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WILLIAM PHAN, RYAN TIERNEY, AND YU ZHOU

Abstract. We consider the problem of matching students to schools when students are able
to express preferences over crowding. For example, schools have varying per capita ex­
penditures, average teacher­student ratios, etc. These characteristics of a school are now
endogenously determined—matchings with more students to a particular school decrease
each of the variables above. We propose a new equilibrium notion, the Rationing Crowding
Equilibrium (RCE), that accommodates crowding, no­envy, and respect for priorities. We
prove the existence of RCE under mild domain conditions, and establish a Rural Hospitals
Theorem and welfare lattice result on the set of RCE. The latter implies the existence of a
maximal RCE, and that such RCE are student­optimal. Moreover, the mechanism defined
by selection from the maximal RCE correspondence is strategy­proof. We also identify an
algorithm to find a maximal RCE for a natural subdomain.
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1. Introduction

It is generally accepted among parents that if a school is overcrowded, then the quality
of their children’s education may suffer. This assumption is supported by the empirical
literature. For example, Krueger and Whitmore [2001], Chetty et al. [2011], and Jack­
son et al. [2016] show that decreasing crowding, as measured by per capita expenditure or
teacher­student ratios, etc., has positive effects on measures such as test scores, students’
lifetime expected income, and career development. Despite its salience, the school choice
and market design literature have largely ignored crowding. This stems largely from the
non­existence of the usual equilibrium notions in the presence of externalities and the ab­
sence of tractable analytical frameworks to replace them.
This paper proposes a novel framework and equilibrium notion to analyse the school

choice problem with crowding. We draw on the classical school choice model of Abdulka­
diroğlu and Sönmez [2003] wherein each student has a preference over schools and a pri­
ority rank at each. The new key feature in our framework is that students’ preferences
additionally depend on the level of crowding at the school. More specifically, the level is
a ratio that divides some aggregate measure of available physical infrastructure, number
of teachers, overall financial expenditure, etc. by the total number of students attending
[Lewis et al., 2000].1 We refer to it as a school’s resource ratio. The students’ consumption
space is thus composed of school and resource ratio pairs. Crucially, this ratio (or any other
per capita measure of crowding) is endogenously determined.
Aside frommore general student preferences, we allow for a more nuanced interpretation

of school capacity. Our motivation is the following: A school may almost always accom­
modate some extra students by adding seats in the classroom or in a temporary structure.
Actual school populations as a result fluctuate year to year based on demographic shifts.2

Capacity as modelled in the classical model is then implicitly more of a “soft target” as

1Other factors include square footage, building “designed” capacity, temporary spaces, number of full­
time teachers, teacher aides, substitute teachers, counselors, nurses, mental health specialists, scheduling,
financial aid, school day length, school size, subjective feeling, etc.

2For example, in Abbotts Creek Elementary School in Wake County, North Carolina, for the 2016­2017
year there were 796 enrolled students, increasing to 870 for the 2019­2020 year, and dropping to 854 in the
2020­2021 year. See “District Facts” at https://www.wcpss.net/domain/100.
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opposed to a hard constraint.3 Our framework explicitly models matchings that are below
the capacity of schools, and the subsequent effects on student preferences.
An allocation is thus composed of a matching of students to schools as well as an as­

sociated resource ratio at each school. We make two remarks on our modelling choices.
First, we define the two components of an allocation independently, as opposed to deriving
the resource ratio from the matching. Much like the market clearing condition in classical
exchange economies, our equilibrium then imposes a consistency condition between them.
Second, we model crowding as a continuous variable. Total resources combines various
measures, several of which are continuous e.g. financial expenditure. In practice, schools
have large numbers of students. For example, the smallest school in the Wake County Pub­
lic School System in North Carolina for the 2020­2021 school year had 256 students, and
the largest, 2,733 students.4 A single student’s effect on the resource ratio is thus negligi­
ble, justifying continuity. If one insists upon the discrete approach, then we remark that our
equilibrium notion has trivial discrepancy (i.e. bounded by one seat) between the fraction
induced by the matching and the resource ratio at each school (Section 8.2).
We propose a new equilibrium notion, show its existence under mild domain restrictions,

and identify interesting structural properties. Our Rationing Crowding Equilibrium (RCE)
is a selection from the set of allocations satisfying fairness—if student i prefers school s
at an allocation, then school s has exhausted its capacity, and all students in that school
have higher priority than student i. This implies no­envy in the sense that each student
does not prefer any school that is below capacity to their own match, at the respective
ratios. We require two further conditions. The allocation must be internally consistent: The
resource ratio offered by a school must conform, up to a rounding error, to the number of
students actually assigned to the school. This is the key condition accommodating crowding
in our approach and separating us from similar notions in the literature.5 We show that the
relative importance of the rounding error decreases monotonically in the size of the problem
(Section 8.2). The last condition requires that any empty school is strictly inferior to one’s
currently matched school.

3We still define a “true” hard capacity constraint. For example, many states have laws specifying a
minium teacher­student ratio. In 2021 North Carolina requires at least one teacher per 18 students in grades
K­3 (G.S. 115C­301 on “Allocation of teachers; class size”).

4These are Wake STEM Early College High School and Apex Friendship High. We ex­
clude several smaller specialized schools. See “District Facts” and the 2020­2021 Report at
https://www.wcpss.net/domain/100.

5Without it, we would have a matching with transfers model. See Section 3.2 for details.
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Our main results are as follows. Fix a school choice problem with crowding. We show
that an RCE exists for this problem so long as it satisfies a mild regularity condition that
holds true generically (Theorem 1). We then establish a version of the Rural Hospitals
Theorem for our environment, i.e. in each RCE, each school is matched with the same
number of students (Theorem 2). We show that the set of RCEs constitute a closed upper
semi­lattice under the Pareto dominance partial order (Theorem 3), and so there exists a
student­optimal RCE (Proposition 3). From a technical perspective, our proof techniques
deviate significantly from those in the literature as crowding was not considered.
Amaximal RCEmechanism recommends, for each school choicewith crowding problem,

a maximal RCE (all in this set are welfare­equivalent and student­optimal). We show that
these mechanisms are strategy­proof (Theorem 4), and we further find an algorithm to
calculate them on a restricted domain. It is in general hard to propose an algorithm for
equilibrium computation when agents’ preferences are not quasi­linear (see the discussion
after Theorem 1). This algorithm takes the hybrid format of both the multi­item auction
[Demange et al., 1986, Tierney, 2019] and the Deferred­Acceptance algorithm [Gale and
Shapley, 1962]. The former adjusts the distribution for unconstrained schools, and the latter
adjusts the matching for schools whose capacity constraint has been met.

1.1. Related literature. Our model subsumes the classical school choice model of Ab­
dulkadiroğlu and Sönmez [2003] as a special case (Section 3.1). The set of fair allocations
then coincides with the set of no justified envy and non­wasteful allocations (the usual com­
bination of properties considered therein) (Proposition 1).
Our RCE are closely related to price­based equilibrium notions in matching with the pos­

sibility of monetary transfers; none, however, feature consumption externalities in agents’
preferences. Shapley and Shubik [1971] first proved the existence and structural proper­
ties of the core and competitive equilibrium allocations for these models. These properties
imply that, for each side of the market, there is a unique undominated utility vector it can
achieve in the core. Mechanisms that realize one of these vectors are efficient and strategy­
proof [Demange and Gale, 1985] for the side of the market whose utility is maximized. In
matching models where prices are not fully flexible, e.g. restricted between price floors and
ceilings, Drèze Equilibrium and Rationing Price Equilibrium were proposed as alternative
notions [Drèze, 1975, Andersson and Svensson, 2014, Herings, 2018]. Under some mild
domain restrictions, there are constrained efficient and group strategy­proof rules [Ander­
sson and Svensson, 2014]. Our equilibrium concept follows these in spirit, but now allows
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for consumption externalities (See Section 3.2 for more details); because of this feature, our
proof techniques are significantly different.
In some matching models without continuous transfers, the usual fairness properties are

naturally expressed with an endogenously determined cutoff vector [Balinski and Sönmez,
1999, Sönmez and Ünver, 2010, Azevedo and Leshno, 2016, Dur andMorrill, 2018, Leshno
and Lo, 2021]. In the case of school choice, the vector specifies for each school the lowest
priority student able to attend. This is thus a competitive approach—cutoffs determine
budget sets for agents, agents maximize therein, and markets clear. Again, our approach
parallels theirs, but also considers crowding preferences.
Our problem is one of matching with externalities. In general, it is possible that an agent’s

preference over schools depends on where all the other agents are matched. Sasaki and
Toda [1996], Hafalir [2008], Bando [2012], and Bando [2014] propose and study various
notions of stability in this environment. Oftentimes there is a natural structure on possi­
ble externalities. Dutta and Massó [1997] and Echenique and Yenmez [2007] consider the
case where agents have preferences over their peers at the school they are matched to. Nar­
rowing down even further, a large literature considers matching with couples, siblings, or
neighbors [Roth, 1984, Aldershof and Carducci, 1996, Roth and Peranson, 1999, Klaus and
Klijn, 2005, Kojima et al., 2013, Ashlagi et al., 2014, Dur and Wiseman, 2019, Dur et al.,
2021]. Typically, these studies find that externalities eliminate the structures that have been
found in the classical literature. A few consider conditions and environments under which
stability is possible [Pycia, 2012, Rostek and Yoder, 2020, Pycia and Yenmez, 2021]. Pref­
erence over crowding features a specific structure that differs from those considered in this
literature, and so our techniques are independent of those.
The technical cornerstone of our discoveries comes from Tierney [2019]. By re­

interpreting vectors of crowding ratios as price vectors in amatchingwith transfers problem,
they establish that half of the lattice structure would survive. However, their equilibrium
will often not exist in our model, as it presupposes that resource ratios can reach 0. This is
unacceptable for school choice, as it implies that a single school can accommodate all the
students in the entire system. Our equilibrium is more general. In particular, we allow for
priorities to decide seats at schools that have reached their lower bound (as in Andersson
and Svensson [2014]), and this feature requires substantial technical innovation.

1.2. Organization. In Section 2, we define the school choice with crowding problem. In
Section 3, we present Rationing Crowding Equilibrium. Section 4 shows that RCE exist,
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and Section 5 investigates some properties of them, like the Rural Hospitals Theorem and
the welfare lattice. In Section 6, we identify a fair and strategy­proof mechanism, and in
Section 7, we find an algorithm that implements this mechanism on a restricted domain of
preferences. In Section 8, we discuss the robustness of our results and some applications
beyond school choice. Section 9 concludes with open questions.

2. Model

Let S be the finite set of schools, and N be the finite set of students. Each school
s ∈ S has resources in the form of teachers, buildings, money, etc. We aggregate this to a
single measure and for each school normalize this to one. When a student attends a school,
the number of other students and the policy of the school together determine what fraction
of those resources, that is, what resource ratio, they consume. Formally, each student’s
consumption space is [0, 1] × S, where the first component is a resource ratio ρs and the
second is the school s that they attend.6 This abstraction of the consumption space drives our
theoretical innovations. For some applications, it may be essential that the resource ratio be
restricted to simple fractions of the form 1/k. This would be the case when crowding really
depends only on the number of students at a school. Our model is still useful in these cases,
since we shall recommend, for each school, a resource ratio that is within one student of
being the simple fraction implied by the cohort they admit (see Section 8.2).
Each student i ∈ N has a complete and transitive preference relationRi over [0, 1]×S.

We assume that each is monotonic in the resource ratio: for each ρs, ρ′s ∈ [0, 1]with ρ′s > ρs,
and each s ∈ S, (ρ′s, s) Pi (ρs, s). Let R be the set of monotonic preference relations, and
R = (Ri)i∈N ∈ RN denote a profile of preferences for students.
Each school s ∈ S has a lower bound bs on the resource ratio it can provide. This implies

a maximal capacity b−1
s , and since students are indivisible, it is convenient to assume b−1

s

is a natural number. Let b = (bs)s∈S denote the profile of bounds for schools. We assume
that

∑
s∈S b

−1
s ≥ |N |. Each school s ∈ S has a priority order ≺s over the set of students,

where i ≺s j indicates that i has higher priority than j at s. Let ≺= (≺s)s∈S denote the
profile of priorities for schools. Note that schools’ priorities are independent of the resource
ratios.

6Inclusion of an outside option in our model would not change the results and only add complication to
the proofs. We show, however, in Section 3.1, that the richness of our preference space subsumes the outside
option in the classical sense. This works by including a school s with unbounded capacity, and restricting
preferences so that any admissible school for student i, at any ratio, is preferred to s at any ratio.
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A school choice problemwith crowding or, simply, a problem is a tuple (S,N,R, b,≺).
The canonical school choice problem of Abdulkadiroğlu and Sönmez [2003] is a special
case (see Section 3.1 for details). A distribution is a vector ρ ∈ [0, 1]S of resource ratios.
A matching σ : N → S places each student at a school. Let M be the set of matchings,
and for each σ ∈ M write σ[s] as the set of students matched to s at σ.7 An allocation is a
pair (ρ, σ) ∈ [0, 1]S ×M such that for each s ∈ S,

(1) (Distribution Feasibility) ρs · |σ[s]| ≤ 1.
(2) (Respects Capacity) |σ[s]| ≤ b−1

s and ρs ≥ bs.

Given a distribution ρ ∈ [0, 1]S and a school s ∈ S, we also write (ρ, s) to indicate
bundle (ρs, s). Thus, for an allocation (ρ, σ), each i ∈ N receives (ρ, σ(i)). We refer to
this as i’s component when the allocation at hand is clear.
Amechanism φ recommends, for each problem in a domainD ⊆ RN , an allocation. We

formalize some senses in which these recommendations might either be good or achievable.
We consider fairness amongst the students. The starting point is the classic condition

of Foley [1966], wherein no student prefers another’s component in the allocation to their
own. However, when a school is at capacity, and its resource ratio is at the lower bound, then
possibly an agent who did not get admitted envies one who did. In this case, we require that
this envy is justified—the admitted student has higher priority. We combine these two ideas
formally. Fix a problem (S,N,R, b,≺). The allocation (ρ, σ) is fair if (ρ, s) Pi (ρ, σ(i))

implies that ρs = bs and, for each j ∈ σ[s], j ≺s i. 8 We repeat this terminology for the
associated property of mechanisms.

Fairness: For each problem, the allocation recommended by φ is fair.

There may be several fair allocations, and we distinguish those most preferred by the
agents. Allocation (ρ, σ) Pareto­dominates (ρ′, σ′) if for each i ∈ N , (ρ, σ(i)) Ri

(ρ′, σ′(i)), and for some j ∈ N , (ρ, σ(i)) Pi (ρ
′, σ′(i)). A student­optimal fair allocation

is fair and not Pareto­dominated by any other fair allocation.9

Student­optimal fairness: For each problem, the allocation recommended by φ is student­
optimal fair.

7Generally, for any function f and any element or set y, we let f [y] denote the pre­image of y under f .
8Note that it is not necessarily true that the resource ratio of a school at a fair allocation is consistent with

the number of matched students to that school.
9There may be allocations that are efficient (Pareto­undominated by any allocation) but not fair. As we

are in the context of school choice, we focus on respect for priorities.
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Next, we consider the direct revelation incentive compatibility condition.

Strategy­proofness: For each problem, each i ∈ N , and each preference relation R′
i ∈ R

such that (R′
i,R−i) ∈ D,

φi(S,N,R, b,≺) Ri φi(S,N, (R′
i,R−i), b,≺).

The reader will note that our definition here is not completely standard. Typically,
strategy­proofness is only studied for Cartesian product domains, as we wish to allow for
each agent to have complete freedom when considering a manipulation report, R′

i, to the
mechanism. Thus, our notion of strategy­proofness is weaker than the standard notion
precisely inasmuch as, given some R−i, agent i’s possible manipulation reports are con­
strained. However: in what follows, we shall define our mechanism of interest on a domain
D that is open and dense inRN . That is, our domain almost fills the entire space. Then, by
the Kuratowski­Ulam Theorem, for generic R−i ∈ RN\i, and generic R′

i ∈ R, the profile
(R′

i,R−i) ∈ D.10 In other words, for a typical profile and a typical manipulation of some
agent, the resulting profile will still be in the domain of interest and, therefore, will be an
admissible manipulation for the mechanism φ.

3. Solution Concept

Our solution concept is fundamentally Walrasian in spirit. There is a publicly announced
vector (a distribution) that induces, for each agent, a menu of options (a list of ratio­school
pairs), and agents select their most preferred. Two main points, though, distinguish our
concept from price equilibria. If too many students select one school, then rationing occurs
as opposed to a price increase. Exogenously given priority information (≺) determines
which students are matched. Next, once a distribution is announced, they must consume
the object at that distribution quantity (i.e. teacher­student ratio). They cannot “purchase”
more or less of the object.
Formally, a Rationing Crowding Equilibrium (RCE) is an allocation (ρ, σ) that satis­

fies three conditions:
10A set is generic if it is the countable intersection of open­and­dense sets. EndowR with the topology of

closed convergence [Hildenbrand, 2015]. Thus, R is metrizable and hence second­countable. As D is open
and dense, it is both generic (also called comeager) in RN and has the Baire property. Given R−i ∈ RN\i,
let DR−i

= {R′
i ∈ R : (R′

i,R−i) ∈ D}. Then the Kuratowski­Ulam theorem implies that the set {R−i ∈
RN\i : DR−i

is generic inR} is generic inRN\i.
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(1) (Fairness) (ρ, σ) is fair.
(2) (Exhaustive Given ρ) For each school s with σ[s] 6= ∅,

bρ−1
s c = |σ[s]|.

(3) (Inferior Empty Schools) For each school s with σ[s] = ∅, ρs = 1, and for each
i ∈ N ,

(ρ, σ(i)) Pi (ρ, s).

Note that our notion begins by offering each student the menu {(ρ, s) : s ∈ S}. If
ρs > bs, then “demand” for s is just as one expects. Anticipating, however, that ρs cannot
be reduced if it equals bs, “demand” is first rationed via priorities in this case. Thus, fair­
ness is the analog to consumer maximization. The second condition is the key to adapting
our notion to the crowding environment and operationalizes the interpretation of ρs as a
resource ratio. The amount of resources the school provides to each student is, up to round­
ing error, the total amount of resource (one) divided by the number of students matched to
the school. Together with the definition of an allocation (feasibility), this is the analog of
market clearing. The third condition states that each agent finds any empty school strictly
worse than their component of the allocation, and is therefore the analog of the requirement
that, at equilibrium, unconsumed commodities should be available for free.
The following example illustrates an RCE.

Example 1 (An RCE). Let S = {s1, s2} and N = {1, 2, 3}. Agents’ preferences are given
by the following utility functions:

u1(ρ, s1) =
3

22
+ ρs1 and u1(ρ, s2) = ρs2

u2(ρ, s1) =
7

12
+ ρs1 and u2(ρ, s2) = ρs2

u3(ρ, s1) =
3

11
+ ρs1 and u3(ρ, s2) = ρs2

Each school s has minimum ratio bs = 1
2
(and thus capacity b−1

s = 2). School s1 has the
priority order 1 ≺s1 2 ≺s1 3. School s2 has the priority order 3 ≺s2 1 ≺s2 2.
Allocation (ρ, σ) = ((ρs1 , ρs2), (σ(1), σ(2), σ(3))) = (1/2, 7/11, s1, s1, s2) is an RCE.

Fairness: Both agents 1 and 2 find their component at least as good as others’.11 Agent 3
prefers both 1 and 2’s component to her own: u3(ρ, σ(3)) = 7/11 < 3/11 + 1/2 = u3(ρ, s1).

11u1(ρ, σ(1)) =
3
22 + 1

2 = 7
11 = u1(ρ, s2), and u2(ρ, σ(2)) =

7
12 + 1

2 > 7
11 = u2(ρ, s2).
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Since ρs1 = bs1 = 1/2 and 1 ≺s1 2 ≺s1 3, however, fairness is still satisfied. Exhaustive­
ness: We have bρ−1

s1
c = |σ[s1]| = 2 and bρ−1

s2
c = |σ[s2]| = 1. Inferior Empty Schools is is

trivially satisfied, as there is no empty school.
This example is also among the most extreme cases of mismatch between the number of

students matched to a school and the reciprocal of the resource ratio. Since there is only one
student at s2, we should hope that ρs2 = 1. Let ρ′s2 = ρs2 + ϵ and consider ρ′ = (ρs1 , ρ

′
s2
).

For agent 1, u1(ρ
′, σ(1)) = 7

11
< 7

11
+ ϵ = u1(ρ

′, s2). Since ρ′s2 > bs2 = 1/2, 1 prefers
(ρ′, s2) to their own component, in violation of fairness.
In this problem, the entire set of RCEs is

{(ρ, σ) : ρs1 =
1

2
,
1

2
< ρs2 ≤

7

11
, σ(1) = s1, σ(2) = s1, σ(3) = s2}

∪{(ρ′, σ′) : ρ′s1 =
1

2
,
7

11
≤ ρ′s2 ≤

17

22
, σ′(1) = s2, σ

′(2) = s1, σ
′(3) = s1}.

Note that we can have ρs2 > 7/11 when the matching is changed, but that in all cases,
school 2 will have only 1 student and ρs2 < 1.

3.1. Connection to the Standard School Choice Model. Consider the canonical school
choice model of Abdulkadiroglu and Sonmez (2003) . We show how to embed this problem
into school choice with crowding, then relate solution concepts across models.
Let schools S, studentsN , and priorities≺ be defined as before. For each student i ∈ N ,

let P ∗
i be a strict preference relation over the set of schools and P ∗ = (P ∗

i )i∈N be the
profile of such preferences. For each school s ∈ S, let c∗s ∈ N be the capacity of school
s, and c∗ = (c∗s)s∈S be the capacity profile for S. A school choice problem is a tuple
(S,N,P ∗, c∗,≺). An allocation is a matching σ : N → S such that for each s ∈ S,
|σ[s]| ≤ c∗s. We recall two central properties in this model. A matching σ satisfies no
justified envy if for each i ∈ N , there is no j ∈ N \ i and s ∈ S such that s P ∗

i σ(i) and
i ≺s j. A matching σ satisfies non­wastefulness if for each i ∈ N , and s ∈ S, s P ∗

i σ(i)

implies |σ[s]| = c∗s.
We now construct an associated school choice problem with crowding (S,N,R, b,≺).

Let S, N , and ≺ be as in the school choice problem; only R and b need adjustment. For
each i ∈ N , letRi be such that for each s, s′ ∈ S, s P ∗

i s′ if and only if (0, s) Pi (1, s
′). That

is, at any distribution level, i prefers s to s′ in Ri. For each s ∈ S, let bs = 1
c∗s
. Thus, the

classical model embeds in ours as a preference restriction. The externality is still present:



CROWDING IN SCHOOL CHOICE 11

students are worse off when they have more classmates. However, on the restricted domain
of classical preferences, there is no way for agents to reveal this fact through their choices.
If we wish, we may include a special school, ϕ, in our model with bϕ < 1/|N |. When the

canonical school choice model is embedded in ours, this school may function as an outside
option in the standard sense, since it can accept all students. This is despite the fact that in
our model, we have elected not to consider the outside option.

Proposition 1. Fix a school choice problem. The following statements are equivalent:

(1) σ satisfies no justified envy and non­wastefulness, and
(2) (ρ, σ) for some distribution ρ is an RCE for the associated school choice problem

with crowding.

Proof. Fix a school choice problem (S,N,P ∗, c∗,≺). Let (S,N,R, b,≺) be an associated
school choice problem with crowding.
Let σ be a matching. Let ρ ∈ [0, 1]S be such that for each empty school s ∈ S, ρs = 1 and

for each non­empty school s ∈ S, ρ−1
s = |σ[s]|. Thus (ρ, σ) is an allocation and exhaustive.

Matching σ is non­wasteful at empty schools if and only if, for each empty s ∈ S and
each i ∈ N , σ(i) R∗

i s. Since R∗
i is strict, this is true if and only if σ(i) P ∗

i s. Then
(ρ, σ(i)) Pi (ρ, s). Therefore, non­wastefulness for empty schools in (S,N,P ∗, c∗,≺) is
equivalent to inferior empty schools in (S,N,R, b,≺).
Now (ρ, s) Pi (ρ, σ(i)) if and only if s P ∗

i σ(i). So σ is non­wasteful for non­empty
schools if and only if |σ[s]| = c∗s = b−1

s if and only if ρs = bs. Moreover, σ satisfies no
justified envy for (S,N,P ∗, c∗,≺) if and only if, for each j ∈ σ[s], j ≺s i. Conclude
that non­wastefulness for non­empty schools and no justified envy in (S,N,P ∗, c∗,≺) are
equivalent to fairness in (S,N,R, b,≺). ■

3.2. Competitive Foundations of RCE. Our RCE concept is related to notions of com­
petitive equilibria when prices exhibit rigidities. In the classical exchange problem, a price
ceiling may cause demand to outstrip supply, resulting in the failure of market clearing and
thus non­existence of equilibria. Drèze [1975] proposed and showed existence for a notion
where prices are constrained by ceilings or floors and rationing occurs at such boundaries.
In addition to prices, the notion includes a rationing scheme that specifies limits for the
net trades of agents. Likewise, in matching models with price controls, Talman and Yang
[2008], Andersson and Svensson [2014], and Herings [2018] introduce similar Drèze­style
equilibrium concepts.
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None of these models consider consumption externalities or, in particular, crowding ef­
fects. Our RCE can be seen as the conceptual parallel to their notions, but for the environ­
ment where agents have preferences over crowding.
We will define several Drèze­style equilibrium notions for a school choice with crowding

problem (S,N,R, b,≺), then compare them to those above. A rationing scheme in object
assignment can be modelled as an indicator variable for each object and agent pair. Unity
represents the fact that if the object is rationed, then the agent qualifies for the object and
may demand it; otherwise, zero means the agent cannot, in any circumstance, demand the
object. For each agent i ∈ N , let Qs

i ∈ {0, 1} be the ration of object s offered to agent
i. Let Qi ∈ {0, 1}S be the rations offered to agent i, and Q = (Qi)i∈N be the rationing
scheme. A special case (defined below) is when rationing relies on priorities associated
with the objects.
The demand set of agent i at distribution ρ and rationing schemeQ is

Di(ρ,Q) = {s ∈ S : Qs
i = 1, & ∀s′ ∈ S s.t. Qs′

i = 1 (ρ, s) Ri (ρ, s
′)}.

Consider a tuple (ρ, σ,Q) consisting of an allocation and a rationing scheme. Each equi­
librium notion is defined by subsets of the conditions below:

(1) Each agent is matched to a school in their demand set.
(2) For each school s with σ[s] 6= ∅, it holds that bρ−1

s c = |σ[s]|.
(3) For each pair of agent i and school s such that Qs

i = 0, ρs = bs.
(4) For each agent i, j ∈ N , and school s ∈ S such that Qs

i = 0 and j ∈ σ[s], j ≺s i.

A Crowding Drèze Equilibrium (CDE) is a tuple (ρ, σ,Q) that satisfies conditions (1)­
(3). Note that Q is a general rationing scheme and does not depend on ≺. When Q is
consistent with the priority profile ≺, then we say that it is a Priority­Compatible Drèze
Equilibrium (PCDE). That is, the refinement of CDE by additionally requiring Condition
4 is a PCDE. Our RCE is a further refinement of PCDE by additionally imposing the inferior
empty schools condition.
Without crowding, these notions coincide with several of those in the literature. Con­

dition 2 is the key difference—the number of students matched to a school is nearly the
distribution associated with the school. Without this coupling, we revert back to the inter­
pretation of the distribution as the price where it and quantity demanded are only indirectly
related. Formally, without Condition 2, CDE coincides with the notion in Talman and Yang
[2008], and if priorities are used, then PCDE, with additional requirement of constrained
efficiency, coincides with that in Andersson and Svensson [2014]. Finally, notice that when
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agents’ preferences satisfy the standard monotonicity and continuity assumptions, the ex­
istence for each of the aforementioned equilibrium notions is guaranteed. This is not true
when there is crowding, as Example 2 demonstrates. With mild domain restrictions, how­
ever, we can recover existence (Theorem 1).

4. Existence of RCEs

There are profiles in RN that do not admit an RCE. We demonstrate one below. Such
profiles are rare; they must violate a very mild restriction on preference profiles, one that
holds true generically. We first present an exceptional case and then introduce the domain
restriction we require.

Example 2 (The non­existence of RCE). Let S = {s1, s2, s3} and N = {1, 2, 3}. Agents
have the following utility functions:

u1(ρ, s1) = ρs1 , u1(ρ, s2) = ρs2 , u1(ρ, s3) = −1

2
+ ρs3

u2(ρ, s1) = ρs1 , u2(ρ, s2) = ρs2 , u2(ρ, s3) = −2

3
+ ρs3

u3(ρ, s1) = ρs1 , u3(ρ, s2) = ρs2 , u3(ρ, s3) = −3

4
+ ρs3

Each school is allowed to have any priority order, and bs1 = 1/2, bs2 = 1/2, and bs3 = 0.
We show that there is no RCE. By contradiction, suppose that there is. First we claim

that no agent is matched with school s3. If there were, then by exhaustiveness, at least one
of the other two schools, i.e., s1 and s2, should have a ratio greater than 1/2. Thus the agent
matched with s3 prefers the school with a ratio greater than 1/2, contradicting fairness.
Since bs1 = bs2 = 1/2, in the case where s1 takes two agents, the ratio at s1 is 1/2 while

s2 only takes one agent, and by exhaustiveness, has a ratio greater than 1/2. Thus, any agent
matched with s1 prefers s2, contradicting fairness. The same reasoning works for the case
where s2 takes two agents.

We now introduce our domain restriction. Given a preference profile R ∈ RN , two
schools s1 and sk+1 are connected by indifference if there is a distribution ρ, a sequence
of distinct agents {i1, . . . , ik}, and a sequence of schools {s1, . . . , sk+1} such that

(1) ρs1 = 1
n
and ρsk+1

= 1
m
for somem,n ∈ {1, . . . , |N |} and

(2) (ρ, si) Ii (ρ, si+1) for each student 1 ≤ i ≤ k
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A preference domain satisfies no connection by indifference (NCBI), if it contains no
profile that is connected by indifference. Denote byD ⊆ RN the subdomain of all profiles
that are not connected by indifference.12 Call this the NCBI domain.
The preference profile presented in Example 2 is not in the NCBI domain as as all three

agents are indifferent between (1/2, s1) and (1/2, s2). On the other hand, the preference
profile presented in Example 1 is not connected by indifference.
The NCBI domain D is not rectangular, but is open and dense in the full domain.

Theorem 1. Each profile in the NCBI domain admits an RCE.

The proof of Theorem 1 is in Appendix A.4. We provide a sketch of the argument here.
Start from a fair allocation. Thus, we allow for the discrepancy between ρ−1

s and the actual
number of matched students to be arbitrarily large. The existence of fair allocations is
trivial: set the distribution equal to vector b and run the Deferred Acceptance mechanism.
The set of distributions that generate RCE, if non­empty, lie in the upper envelope of the

set of distributions that generate a fair allocation. So, given that a fair allocation always
exists, our argument begins with one of these, and seeks to increase the distribution vector
while maintaining fairness. We do this with some graph theoretic tools.
With a distribution fixed, we study a graph with vertices S and such that an arc represents

a student at a given school who finds another school at least as good. A source set is a set of
vertices such that no arcs enter the set (there may be arcs among vertices in the set, so that
no vertex is a source on its own). Lemma 1 tells us that if we can find a set of schools that is
a source set in our graph, and for which all schools fail our exhaustiveness condition, then
we can perturb upwards the ratios for these schools and arrive at another fair allocation.
Thus, our goal is to move students among schools such that we do not violate fairness

and that we find a source set. This is the only part of the argument that requires NCBI,
and is achieved in Lemma 2. In sum, beginning with a fair allocation, if it is not an RCE,
then we can increase the ratio of some school and find another fair allocation. Along the
way, we eliminate the problem of empty schools by simply putting students in them; NCBI
ensures they will not hinder us in finding a source.

12NCBI is similar to the identically named condition in Andersson and Svensson [2014], although the two
are applied to different environments. Our condition is stronger than theirs, and the latter is not sufficient to
show existence of RCE in our model.
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Having established that we can perturb upwards any fair allocation that is not an RCE, it
remains only to make a limit argument. This is done in Theorem 5 in the Appendix, which
actually proves Theorem 1 and Proposition 3 below.
It is known that the exact auction of Demange et al. [1986] and its variants crucially de­

pend on the quasi­linear assumption, and when agents have non­quasi­linear preferences,
they are not appropriate methods to show the existence of equilibrium [Zhou and Serizawa,
2021]. Instead, the salary adjustment process of Crawford and Knoer [1981] and Kelso &
Crawford [1982], and its variants are frequently used to establish the existence of equilib­
rium [Ostrovsky, 2008, Herings, 2018, Fleiner et al., 2019]. In general, this method requires
that agents always choose their favorite schools among those who have not rejected them
yet, and an agent’s welfare is independent of the number of tentatively matched agents.
This is not true in our model, thus the method fails. Another well­known method is via
Scarf’s Lemma [Quinzii, 1984]. In this approach, one first shows existence when agents
have piece­wise quasi­linear utility functions and then takes the limit, approximating the
original continuous utility functions. It is not clear how to establish the existence of RCEs
even when agents have piece­wise quasi­linear utility functions, and the main challenges
still come from showing exhaustiveness.

5. Structural Properties of RCEs

In the classical model, the set of no justified envy and non­wasteful allocations has a num­
ber of remarkable structural properties. Among them, the welfare lattice and the so­called
Rural Hospitals Theorem stand out as particularly important [Knuth, 1976, Roth and So­
tomayor, 1990, Roth, 1986]. On the NCBI domain, we find analogous, sometimes identical
properties. RCEs form a welfare lattice, which further implies the classical lattice result via
the embedding. We also show that the number of students matched to any school remains
constant across all RCE, which establishes a Rural Hospitals Theorem for our environment.
Along the way, we find a decomposition result that also has analogues in earlier literature,

but was previously unknown. We require, first, a definition. A sequence of distinct agents
(i1, ..., ik) constitutes a trading cycle from a matching σ to a matching τ if τ(il) = σ(il+1)

for each 1 ≤ l ≤ k − 1 and τ(ik) = σ(i1).

Proposition 2. Consider two arbitrary RCEs, (ρ, σ) and (γ, τ), for a given preference
profile from the NCBI domain.
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(1) When moving from (ρ, σ) to (γ, τ), if agent i experiences a strict welfare­
improvement (resp. welfare­reduction), then agents in the same trading cycle as
agent i experience a non­decreasing welfare change (resp. non­increasing welfare
change).

(2) If τ(i) 6= σ(i), then i is involved in a trading cycle from σ to τ .

The proof of Proposition 2 is in Appendix A.2. What follows is a sketch of the argument.
Schools whose ratio either increases or remains the same cannot take on more students

(exhaustiveness). Students attending a school whose ratio increasesmust be better off, as its
increase causes it to rise above its lower bound and thereby be available for all. Then, using
Walrasian­type reasoning, we find that these better­off students must go to a school whose
ratio must not have decreased. This of course “closes off” the set of such schools and yields
the proposition for them. The proposition for the other agents comes from feasibility, since
the schools whose ratios have decreased must take in the rest of the students, and from the
properties of RCE—these schools must also have “high enough” ratios by exhaustiveness.
The full argument is complicated by several technical details, most difficult among them

being: what if (γ, τ(i)) Ii (ρ, σ(i)), γσ(i) = ρσ(i) > bσ(i) and γτ(i) = ρτ(i) = bτ(i)? Student
i may displace j at τ(i) who has i ≺τ(i) j, since i’s indifference means that j’s presence at
τ(i), under allocation (σ, ρ), was not a priority violation. Student j’s welfare may drop, and
she may envy i at (γ, τ), without priority violation. The problem is that nothing prevents i
from being part of a trading path along which some previous agent has increasing welfare
and all other previous agents have non­decreasing welfare. For this case we invoke NCBI,
and the earlier Walrasian­type reasoning, as we find that such a student i must actually be
the end of an indifference chain originating at a school u ∈ S with ρu = bu. Thus, it appears
that NCBI is essential for this decomposition to hold.
Note the significance of claim 2 in the proposition. Since the distributions ρ and γ are

distinct, the equilibrium capacity of a school s ∈ S may differ from one RCE to another.
If γ−1

s > ρ−1
s , then s might be able to take on more students under (γ, τ), and so may be

the endpoint of a trading path instead. In fact this is true for fair allocations, and so this
decomposition does not hold on that larger set of allocations.
Proposition 2 is reminiscent of the classical decomposition property of the marriage mar­

ket [Roth and Sotomayor, 1990]: Moving from one stable outcome to another, there is a
one to one correspondence between agents on the one side who have strictly increased wel­
fare (resp. strictly reduced welfare) and those one the other side whose welfare is strictly
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reduced (resp. strictly increased). This property holds for competitive equilibrium/core out­
comes in the two­sided matching models with transfers as well [Demange and Gale, 1985].
Nevertheless, such a decomposition does not hold in our model. Instead, we provide a gen­
eralized decomposition by associating welfare changes with trading cycles of components
in an allocation. In our language, the existing decomposition results can be read as follows:
if an agent experiences a strict welfare improvement, all the other agents in the same trading
cycle will also experience strict welfare improvement. In contrast, Part (1) of Proposition
2 admits the possibility of unchanged welfare in a trading cycle. Besides, we do not have
a counterpart of Part (2) of Proposition 2 for the competitive equilibrium in the matching
models with transfers [Demange and Gale, 1985].
Proposition 2 is related to but not nested with Lemmas 4 and 5 of Andersson and Svens­

son [2014]. Like them, our model has divisible and indivisible components, and we also
face exogenous upper and lower bounds on the divisible components. However, while
they match objects to agents one­to­one, we match schools to students one­to­many, which
introduces complications in itself and via the imposition of the distribution feasibility con­
straint. Thus, our matching is entangled with our distribution of the divisible component.
Nonetheless, though our models differ in crucial ways, Andersson and Svensson [2014] find
a statement analogous to conclusion (1) in the proposition above. They do not provide a full
trading cycle decomposition, as we do in statement (2), but their statement does hold for
stronger hypotheses: the profiles associated with their two equilibria are allowed to differ
in a particular way.
We now give our version of the Rural Hospitals Theorem, which is a clear corollary of

Proposition 2.

Theorem 2. Fix a profile from the NCBI domain and let (ρ, σ) and (γ, τ) be two RCEs for
this profile. Then for each school s ∈ S, the number of students matched to s under σ is
equal to the number of students matched to s under τ .

Example 3 (Illustration of Theorem 2). Consider the set of RCEs in Example 1. There are
two RCE matchings. The first one is σ = (σ(1), σ(2), σ(3)) = (s1, s1, s2). The second one
is σ′ = (σ′(1), σ′(2), σ′(3)) = (s2, s1, s1).
In either matching, school s1 is always matched with two students and school s2 is

matched with one student.



18 W. PHAN, R. TIERNEY, AND Y. ZHOU

Given two distributions, ρ andγ, letρ∨γ ∈ [0, 1]S denote the vector whose s component,
for each s ∈ S, is max{ρs, γs}.

Theorem 3. Assume (ρ, σ) and (γ, τ) are RCEs for a preference profile from the NCBI
domain. There is a matching µ such that (ρ ∨ γ, µ) is an RCE, and for each i ∈ N ,

(ρ ∨ γ, µ(i)) Ri max
Ri

{(ρ, σ(i)), (γ, τ(i)).}

The full proof of Theorem 3 is in Appendix A.2. Similar to extant results of similar
character, a decomposition result, in our case Proposition 2, is the main tool. We simply
begin with one of the two RCEs, say (ρ, σ), and to arrive at a candidate matching, µ, execute
all the welfare­non­decreasing trading cycles from σ to τ . Then we show that (ρ ∨ γ, µ)

is an RCE. If (ρ ∨ γ)s = γs > ρs, then any student i ∈ σ[s] must have increased welfare,
as otherwise they would prefer s at (γ, τ) and the previous inequality gives γs > bs. Then
Proposition 2 and some supporting results in the appendix allow us to conclude that i is part
of a cycle among schools whose resource ratio is at least as high under γ as it is under ρ.
This further allows us to use the feasibility of (γ, τ) to conclude the feasibility of (ρ∨γ, µ).
Since all agents are partitioned by Proposition 2, the execution of these cycles will not
interfere with each other.
The foregoing argument studied the case when ρ 6= γ. However, the decomposition

holds equally well when ρ = γ and so demonstrates that RCE induce a lattice in welfare
space.
It is in general not true that the existence of a lattice in distributions implies the existence

of a lattice in welfare (see Example 5 below).13 Here again the NCBI domain seems crucial.
Since we have a lattice in welfare space, a limit argument is sufficient to show the exis­

tence of a greatest RCE welfare vector. Several RCEs may induce this vector, all of which
have the same distribution. Any RCE that induces this vector is called maximal. For Ex­
ample 1, one such maximal RCE is given by distribution (1/2, 17/22) paired with matching
(s2, s1, s1). We formalize the foregoing observations as follows.

Proposition 3. Given a profile R from the NCBI domain,

(1) there is a greatest RCE distribution ρ∗(R),
13The assignment model of Andersson and Svensson [2014] takes the economy described by Example

2.15 in Roth and Sotomayor [1990] as a special case. In that economy, the price can be treated as a fixed price
(note the structural similarity between prices and distributions), and there is a price lattice while the welfare
lattice fails to hold.
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(2) there is a maximal RCE, with distribution ρ∗(R), and all agents are indifferent
between all maximal RCEs, and

(3) among all RCEs, only the maximal RCEs satisfy student­optimal fairness.

The proof of Proposition 3 is in Appendix A.4. It is not true that an RCE compatible with
ρ∗(R) always maximizes agents’ welfare; maximal RCEs are a subset of the RCEs that are
compatible with ρ∗(R).
We conclude this section with two remarks. First, in Section 3.1 we showed that the stan­

dard school choice model can be embedded in our model. Recalling that the the embedded,
standard model may have an outside option, even though our more general model does not,
it follows that the standard Rural Hospitals Theorem of Roth [1986] is a corollary of Theo­
rem 2. Theorem 3 and Proposition 3 mirror the standard welfare lattice results in Roth and
Sotomayor [1990], but here we only consider the student side of the market.
Second, even when RCEs exist for profiles outside the NCBI domain, the structural re­

sults above may fail to hold.

Example 4 (Lack of structure on the general domain.). The reader will observe that the
structures above fail for the same reason they do in the standard school choice model when
students’ preferences may have indifferences.
Let S = {s1, s2, s3, s4} and N = {1, 2, 3}. Agents have the following preferences:
For each ρ ∈ [0, 1]S ,

(ρ, s1) I1 (ρ, s2) P1 (ρ, s3) P1 (ρ, s4)

(ρ, s1) P2 (ρ, s4) P2 (ρ, s3) I2 (ρ, s2)

(ρ, s2) P3 (ρ, s3) P3 (ρ, s1) I3 (ρ, s4)

Each school has unit capacity, i.e., bs1 = bs2 = bs3 = bs4 = 1. Schools have the following
priority rankings: 1 ≺s1 2 ≺s1 3; 1 ≺s2 3 ≺s2 2; 3 ≺s3 2 ≺s3 1; and 2 ≺s4 3 ≺s4 1.
Let ρ = (1, 1, 1, 1). There are two RCEs compatible with ρ, clearly making ρ∗(R) = ρ.

The first one is (ρ, σ) such that (σ(1), σ(2), σ(3)) = (s1, s4, s2). The second one is (ρ, τ)
such that (τ(1), τ(2), τ(3)) = (s2, s1, s3).
It is not hard to see that there is no trading cycle from σ to τ , and so Proposition 2 fails to

hold. Also at (ρ, σ) school s3 is empty and at (ρ, τ) school s4 is empty school. Therefore,
Theorem 2 fails to hold.
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Note that in both of the RCEs mentioned, two agents get their favorite possible bundle,
and one gets their second favorite. Thus, the only way to improve upon this is with matching
(µ(1), µ(2), µ(3)) = (s1, s1, s2) or matching (µ′(1), µ′(2), µ′(3)) = (s2, s1, s2), both of
which are infeasible. However, agent 2 prefers (ρ, τ(2)) to (ρ, σ(2)). Thus Theorem 3
fails to hold. Since there are no maximal RCEs, Proposition 3 fails to hold as well.

Examples 2 and 4 highlight the role of our domain restriction, NCBI. However, it is
worth noting that the structural properties hold under a weaker restriction. In particular, we
may relax the first condition in definition of connected by indifference, requiring only that
ρs1 = bs1 and ρsk+1

= bsk+1
. However, this domain restriction is not sufficient for our proof

of the existence of RCE. See Appendix section A.1 for details.

6. Maximal RCE Mechanisms

By Proposition 3, fixing an environment of schools, students, and lower­bounds, for each
profile in the NCBI domain, there is a non­empty set of maximal RCE allocations, between
which all students are indifferent. A maximal RCEmechanism is a function that selects, for
each profile in the NCBI domain, a maximal RCE allocation; we do not define these mech­
anisms on the full domain. Thus, all maximal RCE mechanisms are welfare equivalent.

Theorem 4. Any maximal RCE mechanism is strategy­proof.

The full proof of Theorem 4 is in Appendix B. For some intuition as to how it works,
consider first the properties of ρ∗(·), the greatest RCE distribution. Consider a student i
who is not even weakly envied by a student at a different school. That is to say, all students
not attending i’s school strictly prefer their outcome to i’s. Then it better not be feasible to
raise the ratio at i’s school, because if it were, then we could do so by a very small amount,
make i and her classmates happier, and not induce any envy from other students. Thus, for
each student i one of the following is true: 1) some student j from another school finds
i’s outcome at least as good as her own or 2) the ratio at i’s school exactly corresponds
with the number of students there. For case (2), this means that the ratio at i’s school is
of the form 1/k, where k is the number of students at i’s school. We say such a school is
completely exhausted. The above reasoning then implies that, for each student for whom
(1) is true, we must be able to find a chain of students {j, k, . . . , l} such that j finds i’s
outcome at least as good as her own, k finds j’s outcome at least as good as her own, etc.,
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and l’s school is completely exhausted. This is the so­called connectedness property, seen
in similar environments.
Now let i declare a R′

i such that her preference for her outcome is strictly stronger than
before. That is, R′

i is a strict Maskin monotonic transform of Ri at her initial outcome.
Ignoring complications, if she stays at her original school, then the connectedness property
prevents the ratio at her school from rising. If she goes to another school, the connectedness
property prevents the ratios of these schools from rising as well, so the only way her new
outcome can be Ri better than the original is if she goes to a school that has hit its lower
bound. Then we use our decomposition and the connectedness property to find that we
cannot displace these students and make them happier, so i induces violation of fairness at
this new school. In the appendix we show that, if the rule were manipulable, then it would
be manipulable via a Maskin monotonic transform, and thus our argument is complete.

7. An Algorithm for Maximal RCE

As discussed after Theorem 1, it is non­trivial to find an algorithm that calculates an RCE
in a finite number of steps, in particular, when agents have general preferences as studied
here. We can, however, on a restricted domain. The algorithm we introduce uses tools
from both the multi­item auction [Demange et al., 1986, Tierney, 2019] and the Deferred­
Acceptance algorithm [Gale and Shapley, 1962]. The former helps adjust the distribution
for unconstrained schools and the latter helps adjust the matching for schools whose capac­
ity constraint has been met.
Say a preference relationR ∈ R is linear if there is a vector v ∈ RS

++ such that the utility
function (r, s) 7→ rv(s) represents R. Note that an equivalent representation is log v(s) +
log r. Thus, we have a structure isomorphic to an auction with quasi­linear preferences.
Moreover, if v(s) and r conform to the same discrete grid, then we can be sure that ρ∗(R)

also conforms to this grid, by the connectedness property. For concreteness, then, fix g ∈ N
and assume valuations and ratios are drawn from the set

{
n

g|N | : n ∈ N
}
. Thus, in the

additive representation, we have utility functions of the form log v(s) + log k + C, where
C = − log g |N |. We shall design an algorithm in which the ratio at each school starts at 1
and then decreases. Equivalently, in the quasi­linear representation, we have a procurement
auction where the “bid” for each school starts at log g |N | and increments as the sequence
{log(g |N | − n) : n ∈ N, n ≤ g |N |}.
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Note that NCBI is now more demanding. In particular, a violation of NCBI is a sequence
{1, . . . , J + 1} of students and schools such that for each j on the sequence, rjvj(j) =

rj+1vj(j+1), and such that r1 = 1/p and rJ+1 = 1/q, for natural numbers p and q no greater
than |N |. By recursion on the sequence, we get

p

q
=

vJ(J + 1)

v1(1)

J∏
j=2

vj−1(j)

vj(j)
.

This expression highlights that a violation of NCBI requires the sequence of students and
schools to be chosen together; it is not sufficient to find a sequence of valuation ratios that
multiply to p/q.
Given R ∈ R and S ′ ⊆ S let

D (ρ, S ′;R) = {s ∈ S ′ : ∀t ∈ S ′, (ρ, s) R (ρ, t) .}

Say that R requires S ′ at ρ if D (ρ, S;R) ⊆ S ′. Fix a set N of students and a profile R
of linear preferences satisfying NCBI. A set S ′ ⊆ S is overdemanded at ρ if the number
of agents i for whom Ri requires S ′ exceeds

∑
s∈S′bρ−1

s c. Initialize the process with ρ0 =

(1, . . . , 1). At each stage n execute the following procedure:

(1) Set S∗ = {s ∈ S : ρns = bs}.
(2) Identify the students N ′ for whom the set D (ρn, S;Ri) ⊆ S∗.
(3) Execute deferred acceptance on students N ′ and schools S∗ to arrive at a matching

σ : N∗ ⊆ N ′ → S∗, where N ′ \N∗ is the set of unmatched students.
(4) For each i ∈ N \N∗, letDn

i = D (ρn, S \ S∗;Ri). In words, this is i’s demand set
from a restricted set of options.

(5) Let A ⊆ S be an overdemanded set from (Dn
i )i∈N\N∗ that is minimal, in inclusion,

in this property. For each a ∈ A, with ρna = p/g|N |, set ρn+1
a = p−1/g|N |. All other

resource ratios remain fixed.

Proposition 4. Given a profile R of linear preferences, with rational coefficients and sat­
isfying NCBI, the above algorithm, executed on the grid induced by R, ends in a maximal
RCE in a finite number of stages.

The proof of Proposition 4 is in Appendix C.
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8. Discussion

8.1. Dropping Inferior Empty Schools. Let an allocation be a weak RCE if it satisfies
all the conditions of RCE except for the inferior empty schools condition. There exists a
weak RCE in the NCBI domain. A parallel result to Proposition 2 for weak RCEs would
decompose changes into trading cycles of positive or negative welfare value, and indiffer­
ence chains.14 The Rural Hospitals Theorem (Theorem 2) no longer holds for weak RCEs.
Fortunately, all of the other remaining results can be established. The proofs of the above
statements are analogous to those in the main text so we omit them.

8.2. OnCrowdingAs aContinuous Variable. We use ρs to model the amount of resource
each student at school s receives. As mentioned above, there are practical situations where
ρs ought to be of the form 1/k for some k ∈ N. However, the discrepancy between ρs and
a simple ratio will be small for realistic school sizes and, in particular, it is easy to see that
the magnitude of the discrepancy at any RCE is

1

|σ[s]|
− ρs =

1

|σ[s]|
− 1

ρ−1
s

≤ 1

|σ[s]|
− 1

bρ−1
s c+ 1

=
1

|σ[s]|
− 1

|σ[s]|+ 1
.

Thus, the difference between ourmodeled ratio and a strictly interpreted resource­to­student
ratio is at most the addition of one more student. We think this is a negligible difference
for the overwhelming majority of real world applications. Thus by rounding the allocation
selected by the maximum RCE mechanism, we can always get a practically implementable
allocation that approximately preserves the nice properties of maximal RCEs.

8.3. Applications beyond School Choice. The first application is to the problem of labor
markets with financially constrained start­ups. Consider the labor market where there
is a finite set of start­ups F and a finite set of workersW . Each start­up f ∈ F is subject to
some (hard) financial constraints so that expenditure for labor employment κf > 0 is fixed
for the modelled time period. Given this, the start­up selects employees following a priority
order ≺f . The labor market is protected by a minimum wage w such that 0 < w ≤ κf for
each f ∈ F . Each worker w ∈ W has a complete and transitive preference relation Rw

over {(t, f) ∈ R× F : 0 ≤ t ≤ κf} such that for each f ∈ F and t, t′ ∈ [0, κf ]with t > t′,
(t, f) Pw (t′, f). The tuple (F,W,R,κ,≺, w) summarizes primitives of the problem.
We reformulate the problem to apply our results. Let F ,W , and≺ be as defined above.

For each f ∈ F , let bf = w
κf
. Each worker w ∈ W has a complete and transitive preference

14Chains here are defined in the same way as open trading cycles in Andersson and Svensson [2014].
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relation R∗
w over [0, 1] × F such that for each f, f ′ ∈ F and each t, t′ ∈ [0, 1], (t, f) R∗

w

(t′, f ′) if and only if (tκf , f) Rw (t′κ′
f , f

′). It is easy to see that all our results hold in
the problem (F,W,R∗, b,≺) and therefore the insights can be carried over to the original
problem (F,W,R,κ,≺, w).
The second application is to the problem of allocating polluting firms. Instead of stu­

dents and schools, consider polluting firms and subnations. Each firm is willing to invest in
at one most one subnation. Each subnation s is endowed with an amount of the same envi­
ronmental resource, and the priority for selecting polluting firms is based on their industrial
development policy. Let b−1

s be the maximum number of polluting firms that the subnation
is willing to admit. Each firm prefers to locate to a subnation where they are allowed a
higher level of pollution. As this is simply a re­interpretation of the model, we are able to
directly apply our results for this application.

9. Conclusion

We provide a new framework tomodel school choicewith crowding and establish analogs
of several key results in the school choice and matching literature. Many open questions
remain. Essentially, each topic considered in the school choice program, e.g. affirmative
action, efficiency improvements, lotteries, sibling guarantees, and multi­stage mechanisms,
can be re­examined in our framework. Regarding implementation, we show the existence
of RCE non­constructively, and so an algorithm for computing RCE on the full domain
is also unknown. New classes of questions are also possible, outside of the scope of the
classic model. For example, a school may not only have priorities over the students, but
also prefer to have a high resource ratio to maintain instructional quality. How should we
design mechanisms in this environment? Beyond school choice, crowding has not been
considered in general, many­to­many, or matching with contracts. Our techniques may be
useful in establishing results if crowding is added.

Appendix A. Existence of RCE and maximal RCE

We proceed in four subsections. In Section A.1 we study the set of fair allocations, which
contains the set of RCE, and which can be trivially shown to be non­empty on our domain.
In Section A.2 we show that RCE, if they exist, induce an upper lattice in welfare space,
which then leads to Theorem 3. Proposition 2 is necessary for this argument, so we give its
proof here as well. In Section A.3, we uncover some Pareto dominance relations in the set
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of fair allocations (“the fair set” for short). These imply that RCE will lie in the welfare­
upper­envelope of the fair set, and so will exist if the fair set induces a closed set in welfare
space. Finally, we conclude in Section A.4 with the (simple) topological arguments that are
required for this upper­envelope to exist.

A.1. Existence of Fair Allocations. A preference domain D′ ⊆ RN satisfies no bound­
ary indifference (NBI), if for each pair of schools s and t and each R ∈ D′, there is no
chain of indifference connecting (bs, s) and (bt, t). Note that if R satisfies NCBI, then it
satisfies NBI.

Proposition 5. A fair allocation exists on any NBI domain.

Proof. Consider ρ ∈ [0, 1]S such that ρs = bs. Then we have a standard school­choice
problem where the capacity of school s ∈ S is b−1

s . NBI implies that student preferences
are strict, so the set of stable matchings is non­empty (Roth and Sotomayor [1990]). Let σ
be a stable matching for this problem. Clearly, it satisfies no­blocking, in the sense of our
model. Thus, (ρ, σ) is a fair allocation. ■

A.2. The upper­lattice property. Given two allocations, (ρ, σ) and (γ, τ), construct the
labeled, directed transfer graph T on vertices S so that s i→ t ∈ T if σ(i) = s, τ(i) = t,
and s 6= t. Define the sets

S+ = {s ∈ S : γs > ρs} N+ = {i ∈ N : (γ, τ(i)) Pi (ρ, σ(i))}

S= = {s ∈ S : γs = ρs > bs} N= = {i ∈ N : (γ, τ(i)) Ii (ρ, σ(i))}

S∗ = {s ∈ S : γs = ρs = bs}.

We denote by s⇝t ⊆ T (σ, τ) a simple path in the transfer graph, which is to say, a path
with no repeated arcs. Note that since our graph may contain several arcs, with the same
orientation, between a given pair of vertices, there may be many distinct paths from s to t,
even on the same ordered list of vertices. We distinguish between different paths either by
decoration, so that s⇝′t 6= s⇝t, or superscript index, so that s⇝mt 6= s⇝nt when n 6= m.
A path is positive if it contains an N+­labeled arc. A positive path is totally­positive if it
contains only labels from N+ ∪N=.
The in­degree of a set of vertices V ⊆ S is the number of edges s → t ∈ T with s /∈ V

and t ∈ V . Symmetrically, the out­degree is the number of such edges where s ∈ V and
t /∈ V .
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Given the language just introduced, we rephrase Proposition 2.

Proposition 6. Let (ρ, σ) and (γ, τ) be two RCEs for a profile R satisfying NBI. Let T
be the transfer graph from (ρ, σ) to (γ, τ), and let the sets S+, S=, S∗, N+, N= be defined
as above. Then any path s⇝t ⊆ T touching a S+ school is positive. Any positive path
is a totally­positive cycle, confined to S = S+ ∪ S= ∪ S∗. Moreover, these cycles can be
constructed so that they are all mutually disjoint.

Proof. We first establish several claims.

Claim 1. For each s ∈ S with σ[s] 6= ∅, the out­degree of s in T is at least as large as its
in­degree.

Proof of claim. For each s ∈ S, with σ−1[s] non­empty,

bγ−1
s c ≤ bρ−1

s c = |σ−1[s]|,

and so there cannot be more students at s under (γ, τ) then under (ρ, σ), and so for any arc
entering s, there must be at least one exiting. �

Claim 2. If s i→ t ∈ T has s ∈ S and i ∈ N+ ∪N=, then t ∈ S.

Proof of claim. If t /∈ S, then γt < ρt, and furthermore, ρt > bt. Since (ρ, σ) is an RCE and
σ(i) = s, (ρ, s) Ri (ρ, t). Since, γt < ρt, (ρ, s) Pi (γ, t), and since τ(i) = t, i /∈ N+∪N=.

�

Claim 3. σ[S+] ⊆ N+ and τ(N+) ⊆ S+ ∪ S∗.

Proof of claim. For s ∈ S+, γs > bs. Therefore, for each i ∈ N , (γ, τ(i)) Ri (γ, s). In
particular, for i ∈ σ[s], preference monotonicity gives

(γ, τ(i)) Ri (γ, s) Pi (ρ, s) = (ρ, σ(i)) .

Thus, i ∈ N+.
Let i ∈ N+. If τ(i) /∈ S+, then by preference monotonicity

(ρ, τ(i)) Ri (γ, τ(i)) Pi (ρ, σ(i)) ,

and so
bτ(i) = ρτ(i) ≥ γτ(i) ≥ bτ(i),

yielding τ(i) ∈ S∗. �
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Claim 4. Consider a path in T of the following form:

t
i→ u

j→ v

with i ∈ N+ and j /∈ N+. Then j ∈ N=, u ∈ S∗, v ∈ S+ ∪ S=, and σ[v] 6= ∅.

Proof of claim. By Claim 3, u ∈ S+ implies j ∈ N+, and so γu ≤ ρu. Since i ∈ N+,

(ρ, u) Ri (γ, u) = (γ, τ(i)) Pi (ρ, σ(i)) .

It follows that u ∈ S∗ and, since σ(j) = u, j ≺u i. Thus if j is made worse off going to
(γ, τ), we have

(γ, u) = (ρ, u) = (ρ, σ(j)) Pj (γ, τ(j)) ,

implying, since τ(i) = u, that i ≺u j. In sum, we have j ≺u i and i ≺u j, a contradiction.
Therefore, j ∈ N=. Since u ∈ S∗, if γv = bv, then j is indifferent between (bu, u) and
(bv, v), contradicting NBI. Moreover, if ρv > γv, then ρv > bv and

(ρ, v) Pj (γ, v) = (γ, τ(j)) Ij (ρ, σ(j)) ,

contradicting that (ρ, σ) is an RCE. Conclude that v ∈ S+ ∪ S=. Finally, if σ[v] = ∅, then

(ρ, u) = (ρ, σ(j)) Pj (ρ, v) = (1, v) Rj (γ, v) = (γ, τ(j)) ,

where the strict relation is by inferior empty schools, contradicting that j ∈ N=. �

Let s 1→ u ∈ T have 1 ∈ N+. We shall extend this to a path s⇝t. By Claim 3, u ∈ S. If
it were the case that σ[u] = ∅, then since (ρ, σ) is an RCE, inferior empty schools implies,

(ρ, s) P1 (ρ, u) = (1, u) = (γ, u) ,

contradicting that 1 ∈ N+. By Claim 1, there is u 2→ v ∈ T . If 2 ∈ N+, we could then
start with this edge instead. Continuing inductively, let j be the first agent on the path who
is not in N+ (if such an agent does not exist, the argument yields a totally postive cycle, as
desired). We have that s⇝t decomposes to

s
1→ u⇝v → σ(j)

j→ w,

where u⇝v, if it exists, is labeled by N+ agents. By Claim 4, j ∈ N=, σ(j) ∈ S∗,
w ∈ S+ ∪ S=, and σ[w] 6= ∅. If w ∈ S+, then the path is extended by an arc w k→ w′

with k ∈ N+ (Claims 1 and 3). Our argument has returned to its starting point; our goal
is simply to show that a path initiated by a positive arc cannot have a terminal arc, remains
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within S, and is labeled only by N+ ∪ N= agents. Thus, we proceed constructively, and
when we arrive at an arc with an N+ label, call this the escape condition of our proof.
Assume, therefore, that w ∈ S=. Claim 1 implies there is w k→ w′ ∈ T . Note that

k ∈ N+ ∪N=, as otherwise,

(γ, w) = (ρ, w) = (ρ, σ(k)) Pk (γ, τ(k)) ,

violating that (γ, τ) is an RCE. If k ∈ N+, we have encountered the escape condition again,
so assume k ∈ N=. By Claim 2, w′ ∈ S. If w′ ∈ S+, then ρw′ < 1 so σ[w′] 6= ∅, and there
must be an outgoingN+ arc from w′ (Claims 1 and 3); again we have the escape condition.
Thus, to continue the argument, assume w′ ∈ S∗ ∪ S=. Now if w′ ∈ S∗, we have

σ(j)
j→ w

k→ w′

with σ(j), w′ ∈ S∗, and j, k ∈ N=. This is an indifference chain connecting twoS∗ schools,
contradicting NBI. Conclude that w′ ∈ S=, so

(ρ, w) Ik (γ, w
′) = (ρ, w′) ,

where the indifference is because k ∈ N=. Since (ρ, σ) is an RCE, by inferior empty
schools, σ[w′] 6= ∅. We can then repeat the foregoing arguments and continue the path. In
particular, w′ must have an outgoing arc w′ k′→ w′′, and k′ ∈ N+ ∪N=. If k′ ∈ N+, we get
the escape condition, and if k′ ∈ N=, we again conclude that w′′ ∈ S= and σ[w′′] 6= ∅.
Conclude that we can further decompose s⇝t to

s
1→ u⇝v → σ(j)

j→ w⇝x → t

where

(1) u⇝v, is labeled by N+ agents, and is contained in S by Claim 3,
(2) j ∈ N= and σ(j) ∈ S∗,
(3) w⇝x, is within S= and labeled by N= agents,
(4) t ∈ S+.

These segments need not all exist. If the last segment exists, then we are back where we
started and repeat the argument. In any case, we have shown that anyN+ labeled arc s → u

induces a path that is always labeled byN+∪N= agents, is always withinS (except possibly
for the very first vertex, s), and can always be extended. It follows that we can find a cyclic
sub­path, not necessarily including s. However, by deleting the cycle from T (viewing the
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graph as a set of labeled edges), we preserve the vertex degree inequality of Claim 1, and
none of the other claims are affected. Thus, we may repeat the argument. Eventually, we
must find a cycle involving s, implying s ∈ S.
Note, finally, that if s → t ∈ T and t ∈ S+, then since ρt < γt ≤ 1, σ[t] 6= ∅, and by

Claim 1, there is t i→ u ∈ T , and i ∈ N+. Invoking the argument above, we find that any
path that touches a S+ school is a totally positive cycle. ■

Now we apply Proposition 6 to the NCBI domain and complete the proofs of Proposition
2 and Theorem 3.

Proof of Proposition 2. Note that Proposition 6 can be applied in reverse, from (γ, τ) to
(ρ, σ) to get the first claim of this proposition. Thus, to complete the decomposition, it
remains to show that there are no paths in T that are not cycles. We have already shown
this for signed paths, so suppose s⇝t ⊆ T is labeled only byN= agents. Then each vertex
on the path belongs to S∗ ∪ S=. If u i→ v ∈ s⇝t has σ[v] = ∅, then by inferior empty
schools, (ρ, u) Pi (1, v) = (γ, v), contradicting that i ∈ N=. If τ [u] = ∅ then reverse
the argument. Clearly only s or t could be empty in one of the two RCEs, and one of
the two arguments just made applies to each, so no vertex touched by the path is empty at
either RCE. Then, since (ρ, σ) and (γ, τ) are both exhaustive, for each vertex u touched
by the path, bρ−1

u c = |σ[u]| and bγ−1
u c = |τ [u]|. Since u ∈ S∗ ∪ S=, ρu = γu and so

|σ[u]| = |τ [u]|. Thus, s⇝t can be extended to u → s⇝t → v. If u⇝v is labeled only by
N= agents, then we may repeat the argument. Since there are finitely many vertices, we
can eventually extend to a cycle, either by exhaustion of the argument in this paragraph, or
by extending to a signed path. ■

Proof of Theorem 3. Let T be the transfer graph from (ρ, σ) to (γ, τ). Letµ be thematching
that results from executing all the positive paths in T on σ. That is, if i labels an arc on a
positive path, then µ(i) = τ(i), and otherwise µ(i) = σ(i). Let ζ = ρ ∨ γ. We show that
(ζ, µ) is an RCE. Since positive paths are totally positive cycles, the number of students
at each school is unchanged from σ to µ, so (ζ, µ) satisfies exhaustiveness. To check that
(ζ, µ) is an allocation, it is sufficient to check the schools whose distribution has increased.
That is, pick s ∈ S+, where S+ is defined as above. Since |τ−1[s]| = |σ−1[s]|, and ζs = γs,
distribution feasibility at school s then follows from the distribution feasibility of (γ, τ).
Let N ′ be the set of agents on a totally positive cycle. By Proposition 6, totally positive

cycles are confined to S, so each i ∈ N ′ gets (ζ, µ(i)) = (γ, τ(i)). The total­positivity of
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these paths also yields

(1) ∀i ∈ N ′, (ζ, µ(i)) = (γ, τ(i)) Ri (ρ, σ(i)) .

Each i not on a totally positive cycle gets µ(i) = σ(i). Let σ(i) = s. There are two
cases, s ∈ S+ or not. If s ∈ S+, then Proposition 6 implies that i cannot label any arc in
T , as any such arc is then part of a totally positive cycle. Thus, τ(i) = σ(i) and we have
(ζ, µ(i)) = (γ, τ(i)). Then by preference monotonicity we have

(2) ∀i ∈ σ[S+] \N ′, (ζ, µ(i)) = (γ, τ(i)) Pi (ρ, σ(i))

If s /∈ S+, then ζs = ρs and so (ζ, µ(i)) = (ρ, σ(i)). If i ∈ N+, then since γs ≤ ρs, it must
be that τ(i) 6= σ(i) = s. Then i would be on a totally positive cycle. Therefore, i /∈ N+

and again we conclude

(3) ∀i ∈ σ[S \ S+] \N ′, (ζ, µ(i)) = (ρ, σ(i)) Ri (γ, τ(i)) .

In all cases, we have found that, at (ζ, µ), agents are consuming either their bundle under
(ρ, σ) or their bundle under (γ, τ). Moreover, since(

σ[S+] \N ′) ∪ (
σ[S \ S+] \N ′) = (

σ[S+] ∪ σ[S \ S+]
)
\N ′ = N \N ′,

lines 1, 2, and 3 yield

(4) ∀i ∈ N, (ζ, µ(i)) Ri max
Ri

{(ρ, σ(i)) , (γ, τ(i))}

Suppose (ζ, s) Pi (ζ, µ(i)), which by line 4 implies

(ζ, s) Pi max
Ri

{(ρ, σ(i)) , (γ, τ(i))}.

Assume there is j ∈ µ[s], so (ζ, µ(j)) = (ζ, s). Then since (ζ, µ(j)) ∈
{(ρ, σ(j)) , (γ, τ(j))}, plugging the appropriate case into the previous line yieldsj ≺s i.
Assume, therefore, that s is empty under µ. Then it is empty under σ, and so ζs = ρs = 1.

Thus, again invoking line 4,

(1, s) = (ρ, s) Pi (ζ, µ(i)) Ri (ρ, σ(i)) ,

contradicting that (ρ, σ) is an RCE. Therefore, (ζ, µ) satisfies fairness.
Finally, by Theorem 2, the set of empty schools remains the same in (ρ, σ) and (γ, τ),

and so also in (ζ, µ). Thus, by line 4, (ζ, µ) satisfies inferior empty schools. ■
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A.3. Domination lemmas. Given an allocation (ρ, σ), let s i→ t ∈ Γ if σ(i) = s 6= t, and
(ρ, t) Ri (ρ, s). We say that Γ is the weak envy graph of (ρ, σ).
Recall that a source set in a directed graph is a set of vertices that no edge enters. For­

mally, it is a set S ′ ⊆ S such that if s → t ∈ Γ and s /∈ S ′, then t /∈ S ′.
Say a school s ∈ S is totally exhausted at (ρ, σ) if |σ−1[s]|ρs = 1.

Lemma 1. Let (ρ, σ) be a fair allocation with weak­envy graph Γ. Suppose S ′ ⊆ S \ S∗,
not empty, is a source set in Γ and that no school in S ′ is totally exhausted. Then there is
an RCE (γ, τ), Pareto­dominating (ρ, σ) and with γ ⪈ ρ.

Proof. Let N ′ = σ−1[S ′]. For each s ∈ S ′, let ns = |σ−1[s]|. We shall construct an
assignment market isomorphic to the problem we currently face when restricted to N ′ and
S ′. To aid comparison of our current model with the assignment market we employ, we use
the terms stability and blocking. For our model, clearly s and i block (ρ, σ) if σ(i) 6= s and
either σ[s] = ∅ or i has (justified) envy at s. An allocation is stable if there are no blocks.
Let S be a set of

∑
s∈S′ ns elements. Let f : S → S ′ have |f [s]| = ns. We view S as the

set of copies of the elements of S ′.
Each s ∈ S consumes a point (l, i) ∈ R × N ′ and has simple preferences represented

by utility functionWs(l, i) = l; copies of schools care only about resources. Each copy has
an outside option denoted ws, so that s will withdraw from the matching (now an option)
before accepting a bundle giving utility less than ws. With abuse of notation, we retain the
same notation for the students. Each i ∈ N ′ consumes a point (r, s) ∈ R × S and has
preferences so that

(r, s) Ri (r
′, s′) ⇐⇒ (r, f(s)) Ri (r

′, f(s′)).

Let Ui be a continuous utility function representation ofRi. Assume that the outside option
utility for agents is −∞. When an agent and a school match, one unit of divisible resource
is produced, independent of their identities. We now have a one­to­one assignment market,
matching the sets N ′ and S together, and each matched pair having a unit of divisible
resource to divide. Demange and Gale [1985] show that, in this model, there is a unique
agent­optimal stable utility profile (u,w), with at least one and possibly several matchings
that yield these utilities. Moreover, there is at least one s ∈ S with ws = ws.
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Let σ̂ : N ′ → S be a bijection such that each σ̂(i) ∈ f [σ(i)]. The RCE (ρ, σ) induces
the following allocation on the constructed assignment market: Each i ∈ N ′ gets (ρf(s), s)
and s ∈ S gets (1− ρf(s), σ̂

−1(s)).15

We show in this paragraph that, so long as ws ≤ 1 − ρf(s), the allocation (ρ, σ̂) in the
constructed assignment market is stable. Clearly, no individual rationality constraints are
violated. Since (ρf(s), f(s)) Ri (ρf(s′), f(s

′)) when f(s) = σ(i), i and s′ could only form a
blocking pair by giving i at least ρf(s′), leaving only 1− ρf(s′) for s′.
Fix ε > 0 and set each ws = 1−ρf(s)− ε. Let (u,w) be the agent­optimal utility profile

for this problem, and let µ̂ be a matching that supports it. Since (ρ, σ̂) is stable, Demange
and Gale [1985] also show that, for each s ∈ S, ws ≤ 1− ρf(s).
Suppose there are s, s′ ∈ f [s] with ws < ws′ . Let j = µ̂−1(s′). By feasibility, j is getting

no more than rj = 1− ws′ units of resource at s′. By monotonicity of j’s preferences, and
since she cannot distinguish s and s′, Uj(rj, s) ≥ uj . However,

Ws(1− rj, j) = 1− rj = ws′ > ws,

and so j and s form a blocking pair. Conclude then that copies of the same school all get
the same level of utility.
For each s ∈ S ′, let γs = 1 − wf [s], where this latter is an abuse of notation but is

well­defined by our previous observation. For each s /∈ S ′, let γs = ρs. For s ∈ S ′ we have

γs = 1− wf [s] ≥ 1− (1− ρs) = ρs,

and since ws = ws for some copy of some school, the above inequality is strict for at least
one s ∈ S ′. Next, define µ so that, for each s ∈ S ′, µ[s] = {i ∈ N : µ̂(i) ∈ f [s]}, and for
s /∈ S ′, µ[s] = σ[s].
Recall that for each s ∈ S ′, ρs > bs, so there is a block of (γ, µ) involving s ∈ S ′ if

and only if there is i ∈ N with (γ, s) Pi (γ, µ(i)). Since S ′ is a source set in Γ, for ε
small enough, it remains a source set in the weak­envy graph for (γ, µ). Thus, there is no
block with agents outside N ′. Since (u,w) is stable, for each i ∈ N ′ and each s ∈ S ′,
(γ, µ(i)) Ri (γ, s). Thus the only remaining possible block is between i ∈ N ′ and s /∈ S ′.
Suppose such a block exists. Then

(ρ, s) = (γ, s) Pi (γ, µ(i)) Ri (ρ, σ(i)) ,

15We use f−1(x) to denote the unique inverse of a bijection and f [x] to denote the set­valued pre­image.
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where the last relation is because the stable match in the one­to­one problem Pareto domi­
nates (ρ, σ) for the N ′ agents. Thus, i would also like to block with s at (ρ, σ). However,
since γs = ρs and µ[s] = σ[s], if school s is party to the block at (γ, µ) then it is at (ρ, σ)
as well, contradicting that the latter is a fair allocation.
It remains to check that (γ, µ) is feasible, which requires only checking feasibility for

the S ′ schools. Since each s ∈ S ′ has nsρs < 1, for ε small enough,

nsγs = ns(1− wf [s]) ≤ ns(1− wf [s]) = ns(ρs + ε) < 1,

as desired. ■

Let Γ be the weak­envy graph of allocation (ρ, σ), and let t⇝s ⊆ Γ. Construct τ so that
for each i ∈ N with u

i→ v ∈ t⇝s, τ(i) = v, and otherwise τ(i) = σ(i). We allow for
s = t, so that the path may be a cycle. If (ρ, τ) is an allocation, then we say that t⇝s is
feasible. We say that τ is the matching that results from executing the path on matching σ.
Given allocation (ρ, σ) with weak envy graph Γ, the set of vertices upstream of s is

Us = {t ∈ S : ∃t⇝s ⊆ Γ}.

Lemma 2. Given profileR from the NCBI domain, let (ρ, σ) be a fair allocation that is not
an RCE. Then there is another fair allocation forR that Pareto dominates (ρ, σ).

Proof. Observe that if the set of upstream vertices Us is empty for some s ∈ S, and if ρs is
less than 1, then we can set γs = ρs + ϵ and all else equal, and (γ, σ) is a fair allocation if
ϵ is small enough. If σ[s] is non­empty, we are done.
As usual, let S∗ = {s ∈ S : ρs = bs}. Execute the following procedure as many times

as possible, starting with σ0 = σ: choose s ∈ S \ S∗ with |σ−1
m [s]| ≤ bρ−1

s c − 1. Letting
Γm be the weak­envy graph of (ρ, σm), find a (minimal) path t⇝s ⊆ Γm with t ∈ S∗.
That is, by taking sub­paths, t⇝s touches S∗ only at t. Execute the path to arrive at a new
allocation (ρ, σm+1). Observe that (ρ, σm+1) is a fair allocation, as no agent has entered
a S∗­school, so no violations of fairness can be introduced. Of course, we now have a
failure of exhaustiveness at t, if not before. Nonetheless, by the definition of the weak­
envy graph, (ρ, σm+1) Pareto weakly dominates (ρ, σm).16 We have therefore proven the
following claim:

16Allocation (ρ, σ) Pareto weakly dominates (ρ′, σ′) if for each i ∈ N , (ρ, σ(i)) Ri (ρ
′, σ′(i)).
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Claim. Let Γ be the weak­envy graph of a fair allocation (ρ, σ). Assume t⇝s ⊆ Γ touches
the set of constrained vertices, S∗, only at t. Then the allocation (ρ, τ) that results from
executing t⇝s on (ρ, σ) is a fair allocation that Pareto weakly dominates the original.

If any (ρ, σm+1) Pareto dominates (ρ, σm), we are done. Thus, wemay assume (ρ, σm+1)

is welfare equivalent to (ρ, σ). This process can be repeated at most finitely many times.
Let (ρ, µ) be the result and Γµ the associated weak­envy graph.
Case 1: There is s ∈ S \ S∗ with |µ−1[s]| ≤ bρ−1

s c − 1.
Our procedure above moves agents out of S∗ vertices along chains of weak­envy (actu­

ally, chains of indifference). Thus, since the procedure was executed to exhaustion, there
are no S∗ vertices in the set Us of upstream vertices of s in graph Γµ.
By definition, Us is a source in Γµ. If no school in Us is totally exhausted under (ρ, µ)

then we may invoke Lemma 1 to arrive at our desired conclusion. Suppose, then, that
there is t ∈ Us that is totally exhausted. Since {s} ∪ Us ⊆ S \ S∗, and since (ρ, µ) is
an RCE, all the arcs between these vertices in Γµ represent indifferences. Suppose there is
t′ ∈ Us, t′ 6= t, that is also totally exhausted. Then there are two chains of indifference, t⇝s

and t′⇝′s, in Γµ. The concatenation of these, t⇝s ⇝′t′, represents a chain of indifference
connecting t and t′. This violates NCBI as both of these vertices are totally exhausted and
so ρ−1

t , ρ−1
t′ ∈ N. Therefore, t is the only member of Us that is totally exhausted.

Execute t⇝s on (ρ, µ) to arrive at a fair allocation (ρ, τ) with associated weak­envy
graph Γτ . As above, if we have found a Pareto improvement, we are done, so we may
assume it is welfare equivalent to (ρ, µ). Our next task is to show that {s} ∪Us is a source
in Γτ , recalling that Us is the set of upstream vertices in Γµ.
Let u i→ v ∈ Γτ have u /∈ Us. If τ(i) = µ(i) then clearly u

i→ v ∈ Γµ, and since Us is
a source set in Γµ, v /∈ Us. If τ(i) 6= µ(i), then i labels some arc on the path t⇝s ⊆ Γµ

we just executed. Stated formally, there is u′ i→ u ∈ t⇝s, µ(i) = u′, and τ(i) = u. By
construction, the only school not in Us that is touched by this path is s, so in fact u′ i→ u is
the last arc of the path, and so u = s. Thus, we have shown that if u i→ v ∈ Γτ has u /∈ Us

but v ∈ Us, then u = s; the only arcs in Γτ (if there are any at all) that enter Us are those
coming from s.
Suppose there is a path w⇝s ⊆ Γτ that is not a path in Γµ. By taking sub­paths, assume

we have the shortest such path, so that

w⇝s = w
k→ w′⇝s,
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with w′⇝s ⊆ Γµ. This latter inclusion, however, implies that w′ ∈ Us, along with all the
other vertices touched by w′⇝s, and so by the previous paragraph, w = s. Conclude that
the only paths to s in Γτ that are not in Γµ are of the form s → t⇝s, where t⇝s ⊆ Γµ. It
follows that {s} ∪ Us is a source set in Γτ .
Recall that our original path t⇝s ⊆ Γµ represented only indifferences. Since t is totally

exhausted at (ρ, µ), ρ−1
t ∈ N. By NCBI, it follows that ρ−1

s is not an integer, implying that
ρ−1
s > bρ−1

s c. This further implies that s remains not totally exhausted if another student is
added to it, and so is not totally exhausted at (ρ, τ). The schools in the middle of the path
have not changed the number of students they admit from µ to τ , so they remain not totally
exhausted. Clearly,

|τ−1[t]| = |µ−1[t]| − 1 = bρ−1
t c − 1,

so t is not totally exhausted at (ρ, τ). Since twas the only totally exhausted site in Us under
(ρ, µ), we now have that {s} ∪ Us is a source set in Γτ with no exhausted schools, and we
therefore invoke Lemma 1.
Case 2: Each s ∈ S with |µ−1[s]| ≤ bρ−1

s c − 1 has s ∈ S∗, so ρ−1
s = b−1

s ∈ N.
Assume N ′ = {j ∈ N : (ρ, s) Pj (ρ, µ(j))} is non­empty, and let j = min≺s N

′.
Define matching τ so that τ(j) = s and otherwise τ(i) = µ(i). Then (ρ, τ) is clearly a fair
allocation that Pareto dominates (ρ, µ), and therefore (ρ, σ). We proceed, therefore, under
the assumption that each arc t i→ s ∈ Γµ represents indifference.
If there is t ∈ Us with ρ−1

t ∈ N, then by taking sub­paths, assume t⇝s is a minimal path
starting from such a t. That is, for every s′ ∈ S touched by the path except t and s, ρs′ > bs′ .
Decompose t⇝s as t → u⇝v → s. Then u⇝v touches no S∗ vertices and so, since (ρ, µ)
is a fair allocation, the edge t → u and all edges in u⇝v represent indifference. We showed
in the previous paragraph that v → s represents indifference. Thus, since ρ−1

t ∈ N, this path
is a contradiction to NCBI. Conclude thatUs contains neither a totally exhausted vertex, nor
a S∗ vertex, and so we invoke Lemma 1. ■

A.4. Topological argument to complete the proof.

Theorem 5. GivenR ∈ RN satisfying NCBI, let E be the set of RCE forR. Then

(1) E is not empty,
(2) E induces a closed upper­lattice in welfare space, and
(3) the set of distributions supporting the elements of E has a ≤­greatest element,

ρ∗(R), which itself supports the welfare­greatest elements of E .



36 W. PHAN, R. TIERNEY, AND Y. ZHOU

Proof. For each i ∈ N , let ui be a continuous utility function representation for Ri. Fixing
a matching σ, the function ρ ∈ [0, 1]S

U7→ (ui (ρ, σ))i∈N is continuous. Closed subsets of
[0, 1]S are compact and so map to compact sets under this function. The set Dσ ⊆ [0, 1]S

of distributions ρ such that (ρ, σ) is a fair allocation is closed: To see this, recall simply
that a violation of fairness requires strict preference, and no new strict preference can be
introduced in the limit of a sequence of distributions of fair allocations. Let D = ∪σDσ.
Since there are only finitely many possible matchings, D is compact.
Let U = U(D), which is compact. Let u ∈ U be ≤­maximal. By Lemma 2, there is an

RCE that induces u. Thus, the ≤­upper envelope of U corresponds to RCE. By Theorem
3, the ≤­upper envelope of U is a lattice. Therefore, U has a ≤­greatest element. ■

Proof of Theorem 1. It follows directly from Part (1) of Theorem 5. ■

Proof of Proposition 3. By Lemma 2 and Theorem 5, it follows that the correspondence of
welfare­greatest RCE, i.e., themaximal RCE, on theNCBI domain is non­empty, essentially
single­valued, and satisfies student­optimal fairness. ■

Appendix B. Proof of Theorem 4: Strategy­proofness

First, we establish the following lemma, which is an immediate consequence of lemmas
in Section A.3, but highlights a structural feature that will be important in the proof of
strategy­proofness below.

Lemma 3. Assume that R ∈ RN satisfies NCBI. Suppose (ρ, σ) is a fair allocation for
R at which either s ∈ S is not totally exhausted, or s ∈ S∗. Let Us be the set of vertices
upstream of s under the weak­envy graph of (ρ, σ). If Us contains no totally exhausted
schools, there is another fair allocation that Pareto dominates (ρ, σ).

Proof. Observe that if Us is empty, then we can set γs = ρs+ϵ and all else equal, and (γ, σ)
is an RCE if ϵ is small enough. Thus, we may assume that Us is non­empty for all s ∈ S.
By Case 2 of Lemma 2, we may assume each S∗ school is totally exhausted. Thus if

some s ∈ S has Us containing no totally exhausted schools, then it contains no S∗ schools
either. That is, Us ⊆ S \S∗, and is non­empty. We now invoke Lemma 1 to get the desired
result. ■

Recall that preference relationR′ is a MaskinMonotonic transform of preference relation
R at bundle (x,m) if (y, t) R′ (x,m) implies that (y, t) R (x,m). Let T (R, (x,m)) be the
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set of Maskin monotonic transforms of R at (x,m). It is obvious that the correspondence
of RCE is Maskin monotonic, which is to say that if (ρ, σ) is a RCE forR, andR′ has, for
each i ∈ N , R′

i ∈ T (Ri, (ρ, σ(i))), then (ρ, σ) is a RCE for R′. We first uncover some
structural properties of φ with respect to Maskin Monotoic Transforms.
An undirected graph is a tree if there is exactly one path in the graph between any pair

of vertices. In particular, a tree is simple—there is at most one edge between any pair of
vertices. With abuse of terminology, we shall call a directed graph a tree if its underlying
undirected graph is a tree and there is a special vertex r, called the root, from which all
paths emerge. That is, for all non­root vertices s, there is a path r⇝s in the graph. Finally,
a directed graph is a forest if it is comprised of disjoint directed trees, having no edge or
vertex in common. Let Γ be the weak­envy graph for allocation φ(R) with preferencesR.
By Lemma 3, we can find a subgraph Γ′ ⊆ Γ that is a directed forest and such that each
totally exhausted s ∈ S with ρ∗

s(R) > bs is a root vertex. Call such Γ′ a minimal forest
for R. The following observations imply that, for generic profiles, the minimal forest is
unique. In any case, we have the following lemma.

Lemma 4. LetR andR′ be members ofD with the following properies: 1) for each i ∈ N ,
R′

i ∈ T (Ri, φi(R)) and 2) the weak­envy graph for R′ at φ(R) contains a minimal forest
forR at φ(R). Then ρ∗(R′) = ρ∗(R).

Proof. Let Γ′ be a minimal forest forR. First considerR′′ ∈ D such that, for each i ∈ N ,
R′′

i ∈ T (Ri, φi(R)) and such that the weak­envy graph ofR′′ at φ(R) is precisely Γ′. By
Maskinmonotonicity,φ(R) is an RCE forR′′, soρ∗(R′′) ≥ ρ∗(R). By the lattice property,
R′′ welfare can only increase from φ(R) to φ(R′′). By Theorem 2, the change in school­
assignment betweeen these two consists entirely of trading cycles. By Proposition 2, all
trading cycles between these two allocations must be welfare non­negative, and therefore
must be cycles in Γ′. However, Γ′ has no cycles, and therefore the matching under φ(R′),
say σ, is the same as that under φ(R). Now if ρ∗

s(R
′) > ρ∗

s(R), then clearly s is not totally
exhausted at φ(R). Thus there is a path t⇝s ⊆ Γ′. In particular, there is u i→ s ∈ Γ′.
However, we then have ρ∗

s(R
′′) > bs and

(ρ∗
s(R

′′), s) P ′′
i (ρ∗

s(R), s) R′′
i (ρ∗

s(R), u) ,
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implying, since φ(R′′) is an RCE, that ρ∗
u(R

′′) > ρ∗
u(R). It follows that u is not totally

exhausted at φ(R) and so we may repeat the argument. In fact, we may repeat the argu­
ment all the way up the path t⇝s to vertex t, getting a contradiction to feasibility since
|σ[t]|ρ∗

t (R) = 1. We conclude, therefore, that ρ∗(R′′) = ρ∗(R).
Now letR′ ∈ D have, for each i ∈ N ,R′

i ∈ T (Ri, φ(R)) and that Γ′ is a subgraph of the
weak­envy graph ofR′ at φ(R). As above, ρ∗(R′) ≥ ρ∗(R). However, note that we may
choose R′′ above so that, for each i ∈ N , R′′

i ∈ T (R′
i, φ(R)). Thus, ρ∗(R) = ρ∗(R′′) ≥

ρ∗(R′) and so ρ∗(R′) = ρ∗(R). ■

An immediate corollary of the previous lemma is the following observation, which seems
important enough to be labeled a Theorem.

Theorem 6 (The Locality Theorem). Let R′ ∈ D be a profile such that, for each i ∈ N ,
(ρ∗(R), s) Ii φi(R) implies (ρ∗(R), s) I ′i φi(R). Then ρ∗(R′) = ρ∗(R).

This result makes it easier to transfer insight across preference domains, because one
can make nearly arbitrary changes in the preference profile and induce no change in the
maximal distribution so long as the key set of indifference sets are preserved. In particular,
it shows that studying ρ∗ with restricted domains, such as linear or quasilinear domains, is
sufficient.
We are now prepared to prove the incentive compatibility of φ.

Proof of Theorem 4. LetR′ = (R′
i, R−i) ∈ D. Suppose φi(R

′) Pi φi(R). Let

R′′
i ∈ T (R′

i, φi(R
′)) ∩ T (Ri, φi(R))

have the following properties. For each s ∈ S, if (ρ∗(R′), s) 6= φi(R
′) then φi(R

′) P ′′
i

(1, s). Also, let R′′
i have the same indifference set through φi(R) as Ri does. Note that

this assumption implies φi(R
′) P ′′ φi(R). Let R′′ = (R′′

i ,Ri). By the Locality Theo­
rem, ρ∗(R′′) = ρ∗(R). By Maskin monotonicity, φ(R′) is an RCE for R′′. Therefore
φi(R

′′
i ,R−i) R

′′
i φi(R

′) P ′′
i φi(R). It follows that φi(R

′′
i ,R−i) Pi φi(R). Therefore, if i

can manipulate φ atR, then i can manipulate via a preference such as R′′
i . Without loss of

generality, we assume henceforth thatR′ = R′′.
We are considering two allocations, φ(R) and φ(R′) with the same distribution vector

ρ = ρ∗(R) = ρ∗(R′). We shall construct a classical school choice problem from these and
derive a contradiction to the strategy­proofness of the student­optimal stable rule (Roth and
Sotomayor [1990]) in this context.
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The set of classical schools is denoted S. As usual, let S∗ = {s ∈ S : ρs = bs} and call
these (crowded) schools constrained. We collapse all the unconstrained schools into one
classical school, s̀. School priorities in the classical model will be denoted ◁. For s ∈ S∗,
which maps to s ∈ S, set ◁s =≺s. Set k ◁s̀ j if k ∈ τ [S \ S∗] and j ∈ τ [S∗]. We shall not
need to further specify ◁s̀.
Next we break ties in student preferences. We begin with an intermediate step, deciding

that s̀ shall inherit the rank of the highest ranked unconstrained school. That is, let s ∈ S\S∗

have, for each t ∈ S \ S∗, (ρ, s) Rj (ρ, t). Then, for u ∈ S, u Rj s̀ only if (ρ, u) Rj (ρ, s).
With this step, we have defined the weak preference Rj on S. It remains to break ties on
this relation. Note that by NCBI, Rj is in fact strict when restricted to S \ {s̀}, so there is
at most one non­singleton indifference class, and it has the form {t, s̀}. Before completing
our tie­breaking specification, let us first make the following observation:

Claim 5. Let (ρ, s) Ij (ρ, σ(j)) or (ρ, s) I ′j (ρ, τ(j)). Then s ∈ S \ S∗.

Proof of claim. Recall Lemma 3. First, if σ(j) is exhausted at (ρ, σ), then the claim follows
directly fromNCBI. Otherwise, there is t⇝σ(j) ⊆ Γ, where Γ is the weak­envy graph ofR
at (ρ, σ), with t totally exhausted. By taking subpaths we may find assume this is a shortest
(by length) path with this property. Thus, at most one school touched by the path is in S∗,
and it must be t, as otherwise we could shorten the path further. Therefore, the path must
consist entirely of indifferences, and so t⇝σ(j) → s, with s ∈ S∗, contradicts NCBI.
Note that the symmetric proof holds for (ρ, s) I ′j (ρ, τ(j)). �

We now break the tie in the indifference set {t, s̀}. Here are the rules:
(1) If σ(j) maps to s̀, then s̀ Pj t.
(2) Otherwise t Pj s̀.
We now show that σ̄ is stable for the classical school­choice problem with preferences

R. Suppose s Pj σ̄(j). There is s ∈ S such that (ρ, s) Rj (ρ, σ(j)). If this relation is strict,
then s ∈ S∗, since (ρ, σ) is an RCE. This further implies that ◁s =≺s and that, for each
k ∈ σ[s], k ≺s j. If the relation is an indifference, then by the claim, s = s̀. However,
s̀ Pj σ̄(j) could only have happened via Rule (1), which could only happen if σ̄(j) = s̀, a
contradiction. In sum, all envy is justified by the priorities.
We now show that τ is stable for R′. Observe that, by construction, P′

i top ranks τ̄(i), so
we may restrict attention to j 6= i. In this case, R′

j = Rj . Suppose s Pj τ̄(j). Given the
argument of the previous paragraph, it is clear we can skip to the case that (ρ, s) Ij (ρ, τ(j)).
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The claim then implies that s = s̀ and so τ̄(j) 6= s̀ and j ∈ τ [S∗]. Thus for each k ∈ τ̄ [̀s],
k ∈ τ [S \ S∗], and so k ◁s̀ j. Again, all envy is justified by the priorities.
Now we claim that σ̄ is the student optimal stable match for R. Suppose that µ̄ is a stable

match that weakly dominates σ̄. By our tie­breaking construction, if (ρ, σ(j)) Rj (ρ, t),
then σ̄(j) Pj t. In particular, since (ρ, σ) is an RCE for R, either σ̄(j) = s̀ or σ̄(j) Pj s̀.
Thus, going from σ̄ to µ̄ cannot involve moving students into s̀ who are not already there.
Then by feasibility, no students can move out of s̀. Thus, µ̄[̀s] = σ̄[̀s]. In other words, µ̄ is
a reassignment of the agents at constrained schools. Let µ be a matching in the crowded
school model that coincides with µ̄ on S∗ and with σ otherwise. Suppose there is j ∈ N

with µ̄(j) Pj σ̄(j). Then j ∈ σ[S∗] and µ(j) ∈ S∗. Since (ρ, σ) is maximal forR, there is
k ∈ N with k ≺µ(j) j and (ρ, µ(j)) Pk (ρ, µ(k)). By construction, k ◁µ̄(j) j. If µ(k) ∈ S∗,
then µ̄(k) 6= s̀ and µ̄ is blocked in the classical model, as preferences over S∗ map directly
to preferences over S \ s̀. Thus, µ(k) = σ(k) ∈ S \ S∗. Since (ρ, σ) is an RCE, for
each t ∈ S \ S∗, (ρ, σ(k)) Rk (ρ, t), so recalling that s̀ inherits the rank of the highest
unconstrained school, we have µ̄(j) Pk µ̄(k) = s̀. Again we conclude that µ̄ is blocked in
the classical model.
Now observe that τ̄(i) is the top­ranked school for R′

i, so µ̄(i) = τ̄(i) for any stable µ̄ that
dominates τ̄ for R′. By assumption, (ρ, τ(i)) Pi (ρ, σ(i)), so by construction τ̄(i) Pi σ̄(i),
contradicting that i is not able to manipulate the student optimal stable rule. ■

Appendix C. Proof of Proposition 4: The Algorithm

First, observe that the procedure ends in finitely many stages. By construction, the ratio
at each school s will be no lower than bs, and so ρn ≥ b at every stage. If indeed the
algorithm reaches ρn = b, then it terminates, with the final stage being exactly the Deferred
Acceptance algorithm. NCBI guarantees that this results in a maximal RCE.
AsR ∈ D, ρ∗(R) is defined. Clearly, ρ0 ≥ ρ∗(R). We claim that ρn ≥ ρ∗(R) for each

n. To simplify notation, let ρ∗ = ρ∗(R). Assume that ρ = ρn ≥ ρ∗. We shall show that
ρn+1 ≥ ρ∗ and then induction completes the argument. If ρ > ρ∗, then there is nothing
to show. Similarly, if ρs = ρ∗s implies that ρs = bs, then by definition of the algorithm,
ρn+1
s ≥ ρs. Therefore, let S ′ = {s ∈ S : ρs = ρ∗s > bs} be non­empty. Thus at maximal
RCE (ρ∗, τ) forR, for each s ∈ S ′, each i has (ρ∗, τ(i)) Ri (ρ

∗, s).
Note that, by the definition of a maximal RCE, τ is precisely the outcome of doing steps

(1)­(4) in the algorithm for distribution ρ∗, and then matching the remaining students to a
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school they demand. This will be possible as there are no overdemanded sets of schools.
Thus, each s ∈ S ′ is trivially not a member of any overdemanded set.
Let S+ = {t ∈ S : ρt > ρ∗t}. We make an ad hocmodification of distribution feasibility.

Let τ ′ be the matching that results from steps (1)­(4) of the algorithm, at distribution ρ∗, but
ignoring the capacity constraint on the schools in S+. That is, any student who applies to
any s ∈ S+ ∩ S∗ at any point in Deferred Acceptance is immediately assigned to s. By the
resource monotonicity of Deferred Acceptance rule (Ehlers and Klaus [2016]), each i ∈ N

has (ρ∗, τ ′(i)) Ri (ρ
∗, τ(i)).

Now by preferencemonotonicity, for each i ∈ N , (ρ, τ ′(i)) Ri (ρ
∗, τ ′(i)). The allocation

(ρ, τ ′) is not necessarily fair. However, the only violations of fairness are of the form
(ρ, t) Pi (ρ, τ

′(i)) for t ∈ S+, as (ρ∗, τ ′) is fair. Construct τ ′′ so that τ ′′(i) ∈ D (ρ, S+;Ri)

if there is t ∈ S+ with (ρ, t) Ri (ρ, τ
′(i)), and otherwise τ ′′(i) = τ ′(i). Thus, for each

i ∈ N , (ρ, τ ′′(i)) Ri (ρ, τ ′(i)), and (ρ, τ ′′) is fair. Clearly, (ρ, τ ′′) is not an allocation;
hence we refer to it as a tentative allocation. Let N ′ be the set of step (2) for ρ, which is of
course the set N ′ calculated in stage n. As (ρ, τ ′′) is fair for N , it is fair when restricted
to N ′. NCBI implies that the fair set for the restricted problem of N ′ and constrained
schools, {t ∈ S : ρt = bt}, is a welfare lattice; let σ be the student­optimal fair allocation
for this problem. If i ∈ N ′ is unmatched by σ, or if i /∈ N ′, then set σ(i) = τ ′′(i).
Then (ρ, σ) is fair. Moreover, for each i ∈ N , (ρ, σ(i)) Ri (ρ, τ

′′(i)). Together with our
earlier deductions, we have that (ρ, σ(i)) Ri (ρ

∗, τ(i)). By construction, σ, restricted to
the constrained schools, is the result of steps (1) through (3) of the algorithm in stage n.
Moreover, on the rest of the schools, the tentative matching σ is compatible with demands
calculated in step (4).
Let s ∈ S ′. We showed in the second paragraph above that, for each i ∈ N , (ρ∗, τ(i)) Ri

(ρ∗, s). As ρs = ρ∗s, we have just deduced then that (ρ, σ(i)) Ri (ρ, s). It follows that
since s is not a member of an overdemanded set at ρ∗, then it is not at ρ. Thus s will not be
incremented and so ρn+1

s = ρs ≥ ρ∗s as desired.
Clearly the algorithm terminates only when it has arrived at an RCE. Thus, it must arrive

at an RCE for distribution ρ∗(R). However, among the students at schools at their lower
bounds, we have found the student­optimal fair outcome. By the standard Rural Hospitals
Theorem of, e.g., Roth [1986], any student not matched to one of these and would prefer to
be, cannot be matched in a fair way. Thus, the algorithm terminates at a maximal RCE.
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