Allocation

For the competitive bottleneck allocation, we have the following result:

Proposition 2. In the competitive bottleneck equilibrium, equilibrium consumer participation

increases and seller participation decreases as the number of platforms increases:
∂τCB

1

∂N
> 0

and
∂τCB

2

∂N
< 0. In addition, the price to consumers decreases while the price to sellers is

ambiguous with an increase in platforms:
∂pCB

1

∂N
< 0 and

∂pCB
2

∂N
> 0.

Our pricing results from Corollary 3 show that platforms have an incentive to price more

competitively to consumers while extracting rents from sellers under the competitive bottle-

neck allocation. We see that this pricing incentive carries through to increases in platform

competition: greater platform competition decreases the consumer price and increases the

seller price. Furthermore, we see that participation levels coincide with the pricing effects

so that more consumers and fewer sellers participate when platform competition increases.

Given that the changes in participation are negatively correlated across the two sides, we

must investigate welfare explicitly to determine how greater platform competition impacts

total welfare in two-sided markets under the competitive bottleneck allocation. In the com-

petitive bottleneck, note that every participating consumer interacts with every participating

seller and vice versa. Thus, total welfare is given by:

WCB =

∫ τCB
1

0

α1(τ1)τ
CB
2 dτ1 +

∫ τCB
2

0

α2(τ2)τ
CB
1 dτ2. (14)

Differentiating total welfare with respect to the number of platforms generates the following

result:
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Proposition 3. Under the competitive bottleneck allocation, welfare is decreasing in the

number of platforms: ∂WCB

∂N
< 0 for all N ≥ 2.

There is an important caveat to the result in Proposition 3 that is worth mentioning.23

Note that we focus on interior solutions to the platform competition game when considering

welfare effects in this section. We have implicitly made this assumption in all our main

results and this restriction is made for two important reasons.

First, focusing on interior solutions eases exposition by eliminating discrete changes in the

type of equilibrium (interior or corner) upon differentiation. However, this does restrict the

network effect magnitudes required to ensure that the interior solution occurs. In particular,

the magnitudes of the network effects cannot be too different between the two sides, and we

derive these restrictions explicitly in our proofs.24 Second, it makes sense to focus on welfare

when the extensive margins of participation exist on both sides of the market. That is, if

N changes, then we want to determine the resulting welfare effects when participation on

both sides the market are allowed to increase or decrease. Such a setting implies a focus on

interior solutions.

Turning to the result in Proposition 3, many have speculated welfare comparisons across

competition structures for the competitive bottleneck allocation. To the best of our knowl-

edge, this is the first formal result for how welfare changes with the number of platforms in

the competitive bottleneck equilibrium. And, in terms of potential mergers, our results sug-

gest that platform mergers will improve welfare in platform industries where the competitive

bottleneck allocation occurs.

While platform mergers under the competitive bottleneck allocation are uncommon in

practice, we have observed several industries where the number of platforms has changed

due to entry and exit.25 For example, Google entered the smartphone market (and Microsoft

23This caveat also applies to the welfare results derived in Propositions 5 and 6.
24If, for example, α1(·) is large and α2(·) is very small, then a corner solution occurs where all sellers

participate. In this case, no extensive margin exists on the seller side when differentiating with respect to
N , unless such a differentiation moves to an interior solution equilibrium.

25One potential example of a merge to monopoly is Facebook’s acquisition of Instagram in 2012 since
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followed suit) that was originally developed by Apple; however, Microsoft began to exit the

market in 2016.26 Our findings from Proposition 3 suggest that these entries would actually

harm welfare given that these industries adhere to the competitive bottleneck allocation.

The smartphone market is the most likely to fit the competitive bottleneck bill as most

consumers own a single smartphone while app providers make their apps available across

platforms. This suggests that Microsoft’s exit from the smartphone market has improved

welfare in the smartphone industry.

6.2 General Homing Allocations

The competitive bottleneck allocation offers an excellent starting point for our welfare anal-

ysis as it offers unambiguous comparative statics. However, it is important to consider other

feasible homing allocations and determine how robust those results, and their corresponding

policy recommendations, actually are. By considering general homing allocations, we also

determine the extent for which single- and multi-homing distributions impact our findings;

something that is often overlooked in the literature.

Recall that in the general homing setup, φi captures the extent of single-homing on

Side i so that φi closer to one (zero) corresponds to the case where the majority of Side i

agents single-homing (multi-home). This implies that the competitive bottleneck allocation

corresponds to the special case where φ1 = 1 and φ2 = 0. In terms of prices and participation,

we expect that the comparative statics might hinge on agent homing decisions. We find that

this is indeed the case:

Proposition 4. For general homing allocations characterized by φ1, φ2 ∈ [0, 1], equilibrium

consumer (seller) participation increases in the number of platforms if and only if 2φ1 > φ2

(2φ2 > φ1):
∂τG1
∂N

> 0 if and only if 2φ1 > φ2 and
∂τG2
∂N

> 0 if and only if 2φ2 > φ1. In addition,

individual output is decreasing in the number of platforms across all allocations with at least

Snapchat was in its infancy at the time. However, Instagram was not selling ads at the time and so it is
difficult to argue that this was indeed a two-sided platform.

26See Microsoft’s Exit From Smartphone Business Moves Into High Gear; Bloomberg 2016.
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some single-homing:
∂qGi
∂N

< 0 for i = 1, 2 so long as φ1 > 0 or φ2 > 0.

First investigating total participation, if the extent of single-homing on Side i is at least

half the extent of single-homing on Side j (φi > 0.5φj), then greater platform competi-

tion results in greater equilibrium participation on Side i. However, if there is too little

single-homing (relative to the other side), then participation decreases with greater platform

competition. These results echo our results from the competitive bottleneck allocation where

greater platform competition increases participation on the single-homing side but decreases

participation on the multi-homing side.

One important conclusion from our findings in Proposition 4 is that there is a large mass

of homing allocations where participation on both sides increases, a result that is not possible

when focusing on the competitive bottleneck allocation. This occurs when the φ1, φ2 ∈ [0, 1]

are such that 2φ1 > φ2 > 0.5φ1. However, even though the total number of participating

agents can increase on both sides of the market, we see that individual platforms get smaller

as the number of platforms increases, and this may reducs the amount of network surplus

generated in the market which has important implications for welfare.

Total welfare in the general homing case is given as

WG =
2∑

i=1

[∫ (1−φi)q
G
i

0

αi(τi)τ
G
j dτi +

∫ τGi

(1−φi)qGi

αi(τi)q
G
j dτi

]
. (15)

The first integral is all surplus captured by multi-homers and the second term captures the

surplus from all single-homers.

As an extension of the competitive bottleneck welfare result in Proposition 3, we first

consider the case where multi-homing inverses across the two sides so that φ1 = φ ∈ [0, 1]

and φ2 = 1 − φ. In this case, the competitive bottleneck is given by φ = 1 so that φ1 = 1

(all consumers single-home) and φ2 = 0 (all sellers multi-home). There are many reasons

why the inverse homing allocation is worth investigating. First, greater multi-homing on

one side generates an incentive to single-home on the other side (and vice a versa). Second,

22



many industries appear to have this inverse relationship (e.g., both the consumer and game

developer sides of the video game industry experience single- and multi-homers, but the

game developer side has considerably more multi-homing than on the consumer side). As

we show in the following proposition, our results from Proposition 3 generalize to the case

of the inverse allocation:

Proposition 5. If homing inverses across sides so that φ1 = 1−φ2, then welfare is decreasing

in the number of platforms: ∂WG

∂N
< 0 for all N ≥ 2.

To the extent that a platform industry has multi-homers concentrated on one side of the

market (making single-homers concentrated on the other side of the market), this result

implies that platform mergers would increase welfare.

Moving to the case of entirely general homing allocations, it appears that fewer platforms

is welfare improving even if φ1 and φ2 are not restricted to the case of inverse homing

decisions. To see this explicitly, note that Figure 1 depicts the regions of (φ1, φ2) ∈ [0, 1] ×
[0, 1] for when a reduction in the number of platforms improves social welfare — importantly,

note that the black regions in Figure 1 are where at least one of these four inequalities

associated with Condition (9) fails (there are two sides for each N).27 Without the black

regions in Figure 1 from Condition (9) there are allocations close to the origin where n

platforms generate more surplus than n − 1 platforms for all four subgraphs. Hence, the

feasibility conditions are an important feature in determining welfare results. We present

this more formally with the following result:28

Proposition 6. If the αi(·) are linear and symmetric so that α1(τ) = α2(τ), then
∂WG

∂N
< 0

for all N ≥ 2 under the (φ1, φ2) that are feasible in the Cournot platform equilibrium.29

27Note that the 45 degree line from (0,1) to (1,0) remains outside the black area in Figure 1 so that inverse
homing allocations are feasible.

28Figure 1 considers the symmetric case where αi(τi) = 1− τi. It is important to note that, as we show
explicitly in Proposition 6, the qualitative results behind the welfare ranks remain for symmetric network
benefit functions that are linear.

29We find similar findings by focusing exclusively on the surplus generated by non-platform agents (con-
sumers and firms).
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Figure 1: Region for Social Welfare to be Higher

(a) N = 2, 3 (b) N = 3, 4

(c) N = 4, 5 (d) N = 5, 6
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While our results on welfare suggest that platform competition is harmful (so that plat-

form mergers should be allowed), there are several caveats to our analysis that should be

considered when evaluating platform mergers. First, we assume symmetric network benefits

for analytical purposes; with significant asymmetries, the welfare effects become ambigu-

ous.30 Second, platforms are often differentiated in practice; naturally this increases surplus

and makes a platform merger more detrimental than in our setting of homogeneous plat-

forms. Finally, we abstract away from any standalone value that is generated by the platform

(e.g., a smartphone generates considerable value outside of apps). How these standalone val-

ues change across homing decisions complicates the analysis considerably (see Jeitschko and

Tremblay (2020) for details), but they may also impact the welfare effects from different

levels of competition.

7 Conclusion

The study of platform competition often presents researchers with difficulties that do not

arise in the study of competition amongst traditional firms. As a result, there is limited

variety in the models that consider platform competition (especially for the case of more

than two platforms). In particular, and, to the best of our knowledge, we are the first to

integrate the conduct parameter approach with Cournot platform competition.

By allowing for general homing allocations on both sides of the market, we find that

greater single-homing increases the extent to which competition distorts markups and mark-

downs toward zero. This implies that with mixed-homing on both sides of the market,

greater platform competition results in both platform prices converging to their respective

marginal cost (a result that is consistent with a traditional Cournot market).

In terms of results specific to conduct, we show that both platform conduct and agent

homing allocations generate side specific conduct parameters, and we find that greater single-

homing on a particular side decreases platform monopolization over that side while greater

30However, note that symmetric network benefits was not assumed in Proposition 5.
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platform market power increases monopolization over that side. We also show that, sim-

ilar to the traditional market, the side specific conduct parameters can be derived from

elasticity-adjusted Lerner indices and this highlights the tractability of the conduct param-

eter approach to platform competition.

Lastly, we verify that platform competition decreases welfare. This is a result that

holds for any inverse allocation, including the competitive bottleneck, and for more general

homing allocations that are feasible in our model. These results stress that, unlike tradi-

tional Cournot markets, mergers between symmetric homogenous platforms competing à la

Cournot should be allowed (even under a variety of homing allocations).
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Appendix of Proofs

Proof of Proposition 1: Equation (6) provides consumer and seller inverse demands for

each platform for the general homing case. Substituting into the platform X’s profit function

yields:

ΠX = [α1(τ
∗
1 ) · qX2 − c1] · qX1 + [α2(τ

∗
2 ) · qX1 − c2] · qX2 .

Using the output functions for τ ∗i given by Equation (7) we see that there are two possible

first-order conditions for each output variable qXi (one for qXi ≥ qLi := minN
Y �=X{qYi } and

another for qXi < qLi ). These first-order conditions are

0 =
∂ΠX

∂qXi
= α′

i(τi) · qXj · qXi + [αi(τi) · qXj − ci] + αj(τj) · qXj ,

for qXi ≥ qLi , and

0 =
∂ΠX

∂qXi
= φi · α′

i(τi) · qXj · qXi + [αi(τi) · qXj − ci] + αj(τj) · qXj ,

for qXi < qLi . Focusing on the symmetric equilibrium, we have that qXi = qi for all X =

1, ..., N and so the first-order condition with qXi ≥ qLi provides the equilibrium. Furthermore,

symmetry and Equation (7) imply that the unique number of Side i agents is given by τGi =

[1 + (N − 1)φi]qi so that qi =
τGi

[1+(N−1)φi]
. Substituting qXi and qXj for qXi = qi =

τGi
[1+(N−1)φi]

and qXj = qj =
τGj

[1+(N−1)φj ]
into the first-order condition above implicitly defines the solutions

for (τB1 , τG2 ).

Also note that the total output on Side i can be written as Qi = N · qi = N ·τGi
[1+(N−1)φi]

. As

a result, we can write the classic markup term given by −pi
εi
, where the elasticity of demand

on Side i is given by εi =
∂Qi

∂pi
· pi
Qi

< 0, as the following:

pi
εi

=
∂pi
∂Qi

·Qi =

[
α′
i(τ

G
i ) · qj ·

[1 + (N − 1)φi]

N

]
· N · τGi
[1 + (N − 1)φi]

= α′
i(τ

G
i ) · qjτGi

= α′
i(τ

G
i ) · qj · [1 + (N − 1)φi]qi
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Substituting into the first-order condition reduces to

0 =
1

1 + (N − 1)φi

· pi
εi

+ [pGi − ci] + αj(τ
G
j ) ·

τGj
1 + (N − 1)φj

. (16)

Rearranging terms implies that

pGi = ci +
1

1 + (N − 1)φi

· pi
−εi

− 1

1 + (N − 1)φj

· αj(τ
G
j )τ

G
j .

�

Proof of Proposition 2: We know from the proof of Proposition 1 that
pCB
i

−εi
= −α′

i(τ
CB
i ) ·

qCB
j τCB

i , pCB
i = αi(τ

CB
i ) · qCB

j , and qi =
τi

1+(N−1)φi
. Thus, Equation (8) with φ1 = 1, φ2 = 0,

and ci = 0 becomes

α1(τ
CB
1 )τCB

2 = 0− 1

N
· α′

1(τ
CB
1 )τCB

1 τCB
2 − α2(τ

CB
2 )τCB

2 ,

α2(τ
CB
2 )

τCB
1

N
= 0− α′

2(τ
CB
2 )τCB

2

τCB
1

N
− 1

N
· α1(τ

CB
1 )τCB

1 .

With cancelations and by rearranging terms we have that

0 =
1

N
· α′

1(τ
CB
1 )τCB

1 + α1(τ
CB
1 ) + α2(τ

CB
2 ),

0 = α′
2(τ

CB
2 )τCB

2 + α2(τ
CB
2 ) + α1(τ

CB
1 ).

Totally differentiating each equation when the α
′′
i (·) = 0 implies that

0 =

(
1 +

1

N

)
α′
1(Q

CB
1 )∂QCB

1 + α′
2(Q

CB
2 )∂QCB

2 − α′
1(Q

CB
1 ) · Q

CB
1

N2
∂N,

0 = 2α′
2(Q

CB
2 )∂QCB

2 + α′
1(Q

CB
1 )∂QCB

1 .

After some algebra, we have that
∂τCB

1

∂N
=

2τCB
1

N(N+2)
> 0 and

∂τCB
2

∂N
= − α′

1(τ
CB
1 )

α′
2(τ

CB
2 )

τCB
1

N(N+2)
< 0.
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In terms of prices, we know that pCB
1 = α1(τ

CB
1 ) · τCB

2 and pCB
2 = α2(τ

CB
2 ) · τCB

1

N
. Differ-

entiating with respect to N implies that

∂pCB
1

∂N
= α′

1(τ
CB
1 )τCB

2

∂τCB
1

∂N
+ α1(τ

CB
1 )

∂τCB
2

∂N
,

∂pCB
2

∂N
= α′

2(τ
CB
2 )

τCB
1

N

∂τCB
2

∂N
+ α2(τ

CB
2 )

1

N

∂τCB
1

∂N
− α2(τ

CB
2 )

τCB
1

N2
.

The first equation is less than zero since α′
1(·), ∂τ

CB
2

∂N
< 0 and

∂τCB
1

∂N
> 0. The second equation

is ambiguous at first glance. Here, however, the consideration for interior solutions might

play a role. To see this, note that with differentiable αi(·), the assumption that α
′′
i (·) = 0

implies that the αi(·) are linear. Thus, we impose a linear structure so that αi(τi) = ai− biτi

for i = 1, 2. This linearization implies that the first-order conditions for consumers and

sellers that reduce to:

0 = a1 −
(
1 +

1

N

)
b1 · τCB

1 + a2 − b2 · τCB
2 ,

0 = a2 − 2b2 · τCB
2 + a1 − b1 · τCB

1 .

As a result, we have that

τCB
1 =

(a1 + a2)N

b1(N + 2)
and τCB

2 =
a1 + a2

b2(N + 2)
.

This implies that pCB
2 = α2(τ

CB
2 )

τCB
1

N
becomes

pCB
2 =

[(N + 1)a2 − a1] · (a1 + a2)

b1b2(N + 2)2
.

Differentiating implies that
∂pCB

2

∂N
> 0 if and only if 2a1 > Na2. In the end, an interior

solution requires that τCB
i < τ i := ai

bi
. Given the τCB

1 and τCB
2 above, we require that

2a1 > Na2 and (N + 1)a1 > a2 (which is satisfied to by the former). Thus,
∂pCB

2

∂N
> 0. �
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Proof of Proposition 3: As noted at the start of Section 6, we assume that the α
′′
i (·) = 0

and that the ci = 0 for i = 1, 2. Given that the αi(·) are differentiable, α
′′
i (·) = 0 implies

that the αi(·) are linear. Thus, as discussed in the Proof of Proposition 2, we impose a linear

structure so that αi(τi) = ai− biτi for i = 1, 2. From the Proof of Proposition 2 we have that

τCB
1 =

(a1 + a2)N

b1(N + 2)
& τCB

2 =
a1 + a2

b2(N + 2)
.

An interior solution occurs whenever τCB
i ≤ ai

bi
(so that αi(·) ≥ 0 for all τi). This restriction

implies that we require N
2
·a2 ≤ a1 ≤ (N+1)a2 so that the network effect magnitudes cannot

differ too drastically. Differentiating implies that

∂τCB
1

∂N
=

2(a1 + a2)

b1(N + 2)2
&

∂τCB
2

∂N
= − a1 + a2

b2(N + 2)2
.

Applying Leibniz integral rule to Equation (14) implies that

∂WCB

∂N
= α1(τ

CB
1 )τCB

2 ·∂τ
CB
1

∂N
+

∫ τCB
1

0

α1(τ1)
∂τCB

2

∂N
dτ1+α2(τ

CB
2 )τCB

1 ·∂τ
CB
2

∂N
+

∫ τCB
2

0

α2(τ2)
∂τCB

1

∂N
dτ2.

Substituting for the τCB
i ,

∂τCB
i

∂N
, and αi(·), and after some algebra, we have that

∂WCB

∂N
=

(a1 + a2)
3

2b1b2(N + 2)4
· (−N2 − 2N + 6).

Thus, ∂WCB

∂N
> 0 if and only if −N2 − 2N + 6 > 0 which never holds for N ≥ 2. �

Proof of Proposition 4: We know from the proof of Proposition 1 that
pGi
−εi

= −α′
i(τ

G
i ) ·

qGj τ
G
i , p

G
i = αi(τ

G
i ) · qGj , and qGi =

τGi
1+(N−1)φi

. Thus, Equation (8) with ci = 0 becomes

αi(τ
G
i )·

τGj
1 + (N − 1)φj

= 0− 1

1 + (N − 1)φi

·α′
i(τ

G
i )·

τGj
1 + (N − 1)φj

τGi −
1

1 + (N − 1)φj

·αj(τ
G
j )τ

G
j ,
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which reduces to

0 = αi(τ
G
i ) + α′

i(τ
G
i )

τGi
1 + (N − 1)φi

+ αj(τ
G
j ),

for i, j = 1, 2 and i �= j.

To determine an explicit expression for the
∂τGi
∂N

, note that differentiable αi(·) and the

assumption that α
′′
i (·) = 0 implies that the αi(·) are linear so that αi(τi) = ai − biτi for

i = 1, 2. This linearization implies that:

0 = ai − biτ
G
i − biτ

G
i

1 + (N − 1)φi

+ a2 − b2τ
G
2 ,

for i, j = 1, 2 and i �= j. Solving the system of equations for τG1 and τG2 we have that

τGi =
(a1 + a2)[1 + (N − 1)φi]

bi[3 + (N − 1)φ1 + (N − 1)φ2]
,

which implies that

qGi =
τGi

1 + (N − 1)φi

=
(a1 + a2)

bi[3 + (N − 1)φ1 + (N − 1)φ2]
,

for i = 1, 2. An interior solution occurs whenever τCB
i ≤ ai

bi
(so that αi(·) ≥ 0 for all τi). This

restriction implies that we require 1+(N−1)φ1

2+(N−1)φ2
· a2 ≤ a1 ≤ 2+(N−1)φ1

1+(N−1)φ2
· a2 so that the network

effect magnitudes cannot differ too drastically. Differentiating implies that

∂τGi
∂N

=
(a1 + a2)

bi[3 + (N − 1)φ1 + (N − 1)φ2]2
·[φi[3+(N−1)φ1+(N−1)φ2]−(φ1+φ2)[1+(N−1)φi]],

for i = 1, 2. This implies that
∂τGi
∂N

> 0 if and only if 2φi > φj for i, j = 1, 2 and i �= j.

Similarly, we clearly see that
∂qGi
∂N

< 0 so long as φ1 > 0 or φ2 > 0. �

Proof of Proposition 5: As noted at the start of Section 6, we assume that the α
′′
i (·) = 0

and that the ci = 0 for i = 1, 2. Given that the αi(·) are differentiable, α
′′
i (·) = 0 implies

that the αi(·) are linear. Thus, as discussed in the Proof of Proposition 2, we impose a linear
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structure so that αi(τi) = ai − biτi for i = 1, 2. In this case, Equation (15) simplifies to

WG =
(a1 + a2)

3

2b1b2[3 + (N − 1)(φ1 + φ2)]3

× [4 + 5(N − 1)(φ1 + φ2) + (N − 1)(4N − 6)φ1φ2

+ (N − 1)2(φ2
1 + φ2

2)− (N − 1)(2N − 1)φ1φ2(φ1 + φ2)
]
.

Differentiating with respect to N implies that

∂WG

∂N
=

(a1 + a2)
3

2b1b2[3 + (N − 1)(φ1 + φ2)]4

× [
3(φ1 + φ2) + 2(2N − 5)φ1φ2 − 4(N − 1)(φ2

1 + φ2
2)

−N(5N − 2)φ1φ2(φ1 + φ2)− (N − 1)2(φ3
1 + φ3

2)

+ 4N(N − 1)φ2
1φ

2
2 + 2N(N − 1)φ1φ2(φ

2
1 + φ2

2)
]
.

Finally, by imposing φ1 = φ and φ2 = 1− φ, this reduces to

∂WG

∂N
= − (a1 + a2)

2

2b1b2(2 +N)4︸ ︷︷ ︸
<0

× [{N + [1− 3(1− φ)φ]}2 − {
7− 21(1− φ)φ− 9(1− φ)2φ2

}]
,

where 1−3(1−φ)φ > 0 for φ ∈ [0, 1]. Thus, the positive solution for {N + [1− 3(1− φ)φ]}2−
{7− 21(1− φ)φ− 9(1− φ)2φ2} = 0 isN+ = −1+3φ(1−φ)+

√
7− 21φ+ 30φ2 − 18φ3 + 9φ4.

It is verified that this N+ ∈ (1, 2) for any φ ∈ [0, 1]. Therefore, ∂WG

∂N
< 0 for all N ≥ 2. �

Proof of Proposition 6: As noted at the start of Section 6, we assume that the α
′′
i (·) = 0

and that the ci = 0 for i = 1, 2. Given that the αi(·) are differentiable, α
′′
i (·) = 0 implies

that the αi(·) are linear. Thus, as discussed in the Proof of Proposition 2, we impose a linear

structure so that αi(τi) = ai − biτi for i = 1, 2. As shown in the proof of Proposition 5, we
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have that

∂WG

∂N
=

(a1 + a2)
3

2b1b2[3 + (N − 1)(φ1 + φ2)]4

× [
3(φ1 + φ2) + 2(2N − 5)φ1φ2 − 4(N − 1)(φ2

1 + φ2
2)

−N(5N − 2)φ1φ2(φ1 + φ2)− (N − 1)2(φ3
1 + φ3

2)

+ 4N(N − 1)φ2
1φ

2
2 + 2N(N − 1)φ1φ2(φ

2
1 + φ2

2)
]
.

Imposing the constraints from Condition (9), letting a1 = a2 = a, and letting b1 = b2 = b we

have that ∂WG

∂N
< 0 for N ≥ 2 across the homing allocations that exist as Cournot platform

equilibria. �
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