
 

 
 

 
Kyoto University, 
Graduate School of Economics 
Discussion Paper Series 

 
 
 
 
 
 
 
 

When can we design efficient and strategy-proof rules in package 
assignment problems? 

 
 

 
 
 
 
 
 

Tomoya Kazumura 
 
 
 
 
 
 

Discussion Paper No. E-21-008 
 
 
 
 
 

Graduate School of Economics 
 Kyoto University 

Yoshida-Hommachi, Sakyo-ku  
Kyoto City, 606-8501, Japan 

 
 
 

January, 2022 
 



When can we design efficient and strategy-proof

rules in package assignment problems?∗

Tomoya Kazumura†

January 26, 2022

Abstract

We examine the compatibility of efficiency and strategy-proofness in a pack-

age assignment model where preferences may not be quasi-linear. Given r ∈ R,

a preference relation is r-partially quasi-linear if it is quasi-linear over the set of

(consumption) bundles where each bundle is at least as desirable as receiving

no object and paying r, and the payment at each bundle is at least r. We

show that if a domain includes r-partially quasi-linear domain, then no rule is

efficient and strategy-proof. We also show that if there is a rule that satisfies

efficiency, strategy-proofness, individual rationality, and no subsidy for losers

on a domain, the domain must be a subset of the (0-)partially quasi-linear do-

main. Our results demonstrate that the quasi-linearity of preferences plays an

important role to design an efficient and strategy-proof rule.
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1 Introduction

Package auctions are widely conducted in many countries to allocate scares resources

such as spectrum licenses.1 The primary goal in most of those auctions is to achieve

efficiency. For example, the Federal Communication Commission (FCC), which con-

ducted package auctions intensively in the past 25 years, states that “[t]he auction

approach is intended to award the licenses to those who will use them most effec-

tively.”2 In many package auctions in practice, agents (bidders) win packages at very

high prices. As we discuss in detail in Section 1.1, an agent’s valuation for a package

may depend on the payment level in such a large scale auction, i.e., preferences may

not be quasi-linear. Though there is a substantial literature on object assignments,

most of those papers assume the quasi-linearity of preferences. Without the quasi-

linearity assumption, when can we achieve an efficient allocation? Our answer is that

the quasi-linearity of preferences is crucial to achieve an efficient allocation.

Formally, we consider a package assignment model with transfers. There are

several objects and each agent obtains a package of objects. Our model covers the

case where objects are identical, the case where objects are all distinct, and the

cases where there are several object types and each object has several copies.3 A

(consumption) bundle consists of a package of objects and a payment. We assume

that preferences are object monotonic, i.e., at each payment level, more objects are

preferred to less. Preferences are not necessarily quasi-linear. A set of preferences is

called a domain. In particular, the set of object monotonic preferences is called the

object monotonic domain.

An (allocation) rule is a mapping from the set of preference profiles to the set of

allocations. We investigate domains on which there is an efficient and strategy-proof

rule. The efficiency of an allocation in this paper means that no other allocation makes

1Bikhchandani and Mamer (1997) and Ausubel (2006) discuss other examples of package auctions.
2See https://www.fcc.gov/auctions/about-auctions.
3For example, in the spectrum auction in the UK in 2018, licenses in the 2.3 and 3.4 GHz spectrum

bands were allocated. Each spectrum band was divided into small blocks and a license corresponds to

a block in one of the spectrum bands. Blocks in the same spectrum band are considered to be identi-

cal. Thus, in this auction, there are two types of objects, each of which has several copies. For more

details, see https://www.ofcom.org.uk/consultations-and-statements/category-1/2.3-3.4-

ghz-auction-design.

2

https://www.fcc.gov/auctions/about-auctions
https://www.ofcom.org.uk/consultations-and-statements/category-1/2.3-3.4-ghz-auction-design
https://www.ofcom.org.uk/consultations-and-statements/category-1/2.3-3.4-ghz-auction-design


an agent better off without making any agent worse off or reducing the revenue of

the planner. It is well-known that there is an efficient and strategy-proof rule on the

quasi-linear domain (the set of quasi-linear preferences) (Holmström, 1979). Hence,

we examine whether an efficient and strategy-proof rule exists on domains larger than

the quasi-linear domain.

Our results indicate that efficiency and strategy-proofness are incompatible unless

preferences are “alomst” quasi-linear. To explain our results, we explain the notion

of partially quasi-linear preferences. Take any r ∈ R. For each preference relation,

we can define the set of bundles where each bundle is at least as desirable as no

object with payment r and the payment at each bundle is at least r. We call this

set of bundles the r-relevant consumption set. A preference relation is r-partially

quasi-linear if it is quasi-linear on the r-relevant consumption set. In particular, if

r = 0, then we call a 0-partially quasi-linear preference relation a partially quasi-linear

preference relation.

Our main results depend on the number of agents. Take any r ∈ R. For two-

agent case, we show that the r-partially quasi-linear domain (the set of r-partially

quasi-linear preferences) is a maximal domain for efficiency and strategy-proofness

(Theorem 1 (ii)). Thus, there is an efficient and strategy-proof rule on the r-partially

quasi-linear domain, and no rule satisfies the two properties on any larger domain.

Further, we show that on the r-partially quasi-linear domain, r-generalized Vickrey

rules (a generalization of the Vickrey rule to non-quasi-linear domains) are the only

efficient and strategy-proof rules (Theorem 1 (i)). On the other hand, for more than

two agents, we show that there is no efficient and strategy-proof rule on any domain

including the r-partially quasi-linear domain (Theorem 2).

The above results are strengthened by imposing additional properties. We consider

three additional properties. Individual rationality is a participation constraint which

requires that each agent should receive a bundle which is at least as desirable as she

would be if she had received no object and paid nothing. No subsidy for losers requires

that the payment of losers (agents who receive no object) should be nonnegative.

Common payment for losers requires that the payment of losers is always the same.

Individual rationality and no subsidy for losers imply common payment for losers.

We show that if there is a rule on a domain that satisfies efficiency, strategy-
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proofness, individual rationality, and no subsidy for losers, then the domain must be

a subset of the partially quasi-linear domain (Theorem 3). This result implies that

for two agents, the partially quasi-linear domain is the unique maximal domain for

the four properties. Further, we show that if there is a rule on a domain that satisfies

efficiency, strategy-proofness, and common payment for losers, then there is r ∈ R
such that the domain is a subset of the r-partially quasi-linear domain (Theorem 4).

This result implies that for two agents, the family of r-partially quasi-linear domains

coincides with the family of maximal domains for the three properties.

Our results provide a useful tool for verifying the existence of an efficient and

strategy-proof rule on various domains of interest. For example, the object mono-

tonic domain includes the r-partially quasi-linear domain for each r ∈ R. Thus, our

results imply that there is no efficient and strategy-proof rule on the object mono-

tonic domain (Corollary 1). We also consider other examples of domains studied in

the literature on mechanism design without quasi-linearity. The first one is domains

of preferences with income effects. The nonnegative income effect and nonpositive in-

come effect domains include the quasi-linear domain, and further, contain a preference

relation that is not r-partially quasi-linear for each r ∈ R. Thus, our results imply

that on those domains no rule satisfies efficiency, strategy-proofness, and common

payment for losers (and hence no rule on those domains satisfies efficiency, strategy-

proofness, individual rationality, and no subsidy for losers) (Corollary 2). Another

example is the domain of quasi-linear preferences with borrowing cost. This domain

includes the quasi-linear domain and contains a preference relation that is not par-

tially quasi-linear. Thus our results imply that there is no rule on this domain that

satisfies efficiency, strategy-proofness, individual rationality, and no subsidy for losers

(Corollary 3).

Our results also have some implication to the public goods model with transfers.

Indeed, our results imply that in the public goods model, if there are at least three

agents and six alternatives, there is no efficient and strategy-proof rule on the partially

quasi-linear domain (Corollary 4).
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1.1 Related literature

Most research in mechanism design and auction theory assumes preferences to be

quasi-linear. The quasi-linearity of preferences requires that the valuation for a pack-

age is independent of the payment, i.e., there is no income effect. As Marshall (1920)

argues, this assumption is plausible when the payment is sufficiently small.4 However,

in many practical applications, such as spectrum auctions, agents’ payments are typ-

ically very high.5 When payments are high, “[e]xcessive payments for the auctioned

objects may damage bidders’ budgets to purchase complements for effective uses of

the objects and thus, may influence the benefits from the objects” (Morimoto and

Serizawa, 2015, p.447). Thus, the quasi-linearity of preferences is not an appropriate

assumption in many practical applications. Another source that makes preferences

non-quasi-linear is the existence of distortionary frictions (Saitoh and Serizawa, 2008;

Fleiner et al., 2019). For example, a bidder may have to borrow money at some inter-

est rate when the payment exceeds her income. The existence of such a borrowing cost

makes preferences non-quasi-linear even if the original preferences are quasi-linear.6

When preferences are quasi-linear, it is well-known that only Groves rules satisfy

efficiency and strategy-proofness (Holmström, 1979), and further, Vickrey rules are

the only rules that satisfy efficiency, strategy-proofness, individual rationality, and

no subsidy for losers (Holmström, 1979; Chew and Serizawa, 2007). In contrast to

these results, our results indicate that when the domain contains enough variety of

non-quasi-linear preferences, no rule satisfies those properties.

Similar impossibility results are obtained by Kazumura and Serizawa (2016), Baisa

(2020), and Malik and Mishra (2021). However, there are mainly two differences be-

tween our paper and those papers. First, those three papers impose individual ra-

tionality and a no subsidy condition in addition to efficiency and strategy-proofness.

Since we impose only efficiency and strategy-proofness in our main results (The-

orems 1 and 2), their results do not imply our main results. Further, individual

rationality and no subsidy for losers are not plausible in some auctions in practice.

4Vives (1987) and Hayashi (2008) give a mathematical foundation for this argument.
5For example, most firms that won licenses in the spectrum auction in 2021 in the UK pay

around £300 million. For more details, see https://www.ofcom.org.uk/spectrum/spectrum-

management/spectrum-awards/awards-archive/2-3-and-3-4-ghz-auction
6We discuss it formally in Section 6.
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For example, entry fees exist in many auctions in practice.7 Also, entry subsidy is a

natural tool for increasing the number of participants.8 The above three papers do not

cover such situations. On the other hand, our paper shows that even when entry fees

or subsidies are allowed, it is not possible to design an efficiency and strategy-proof

rule if preferences are not quasi-linear.

Second, those three papers focus on various domains which have no inclusion re-

lation to the domains that we consider. Kazumura and Serizawa (2016) consider

domains containing all possible unit-demand preferences. Malik and Mishra (2021)

consider the situation where each agent partitions the set of packages into acceptable

packages and unacceptable packages, and has preferences such that acceptable pack-

ages are all indifferent but an acceptable package is better than any unacceptable

package. Preferences in Kazumura and Serizawa (2016) and Malik and Mishra (2021)

violate object monotonicity while we focus only on object monotonic preferences.

Baisa (2020) considers object monotonic preferences but focus only on preferences

with positive income effects of which incremental valuation for an additional object is

always non-increasing. On the other hand, we cover domains that do not contain such

preferences. For example, we establish impossibility results on the domains of prefer-

ences having nonpositive income effects and quasi-linear preferences with borrowing

cost. Those domains are not covered by Baisa (2020).

In some situations such as procurement auctions, it is sometimes reasonable to as-

sume that the incremental valuation for an additional object is non-decreasing (Bara-

nov et al., 2017). In this case, generalize Vickrey rules are the only rules that satisfy

efficiency, strategy-proofness, individual rationality, and no subsidy for losers even

when preferences can be non-quasi-linear (Shinozaki et al., 2020).9

7Chen and Kominers (2021) discuss a lot of practical examples of auctions with entry fees. Fur-

ther, they show that the planner can sometimes generate more revenue by setting entry fees.
8The number of participants is known to be crucial for generating high revenue. Indeed, for the

single object case, the revenue maximizing auction generates lower expected revenue than the second

price auction with an additional agent (Bulow and Klemperer, 1996). Further, Lu (2009) shows that

when entry is costly and endogenous, the revenue maximizing auction involves entry subsidies.
9Similarly to Baisa (2020), Shinozaki et al. (2020) also consider the case where incremental

valuations of preferences for an additional object is always non-increasing. The family of domains

that they consider contains various domains that are not covered by Baisa (2020), and they show

that no rule on those domains satisfies efficiency, strategy-proofness, individual rationality, and no
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When agents have unit-demand and non-quasi-linear preferences, the minimum

price Walrasian (MPW) rule satisfies efficiency, strategy-proofness, individual ratio-

nality, and no subsidy for losers (Demange and Gale, 1985), and it is the only rule that

satisfies these properties on the classical domain—the set of all quasi-linear and non-

quasi-linear preferences (Morimoto and Serizawa, 2015).10 Further, the MPW rule

is the ex-post revenue maximizing rule among rules that satisfy strategy-proofness,

individual rationality and a weak fairness condition called equal treatment of equals,

a weak efficiency condition called no wastage, and a no subsidy condition (Kazumura

et al., 2020b).11

Some papers focus on the existence of a Walrasian equilibrium in package assign-

ment models. It has been known that a Walrasian equilibrium exists when prefer-

ences are quasi-linear and satisfy the gross substitutes condition (Kelso and Crawford,

1982). This result is extended to the case where preferences are quasi-linear and sat-

isfy the gross substitutes and complements condition (Sun and Yang, 2006). When

preferences are non-quasi-linear, a Walrasian equilibrium exists at each endowment al-

location if and only if a Walrasian equilibrium exists in the corresponding quasi-linear

economies (Baldwin et al., 2020).

There are papers that study the case where agents have quasi-linear preferences

but face hard budget (Che and Gale, 1998, 2000; Pai and Vohra, 2014). Due to the

hard budget, the induced preferences are non-quasi-linear. In this setting, there is

no rule that satisfies efficiency, strategy-proofness, individual rationality, and a no

subsidy condition (Dobzinski et al., 2012; Lavi and May, 2012). Preferences in this

model are close to quasi-linear preferences with borrowing cost in our model. The

major difference between preferences in this model and quasi-linear preferences with

borrowing cost is that in this model, the budget is hard, i.e., payments cannot exceed

the budget. On the other hand, since we allow agents to borrow money, payments can

exceed the budget. To be more precise, preferences in this model violate continuity

whereas we focus only on continuous preferences. Thus, there is no logical relation

subsidy for losers when there are odd number of objects.
10This result is extended to the case where there is a common ranking over objects, and agents

prefer a higher ranked object than a lower ranked object (Zhou and Serizawa, 2018).
11In Kazumura et al. (2020b), it is assumed that the number of agents is larger than that of

objects. Sakai and Serizawa (2021) show that the same result holds without this assumption.
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between the impossibility results by Dobzinski et al. (2012) and Lavi and May (2012)

and our results. Further, we impose only efficiency and strategy-proofness in our

main results, while those papers impose not only these properties but also individual

rationality and a no subsidy condition.

The partially quasi-linearity is first introduced in the public goods model (Ma

et al., 2018). They show that if the domain is larger than the partially quasi-linear

domain, fixed price dictatorships are the only rules that satisfy strategy-proofness,

ontoness, individual rationality, and no subsidy, where ontoness requires that each

alternative should be selected at some preference profile and no subsidy requires that

the payment of each agent is nonnegative. Since fixed price dictatorships violate

efficiency, their result implies that if the domain is larger than the partially quasi-

linear domain, no rule satisfies efficiency, strategy-proofness, individual rationality,

and no subsidy. Compared with this result, our result (Corollary 4) shows a stronger

impossibility result in a restricted environment. Indeed, we impose only efficiency

and strategy-proofness, whereas Ma et al. (2018) impose individual rationality and

no subsidy as well. On the other hand, we assume that there are at least three agents

and six alternatives, while Ma et al. (2018) do not make such an assumption.

Finally, the non-quasi-linearity of preferences is recently introduced in various

models. Examples include house allocation model with transfers (Andersson and

Svensson, 2014; Andersson et al., 2016; Andersson and Svensson, 2016), matching

model with transfers (Morimoto, 2014; Garratt and Pycia, 2020), school choice model

(Phan et al., 2021), and trading network model (Fleiner et al., 2019; Schlegel, 2021).

A general mechanism design model is studied by Kazumura et al. (2020a), and they

give a necessary and sufficient condition for strategy-proofness when preferences can

be non-quasi-linear.

1.2 Organizations

The rest of this article is organized as follows. In Section 2, we introduce the model

and definitions. In Section 3, we define Groves and Vickrey rules and extend Vickrey

rules to non-quasi-linear domains. In Section 4, we define partially quasi-linear pref-

erences. We state our main results in Section 5. In Section 6, we state implications

of our results. In Section 7, we conclude. All the proofs appear in Appendix.
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2 The model and definitions

There are n ≥ 2 agents and m ≥ 1 types of objects. We denote the set of agents by

N ≡ {1, . . . , n} and the set of object types by M ≡ {1, . . . ,m}. Each object a ∈ M
has x̄a ∈ N copies. Thus, x̄ ≡ (x̄a)a∈M is the social endowment. If m = 1, there are

only identical objects. If x̄a = 1 for each a ∈M , then there are only distinct objects.

We assume
∑

a∈M x̄a > 1.12 Denote 0 ≡ (0, 0, . . . , 0) ∈ Rm. A package is a vector

x ≡ (xa)a∈M ∈ Zm such that 0 ≤ x ≤ x̄.13 Let X be the set of packages. Each agent

receives a package and pays some amount of money. Thus, the consumption set is

X×R, and a typical (consumption) bundle for an agent is a pair z ≡ (x, t) ∈ X×R,

where t is interpreted as the amount paid by the agent.

2.1 Preferences and valuations

Each agent i has a complete and transitive preference relation Ri over X ×R. Let Pi

and Ii be the strict and indifference relations associated with Ri, respectively. The

generic notation for a class of admissible preferences is denoted by R and we call it a

domain.14 The following are standard conditions for a preference relation Ri.

• Money monotonicity: For each x ∈ X and each pair t, s ∈ R with t < s,

(x, t) Pi (x, s).

• Possibility of compensation: For each (x, t) ∈ X×R and each y ∈ X, there are

s, s′ ∈ R such that (x, t) Ri (y, s) and (y, s′) Ri (x, t).

• Continuity: For each z ∈ X × R, the upper contour set at z, UCi(z) ≡ {z′ ∈
X×R : z′ Ri z}, and the lower contour set at z, LCi(z) ≡ {z′ ∈ X×R : z Ri z

′},
are both closed.

12See Saitoh and Serizawa (2008) and Sakai (2008) for results in the single object case.
13Given a pair of vectors x, y ∈ Zm, we write x ≥ y to mean xa ≥ ya for each a ∈ M . Similarly,

we write x > y to mean xa ≥ ya for each a ∈M and xb > yb for some b ∈M .
14As we define in Section 2.2, the domain of an (allocation) rule is a set of preference profiles. In

this sense, it is more precise to call a set of preference profiles a domain. However, in this paper, we

assume that a rule is defined on a Cartesian product of a set of preferences. Thus, we simply call a

set of preferences a domain.
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• Object monotonicity: For each (x, t) ∈ X × R and each y ∈ X with y > x,

(y, t) Pi (x, t).

We denote the set of preferences that satisfy the above four conditions by RO,

and call it the object monotonic domain. Throughout the paper, we assume that

preferences satisfy the above four conditions. Thus, whenever we take a domain R,

it satisfies R ⊆ RO.

A standard class of preferences studied in the literature is the class of quasi-linear

preferences.

Definition 1. A preference relation Ri is quasi-linear if for each pair (x, t), (y, s) ∈
X × R and each δ ∈ R, (x, t) Ii (y, s) implies (x, t+ δ) Ii (y, s+ δ).

Let RQ be the class of quasi-linear preferences and we call it the quasi-linear

domain. For each Ri ∈ RQ, there is a valuation function vi : X → R+ such that

vi(0) = 0, and for each pair (x, t), (y, s) ∈ X × R, (x, t) Ri (y, s) if and only if

vi(x)− t ≥ vi(y)− s.
We now extend the notion of valuation to non-quasi-linear preferences. Given a

preference relation Ri, z ∈ X × R, and y ∈ X, there is a payment s ∈ R such that

z Ii (y, s).15 We call this payment level the (compensated) valuation of y at z for Ri,

and denote it by V Ri(y, z). There are two remarks on the notion of valuation that we

often use in the rest of the paper.

Remark 1. Given a preference relation Ri and a pair (x, t), (y, s) ∈ X × R, we have

(x, t) Ri (y, s) if and only if V Ri(y, (x, t)) ≤ s.

Remark 2. For each Ri ∈ RQ, each (x, t) ∈ X×R, and each y ∈ X, V Ri(y, (x, t))−t =

vi(y)− vi(x).

Figure 1 is an illustration of the consumption set for M = {1, 2} and x̄ = (1, 1).

Throughout the paper, we use such diagrams to explain and illustrate some definitions

and proofs. In this diagram, each of the four horizontal lines represents the set of real

numbers, and each point on the lines represents a payment for the package specified

on the left side of the line. The vertical dotted line in this diagram connects the points

15The existence of such a payment is guaranteed by money monotonicity, possibility of compen-

sation and continuity. For the formal proof of the existence, see Kazumura and Serizawa (2016).

10



0

(1, 0)

(0, 1)

(1, 1)

Payment

z = ((1, 0), t)

t

(0, 0)

z′

V Ri((0, 1), z)

Better Worse

Ri

Figure 1: An illustration of the consumption set for M = {1, 2} and x̄ = (1, 1).

0

(1, 0)

(0, 1)

(1, 1)

Payment

(0, 0)

Ri

vi(1, 0)

vi(0, 1)

vi(1, 1)

Figure 2: Indifference curves of a quasi-linear preference relation.

where the payment is zero. Then, the consumption set in this example consists of

these four horizontal lines. For example, the point z corresponds to the consumption

bundle ((1, 0), t).

One way to describe a preference relation in the diagram is to draw “indifference

curves.” A typical indifference curve is illustrated in Figure 1. The indifference curve

passes through z and z′. This means that z and z′ are indifferent for a preference

relation Ri. To specify which preference relation an indifference curve belongs to,
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we sometimes write the notation for the preference relation next to the indifference

curve as in Figure 1. By money monotonicity, bundles to the left (resp. right) of an

indifference curve are better (resp. worse) than the bundles on the indifference curve.

The valuation of a package at a bundle corresponds to the payment at the point that

is indifferent to the bundle. Thus, for example, the valuation of (0, 1) at z is equal to

the payment at z′.

Indifference curves of a quasi-linear preference relation is shown in Figure 2. By

Remark 2, indifference curves of a quasi-linear preference relation are parallel to each

other. The valuation function of a quasi-linear preference relation corresponds to the

the payment levels at the bundles on the indifference curve passing through (0, 0) as

shown in Figure2.

2.2 Rules and their properties

A package allocation is an n-tuple (xi)i∈N ∈ Xn such that
∑

i∈N xi ≤ x̄. We denote

the set of package allocations by A. A (feasible) allocation is an n-tuple ((xi, ti))i∈N ∈
(X×R)n such that (xi)i∈N ∈ A. We denote the set of allocations by Z. A preference

profile is an n-tuple R ≡ (R1, . . . Rn) ∈ Rn. Given R ∈ Rn and i, j ∈ N , let

R−i ≡ (Rk)k∈N\{i} and R−i,j ≡ (Rk)k∈N\{i,j}.

An (allocation) rule on Rn is a function f : Rn → Z. Given a rule f and

R ∈ Rn, we denote the bundle assigned to agent i by fi(R) and we write fi(R) ≡
(xfi (R), tfi (R)), where xfi (R) is the package that agent i receives and tfi (R) is her

payment.

We mainly focus on rules that satisfy two properties, efficiency and strategy-

proofness. The efficiency notion here takes the planner’s preferences into account, as-

suming that she is only interested in her revenue. Formally, an allocation ((xi, ti))i∈N ∈
Z is (Pareto-)efficient for R ∈ Rn if there is no allocation ((yi, si))i∈N ∈ Z such that

(i) for each i ∈ N , (yi, si) Ri (xi, ti), (ii) for some j ∈ N , (yj, sj) Pi (xj, tj), and (iii)∑
i∈N si ≥

∑
i∈N ti. Thus, if an allocation is efficient, it is impossible to make an

agent better off without harming other agents or reducing the revenue of the planner.

By object monotonicity, if an allocation ((xi, ti))i∈N ∈ Z is efficient for R ∈ Rn, then

no object remains unassigned, i.e.,
∑

i∈N xi = x̄.
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Remark 3. An allocation ((xi, ti))i∈N ∈ Z is efficient for R ∈ Rn if and only if there

is no allocation ((yi, si))i∈N ∈ Z such that (i) for each i ∈ N , (yi, si) Ii (xi, ti), and

(ii)
∑

i∈N si >
∑

i∈N ti.
16

The efficiency of a rule requires that for each preference profile, an efficient allo-

cation should be selected.

Efficiency: For each R ∈ Rn, f(R) is efficient for R.

Strategy-proofness means that no agent benefits from misrepresenting her prefer-

ences.

Strategy-proofness: For each R ∈ Rn, each i ∈ N , and each R′i ∈ R, fi(R) Ri

fi(R
′
i, R−i).

3 Generalized Vickrey rules

Groves and Vickrey rules are defined on the quasi-linear domain, because they are

defined by means of valuation functions. In this section we define those rules and

extend Vickrey rules to larger domains.

We first introduce some notations. Given r ∈ R, i ∈ N , R−i ∈ Rn−1, and x ∈ X,

let

σr
i (R−i;x) ≡ max

 ∑
j∈N\{i}

V Rj(xj, (0, r)) : (xj)j∈N ∈ A, xi = x

 .

Thus, σr
i (R−i;x) is the maximum of the sum of valuations at (0, r) that the agents

other than agent i can achieve when agent i obtains x. When r = 0, we sometimes

write σi(R−i;x) instead of σ0
i (R−i;x). Now we define Groves and Vickrey rules on

the quasi-linear domain.

Definition 2. A rule f on (RQ)n is a Groves rule if for each R ∈ (RQ)n,

(xfi (R))i∈N ∈ argmax(xi)i∈N∈A

∑
i∈N

vi(xi),

16This result follows from money monotonicity.
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and for each i ∈ N , there is hi : (RQ)n−1 → R such that

tfi (R) = hi(R−i)− σi(R−i;xfi (R)).

A rule f on (RQ)n is a Vickrey rule if it is a Groves rule and for each i ∈ N ,

hi(·) = σi(·;0).

We now generalize Vickrey rules to larger domains. We do it by means of com-

pensated valuations.

Definition 3. Let R be an arbitrary domain. Let r ∈ R. A rule f on Rn is an

r-generalized Vickrey rule if for each R ∈ Rn,

(xfi (R))i∈N ∈ argmax(xi)i∈N∈A

∑
i∈N

V Ri(xi, (0, r)),

and for each i ∈ N ,

tfi (R) = σr
i (R−i;0)− σr

i (R−i;x
f
i (R)) + r.

For each r ∈ R, an r-generalized Vickrey rule is defined in the same manner

as Vickrey rules except that compensated valuations at (0, r) are used instead of

valuation functions and a fixed cost r is added to the payment formula. If r > 0, we

can interpret it as an entry fee. On the other hand, if r < 0, then we can interpret it

as an entry subsidy. Note that a 0-generalized Vickrey rule coincides with a Vickrey

rule on the quasi-linear domain. For simplicity, we sometimes call a 0-generalized

Vickrey rule a generalized Vickrey rule.

4 Partially quasi-linear preferences

In this section, we define some classes of non-quasi-linear preferences. First, given a

preference relation Ri and r ∈ R, we define the following set:

Xr(Ri) ≡ {(x, t) ∈ X × R : (x, t) Ri (0, r) and t ≥ r}.

This is the set consisting of bundles such that the associated payments are no

less than r and they are at least as desirable as (0, r). We call it the r-relevant

14
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Figure 3: An illustration of the r-relevant consumption set for Ri for x̄ = (1, 1).

consumption set for Ri. And in particular when r = 0, we sometimes call it the

relevant consumption set for Ri. Further, we sometimes denote X(Ri) ≡ X0(Ri).

Figure 3 is an illustration of the r-relevant consumption set for a preference relation

Ri for x̄ = (1, 1). The relevant consumption set for Ri consists of the bundle (0, 0)

and the bundles on the three bold lines.

The preferences defined below are non-quasi-linear preferences that preserve the

quasi-linearity on the r-relevant consumption set.

Definition 4. Given r ∈ R, a preference relation Ri is r-partially quasi-linear if for

each (x, t) ∈ Xr(Ri) and each y ∈ X with V Ri(y, (x, t)) ≥ r,

V Ri(y, (x, t))− t = V Ri(y, (0, r))− V Ri(x, (0, r)).

Remark 4. Given r ∈ R, a preference relation Ri is r-partially quasi-linear if and only

if for each (x, t) ∈ Xr(Ri), V
Ri(x̄, (x, t))− t = V Ri(x̄, (0, r))− V Ri(x, (0, r)).

For each r ∈ R, let RP (r) be the class of r-partially quasi-linear preferences,

and call it the r-partially quasi-linear domain. For simplicity, we sometimes call

a 0-partially quasi-linear preference relation and the 0-partially quasi-linear domain

a partially quasi-linear preference relation and the partially quasi-linear domain,

respectively. Further, for simplicity, we sometimes denote RP ≡ RP (0).

The r-partially quasi-linearity requires a preference relation to be quasi-linear

when the consumption set is restricted to the r-relevant consumption set. Thus, for
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Figure 4: An illustration of an r-partially quasi-linear preference relation.

each r ∈ R, quasi-linear preferences are r-partially quasi-linear, and hence, RQ ⊆
RP (r). An r-partially quasi-linear preference relation is shown in Figure 4. It has

parallel indifference curves in the r-relevant consumption set as shown in the figure.

However, the r-partially quasi-linearity does not require that indifference curves that

pass through a bundle outside of the r-relevant consumption set should be parallel.

Thus, for instance, the indifference curve between z and z′ has to be parallel to the

one between ẑ and ẑ′. However, it does not have to be parallel to the indifference

curve between z̃ and z̃′ because z̃ is not in the r-relevant consumption set.

5 Main results

It is known that on the quasi-linear domain, Groves rules are the only efficient and

strategy-proof rules.

Fact 1 (Holmström (1979)). Groves rules are the only rules that satisfy efficiency and

strategy-proofness on (RQ)n.

As we discussed in Introduction, it is likely that agents may have non-quasi-linear

preferences in practice. Thus, we investigate the possibility of designing an efficient

and strategy-proof rule when agents may have non-quasi-linear preferences. More

specifically, we investigate how much we can expand the domain from the quasi-

16



linear domain while guaranteeing the existence of an efficient and strategy-proof rule.

Our results depend on the number of agents.

5.1 Two-agent case

First, we define the notion of maximal domain.

Definition 5. A domain R is a maximal domain for a list of properties if

(i) there is a rule on Rn that satisfies the properties, and

(ii) for each R′ ) R, no rule on (R′)n satisfies the properties.

Remark 5. A maximal domain for a list of properties may not be unique. Indeed, the

theorem below shows the existence of multiple maximal domains for efficiency and

strategy-proofness.

The following theorem states that for two-agent case, for each r ∈ R, only the

r-generalized Vickrey rules satisfy efficiency and strategy-proofness on the r-partially

quasi-linear domain, and further, the domain is a maximal domain for efficiency and

strategy-proofness.

Theorem 1. Let n = 2 and r ∈ R.

(i) On (RP (r))2, a rule satisfies efficiency and strategy-proofness if and only if it is

an r-generalized Vickrey rule.

(ii) RP (r) is a maximal domain for efficiency and strategy-proofness.

Notice that Theorem 1 (i) is not a straightforward extension of Fact 1. First,

Theorem 1 (i) holds only for two-agent case, whereas Fact 1 holds for each n ≥ 2.

Indeed, the proof of Theorem 1 (i) depends on the two-agent assumption. Second,

for each r ∈ R, r-generalized Vickrey rules are characterized using only efficiency

and strategy-proofness. On the other hand, on the quasi-linear domain, the class of

efficient and strategy-proof rules is the class of Groves rules which is much larger than

the class of r-generalized Vickrey rules.

Theorem 1 (ii) implies that for each r ∈ R, there is no rule that satisfies efficiency

and strategy-proofness if the domain is larger than the r-partially quasi-linear domain.

Theorem 1 (ii) does not exclude the possibility that there is a maximal domain for

efficiency and strategy-proofness such that for each r ∈ R, it is not the r-partially
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Figure 5: The inefficiency of a generalized Vickrey rule on (RP )n when n = 3.

quasi-linear domain. However, as we see in Section 5.3, we can pin down the class of

maximal domains for efficiency, strategy-proofness, and some additional properties.

5.2 More than two-agent case

Even when n ≥ 3, for each r ∈ R, r-generalize Vickrey rules are strategy-proof on the

r-partially quasi-linear domain.

Proposition 1. For each r ∈ R, r-generalized Vickrey rules are strategy-proof on

(RP (r))n.

However, when n ≥ 3, for each r ∈ R, r-generalize Vickrey rules are not efficient

on the r-partially quasi-linear domain. We give an example for n = 3, x̄ = (1, 1), and

r = 0.17

Example: (Figure 5.) When n = 3 and x̄ = (1, 1), generalized Vickrey rules are

not efficient on (RP )3. Let f be a generalized Vickrey rule on (RP )3. Let R1 ∈ RP

17By modifying this example slightly, we can show that for each r ∈ R and each n ≥ 3, r-generalized

Vickrey rules violate efficiency on (RP (r))n.
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be such that for each x ∈ X \ {0},

V R1(x, (0, 0)) =


8 if x = (1, 0),

1 if x = (0, 1),

10 if x = (1, 1),

and V R1(0, ((1, 0), 2)) = −0.5. Let R2 ∈ RP be such that for each x ∈ X \ {0},

V R2(x, (0, 0)) =


1 if x = (1, 0),

8 if x = (0, 1),

10 if x = (1, 1),

and V R2(0, ((0, 1), 2)) = −0.5.

Note that we can take R1 and R2 so that they are partially quasi-linear. Let

R3 ∈ RQ be such that v3((1, 0)) = v3((0, 1)) = 0.5 and v3((1, 1)) = 6. Denote

R ≡ (R1, R2, R3). These preferences are illustrated in Figure 5. The black indifference

curves are those of R1, the bold indifference curves are those of R2, and the dashed

indifference curve is that of R3. By the definition of the generalized Vickrey rule,

f1(R) = ((1, 0), 2), f2(R) = ((0, 1), 2), and f3(R) = (0, 0).

Let ((xi, ti))i∈N ∈ Z be such that

(x1, t1) = (x2, t2) = (0,−0.5) and z3 = ((1, 1), 6).

It is easy to show that for each i ∈ N , (xi, ti) Ii fi(R), and
∑

i∈N ti = 5 > 4 =∑
i∈N t

f
i (R). Hence, by Remark 3, f(R) is not efficient for R. �

In contrast to the case of n = 2, the following result shows that when n ≥ 3,

efficiency and strategy-proofness are incompatible even on the r-partially quasi-linear

domain for each r ∈ R.

Theorem 2. Let n ≥ 3 and r ∈ R. No rule on (RP (r))n satisfies efficiency and

strategy-proofness.

Theorem 2 implies that for each r ∈ R, a maximal domain for efficiency and

strategy-proofness lies between the quasi-linear domain and the r-partially quasi-

linear domain. We conclude this subsection by showing that for each r ∈ R, the
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Figure 6: Indifference curves of Ri ∈ R̂P .

r-partially quasi-linear domain is “close” to a maximal domain for efficiency and

strategy-proofness. We demonstrate it by showing that for each r ∈ R, there is a

domain that is “close” to the r-partially quasi-linear domain and there is an efficient

and strategy-proof rule on the domain.

For simplicity, we focus only on the (0-)partially quasi-linear domain. The same

argument follows for the r-partially quasi-linear domain for each r ∈ R. Consider a

preference relation Ri that satisfies the following conditions: For each (x, t) ∈ X(Ri)

and each y ∈ X, if V Ri(y, (x, t)) ≥ 0,

V Ri(y, (x, t))− t = V Ri(y, (0, 0))− V Ri(x, (0, 0)),

and if V Ri(y, (x, t)) < 0,

t− V Ri(y, (x, t)) ≥ V Ri(x, (0, 0))− V Ri(y, (0, 0)).

Let R̂P be the class of preferences that satisfies the above conditions.

Figure 6 illustrates indifference curves of a preference relation Ri ∈ R̂P . The first

condition of R̂P is the same as the requirement of the partially quasi-linearity. Thus,

as in Figure 6, indifference curves in the relevant consumption set are parallel. The

second condition requires that to change from a bundle (x, t) ∈ X(Ri) to another

package y without making the agent worse off, it is necessary to compensate her at

least V Ri(x, (0, 0))− V Ri(y, (0, 0)). Thus, in Figure 6, the indifference curve between
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z and (0, 0) should be at least as steep as the one between ẑ and ẑ′. It is clear that

R̂P ( RP .

By Proposition 1, generalized Vickrey rules are strategy-proof on (R̂P )n. Further,

it is easy to show that generalized Vickrey rules are efficient on (R̂P )n. Thus, a

maximal domain for efficiency and strategy-proofness lies between RP and R̂P .

5.3 Further results with additional properties

We have shown that the partially quasi-linearity is the key for the existence of an

efficient and strategy-proof rule. However, there are domains such that for each

r ∈ R, they are not subsets or supersets of the r-partially quasi-linear domain, and

there may exist a rule that satisfies efficiency and strategy-proofness on such a domain.

In this section, we impose some additional properties which are reasonable in many

settings, and investigate on what domains there is a rule that satisfies efficiency,

strategy-proofness, and the additional properties.

We consider three properties. The first property is a participation constraint. It

states that an agent is never assigned a bundle that makes her worse off than she

would be if she had received no object and paid nothing.

Individual rationality: For each R ∈ Rn and each i ∈ N , fi(R) Ri (0, 0).

The second property requires that the payment of losers (the agents who receive

no object) should be nonnegative.

No subsidy for losers: For each R ∈ Rn and each i ∈ N , if xfi (R) = 0, tfi (R) ≥ 0.

No subsidy for losers is a natural requirement satisfied in many allocation problems

such as auctions in practice.

On the quasi-linear domain, the class of rules that satisfy efficiency, strategy-

proofness, individual rationality, and no subsidy for losers is identified.

Fact 2. (Holmström, 1979; Chew and Serizawa, 2007) Vickrey rules are the only rules

that satisfy efficiency, strategy-proofness, individual rationality, and no subsidy for

losers on (RQ)n.
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Individual rationality implies that the payment of losers is not positive. Thus,

individual rationality and no subsidy for losers imply that the payment of losers is

always zero. However, it is sometimes the case that agents pay a fixed amount of

money as an entry fee, or receive a fixed amount of money as an entry subsidy—the

planner may do so to increase the number of participants. The following property

captures these situations.

Common payment for losers: There is t∗ ∈ R such that for each R ∈ Rn and

each i ∈ N , if xfi (R) = 0, then tfi (R) = t∗.

Of course, individual rationality and no subsidy for losers imply common payment

for losers. Before stating the main results in this section, we give a technical result

that we use to derive them.

Proposition 2. Let r ∈ R. Let R be such that RQ ⊆ R 6⊆ RP (r). Then, there is no

efficient and strategy-proof rule on Rn that coincides with an r-generalized Vickrey

rule on (RQ)n.

By Fact 2, if a rule on Rn with R ⊇ RQ satisfies efficiency, strategy-proofness,

individual rationality and no subsidy for losers, then it coincides with a Vickrey rule

on (RQ)n. Thus, by Proposition 2 and Theorems 1 and 2, we obtain the following

result.

Theorem 3. Let R be such that R ⊇ RQ.

(i) Let n = 2. R is a maximal domain for efficiency, strategy-proofness, individual

rationality and no subsidy for losers if and only if R = RP .

(ii) Let n ≥ 3. If there is a rule on Rn that satisfies efficiency, strategy-proofness,

individual rationality and no subsidy for losers, then R ( RP .

We do not prove Theorem 3 since it is immediate from Proposition 2 and Theo-

rems 1 and 2.

Theorem 3 states that the domain must be a subset of the partially quasi-linear

domain for the existence of a rule that satisfies efficiency, strategy-proofness, individ-

ual rationality, and no subsidy for losers. Further, Theorem 3 (i) states that for two
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agents, the partially quasi-linear domain is the unique maximal domain for the four

properties among the domains that include the quasi-linear domain.

By Fact 1, it is easy to see that if a rule on Rn with R ⊇ RQ satisfies efficiency,

strategy-proofness, and common payment for losers, it coincides with an r-generalized

Vickrey rule for some r ∈ R on (RQ)n. Thus, by Proposition 2 and Theorems 1 and

2, we obtain the following result.

Theorem 4. Let R be such that R ⊇ RQ.

(i) Let n = 2. R is a maximal domain for efficiency, strategy-proofness, and common

payment for losers if and only if R = RP (r) for some r ∈ R.

(ii) Let n ≥ 3. If there is a rule on Rn that satisfies efficiency, strategy-proofness,

and common payment for losers, then R ( RP (r) for some r ∈ R.

We do not prove Theorem 4 since it is immediate from Proposition 2 and Theo-

rems 1 and 2.

Theorem 4 states that the domain must be a subset of some r-partially quasi-

linear domain for the existence of a rule that satisfies efficiency, strategy-proofness,

and common payment for losers. Theorem 4 also implies the following: Consider a

domain such that for each r ∈ R, it is not a subset or superset of the r-partially

quasi-linear domain. If there is an efficient and strategy-proof rule on the domain,

then either (i) losers pay different amount of money at some preference profile, or (ii)

the payment of a loser depends on the other agents’ preferences.

6 Implications of our results

6.1 Impossibility results on various domains

Our results are useful to verify whether there is a rule that satisfies efficiency and

strategy-proofness (and individual rationality and no subsidy for losers, or common

payment for losers) on various domains of interest. In this section, we consider several

reasonable domains and show what out results imply on those domains.

The object monotonic domain includes the partially quasi-linear domain and some

non-partially quasi-linear preferences. Thus, there is no efficient and strategy-proof

rule on the object monotonic domain.
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Corollary 1. No rule on (RO)n satisfies efficiency and strategy-proofness.

An important class of preferences studied in the literature is the class of preferences

having income effects (Kaneko, 1983; Saitoh and Serizawa, 2008; Baisa, 2020).

Definition 6. A preference relation Ri has nonnegative income effects (resp. nonpos-

itive income effects) if for each pair (x, t), (y, s) ∈ X × R with t > s, (x, t) Ii (y, s)

implies that for each δ ∈ R++, (x, t− δ) Ri (y, s− δ) (resp. (y, s− δ) Ri (x, t− δ)).

Though income is not modeled explicitly, the zero payment corresponds to the

endowed income. Thus, a decrease in payment by δ > 0 can be interpreted as an

increase in income by δ. In Definition 6, by t > s and (x, t) Ii (y, s), the agent

prefers x to y at the income level corresponding to the payment s—her willingness

to pay for switching from y to x is t − s > 0. Then, nonnegative income effects

(resp. nonpositive income effects) imply that at the income level corresponding to

s − δ, her willingness to pay for switching from y to x is at least (resp. at most)

t − s. Thus, nonnegative income effects (resp. nonpositive income effects) mean

that the willingness to pay for switching from a package to a preferred package is

non-decreasing (resp. non-increasing) in income level.18

Let RNNI and RNPI be the sets of preferences having nonnegative income effects

and nonpositive income effects, respectively. A preference relation has both nonnega-

tive and nonpositive income effects if and only if it is quasi-linear. Thus, RQ ⊆ RNNI

and RQ ⊆ RNPI . It is also clear that RNNI and RNPI contain a preference relation

such that for each r ∈ R, it is not r-partially quasi-linear. Thus, by Theorem 4, we

obtain the following result.

Corollary 2. Let R ∈ {RNNI ,RNPI}. No rule on Rn satisfies efficiency, strategy-

proofness, and common payment for losers.

Since individual rationality and no subsidy for losers imply common payment

for losers, Corollary 2 implies that no rule satisfies efficiency, strategy-proofness,

individual rationality, and no subsidy for losers on (RNNI)n or (RNPI)n.

Another class of preferences studied in the literature is the class of quasi-linear

preferences with borrowing cost (Saitoh and Serizawa, 2008). Here we model income

18For a detailed and graphical explanation of preferences having income effects, see Kazumura

et al. (2020a)
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explicitly. Suppose that each agent has to borrow money at some interest rate when

the payment for a package exceeds her income. For each i ∈ N , let wi ∈ R+ and ri ∈
R+ be agent i’s income level and the interest rate that agent i is facing, respectively.

Then, when the payment for a package is t ∈ R, agent i’s actual cost is given by a

function c(·;wi, ri) : R→ R defined as follows:

c(t;wi, ri) =

t if t ≤ wi,

wi + (1 + ri)(t− wi) if t > wi.

That is, if the payment is no more than her income, she just pays that amount. If

the payment is higher than her income, she has to borrow the difference between the

payment and her income at the interest rate r. We call this function a borrowing

cost function.

Definition 7. A preference relation Ri is quasi-linear with borrowing cost if there are

a valuation function vi : X → R+ with vi(0) = 0, an income level wi ∈ R+ ∪ {+∞},
and an interest rate ri ∈ R+ such that for each pair (x, t), (y, s) ∈ X×R, (x, t) Ri (y, s)

if and only if vi(x)− c(t;wi, ri) ≥ vi(y)− c(s;wi, ri).

Let RQ,B be the class of quasi-linear preferences with borrowing cost. Here we

assume that the income level of an agent and the interest rate that the agent is facing

is her private information. An extreme case is that the income is infinity—in this

case the agent does not have to borrow money and hence, her preference relation

is quasi-linear. Thus, RQ ⊆ RQ,B. Further, there is also a preference relation in

RQB that is not partially quasi-linear. For example, consider a preference relation

Ri ∈ RQ,B with a valuation function vi and an income level wi such that for some

x ∈ X, wi < vi(x). Such a preference relation is not partially quasi-linear. Thus, by

Theorem 3, we obtain the following result.

Corollary 3. Let R = RQ,B. No rule on Rn satisfies efficiency, strategy-proofness,

individual rationality, and no subsidy for losers.

6.2 Public goods model

Our results also have implications to the public goods model. In this section we

consider the public goods model studied by Ma et al. (2018). We do not introduce
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the public goods model formally. The formal model can be found in the supplementary

material (Kazumura, 2022).

Ma et al. (2018) introduce the notion of partially quasi-linearity in the public

goods model.19 Their main result implies that in the public goods model, if the

domain is larger than the partially quasi-linear domain, no rule satisfies efficiency,

strategy-proofness, individual rationality, and no subsidy, where no subsidy requires

that the payment of each agent is nonnegative. On the other hand, Theorem 2 implies

the following.

Corollary 4. In the public goods model, if there are at least three agents and six

alternatives, no rule satisfies efficiency and strategy-proofness on the partially quasi-

linear domain.

A formal statement of this corollary, its proof, and a comparison between this

corollary and results by Ma et al. (2018) appear in the supplementary material (Kazu-

mura, 2022).

The key idea for this result is that we can embed the package assignment model

to the public goods model. Consider the package assignment model with three agents

and two identical objects. The set of package allocation (where all the objects are

allocated) consists of the following.

(0, 1, 1), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), and (2, 0, 0).

If there are six alternatives in the public goods model, we can associate each alter-

native with one of these package allocations. Then, for each preference relation in

the package assignment model, we can find a corresponding preference relation in

the public goods model. Theorem 2 then implies that no rule satisfies efficiency and

strategy-proofness on the set of preferences in the public goods model that corre-

sponds to the partially quasi-linear domain in the package assignment model. Since

this set of preferences is contained in the partially quasi-linear domain in the public

goods model, we obtain the impossibility result.

19The partially quasi-linear domain is called the parallel domain in Ma et al. (2018).
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7 Conclusion

We have demonstrated that the quasi-linearity of preferences plays an important

role for the existence of an efficient and strategy-proof rule in a package assignment

model. Further, our results give a useful tool to verify the existence of an efficient

and strategy-proof rule on various domains.

An underling assumption in this paper is that the domain contains all the quasi-

linear preferences. In some situations in practice, however, objects are substitutes

or complements, and hence, we cannot justify that agents may have any quasi-linear

preference relation in such situations. Whether there is an efficient and strategy-proof

rule in those situations is an open question.

Appendix

We provide the proofs of Theorems 1, and 2 and Propositions 1 and 2. Though

the results in those theorems and propositions hold for each r-partially quasi-linear

domain, we provide only the proofs for the (0-)partially quasi-linear domain. However,

the proofs can be easily modified so that they work for each r-partially quasi-linear

domain.

A Preliminaries

This section has two parts. First, we define several classes of preferences and state

lemmas that guarantee the existence of some preferences that we pick in the proofs.

Second, we provide lemmas used in the proofs. We relegate the proofs of all the

lemmas to Appendix E so that readers can refer to the lemmas easily.

We now introduce some notations we use in the rest of the paper. For each x ∈ X,

let m(x) ≡
∑

a∈M xa. That is, m(x) is the number of objects in the package x. Let

X ≡ {(x, y) ∈ X ×X : x > y}. Let t ≡ (tx)x∈X be our generic notation for a vector

in R|X|.
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A.1 Preferences

We introduce three types of preferences.

Definition 8. A preference relation Ri is bounded if there is a pair s, s ∈ R++ such

that for each (x, y) ∈ X and each t ∈ R,

s < V Ri(x, (y, t))− t < s.

Remark 6. Quasi-linear preferences are bounded.

Next, we define a quasi-linear preference relation of which valuation function is

“negligibly” small compared with another preference relation.

Definition 9. Given a preference relation Ri, Rj ∈ RQ is negligible with respect to

Ri if for each x ∈ X \ {x̄},

vj(x) < inf
(y,y′)∈X , t∈R

V Ri(y, (y′, t))− t, and

vj(x̄) < inf
t∈R

V Ri(x̄, (0, t))− t.

Remark 7. In Definition 9, if Ri is quasi-linear, the inequalities are simplified as

follows: for each x ∈ X \ {x̄},

vj(x) < min
(y,y′)∈X

vi(y)− vi(y′) and vj(x̄) < vi(x̄).

Given a preference relation Ri, let RQ(Ri) be the class of preferences that are

negligible with respect to Ri.
20

Lemma 1. For each Ri ∈ R and each R′i ∈ RQ(Ri), RQ(R′i) ⊆ RQ(Ri).

Lemma 1 is straightforward from Definition 9. Thus, we omit the proof.

Lemma 2. Let i ∈ N and j ∈ N \ {i}. Let R ∈ Rn be such that Rj ∈ RQ and

R−i,j ∈ (RQ(Rj))
n−2. For each x ∈ X, σi(R−i;x) = vj(x̄− x).

Definition 10. Given a vector t ∈ R|X| and x ∈ X, a preference relation Ri is a

monotonic transformation of t at x if for each y ∈ X with y 6= x, V Ri(y, (x, tx)) < ty.
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Figure 7: An illustration of a monotonic transformation of t ∈ R|X| at x ∈ X.

Figure 7 is an illustration of a monotonic transformation Ri of t ∈ R|X| at x ∈
X. In this figure, the vector t consists of the points on the dotted kinked line.

Definition 10 requires that the bundles that are indifferent to (x, tx) should be to the

left of the dotted kinked line. Given a vector t ∈ R|X| and x ∈ X, let RMT
t,x be the set

of preferences that are monotonic transformations of t at x.

A vector t ∈ R|X| is object monotonic if for each (x, y) ∈ X , tx > ty. In some

of the proofs, we pick a partially quasi-linear preference relation that is a monotonic

transformation of two object monotonic vectors. The following three lemmas give

sufficient conditions for the existence of such preferences.

Lemma 3. Let x ∈ X. Let t, s ∈ R|X| be object monotonic vectors such that 0 ≤ tx <

sx and s0 > 0. Then, for each y ∈ X \ {x}, there is a bounded preference relation

Ri ∈ RP such that Ri ∈ RMT
t,x ∩RMT

s,y .

Lemma 4. Let x ∈ X. Let t, s ∈ R|X| be object monotonic vectors such that tx < sx

and tx < 0. Then, for each y ∈ X \ {x}, there is a bounded preference relation

Ri ∈ RP such that Ri ∈ RMT
t,x ∩RMT

s,y .

Lemma 5. Let t, s ∈ R|X| be object monotonic vectors such that tx̄ < sx̄ and s0 < 0.

Then, there is Ri ∈ RP such that Ri ∈ RMT
t,x̄ ∩RMT

s,0 .

20The right hand side of the two inequalities in Definition 9 might be zero for some preference

relation. For such a preference relation Ri, RQ(Ri) = ∅.
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A.2 Implications of properties of rules

First we state three lemmas related to efficiency.

Lemma 6. Let f be an efficient rule on Rn. Let R ∈ Rn and N ′ ⊆ N . Let

(xi)i∈N ′ ∈ X |N
′| be such that

∑
i∈N ′ xi ≤

∑
i∈N ′ x

f
i (R). Then,

∑
i∈N ′ V

Ri(xi, fi(R)) ≤∑
i∈N ′ t

f
i (R).

The following lemma states that it is not efficient to assign an object to a negligible

agent.

Lemma 7. Let f be an efficient rule on Rn. Let R ∈ Rn and i ∈ N . If Ri ∈ RQ(Rj)

for some j ∈ N \ {i}, then xfi (R) = 0.

We introduce the notion of option set. Given a rule f , i ∈ N and R−i ∈ Rn−1,

the option set of agent i under f for R−i is defined as

ofi (R−i) ≡ {z ∈ X × R : ∃Ri ∈ R s.t. fi(Ri, R−i) = z},

and let

Xf
i (R−i) ≡ {x ∈ X : ∃Ri ∈ R s.t. xfi (Ri, R−i) = x}.

That is, ofi (R−i) is the set of bundles available to agent i under f when the other

agents have R−i. Similarly, Xf
i (R−i) is the set of packages available to agent i under

f when the other agents have R−i.

The following lemma states that any package is available to an agent under an

efficient rule if the domain includes the quasi-linear domain and the preferences of

the other agents are bounded.

Lemma 8. Let R be such that R ⊇ RQ and f be an efficient rule on Rn. Let i ∈ N and

R−i ∈ Rn−1 be such that for each j ∈ N \ {i}, Rj is bounded. Then, Xf
i (R−i) = X.

Next, we states a fact and lemmas related to strategy-proofness. We begin with

defining the notion of monotonicity.

Definition 11. A rule f on Rn is monotonic if for each i ∈ N , each pair Ri, R
′
i ∈ R,

and each R−i ∈ Rn−1,

V Ri(xfi (R′i, R−i), fi(Ri, R−i)) ≤ V R′i(xfi (R′i, R−i), fi(Ri, R−i)).
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Remark 8. If Ri and R′i are quasi-linear, the inequality in Definition 11 is equivalent

to the following:

vi(x
f
i (R′i, R−i))− vi(x

f
i (Ri, R−i)) ≤ v′i(x

f
i (R′i, R−i))− v′i(x

f
i (Ri, R−i)).

The following fact states that monotonicity is a necessary condition for strategy-

proofness.

Fact 3. (Kazumura et al., 2020a) Each strategy-proof rule is monotonic.

Given a strategy-proof rule f , i ∈ N , and R−i ∈ Rn−1, for each pair (x, t), (y, s) ∈
ofi (R−i), x = y implies t = s. Thus, for a strategy-proof rule f , we can define a

mapping tfi (R−i, ·) : Xf
i (R−i)→ R such that for each x ∈ Xf

i (R−i), (x, tfi (R−i, x)) ∈
ofi (R−i). Given a strategy-proof rule f and x ∈ Xf

i (R−i), let zfi (R−i, x) ≡ (x, tfi (R−i, x)).

Lemma 9. Let f be a strategy-proof rule on Rn. Let i ∈ N and R−i ∈ Rn−1 be such

that Xf
i (R−i) = X. Then, the vector (tfi (R−i;x))x∈X is object monotonic.

Lemma 10. Let f be a strategy-proof rule on Rn. Let i ∈ N and R−i ∈ Rn−1 be such

that Xf
i (R−i) = X. Denote t = (tfi (R−i, x))x∈X . Let x ∈ X and Ri ∈ RMT

t,x . Then,

xfi (Ri, R−i) = x.

Lemma 10 is straightforward from the definition of strategy-proofness. Thus, we

omit the proof.

Finally we provide a fact and a lemma derived from efficiency and strategy-

proofness. If R ⊇ RQ, then by Fact 1, an efficient and strategy-proof rule on Rn

coincides with a Groves rule on the quasi-linear domain. This observation is formally

documented in the following fact.

Fact 4. Let R be such that R ⊇ RQ and f be an efficient and strategy-proof rule on

Rn. For each i ∈ N , there is hi : (RQ)n−1 → R such that for each R ∈ Rn with

R−i ∈ (RQ)n−1, tfi (R) = hi(R−i)− σi(R−i;xfi (R)).

The following lemma states that in some specific situations, efficiency and strategy-

proofness give a range of the payment of an agent who receives no object.

Lemma 11. Let R = RP and f be an efficient and strategy-proof rule on Rn.

(i) Assume n = 2. Let i ∈ N , j ∈ N \ {i}, and Rj ∈ RQ. Then, tfi (Rj;0) = 0.
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(ii) Assume n ≥ 3. Let i ∈ N , j ∈ N \ {i}, and R−i ∈ Rn−1 be such that Rj ∈ RQ

and R−i,j ∈ (RQ(Rj))
n−2. Denote

s∗ ≡ max

 ∑
k∈N\{i,j}

vk(xk) : (xk)k∈N ∈ (X \ {x̄})n,
∑
k∈N

xk ≤ x̄

 .

Then, −s∗ ≤ tfi (R−i;0) ≤ 0.

Lemma 11 (i) states that when n = 2 and the domain is the partially quasi-linear

domain, the payment of a loser is zero as long as the other agent has a quasi-linear

preference relation. The s∗ in Lemma 11 (ii) is the maximum of the sum of valuations

that the agents other than the agents i and j can achieve under the assumption that

no agent receives all the objects. Then Lemma 11 (ii) states that when n ≥ 3 and the

domain is the partially quasi-linear domain, the payment of a loser is at least −s∗ and

at most zero at preference profiles that satisfy the conditions specified in Lemma 11

(ii).

B Proof of Proposition 1

We prove only that (0-)generalized Vickrey rules are strategy-proof on (RP )n. How-

ever, for each r ∈ R, we can prove the strategy-proofness of r-generalized Vickrey

rules on (RP (r))n in the same manner.

Let R = RP and f be a generalized Vickrey rule on Rn. First we show the fol-

lowing claim.21

Claim 1. Let R ∈ Rn, i ∈ N , and x ∈ X. If V Ri(x, fi(R)) ≥ 0, then

V Ri(x, fi(R))− tfi (R) = V Ri(x, (0, 0))− V Ri(xfi (R), (0, 0)).

21We use this claim also in the proof of Theorem 1 (i) when we prove the efficiency of r-generalized

Vickrey rules.
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Proof. By the definition of f , tfi (R) ≥ 0. We also have

V Ri(xfi (R), (0, 0))− tfi (R) = V Ri(xfi (R), (0, 0))− (σi(R−i;0)− σi(R−i;xfi (R)))

=
∑
j∈N

V Rj(xfj (R), (0, 0))− σi(R−i;0)

≥ 0,

where the inequality follows from (xfj (R))j∈N ∈ argmax(xj)j∈N∈AV
Rj(xj, (0, 0)). This

implies fi(R) Ri (0, 0). Thus, fi(R) ∈ X(Ri). Hence, byRi ∈ RP and V Ri(x, fi(R)) ≥
0, V Ri(x, fi(R))− tfi (R) = V Ri(x, (0, 0))− V R1(xfi (R), (0, 0)). �

Now we show that f is strategy-proof. Without loss of generality, we focus only

on agent 1. Let R ∈ Rn and R′1 ∈ R, and denote R′ ≡ (R′1, R−1). We show

f1(R) R1 f1(R′). Since tf1(R′) ≥ 0 by the definition of f , if V R1(xf1(R′), f1(R)) < 0,

then clearly f1(R) R1 f1(R′). Thus, suppose V R1(xf1(R′), f1(R)) ≥ 0.

By (xfi (R))i∈N ∈ argmax(xi)i∈N∈AV
Ri(xi, (0, 0)),

V R1(xf1(R), (0, 0)) + σ1(R−1;xf1(R)) ≥ V R1(xf1(R′), (0, 0)) + σ1(R−1;xf1(R′)) (1)

By this inequality and Claim 1,

V R1(xf1(R′), f1(R))

= tf1(R) + V R1(xf1(R′), (0, 0))− V R1(xf1(R), (0, 0)) (by Claim 1)

≤ tf1(R) + σ1(R−1;xf1(R))− σ1(R−1;xf1(R′)) (by (1))

= σ1(R−1;0)− σ1(R−1;xf1(R)) + σ1(R−1;xf1(R))− σ1(R−1;xf1(R′))

= σ1(R−1;0)− σ1(R−1;xf1(R′))

= tf1(R′). (by the definition of f)

This implies f1(R) R1 f1(R′). �

C Proof of Theorem 1

As we mentioned in the beginning of Appendix, we give only the proof for the partially

quasi-linear domain. In the proof of Theorem 1, whenever we take an agent i, the

other agent is denoted by j.
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C.1 Proof of Theorem 1 (i)

If part. Let R ≡ RP and f be a generalized Vickrey rule on R2. By Proposition 1,

f is strategy-proof. Thus, we show that f is efficient.

Suppose by contradiction that f(R) is not efficient for some R ∈ R2. By Remark 3,

there is ((y1, s1), (y2, s2)) ∈ Z such that

(yi, si) Ii fi(R) for each i ∈ {1, 2} and s1 + s2 > tf1(R) + tf2(R). (2)

Note that for each i ∈ {1, 2}, si = V Ri(yi, fi(R)). Note also that by Claim 1 of

the proof of Proposition 1, for each ∈ {1, 2} with V Ri(yi, fi(R)) ≥ 0,

tfi (R) = si + V Ri(xfi (R), (0, 0))− V Ri(yi, (0, 0)). (3)

Since f is a generalized Vickry rule, for each i ∈ {1, 2}, tfi (R) ≥ 0. Thus, by (2),

either s1 > 0 or s2 > 0. Without loss of generality, assume s1 > 0. There are two

cases.

Case 1. s2 > 0. By (xfi (R))i∈N ∈ argmax(xi)i∈N∈AV
Ri(xi, (0, 0)) and (3),

t1(R) + t2(R)

= s1 + V R1(xf1(R), (0, 0))− V R1(y1, (0, 0)) + s2 + V R2(xf2(R), (0, 0))− V R2(y2, (0, 0))

≥ s1 + s2,

contradicting (2).

Case 2. s2 ≤ 0. By the definition of f , tf2(R) = V R1(x̄, (0, 0)) − V R1(xf1(R), (0, 0)).

Thus, by s1 > 0 and (3),

tf1(R) + tf2(R)

= s1 + V R1(xf1(R), (0, 0))− V R1(y1, (0, 0)) + V R1(x̄, (0, 0))− V R1(xf1(R), (0, 0))

= V R1(x̄, (0, 0)) + s1 − V R1(y1, (0, 0))

≥ s1 + s2,

where the last inequality follows from s2 ≤ 0 and V R1(x̄, (0, 0)) ≥ V R1(y1, (0, 0)).

This inequality contradicts (2).
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Figure 8: An illustration of Case 1 in the proof of Step 2

Only if part. Let R = RP and let f be a rule on R2 that satisfies efficiency and

strategy-proofness. We now show that f is a generalized Vickrey rule. We do the

proof in five steps.

Step 1. Let i ∈ N and Rj ∈ RQ. For each x ∈ X, tfi (Rj;x) = vj(x̄)− vj(x̄− x).22

Proof. Without loss of generality, assume i = 1. By Fact 4 and R2 ∈ RQ, there is

h1 : RQ → R such that for each x ∈ X, tf1(R2;x) = h1(R2)− σ1(R2;x). Note that for

each x ∈ X, σ1(R2;x) = v2(x̄ − x). Further, since R2 is bounded and by Lemma 8,

0 ∈ Xf
1 (R2). Thus by Lemma 11 (i), h1(R2) − v2(x̄) = tf1(R2;0) = 0, which implies

h1(R2) = v2(x̄). Hence, we obtain the desired result. �

Step 2. Let i ∈ {1, 2} and R ∈ R2 be such that Rj ∈ RQ. Then, (xfi (R), xfj (R)) ∈
argmax(x1,x2)∈AV

Ri(xi, (0, 0)) + vj(xj).

Proof. Without loss of generality, assume i = 1. By Step 1 and R2 ∈ RQ, (0, 0) ∈
of1(R2). Thus, by the strategy-proofness of f , f1(R) Ri (0, 0). Further, by Step 1 and

R2 ∈ RQ, tf1(R) = v2(x̄)− v2(xf2(R)) ≥ 0. Thus, f1(R) ∈ X(R1).

Let (y1, y2) ∈ A. We show V R1(xf1(R), (0, 0))+v2(xf2(R)) ≥ V R1(y1, (0, 0))−v2(y2).

There are two cases

22It is guaranteed by Lemma 8 that Xf
i (Rj) = X.
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Case 1. V R1(y1, f1(R)) ≥ 0. (Figure 8.) By Step 1 and the strategy-proofness of

f , f1(R) Ri (y1, v2(x̄) − v2(y2)), which implies V R1(y1, f1(R)) ≤ v2(x̄) − v2(y2). By

this inequality and tf1(R) = v2(x̄)− v2(xf2(R)),

V R1(y1, f1(R))− tf1(R) ≤ v2(xf2(R))− v2(y2). (4)

By f1(R) ∈ X(R1), V R1(y1, f1(R)) ≥ 0, and R1 ∈ RP ,

V R1(y1, (0, 0))− V R1(xf1(R), (0, 0)) = V R1(y1, f1(R))− tf1(R).

Thus,

V R1(y1, (0, 0))− V R1(xf1(R), (0, 0)) ≤ v2(xf2(R))− v2(y2),

which implies V R1(xf1(R), (0, 0)) + v2(xf2(R)) ≥ V R1(y1, (0, 0))− v2(y2).

Case 2. V R1(y1, f1(R)) < 0. (Figure 9.) By the object monotonicity of R1, (y1, 0) ∈
X(R1). By V R1(y1, f1(R)) < 0, f1(R) P1 (y1, 0). This implies V R1(xf1(R), (y1, 0)) >

tf1(R) ≥ 0. Thus, by R1 ∈ RP ,

V R1(xf1(R), (0, 0))− V R1(y1, (0, 0)) = V R1(xf1(R), (y1, 0)) > tf1(R).

By tf1(R) = v2(x̄)− v2(xf2(R)) and v2(x̄)− v2(y2) ≥ 0,

v2(xf2(R))− v2(y2) = −(v2(x̄)− v2(xf2(R))) + v2(x̄)− v2(y2) ≤ tf1(R)

Thus,

V R1(y1, (0, 0))− V R1(xf1(R), (0, 0)) < v2(xf2(R))− v2(y2),

which implies V R1(xf1(R), (0, 0)) + v2(xf2(R)) > V R1(y1, (0, 0)) + v2(y2). �

Remark 9. By Step 2, for each i ∈ N , each Rj ∈ R, and each x ∈ X, there is Ri ∈ RQ

such that xfi (Ri, Rj) = x. Hence, for each i ∈ N and each Rj ∈ R, Xf
i (Rj) = X.

Step 3. Let i ∈ {1, 2} and R ∈ R2. Then,

tfi (R) = V Rj(x̄, (0, 0))− V Rj(xfj (R), (0, 0)) + tfi (Rj;0).
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Figure 9: An illustration of Case 2 in the proof of Step 2

Proof. Without loss of generality, assume i = 1 and xf1(R) 6= 0. Further, by Remark 9,

we can assume R1 ∈ RQ without loss of generality. Suppose by contradiction that

tf1(R) 6= V R2(x̄, (0, 0))− V R2(xf2(R), (0, 0)) + tf1(R2;0).

Let

δmin ≡ min{tf1(R)− tf1(R2;0), V R2(x̄, (0, 0))− V R2(xf2(R), (0, 0))}, and

δmax ≡ max{tf1(R)− tf1(R2;0), V R2(x̄, (0, 0))− V R2(xf2(R), (0, 0))}.

Clearly, δmin < δmax. By xf1(R) 6= 0 and Xf
1 (R2) = X, tf1(R) > tf1(R2;0).23 By object

monotonicity, V R2(x̄, (0, 0)) − V R2(xf2(R), (0, 0)) ≥ 0. Thus, δmin ≥ 0. Let d ∈ R++

be such that

δmin < d < δmax.

Let (εx)x∈X ∈ R|X|+ be an object monotonic vector that is sufficiently close to 0.24

Note that since (εx)x∈X is object monotonic, for each x ∈ X \ {0}, εx > 0. Let

23By Xf
1 (R2) = X, there is R′1 ∈ R such that xf1 (R′1, R2) = 0. If tf1 (R) ≤ tf1 (R2;0), then by the

object monotonicity of R′1, f1(R) P ′1 (0, tf1 (R2;0)) = f1(R′1, R2), contradicting strategy-proofness.

Thus, tf1 (R) > tf1 (R2;0).
24For example, take (εx)x∈X that satisfies ε0 = 0 and εx̄ < min{δmax − d,min(x,y)∈X v1(x) −

v1(y),min(x,y)∈X V
R2(x, (0, 0))−V R2(y, (0, 0))}. Then the proof of Step 3 works with this (εx)x∈X .
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Figure 10: An illustration of R′1.

R′1 ∈ RQ be such that for each x ∈ X \ {0},

v′1(x) =

d+ εx if x ≥ xf1(R),

εx otherwise.

Since (εx)x∈X is object monotonic, R′1 is object monotonic. Figures 10 is an illustra-

tion of R′1. Denote R′ ≡ (R′1, R2).

Claim 1. xf1(R′) = 0.

Proof. Suppose by contradiction that xf1(R′) 6= 0. We have three cases.

Case 1. xf1(R′) = xf1(R). By strategy-proofness, f1(R′) = f1(R). Since d < δmax

and εxf
1 (R) is sufficiently close to 0, v′1(xf1(R)) = d + εxf

1 (R) < δmax. If δmax = tf1(R)−
tf1(R2;0), then v′1(xf1(R)) − tf1(R) < −tf1(R2;0)). This implies zf1 (R2;0) P ′1 f1(R) =

f1(R′), contradicting strategy-proofness. If δmax = V R2(x̄, (0, 0))−V R2(xf2(R), (0, 0)),

then v′1(0)+V R2(x̄, (0, 0)) > v′1(xf1(R))+V R2(xf2(R), (0, 0)) = v′1(xf1(R′))+V R2(xf2(R′), (0, 0)),

contradicting Step 2.

Case 2. xf1(R′) > xf1(R). Since εxf
1 (R′) and εxf

1 (R) are sufficiently close to 0,

v′1(xf1(R′))− v′1(xf1(R)) = εxf
1 (R′) − εxf

1 (R) < v1(xf1(R′))− v1(xf1(R)).
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This contradicts Fact 3.

Case 3. xf1(R) 6≤ xf1(R′). By xf1(R′) 6= 0, xf2(R′) 6= x̄. Thus, since εxf
1 (R′) is suf-

ficiently small and xf1(R′) 6= 0,

v′1(xf1(R′)) = εxf
1 (R′) < V R2(x̄, (0, 0))− V R2(xf2(R′), (0, 0)).

This implies v′1(0) + V R2(x̄, (0, 0)) > v′1(xf1(R′)) + V R2(xf2(R′), (0, 0)), contradicting

Step 2. �

We drive a contradiction for each of the following two cases.

Case 1. δmin = tf1(R)− tf1(R2;0). By d > δmin, εxf
1 (R) > 0, and Claim 1,

v′1(xf1(R))− tf1(R) = d+ εxf
1 (R) − t

f
1(R) > δmin − tf1(R) = −tf1(R2;0) = v′1(xf1(R′))− tf1(R′).

This inequality implies f1(R) P ′1 f1(R′), which contradicts strategy-proofness.

Case 2. δmin = V R2(x̄, (0, 0)) − V R2(xf2(R), (0, 0)). By Claim 1, xf2(R′) = x̄.

Since v′1(xf1(R)) > d > δmin = V R2(x̄, (0, 0)) − V R2(xf2(R), (0, 0)), v′1(xf1(R)) +

V R2(xf2(R), (0, 0)) > v′1(xf1(R′)) + V R2(xf2(R′), (0, 0)). This contradicts Step 2. �

Step 4. Let i ∈ {1, 2} and R ∈ R2. Then,

tfi (R) = V Rj(x̄, (0, 0))− V Rj(xfj (R), (0, 0)).

Proof. Without loss of generality, assume i = 1. By Step 3, we only need to show

tf1(R2;0) = 0. Suppose by contradiction that tf1(R2;0) 6= 0.

Claim 1. There is a bounded R′1 ∈ R such that tf2(R′1;0) 6= 0.

Proof. Let ε ∈ R++ be such that ε < |tf1(R2;0)|. Let R′2 ∈ RQ be such that for

each x ∈ X \ {0},
v′2(x) = V R2(x, (0, 0)) + ε.

Let t, s ∈ R|X| be such that for each x ∈ X, tx = tf1(R2;x) and sx = tf1(R′2;x). By

Remark 9, they are well-defined, and by Lemma 9, are object monotonic.
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By Step 1 and R′2 ∈ RQ, s0 = 0 and sx̄ = v′2(x̄). If t0 < 0, then t0 < s0, and thus,

t and s satisfy the condition of Lemma 4 for 0. On the other hand, if t0 > 0, then by

Step 3, ε < t0, and sx̄ = v′2(x̄),

tx̄ = V R2(x̄, (0, 0)) + t0 > V R2(x̄, (0, 0)) + ε = v′2(x̄) = sx̄.

Hence, in this case, t and s satisfy the condition of Lemma 3 for x̄.

Therefore, by Lemmas 3 and 4, there is a bounded R′1 ∈ RP such that R′1 ∈
RMT

t,0 ∩RMT
s,x̄ . By Lemma 10, xf1(R′1, R2) = 0 and xf1(R′1, R

′
2) = x̄. Therefore,

xf2(R′1, R2) = x̄ and xf2(R′1, R
′
2) = 0.

Now, we show tf2(R′1;0) 6= 0. Suppose by contradiction that tf2(R′1;0) = 0. By

xf2(R′1, R
′
2) = 0, f2(R′1, R

′
2) = (0, 0). However, by the definition of R′2, V R2(x̄, (0, 0)) <

v′2(x̄). By f2(R′1, R
′
2) = (0, 0) and xf2(R′1, R2) = x̄, this inequality contradicts Fact 3.

Hence, tf2(R′1;0) 6= 0. �

Since R′1 is bounded by Claim 1, there are s, s ∈ R++ such that for each (x, y) ∈ X
and each t ∈ R,

s < V R′1(x, (y, t))− t < s.

Let t ∈ R|X| be such that for each x ∈ X, tx = tf2(R′1, x). By Remark 9, t is well-

defined, and by Lemma 9, is object monotonic. There are two cases.

Case 1. t0 < 0. Let R′′1 ∈ RQ be such that for each x ∈ X \ {0}, v′′1(x) > s.

Let s ∈ R|X| be such that for each x ∈ X, sx = tf2(R′′1;x). By Remark 9, s is

well-defined, and by Lemma 9, is object monotonic.

By Step 1 and R′′1 ∈ RQ, s0 = 0 > t0. Thus, t and s satisfy the condition of

Lemma 4 for 0. Therefore, by Lemma 4, there is R′′2 ∈ RP such that R′′2 ∈ RMT
t,0 ∩RMT

s,x̄ .

By Lemma 10, xf2(R′1, R
′′
2) = 0 and xf2(R′′1, R

′′
2) = x̄. Therefore,

xf1(R′1, R
′′
2) = x̄ and xf1(R′′1, R

′′
2) = 0.

However, V R′1(x̄, f1(R′′1, R
′′
2))− tf1(R′′1, R

′′
2) < s < v′′1(x̄). This contradicts Fact 3.

Case 2. t0 > 0. Let R′′1 ∈ RQ be such that for each x ∈ X \ {0}, v′′1(x) < s.
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Let s ∈ R|X| be such that for each x ∈ X, sx = tf2(R′′1;x). By Remark 9, s is

well-defined, and by Lemma 9, is object monotonic.

By Step 1 and R′′1 ∈ RQ, s0 = 0 < t0. Thus, the pair t, s satisfy the condition of

Lemma 3 for 0. Therefore, by Lemma 3, there is R′′2 ∈ RP such that R′′2 ∈ RMT
t,x̄ ∩RMT

s,0 .

By Lemma 10, xf2(R′1, R
′′
2) = x̄ and xf2(R′′1, R

′′
2) = 0. Therefore,

xf1(R′1, R
′′
2) = 0 and xf1(R′′1, R

′′
2) = x̄.

However, V R′1(x̄, f1(R′1, R
′′
2))− tf1(R′1, R

′′
2) > s > v′′1(x̄). This contradicts Fact 3. �

Step 5. Completing the proof.

By using Step 4 and following the proof of Step 2, we can show that for each

R ∈ R2,

V R1(xf1(R), (0, 0)) + V R2(xf2(R), (0, 0)) = max
(x1,x2)∈A

V R1(x1, (0, 0)) + V R2(x2, (0, 0)).

Hence, by Step 4, we obtain the desired result. �

C.2 Proof of Theorem 1 (ii)

This is immediate from Theorem 1 (i) and Proposition 2. �

D Proof of Theorem 2

As we mentioned in the beginning of Appendix, we give only the proof for the partially

quasi-linear domain. Let R ≡ RP . Suppose by contradiction that there is a rule f

on Rn that satisfies efficiency and strategy-proofness.

We first define three vectors we use in the proof. Let (εx)x∈X , (ε
′
x)x∈X , (ε

′′
x)x∈X ∈

R|X|+ be object monotonic vectors that are sufficiently close to 0, and satisfy the

following: For each x ∈ X and each (y, y′) ∈ X ,25

ε′x < εy − εy′ and ε′′x < ε′y − ε′y′ . (5)

We do the proof in seven steps.

25For example, let ε0 = ε′0 = ε′′0 = 0, and for each x ∈ X \ {0}, let εx = m(x)
m(x̄) , ε′x = m(x)

(m(x̄))2 , and

ε′′x = m(x)
n(m(x̄))3 . The proof works with these ε, ε′, and ε′′.
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Figure 11: An illustration of Ri for i ∈ {1, 2}.

Step 1. Constructing a preference profile.

Let x∗1 ∈ X \ {0, x̄} and x∗2 ≡ x̄ − x∗1. For each i ∈ {1, 2}, we define a preference

relation Ri as follows. For each t ∈ R and each x ∈ X \ {0}, let

V Ri(x, (0, t)) =



58α + 42 + t if x = x̄,

58α + 22 + εx + t if x∗i < x 6= x̄,

58α + 22 + t if x = x∗i ,

εx + t otherwise,

where α is defined as α ≡ med{0, t+ 2, 1}.26 Note that α ∈ [0, 1].27

Figure 11 is an illustration of Ri for i ∈ {1, 2}. Note that for each t ∈ R
with −2 < t < −1, V Ri(·, (0, t)) is a convex combination of V Ri(·, (0,−2)) and

V Ri(·, (0,−1)). By the constructions of R1 and R2, R1 and R2 are bounded and ob-

ject monotonic. Further, as we show in the following claim, R1 and R2 are partially

quasi-linear.

26We denote by med{0, t+ 2, 1} the median of three numbers, 0, t+ 2, and 1.
27If t ≤ −2, then α = 0, if t ≥ −1, then α = 1, and if −2 < t < −1, then α = t+ 2 ∈ [0, 1].
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Claim 1. R1, R2 ∈ RP .

Proof. We prove only that R1 ∈ RP , because we can show R2 ∈ RP in the same

manner. Let (x, t) ∈ X(R1). By Remark 4, it is enough to show V R1(x̄, (x, t))− t =

V R1(x̄, (0, 0))− V R1(x, (x̄, 0)).

Without loss of generality, assume x 6= 0. If x ≥ x∗1, then it is clear from the

definition of R1 that V R1(x̄, (x, t))− t = V R1(x̄, (0, 0))− V R1(x, (x̄, 0)).

Suppose x 6≥ x∗1. Let s ≡ V R1(0, (x, t)). If s < −1, then

t = V R1(x, (0, s)) < V R1(x, (0,−1)) = εx − 1 < 0,

where the last inequality follows since εx is sufficiently close to 0. Thus, by (x, t) ∈
X(R1), s ≥ −1. This implies V R1(x̄, (0, s)) = 100 + s. Therefore,

V R1(x̄, (x, t))−t = V R1(x̄, (0, s))−V R1(x, (0, s)) = 100−εx = V R1(x̄, (0, 0))−V R1(x, (x̄, 0)).

Hence, R1 ∈ RP . �

Let R3 ∈ RQ be such that for each x ∈ X \ {0},

v3(x) =

ε′x if x 6= x̄,

60 if x = x̄.

For each i ∈ N \ {1, 2, 3}, let Ri ∈ RQ be such that for each x ∈ X \ {0},

vi(x) = ε′′x.

Denote R ≡ (R1, . . . , Rn).

We conclude this step by stating several properties of R. We do not prove some of

them because they are trivial. The first property gives an upper bound for the sum

of the valuations that the agents other than agents 1 and 2 can achieve under the

assumption that no agent receives x̄. This fact will be used in later steps to decide

the payments of agents 1 and 2 at some preference profiles.

Property 1. Let (xi)i∈N ∈ (X\{x̄})n be such that
∑

i∈N xi ≤ x̄. Then,
∑

i∈N\{1,2} vi(xi) <

1.
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Proof. By x3 6= x̄, v3(x3) = ε′x3
. For each i ∈ N \ {1, 2, 3}, vi(xi) = ε′′xi

. Since (ε′x)x∈X

and (ε′′x)x∈X are sufficiently close to 0,
∑

i∈N\{1,2} vi(xi) < 1. �

By (5), for each i ∈ N \ {1, 2, 3}, Ri is negligible with respect to R3.

Property 2. For each i ∈ N \ {1, 2, 3}, Ri ∈ RQ(R3).

By Property 2 and Lemma 7, we obtain the following.

Property 3. For each pair R′1, R
′
2 ∈ R and each i ∈ N \ {1, 2, 3}, xfi (R′1, R

′
2, R−1,2) =

0.

The following property is immediate from the definitions of (ε′x)x∈X and R3.

Property 4. Let v ∈ [0, 50] and R′i ∈ RQ be such that for each x ∈ X \ {0, x̄},
v′i(x) = v + εx, and v′i(x̄) > 60. Then R3 ∈ RQ(R′i).

The last property states the packages that agent 3 can obtain.

Property 5. Let i ∈ {1, 2} and R′i ∈ R. Then, xf3(R′i, R−i) = 0 or x̄.

Proof. Without loss of generality, assume i = 1 and denote R′ ≡ (R′1, R−1). Suppose

by contradiction that xf3(R′) ∈ X \ {0, x̄}. Let x ≡ xf2(R′) + xf3(R′). By xf3(R′) 6= 0,

x > xf2(R′). Thus, V R2(x, f2(R′))− tf2(R′) ≥ εx − εxf
2 (R′).

Therefore,

V R2(x, f2(R′)) + V R3(0, f3(R′)) ≥ εx − εxf
2 (R′) + tf2(R′) + tf3(R′)− v3(xf3(R′))

= εx − εxf
2 (R′) + tf2(R′) + tf3(R′)− ε′

xf
3 (R′)

> tf2(R′) + tf3(R′),

where the equality follows from the definition of R3 and the last inequality follows

from (5). This inequality contradicts Lemma 6. �

Step 2. Either xf3(R) = x̄, or xf1(R) = x∗1 and xf2(R) = x∗2.

Proof. Suppose by contradiction that xf3(R) 6= x̄, and xf1(R) 6= x∗1 or xf2(R) 6= x∗2. By

Property 5, xf3(R) = 0. By Property 3, for each i ∈ N \ {1, 2, 3}, xfi (R) = 0. Thus,

xf1(R) = x̄− xf2(R). This implies xf1(R) 6= x∗1 and xf2(R) 6= x∗2.
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Denote s1 ≡ V R1(0, f1(R)) and s2 ≡ V R2(0, f2(R)). There are three cases.

Case 1. xf1(R) = x̄ or xf2(R) = x̄. Without loss of generality, we assume xf1(R) = x̄.

By the definition of R1, V R1(x∗1, f1(R)) = tf1(R) − 20. By xf2(R) = 0 and the defi-

nition of R2, V R2(x∗2, f2(R)) ≥ tf2(R) + 22. Thus, V R1(x∗1, f1(R)) + V R2(x∗2, f2(R)) >

tf1(R) + tf2(R), contradicting Lemma 6.

Case 2. xf1(R) 6> x∗1 and xf2(R) 6> x∗2. For each i ∈ {1, 2},

V Ri(x∗i , fi(R))− tfi (R) = V Ri(x∗i , (0, si))− V Ri(xfi (R), (0, si)) ≥ 22 + si − (εxf
i (R) + si) > 0,

where the last inequality follows since εxf
i (R) is sufficiently close to 0. Thus, V R1(x∗1, f1(R))+

V R2(x∗2, f2(R)) > tf1(R) + tf2(R), which contradicts Lemma 6.

Case 3. xf1(R) > x∗1 or xf2(R) > x∗2. Without loss of generality, assume xf1(R) > x∗1.

By Case 1, We can also assume xf1(R) 6= x̄ without loss of generality. By the definition

of R1,

V R1(x∗1, f1(R))− tf1(R) = V R1(x∗1, (0, s1))− V R1(xf1(R), (0, s1)) = −εxf
1 (R).

By xf1(R) > x∗1, xf2(R) 6> x∗2. Thus, as we have shown in Case 2, V R2(x∗2, f2(R))−
tf2(R) ≥ 22−εxf

2 (R). Since εxf
1 (R) and εxf

2 (R) are sufficiently close to 0, V R1(x∗1, f1(R))+

V R2(x∗2, f2(R)) > tf1(R) + tf2(R), which contradicts Lemma 6. �

Step 3. xf1(R) = x∗1 and xf2(R) = x∗2.

Proof. Suppose by contradiction that xf1(R) 6= x∗1 or xf2(R) 6= x∗2. By Step 2,

xf3(R′) = x̄, and thus, xf1(R) = xf2(R) = 0. First we show the following claim.

Claim 1. tfi (R) < −1 for some i ∈ {1, 2}.

Proof. (Figure 12.) Suppose by contradiction that tf1(R) ≥ −1 and tf2(R) ≥ −1. By

the definitions of R1 and R2, V R1(x∗1, f1(R))− tf1(R) = V R2(x∗2, f2(R))− tf2(R) = 80.

By the definition of R3, V R3(0, f3(R)) = tf3(R)− v3(x̄) = tf3(R)− 60. Thus,

V R1(x∗1, f1(R)) + V R2(x∗2, f2(R)) + V R3(0, f3(R)) > tf1(R) + tf2(R) + tf3(R),
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Figure 12: An illustration of R1, R2, and R3.

which contradicts Lemma 6. �

Without loss of generality, we assume tf1(R) < −1. Let R′2 ∈ RQ be such that for

each x ∈ X \ {0},

v′2(x) =

εx if x 6= x̄,

100 if x = x̄.

Let t, s ∈ R|X| be such that for each x ∈ X, tx = tf1(R−1;x) and sx = tf1(R′2, R−1,2;x).

By the boundedness of R′2, R2, R3, . . . , Rn and Lemma 8, t and s are well-defined and

by Lemma 9, are object monotonic.

By Property 4, R3 ∈ RQ(R′2). Further, by Property 2 and Lemma 1, for each

i ∈ N \ {1, 2, 3}, Ri ∈ RQ(R3) ⊆ RQ(R′2). Thus, by Lemma 11 and Property 1,

−1 < s0 ≤ 0. By t0 = tf1(R) and Claim 1,

t0 < s0 ≤ 0.

Thus, t and s satisfy the condition of Lemma 4 for 0. Therefore, by Lemma 4,

there is R′1 ∈ RP such that R′1 ∈ RTM
t,0 ∩RTM

s,x∗1
. By Lemma 10,

xf1(R′1, R−1) = 0 and xf1(R′1, R
′
2, R−1,2) = x∗1.

For each i ∈ N \ {1, 2}, since Ri ∈ RQ(R′2), Lemma 7 implies xfi (R′1, R
′
2, R−1,2) = 0.
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Thus,

xf2(R′1, R
′
2, R−1,2) = x∗2.

By Property 3 and xf1(R′1, R−1) = 0, xf2(R′1, R−1) = x̄ − xf3(R′1, R−1). Note that by

Property 5 xf3(R′1, R−1) = 0 or x̄. Therefore,

xf2(R′1, R−1) = 0 or x̄.

Case 1. xf2(R′1, R−1) = 0. (Figure 13.) Since εx∗2 is sufficiently close to 0,

V R2(x∗2, f2(R′1, R−1)) > tf2(R′1, R−1)+εx∗2 = tf2(R′1, R−1)+v′2(x∗2) = V R′2(x∗2, f2(R′1, R−1)),

which contradicts Fact 3.

Case 2. xf2(R′1, R−1) = x̄. (Figure 14.) By xf2(R′1, R
′
2, R−1,2) = x∗2 and the defini-

tions of R2 and R′2,

V R2(x̄, f2(R′1, R
′
2, R−1,2)) = tf2(R′1, R

′
2, R−1,2) + 20

< tf2(R′1, R
′
2, R−1,2) + v′2(x̄)− v′2(x∗2)

= V R′2(x̄, f2(R′1, R
′
2, R−1,2)),

which contradicts Fact 3. �

Step 4. tfi (R) > 20 for some i ∈ {1, 2}.

Proof. Suppose by contradiction that tf1(R) ≤ 20 and tf2(R) ≤ 20. By Step 3,

xf1(R) = x∗1 and xf2(R) = x∗2. Note that for each i ∈ {1, 2} and each t ∈ R with
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t > −2, V Ri(x∗i , (0, t)) > 20. (See Figure 11.) This implies that V R1(0, f1(R)) ≤ −2

and V R2(0, f2(R)) ≤ −2. Thus, by the definitions of R1 and R2,

tf1(R)− V R1(0, f1(R)) = tf2(R)− V R2(0, f2(R)) = 22.

Therefore,

V R1(0, f1(R)) + V R2(0, f2(R)) + V R3(x̄, f3(R)) = tf1(R)− 22 + tf2(R)− 22 + tf3(R) + 60

> tf1(R) + tf2(R) + tf3(R),

which contradicts Lemma 6. �

Without loss of generality, we assume tf1(R) > 20. Let (δx)x∈X ∈ R|X|+ be an object

monotonic and additive vector that is sufficiently close to 0 and satisfies the following:

For each x ∈ X \ {0}, δx < ε′x.2829 Let R′1 ∈ RQ be such that for each x ∈ X \ {0},

v′1(x) =


20 + δx if x∗1 ≤ x 6≤ x̄,

40 + δx∗1 if x = x̄,

δx otherwise.

Figure 15 is an illustration of R′1. As is shown in the figure, since δx∗1 is sufficiently

close to 0 and tf1(R) > 20, we have v′1(x∗1) < tf1(R).

28A vector t ∈ R|X| is additive if for each pair x, y ∈ X, tx+y = tx + ty.
29For example, take any δ′ ∈ R++ such that δ′ < min{1, tf1 (R)− 20}, and let (δx)x∈X ∈ R|X|++ be

such that δ0 = 0 and for each x ∈ X \ {0}, δx = δ′m(x)
(m(x̄))3 . Then our proof works with this (δx)x∈X ,

and (εx)x∈X , (ε′x)x∈X , and (ε′′x)x∈X defined in footnote 25.
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Figure 15: An illustration of R′1.

Step 5. Either xf3(R′1, R−1) = x̄, or xf1(R′1, R−1) = x∗1 and xf2(R′1, R−1) = x∗2.

Proof. Suppose by contradiction that xf3(R′1, R−1) 6= x̄, and xf1(R′1, R−1) 6= x∗1

or xf2(R′1, R−1) 6= x∗2. By Property 5, xf3(R′1, R−1) = 0. Thus, by Property 3,

xf1(R′1, R−1) = x̄−xf2(R′1, R−1). This implies xf1(R′1, R−1) 6= x∗1 and xf2(R′1, R−1) 6= x∗2.

For simplicity, denote R′ ≡ (R′1, R−1). There are three cases.

Case 1. xf1(R′) = 0. (Figure 16.) By xf1(R′) = 0 and the definition of R′1,

V R′1(x∗1, f1(R′)) = tf1(R′) + v′1(x∗1) > tf1(R′) + 20.

By xf1(R′) = x̄−xf2(R′), xf2(R′) = x̄. Thus, by the definition of R2, V R2(x∗2, f2(R′)) =

tf2(R′) − 20. Thus, V R′1(x∗1, f1(R′)) + V R2(x∗2, f2(R′)) > tf1(R′) + tf2(R′). This contra-

dicts Lemma 6.

Case 2. x∗1 < xf1(R′). (Figure 17.) By the definition of R′1,

V R′1(x∗1, f1(R′)) = tf1(R′) + v′1(x∗1)− v′1(xf1(R′))

= tf1(R′) + 20 + δx∗1 − 20− δxf
1 (R′)

= tf1(R′)− δxf
1 (R′)−x∗1

,

where the last equality follows since (δx)x∈X is additive. By xf3(R′1, R−1) = 0, xf1(R′)−
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Figure 17: An illustration of R′1 and R3 in Case 2.

x∗1 > 0, and the definition of R3,

V R3(xf1(R′)− x∗1, f3(R′)) = tf3(R′) + v3(xf1(R′)− x∗1) = tf3(R′) + ε′
xf
1 (R′)−x∗1

.

By δxf
1 (R′)−x∗1

< ε′
xf
1 (R′)−x∗1

, V R′1(x∗1, f1(R′))+V R3(xf1(R′)−x∗1, f3(R′)) > tf1(R′)+tf3(R′).

This contradicts Lemma 6.

Case 3. x∗1 6≤ xf1(R′) 6= 0. (Figure 18.) By the definition of R′1,
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Figure 18: An illustration of R′1 and R3 in Case 3.

V R′1(0, f1(R′)) = tf1(R′)− v′1(xf1(R′)) = tf1(R′)− δxf
1 (R′).

By the definition of R3,

V R3(xf1(R′), f3(R′)) = tf3(R′) + v3(xf1(R′)) = tf3(R′) + ε′
xf
1 (R′)

.

By δxf
1 (R′) < ε′

xf
1 (R′)

, V R′1(0, f1(R′)) + V R3(xf1(R′), f3(R′)) > tf1(R′) + tf3(R′). This

contradicts Lemma 6. �

Step 6. xf1(R′1, R−1) = x∗1 and xf2(R′1, R−1) = x∗2.

Proof. Suppose by contradiction that xf1(R′1, R−1) 6= x∗1 or xf2(R′1, R−1) 6= x∗2. By

Step 5, xf3(R′1, R−1) = x̄, and hence, xf1(R′1, R−1) = xf2(R′1, R−1) = 0.

Claim 1. tf2(R′1, R−1) < −1.

Proof. Suppose by contradiction that tf2(R′1, R−1) ≥ −1. Then, by xf2(R′1, R−1) = 0

and the definition of R2, V R2(x∗2, f2(R′1, R−1))−tf2(R′1, R−1) = 80. (See Figure 11.) By

xf3(R′1, R−1) = x̄ and the definition of R3, V R3(0, f3(R′1, R−1)) = tf3(R′1, R−1)−v3(x̄) =

tf3(R′1, R−1)− 60. Thus, V R2(x∗2, f2(R′1, R−1)) + V R3(0, f3(R′1, R−1)) > tf2(R′1, R−1) +

tf3(R′1, R−1). This contradicts Lemma 6. �

Let R′′1 ∈ RQ be such that for each x ∈ X \ {0},

v′′1(x) =

εx if x 6= x̄,

100 if x = x̄.
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Let t, s ∈ R|X| be such that for each x ∈ X, tx = tf2(R′1, R−1,2;x) and sx =

tf2(R′′1, R−1,2;x). By the boundedness of R′1, R
′′
1, R3, . . . , Rn and Lemma 8, t and s are

well-defined, and by Lemma 9, are object monotonic.

By Property 4, R3 ∈ RQ(R′′1). Further, by Property 2 and Lemma 1, for each

i ∈ N \ {1, 2, 3}, Ri ∈ RQ(R3) ⊆ RQ(R′′1). Thus, by Lemma 11 and Property 1,

−1 < s0 ≤ 0. Since t0 = tf2(R′1, R−1) ≤ −1 by Claim 1,

t0 < s0 ≤ 0.

Thus, t and s satisfy the condition of Lemma 4 for 0. Therefore, by Lemma 4, there

is R′2 ∈ RP such that R′2 ∈ RMT
t,0 ∩RMT

s,x∗2
. For simplicity, denote R′ ≡ (R′1, R

′
2, R−1,2)

and R′′ = (R′′1, R
′
2, R−1,2). By Lemma 10,

xf2(R′) = 0 and xf2(R′′) = x∗2.

For each i ∈ N \ {1, 2}, since Ri ∈ RQ(R′′1) , Lemma 7 implies xfi (R′′) = 0. Thus,

xf1(R′′) = x∗1.

There are three cases.

Case 1. xf1(R′) ∈ X \ {0, x̄}. By xf1(R′) /∈ {0, x̄} and the definitions of R′1 ,

V R′1(x̄, f1(R′)) = tf1(R′) + v′1(x̄)− v′1(xf1(R′)) ≥ tf1(R′) + 20 + δx∗1 − δxf
1 (R′).

By Property 3 and xf2(R′) = 0, xf1(R′) = x̄ − xf3(R′). By xf1(R′) /∈ {0, x̄},
xf3(R′) /∈ {0, x̄}. Thus by the definition of R3,

V R3(0, f3(R′)) = tf3(R′)− v3(xf3(R′)) = tf3(R′)− ε′x3
.

Since (δx)x∈X and (ε′x)x∈X are sufficiently close to 0, V R′1(x̄, f1(R′))+V R3(0, f3(R′)) >

tf1(R′) + tf3(R′). This contradicts Lemma 6.

Case 2. xf1(R′) = 0. By the definition of R′1,

V R′1(x∗1, f1(R′)) = tf1(R′) + v′1(x∗1) = tf1(R′) + 20 + δx∗1

By the definition of R′′1,

V R′′1 (x∗1, f1(R′)) = tf1(R′) + v′′1(x∗1) = tf1(R′) + εx∗1 .
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Since εx∗1 is sufficiently close to 0, V R′1(x∗1, f1(R′)) > V R′′1 (x∗1, f1(R′)). By xf1(R′′) = x∗1,

this inequality contradicts Fact 3.

Case 3. xf1(R′) = x̄. By xf1(R′′) = x∗1 and the definition of R′1,

V R′1(x̄, f1(R′′)) = tf1(R′′) + v′1(x̄)− v′1(x∗1) = tf1(R′′) + 20.

By xf1(R′′) = x∗1 and the definition of R′′1,

V R′′1 (x̄, f1(R′′)) = tf1(R′′) + v′′1(x̄)− v′′1(x∗1) > tf1(R′′) + 20.

Thus, V R′1(x̄, f1(R′′)) < V R′′1 (x̄, f1(R′′)), contradicting Fact 3. �

Step 7. Completing the proof.

By Step 6, xf1(R′1, R−1) = x∗1 and xf2(R′1, R−1) = x∗2. By Step 3, xf1(R) = x∗1.

Thus, by strategy-proofness, f1(R′1, R−1) = f1(R). Let R′2 ∈ RQ be such that for

each x ∈ X \ {0},

v′2(x) =

50 + εx if x 6= x̄,

65 if x = x̄.

Let t, s ∈ R|X| be such that for each x ∈ X, tx = tf1(R−1;x) and sx = tf1(R′2, R−1,2;x).

By the boundedness of R′2, R2, . . . , Rn and Lemma 8, t and s are well-defined, and by

Lemma 9, are object monotonic.

By Property 4, R3 ∈ RQ(R′2). Further, by Property 2 and Lemma 1, for each

i ∈ N \ {1, 2, 3}, Ri ∈ RQ(R3) ⊆ RQ(R′2). Thus, by Lemma 11, s0 ≤ 0. By strategy-

proofness, f1(R′1, R−1) R′1 zf1 (R−1;0) = (0, t0). Thus, by f1(R′1, R−1) = f1(R) =

(x∗1, t
f
1(R)),

t0 ≥ V R′1(0, f1(R′1, R−1)) = tf1(R)− v′1(x∗1) = tf1(R)− (20 + δx∗1) > 0,

where the inequality follows since tf1(R) > 20 by Step 4 and δx∗1 is sufficiently close

to 0. If s0 < 0, then t and s satisfy the condition of Lemma 4 for 0. If s0 = 0, then

t and s satisfy the condition of Lemma 3 for 0. Thus, by Lemmas 3 and 4, there

is R′′1 ∈ RP such that R′′1 ∈ RMT
t,x∗1
∩ RMT

s,0 . By Lemma 10, xf1(R′′1, R−1) = x∗1 and

xf1(R′′1, R
′
2, R−1,2) = 0.
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For each i ∈ N \ {1, 2}, by Ri ∈ RQ(R′2) and Lemma 7, xfi (R′′1, R
′
2, R−1,2) = 0.

Thus,

xf2(R′′1, R
′
2, R−1,2)) = x̄.

Further, by Properties 3 and 5,

xf2(R′′1, R−1) = x∗2.

By the definition of R2, V R2(x̄, f2(R′′1, R−1)) = tf2(R′′1, R−1) + 20. By the definition

of R′2,

V R′2(x̄, f2(R′′1, R−1)) = tf2(R′′1, R−1) + v′2(x̄)− v′2(x∗2) < tf2(R′′1, R−1) + 20.

Thus, V R2(x̄, f2(R′′1, R−1)) > V R′2(x̄, f2(R′′1, R−1)). This contradicts Fact 3. �

E Proof of Proposition 2

As we mentioned in the beginning of Appendix, we give only the proof for the partially

quasi-linear domain. Thus, R satisfies RQ ⊆ R 6⊆ RP . Suppose by contradiction that

there is an efficient and strategy-proof rule f on Rn such that it is a (generalized)

Vickrey rule on (RQ)n. We do the proof in four steps.

Step 1. Constructing a preference profile.

By R 6⊆ RP , there is R1 ∈ R such that R1 /∈ RP . By Remark 4, there is

(x∗, t) ∈ X(R1) such that

V R1(x̄, (x∗, t))− t 6= V R1(x̄, (0, 0))− V R1(x∗, (0, 0)).

By the continuity of R1, we can assume 0 < t < V R1(x∗, (0, 0)) without loss

of generality. Also by the continuity of R1, there is s ∈ R such that 0 < s <

V R1(x∗, (0, 0)) and V R1(x̄, (x∗, t))−t 6= V R1(x̄, (x∗, s))−s. Without loss of generality,

assume

V R1(x̄, (x∗, t))− t > V R1(x̄, (x∗, s))− s. (6)
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Figure 19: An illustration of R2.

Let (εx)x∈X ∈ R|X|+ be an object monotonic vector that is sufficiently close to 0

and satisfies ε0 = 0.30

Let R2 ∈ RQ be such that for each x ∈ X \ {0},

v2(x) = V R1(x̄, (x∗, t))−max{V R1(x̄− x, (x∗, t)), 0} − εx̄−x.

Let R′2 ∈ RQ be such that for each x ∈ X \ {0},

v′2(x) =

V R1(x̄, (x∗, s))−max{V R1(x̄− x, (x∗, s)), 0}+ εx̄ if x ∈ {x̄− x∗, x̄},

V R1(x̄, (x∗, s))−max{V R1(x̄− x, (x∗, s)), 0} − εx̄−x otherwise.

Figures 19 and 20 illustrate R2 and R′2, respectively. The following two claims

show that R2 and R′2 are object monotonic.

Claim 1. R2 is object monotonic.

Proof. Let (x, y) ∈ X . If y = 0, then since εx is sufficiently close to 0 and R1 is

object monotonic, v2(x) > 0.

30Formally, the proof works if we take (εx)x∈X ∈ R|X|+ that is object monotonic and satisfies

the following: ε0 = 0, and for each (x, y) ∈ X , 0 < εx + εy < min{min(x′,y′)∈X V
R1(x′, (x∗, t)) −

V R1(y′, (x∗, t)),min(x′,y′)∈X V
R1(x′, (x∗, s))−V R1(y′, (x∗, s)), V R1(x̄, (x∗, t))− t− (V R1(x̄, (x∗, s))−

s)}.
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Suppose y 6= 0. By x < y, x̄ − x < x̄ − y. Thus, V R1(x̄ − x, (x∗, t)) < V R1(x̄ −
y, (x∗, t)) and εx̄−x < εx̄−y. Therefore,

v2(x) = V R1(x̄, (x∗, t))−max{V R1(x̄− x, (x∗, t)), 0} − εx̄−x
> V R1(x̄, (x∗, t))−max{V R1(x̄− y, (x∗, t)), 0} − εx̄−y
= v2(y).

�

Claim 2. R′2 is object monotonic.

Proof. Let (x, y) ∈ X . If y = 0, then since εx is sufficiently close to 0 and R1 is

object monotonic, v′2(x) > 0.

Suppose y 6= 0. By x > y, x̄− x < x̄− y. There are two cases.

Case 1. V R1(x̄− y, (x∗, s)) > 0. By x̄− x < x̄− y, and V R1(x̄− y, (x∗, s)) > 0,

max{V R1(x̄− x, (x∗, s)), 0} < V R1(x̄− y, (x∗, s)) = max{V R1(x̄− y, (x∗, s)), 0}.

By this inequality and since (εx′)x′∈X is sufficiently close to 0, max{V R1(x̄−x, (x∗, s)), 0}+
εx̄−x < max{V R1(x̄− y, (x∗, s)), 0} − εx̄.
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Therefore,

v′2(x) ≥ V R1(x̄, (x∗, s))−max{V R1(x̄− x, (x∗, s)), 0} − εx̄−x
> V R1(x̄, (x∗, s))−max{V R1(x̄− y, (x∗, s)), 0}+ εx̄

≥ v′2(y).

Case 2. V R1(x̄ − y, (x∗, s)) ≤ 0. By x > y, y 6= x̄. By V R1(x∗, (x∗, s)) = s > 0,

y 6= x̄− x∗. Thus,

v′2(y) = V R1(x̄, (x∗, s))−max{V R1(x̄− y, (x∗, s)), 0} − εx̄−y = V R1(x̄, (x∗, s))− εx̄−y,

where the last equality follows from V R1(x̄− y, (x∗, s)) ≤ 0.

By x̄− x < x̄− y, V R1(x̄− x, (x∗, s)) < V R1(x̄− y, (x∗, s)) ≤ 0. Thus,

v′2(x) ≥ V R1(x̄, (x∗, s))−max{V R1(x̄− x, (x∗, s)), 0} − εx̄−x = V R1(x̄, (x∗, s))− εx̄−x.

Since (εx′)x′∈X is object monotonic, v′2(x) > v′2(y). �

By Claims 1 and 2, R2, R
′
2 ∈ RQ.

Finally we define preferences of the other agents. For each i ∈ N \ {1, 2}, let

Ri ∈ R be such that Ri ∈ RQ(R2) and Ri ∈ RQ(R′2).31 Denote R ≡ (R1, R2, . . . , Rn)

and R′ ≡ (R1, R
′
2, . . . , Rn). Since f is efficient and R2, R

′
2, R3, . . . , Rn ∈ RQ, Lemma 8

implies Xf
1 (R−1) = xf1(R′−1) = X.

Since f coincides with a Vickrey rule on (RQ)n and R2, R
′
2, R3, . . . , Rn ∈ RQ, the

option sets of agent 1 under f for R−1 and R′−1 coincide with the ones under a Vickrey

rule, respectively. Further, by R3, . . . , Rn ∈ RQ(R2)∩RQ(R′2), Lemma 2 implies that

for each x ∈ X, σ1(R−1;x) = v2(x̄− x) and σ1(R′−1;x) = v′2(x̄− x). Hence, for each

x ∈ X,

tf1(R−1;x) = v2(x̄)− v2(x̄− x) and tf1(R′−1;x) = v′2(x̄)− v′2(x̄− x).

Step 2. For each x ∈ X \ {x̄}, zf1 (R−1, x̄) P1 z
f
1 (R−1, x).

Proof. (Figure 21.) First note that by t < V R1(x∗, (0, 0)), v2(x̄) = V R1(x̄, (x∗, t)) <

V R1(x̄, (0, 0)). This implies zf1 (R−1, x̄) = (x̄, v2(x̄)) P1 (0, 0).

31We can pick such preferences from R since RQ ⊆ R.
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Figure 21: An illustration of the option set of agent 1 for R−1.

Next, let x ∈ X \ {x̄,0}. Then,

v2(x̄)− v2(x̄− x)

= V R1(x̄, (x∗, t))− (V R1(x̄, (x∗, t))−max{V R1(x, (x∗, t)), 0} − εx)

> max{V R1(x, (x∗, t)), 0}

≥ V R1(x, (x∗, t)).

This implies (x∗, t) P1 (x, v2(x̄) − v2(x)) = zf1 (R−1;x). Therefore, zf1 (R−1; x̄) =

(x̄, v2(x̄)) = (x̄, V R1(x̄, (x∗, t))) I1 (x∗, t) P1 z
f
1 (R−1;x). �

Step 3. For each x ∈ X \ {x∗}, zf1 (R−1, x
∗) P1 z

f
1 (R−1, x).

Proof. (Figure 22.) Note that

tf1(R′−1;x∗) = v′2(x̄)− v′2(x̄− x∗)

= V R1(x̄, (x∗, s)) + εx̄ − (V R1(x̄, (x∗, s))− V R1(x∗, (x∗, s)) + εx̄)

= s.

By s < V R1(x∗, (0, 0)), zf1 (R′−1, x
∗) = (x∗, s) P1 (0, 0). Also, since v′2(x̄) >

V R1(x̄, (x∗, s)), zf1 (R′−1, x
∗) = (x∗, s) P1 (x̄, v′2(x̄)) = zf1 (R′−1, x̄).
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Figure 22: An illustration of the option set of agent 1 for R′−1.

Now let x ∈ X \ {0, x∗, x̄}. Then, x̄− x′ 6= x̄− x∗. Thus,

v′2(x̄)− v′2(x̄− x) = V R1(x̄, (x∗, s)) + εx̄ − (V R1(x̄, (x∗, s))−max{V R1(x, (x∗, s)), 0} − εx)

= max{V R1(x, (x∗, s)), 0}+ εx̄ + εx

> V R1(x, (x∗, s)).

This implies zf1 (R′−1;x∗) = (x∗, s) P1 (x, v′2(x̄)− v′2(x̄− x)) = zf1 (R′1;x). �

Step 4. Completing the proof.

By Steps 2 and 3 and strategy-proofness, xf1(R) = x̄ and xf1(R′) = x∗. For each

i ∈ N \ {2, 3}, since Ri ∈ RQ(R2) ∩ RQ(R′2), Lemma 7 implies xfi (R) = xfi (R′) = 0.

Therefore, xf2(R) = 0 and xf2(R′) = x̄ − x∗. However, by (6) and since (εx)x∈X is

sufficiently close to 0,

v2(x̄− x∗) = V R1(x̄, (x∗, t))− t− εx̄−x∗ > V R1(x̄, (x∗, s))− s+ εx̄ = v′2(x̄− x∗).

This contradicts Fact 3. �
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F Proofs of Lemmas

F.1 Proof of Lemma 2

Let x ∈ X and (xk)k∈N ∈ A be such that xi = x and σi(R−i;x) =
∑

k∈N\{i} vk(xk).

Suppose by contradiction that there is k ∈ N \ {i, j} such that xk > 0.

Let (y`)`∈N ∈ A be such that yi = xi, yj = xj + xk, yk = 0, and for each

` ∈ N \ {i, j, k}, y` = x`. By σi(R−i;x) =
∑

k∈N\{i} vk(xk),
∑

`∈N\{i} v`(y`) ≤∑
k∈N\{i} vk(xk).

However, by Rk ∈ RQ(Rj) and xk > 0, vj(xj) + vk(xk) < vj(xj + xk). Thus,∑
`∈N\{i}

v`(y`) = vj(xj + xk) +
∑

`∈N\{i,j,k}

v`(x`) >
∑

k∈N\{i}

vk(xk).

This is a contradiction. �

F.2 Proof of Lemma 3

Let

X+ ≡ {y ∈ X : ty > 0}.

Let t∗ ∈ R|X| be such that for each y ∈ X,

t∗y =

min{ty, sy} if y ∈ X+,

0 otherwise.

Figure 23 illustrates t, s, and t∗. Since t and s are object monotonic, for each

(y, y′) ∈ X with y, y′ ∈ X+, t∗y > t∗y′ . Further, for each (y, y′) ∈ X , t∗y ≥ t∗y′ .
32 Let

ε̄, ε ∈ R++ be sufficiently close to 0 and satisfy ε̄ > ε.33

Fix y ∈ X \ {x}. We prove that there is Ri ∈ RP such that Ri ∈ RMT
t,x ∩ RMT

s,y .

We do the proof in three steps.

Step 1. Constructing a preference relation.

32Note that by s0 > 0 and the object monotonicity of s, for each y ∈ X \ {0}, sy > 0.
33For example, the proof works if ε̄ > ε > 0 and 2(ε̄ + ε) < min{sx −

tx,minx′∈X+
t∗x′ ,min(x′,y′)∈X sx′ − sy′ ,min(x′,y′)∈X ,x′∈X+

t∗x′ − t∗y′}.
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Figure 23: An illustration of t, s, t∗, and Ri.

We define a preference relation Ri as follows: For each x′ ∈ X \ {0}, let34

V Ri(x′, (0, t∗0)) =


t∗x + ε̄ if x′ = x,

t∗x′ − ε if x′ ∈ X+ \ {x},
m(x′)
m(x̄)

ε otherwise.

Let

δ ≡

maxx′∈X\X+

m(x′)
m(x̄)

ε if X \X+ 6= ∅,

0 otherwise.

Note that by ε̄ > ε, ε̄ > δ.

For each t′ ∈ [t∗0 − δ, t∗0] and each x′ ∈ X, let

V Ri(x′, (0, t′)) = V Ri(x′, (0, t∗0))− (t∗0 − t′).

Let v ≡ V Ri(x, (0, t∗0)). Note that if x 6= 0, then v = t∗x + ε̄, and if x = 0, then

34Note that if x = 0, the first condition of the definition of V Ri(x′, (0, t∗0)) is redundant since

x′ ∈ X \ {0}.
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v = t∗0. Note also that by ε̄ > δ, v − ε̄ < V Ri(x, (0, t∗0 − δ)).35 For each x′ ∈ X, let36

V Ri(x′, (x, v − ε̄)) =

V Ri(x′, (0, t∗0))− ε̄ if x′ ∈ X+ ∪ {x},

min{tx′ , V Ri(x′, (0, t∗0 − δ))} − ε̄ otherwise.

For each t′ ∈ [V Ri(0, (x, v − ε̄)), t∗0 − δ] and each x′ ∈ X, let

V Ri(x′, (0, t′)) = α · V Ri(x′, (x, v − ε̄)) + (1− α)V Ri(x′, (0, t∗0 − δ)),

where α ∈ [0, 1] is such that t′ = α · V Ri(0, (x, v − ε̄))− (1− α)(t∗0 − δ).
For each x′ ∈ X \ {y}, let

V Ri(x′, (y, sy)) = sx′ −
1

2
ε.

Note that since ε̄ and ε are sufficiently close to 0, for each x′ ∈ X, V Ri(x′, (y, sy)) >

V Ri(x′, (0, t∗0)).37

For each t ∈ [t∗0, V
Ri(0, (y, sy))] and each x′ ∈ X, let

V Ri(x′, (0, t)) = α · V Ri(x′, (0, t∗0)) + (1− α)V Ri(x′, (y, sy)),

where α ∈ [0, 1] is such that t = α · t∗0 + (1− α)V Ri(0, (y, sy)).

Finally, for each t′ ∈ R \ [V Ri(0, (x, v − ε̄)), V Ri(0, (y, sy))] and each x′ ∈ X, let

V Ri(x′, (0, t′)) =

V Ri(x′, (x, v − ε̄))− (V Ri(0, (x, v − ε̄))− t) if t′ < V Ri(0, (x, v − ε̄)),

V Ri(x′, (y, sy)) + t′ − V Ri(0, (y, sy)) if t′ > V Ri(0, (y, sy)).

Figure 23 illustrates Ri.

Note that by the construction of Ri, Ri is bounded. It is also clear that Ri ∈
RMT

s,y . Further, we also have Ri ∈ RMT
t,x . To see this, let x′ ∈ X \ {x}. First,

suppose x = 0. By t0 ≥ 0 and the object monotonicity of t, tx′ > 0 and thus

35Formally, V Ri(x, (0, t∗0 − δ)) = V Ri(x, (0, t∗0))− δ = v − δ > v − ε̄.
36If x = 0, then by tx ≥ 0 and the object monotonicity of t, X+ ⊇ X \ {0}. Thus, in this case,

for each x′ ∈ X \ {0}, V Ri(x′, (x, v − ε̄)) = V Ri(x′, (0, t∗0))− ε̄.
37To see this, let x′ ∈ X. If x′ = x, then by tx < sx and since ε̄ and ε are sufficiently close

to 0, V Ri(x, (y, sy)) = sx − 1
2ε > t∗x + ε̄ = V Ri(x, (0, t∗0)). Suppose x′ ∈ X+ \ {x}. Then, by

sx′ ≥ t∗x′ , V Ri(x′, (y, sy)) = sx′ − 1
2ε > t∗x′ − ε = V Ri(x′, (0, t∗0)). Suppose x′ ∈ X \ X+ ∪ {x}.

By s0 > 0 and the object monotonicity of s, sx′ > 0. Thus, since ε is sufficiently close to 0,

V Ri(x′, (y, sy)) ≥ sx′ − 1
2ε >

m(x′)
m(x̄) · ε = V Ri(x′, (0, t∗0)).
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x′ ∈ X+ \ {x}. Therefore, V Ri(x′, (x, tx)) = V Ri(x′, (0, t∗0) = t∗x′ − ε < tx′ , which

implies (0, t0) Pi (x′, tx′). Next, suppose x 6= 0. Then, by tx < sx, tx = t∗x = v − ε̄.
If x′ ∈ X+, then V Ri(x′, (x, tx)) = V Ri(x′, (0, t∗0))− ε̄ = t∗x′ − ε− ε̄ < tx′ . If x′ /∈ X+,

then V Ri(x′, (x, tx)) = min{tx′ , V Ri(x′, (0, t∗0− δ))}− ε̄ < tx′ . Thus, (0, t0) Pi (x′, tx′).

Hence, Ri ∈ RMT
t,x .

Step 2. Ri is object monotonic.

Proof. To show that Ri is object monotonic, we need to prove that for each t′ ∈ R, the

vector (V Ri(x′, (0, t′)))x′∈X is object monotonic. By the definition of Ri, for each t′ ∈
R, the vector (V Ri(x′, (0, t′)))x′∈X is either (i) obtained by shifting one of the following

vectors (V Ri(x′, (x, v − ε̄)))x′∈X , (V Ri(x′, (0, t∗0 − δ)))x′∈X , (V Ri(x′, (0, t∗0)))x′∈X , and

(V Ri(x′, (y, sy)))x′∈X , or (ii) a convex combination of two of these four vectors. Thus,

we only need to show that these four vectors are object monotonic. Let (x′, y′) ∈ X .

We first show that (V Ri(x′′, (0, t∗0)))x′′∈X is object monotonic. Suppose y′ ∈ X+ ∪
{x}. By tx ≥ 0, x′ > y′, and the object monotonicity of t, we have x′ ∈ X+. Thus,

V Ri(x′, (0, t∗0)) ≥ t∗x′ − ε and V Ri(y′, (0, t∗0)) ≤ t∗y′ + ε̄. By x′ ∈ X+ and sx > tx ≥ 0,

t∗x′ = min{tx′ , sx′} > min{ty′ , sy′} = t∗y′ . Thus, since ε̄ and ε are sufficiently close to

0, V Ri(x′, (0, t∗0)) > V Ri(y′, (0, t∗0)). Next, suppose y′ ∈ X \ (X+ ∪ {x}). Then, by

m(x′) > m(y′) and since ε̄ is sufficiently close to 0, V Ri(x′, (0, t∗0)) ≥ m(x′)
m(x̄)

ε > m(y′)
m(x̄)

ε =

V Ri(y′, (0, t∗0)). Hence, (V Ri(x′′, (0, t∗0)))x′′∈X is object monotonic.

Since V Ri(x′′, (0, t∗0−δ)) = V Ri(x′′, (0, t∗0))−δ for each x′′ ∈ X and (V Ri(x′′, (0, t∗0)))x′′∈X

is object monotonic, (V Ri(x′′, (0, t∗0 − δ)))x′′∈X is also object monotonic.

Next, we show that (V Ri(x′′, (x, v − ε̄)))x′′∈X is object monotonic. Suppose y′ ∈
X+ ∪ {x}. By x′ > y′, x′ ∈ X+. Since (V Ri(x′′, (0, t∗0)))x′′∈X is object monotonic

as we have shown, V Ri(x′, (x, v − ε̄)) = V Ri(x′, (0, t∗0))) − ε̄ > V Ri(y′, (0, t∗0))) −
ε̄ = V Ri(y′, (x, v − ε̄)). Next, suppose y′ /∈ X+ ∪ {x}. Then, V Ri(x′, (x, v − ε̄)) ≥
min{tx′ , V Ri(x′, (0, t∗0 − δ))} − ε̄ and V Ri(y′, (x, v − ε̄)) = min{tx′ , V Ri(y′, (0, t∗0 −
δ))} − εx̄. Since tx′ > ty′ and (V Ri(x′′, (0, t∗0 − δ)))x′′∈X is object monotonic as we

have shown, V Ri(x′, (x, v − ε̄)) > V Ri(y′, (x, v − ε̄)). Hence, (V R′i(x′′, (x, v − ε̄)))x′′∈X
is object monotonic.

Finally, since s is object monotonic and ε is sufficiently close to 0, it is immediate

that (V Ri(x′′, (y, sy)))x′′∈X is object monotonic. Hence, Ri is object monotonic. �

Step 3. Ri ∈ RP .
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Proof. Let (x′, t′) ∈ X(Ri). By Remark 4, it is enough to show V Ri(x̄, (x′, t′))− t′ =

V Ri(x̄, (0, 0))− V Ri(x′, (0, 0)).

Let s′ ≡ V Ri(0, (x′, t′)). By (x′, t′) ∈ X(Ri) and the definition of t∗, s′ ≤ 0 ≤ t∗0.

There are two cases.

Case 1. X+ = X. By the construction of Ri, for each x′′ ∈ X and each s′′ ∈ R
with s′′ ≤ t∗0,

V Ri(x′′, (0, s′′)) = V Ri(x′′, (0, t∗0))− (t∗0 − s′′).

Thus,

V Ri(x̄, (x′, t′))− t′ = V Ri(x̄, (0, t∗0))− (t∗0 − s′)− (V Ri(x′, (0, t∗0))− (t∗0 − s′))

= V Ri(x̄, (0, t∗0))− V Ri(x′, (0, t∗0))

= V Ri(x̄, (0, 0))− V Ri(x′, (0, 0)),

where the last equality follows since 0 < t∗0.

Case 2. X \ X+ 6= ∅. By the object monotonicity of t and X \ X+ 6= ∅, we have

0 /∈ X+. Hence, t∗0 = 0.

Suppose −δ ≤ s′ ≤ 0. Then,

V Ri(x̄, (x′, t′))− t′ = V Ri(x̄, (0, t∗0))− (t∗0 − s′)− (V Ri(x′, (0, t∗0))− (t∗0 − s′))

= V Ri(x̄, (0, 0))− V Ri(x′, (0, 0)).

Suppose s′ ≤ V Ri(0, (x, v− ε̄)). Note that if x′ /∈ X+∪{x}, then tx′ ≤ 0 and thus,

t′ = V Ri(x′, (0, s′)) ≤ V Ri(x′, (x, v− ε̄)) = min{tx′ , V Ri(x′, (0, t∗0− δ))}− ε̄ < 0. Thus,

by (x′, t′) ∈ X(Ri), x
′ ∈ X+ ∪ {x}.

Therefore,

V Ri(x̄, (x′, t′))− t′

= V Ri(x̄, (x, v − ε̄))− (V Ri(0, (x, v − ε̄))− s′)− (V Ri(x′, (x, v − ε̄))− (V Ri(0, (x, v − ε̄))− s′))

= V Ri(x̄, (x, v − ε̄))− V Ri(x′, (x, v − ε̄))

= V Ri(x̄, (0, t∗0))− ε̄− (V Ri(x′, (0, t∗0))− ε̄)

= V Ri(x̄, (0, 0))− V Ri(x′, (0, 0)).
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Finally suppose V Ri(0, (x, v − ε̄)) < s′ < −δ. Let α ∈ [0, 1] be such that s′ =

α · V Ri(0, (x, v − ε̄))− (1− α)δ. Then,

V Ri(x̄, (x′i, t
′))− t′

=α · V Ri(x̄, (x, v − ε̄)) + (1− α)V Ri(x̄, (0,−δ))− (α · V Ri(x′, (x, v − ε̄)) + (1− α)V Ri(x′, (0,−δ)))

=V Ri(x̄, (0, 0))− V Ri(x′, (0, 0)).

�

F.3 Proof of Lemma 4

Let t∗ ∈ R|X| be such that for each y ∈ X,

t∗y = min{ty, sy, 0}.

Figure 24 illustrates t, s, and t∗. It is easy to see that t∗ is weakly object monotonic,

i.e., for each (y, y′) ∈ X , t∗y ≥ t∗y′ . Note also that by tx < sx and tx < 0, t∗x = tx. Let

(εy)y∈X ∈ R|X|++ be an object monotonic vector that is sufficiently close to 0.38 Fix

y ∈ X \ {x}. We prove that there is Ri ∈ RP such that Ri ∈ RMT
t,x ∩ RMT

s,y . We do

the proof in three steps.

Step 1. Constructing a preference relation.

We define a preference relation Ri as follows. For each x′ ∈ X \ {x}, let

V Ri(x′, (x, tx)) = t∗x − εx̄−x′ .

Let δ ∈ R++ be sufficiently close to 0.39 For each x′ ∈ X \ {y}, let

V Ri(x′, (y, sy)) = sx′ − δ.

Note that since δ is sufficiently close to 0, for each x′ ∈ X, V Ri(x′, (x, tx)) <

V Ri(x′, (y, sy)).

38Formally, the proof works if (εy)y∈X is object monotonic and satisfies 0 < ε0 and εx̄ <

min{−tx,min(x′,y′)∈X tx′ − ty′}.
39Formally, the proof works if δ satisfies 0 < δ < ε0, δ < min{sx′ − tx′ : sx′ > tx′ , x′ ∈ X}, and

δ < min(x′,y′)∈X sx′ − sy′ .
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Figure 24: An illustration of t, s, t∗, and Ri.

Let d : X → R be such that for each x′ ∈ X,

d(x′) = V Ri(x̄, (y, sy))−max{V Ri(x′, (y, sy)), 0}.

Note that for each (x′, y′) ∈ X , d(x′) ≤ d(y′).

For each t′ ∈ [V Ri(x̄, (x, tx)), V Ri(x̄, (y, sy))] and each x′ ∈ X, let

V Ri(x′, (x̄, t′)) =

t′ − d(x′) if t′ > d(x′),

α ·min{V Ri(x′, (y, sy)), 0}+ (1− α)V Ri(x′, (x, tx)) if t′ ≤ d(x′),

where α ∈ [0, 1] is such that t′ = α · d(x′) + (1− α)V Ri(x̄, (x, tx)).

Finally, for each t′ ∈ R \ [V Ri(0, (x, tx)), V Ri(0, (y, sy))] and each x′ ∈ X, let

V Ri(x′, (0, t′)) =

V Ri(x′, (x, tx))− (V Ri(0, (x, tx))− t′) if t′ < V Ri(0, (x, tx)),

V Ri(x′, (y, sy)) + (t′ − V Ri(0, (y, sy))) if t′ > V Ri(0, (y, sy)).

Figure 24 illustrates Ri. Note that by the construction of Ri, Ri is bounded.

Further, it is clear that Ri ∈ RMT
t,x ∩RMT

s,y .
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Step 2. Ri is object monotonic.

Proof. To show that Ri is object monotonic, we need to prove the object monotonicity

of (V Ri(x′, (x, tx)))x′∈X , (V Ri(x′, (y, sy)))x′∈X , and (V Ri(x′, (x̄, t′)))x′∈X for each t′ ∈
[V Ri(x̄, (x, tx)), V Ri(x̄, (y, sy))]. First observe that since t∗ is weakly object monotonic

and (εx′)x′∈X is object monotonic, (V Ri(x′, (x, tx)))x′∈X is object monotonic. Note also

that since s is object monotonic and δ is sufficiently close to 0, (V Ri(x′, (y, sy)))x′∈X

is object monotonic.

Let t′ ∈ [V Ri(x̄, (x, tx)), V Ri(x̄, (y, sy))]. Now we show that (V Ri(x′, (x̄, t′)))x′∈X

is object monotonic. Let (x′, y′) ∈ X . Observe that if V Ri(y′, (y, sy)) > 0, then by

the object monotonicity of (V Ri(x′′, (y, sy)))x′′∈X , we have d(x′) = V Ri(x̄, (y, sy)) −
V Ri(x′, (y, sy)) and d(y′) = V Ri(x̄, (y, sy))− V Ri(y′, (y, sy)), and hence, d(x′) < d(y′).

There are three cases.

Case 1. t′ > d(y′). By t′ ≤ V Ri(x̄, (y, sy)), d(y′) < V Ri(x̄, (y, sy)). This inequal-

ity and the definition of d imply V Ri(y′, (y, sy)) > 0. Thus, d(x′) < d(y′) < t′.

Therefore,

V Ri(x′, (x̄, t′)) = t′ − d(x′) > t′ − d(y′) = V Ri(y′, (x̄, t′)).

Case 2. d(x′) < t′ ≤ d(y′).40 By d(x′) < t′, V Ri(x′, (x̄, t′)) = t′ − d(x′) > 0. On

the other hand, by t′ ≤ d(y′) and V Ri(y′, (x, tx)) < 0, V Ri(y′, (x̄, t′)) < 0. Thus,

V Ri(x′, (x̄, t′)) > V Ri(y′, (x̄, t′)).

Case 3. t′ ≤ d(x′) and t′ ≤ d(y′). By the definition of Ri,

V Ri(x′, (x̄, t′)) = α ·min{V Ri(x′, (y, sy)), 0}+ (1− α)V Ri(x′, (x, tx)), and

V Ri(y′, (x̄, t′)) = β ·min{V Ri(y′, (y, sy)), 0}+ (1− β)V Ri(y′, (x, tx)),

where α ∈ [0, 1] and β ∈ [0, 1] are such that t′ = α · d(x′) + (1− α)V Ri(x̄, (x, tx)) and

t′ = β · d(y′) + (1− β)V Ri(x̄, (x, tx)), respectively. Note that by d(x′) ≤ d(y′), α ≥ β.

Suppose V Ri(x′, (y, sy)) > 0. Then, V Ri(x′, (x̄, t′)) = (1 − α)V Ri(x′, (x, tx)). By

x′ > y′ and the definition of (V Ri(x′′, (x, tx)))x′′∈X , 0 > V Ri(x′, (x, tx)) > V Ri(y′, (x, tx)).

40By d(x′) ≤ d(y′), it cannot be the case that d(y′) < t′ ≤ d(x′).
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Thus, by (1− α) ≤ (1− β),

V Ri(x′, (x̄, t′)) = (1− α)V Ri(x′, (x, tx)) > (1− β)V Ri(y′, (x, tx)) ≥ V Ri(y′, (x̄, t′)).

Suppose V Ri(x′, (y, sy)) ≤ 0. By the object monotonicity of (V Ri(x′′, (y, sy)))x′′∈X ,

V Ri(y′, (y, sy)) < V Ri(x′, (y, sy)) ≤ 0. Also, by the object monotonicity of (V Ri(x′′, (x, tx)))x′′∈X ,

V Ri(x′, (x, tx)) > V Ri(y′, (x, tx)). Thus,

V Ri(x′, (x̄, t′)) = α · V Ri(x′, (y, sy)) + (1− α)V Ri(x′, (x, tx))

> α · V Ri(y′, (y, sy)) + (1− α)V Ri(y′, (x, tx))

≥ β · V Ri(y′, (y, sy)) + (1− β)V Ri(y′, (x, tx))

= V Ri(y′, (x̄, t′)),

where the second inequality follows from α ≥ β and V Ri(y′, (y, sy)) > V Ri(y′, (x, tx)).

�

Step 3. Ri ∈ RP .

Proof. First we show that for each x′ ∈ X, V Ri(x̄, (0, 0))−V Ri(x′, (0, 0)) = V Ri(x̄, (y, sy))−
V Ri(x′, (y, sy)). If V Ri(0, (y, sy)) ≤ 0, it is clear that this equality holds. Suppose

V Ri(0, (y, sy)) > 0. Then, V Ri(0, (x̄, d(0))) = 0, and this implies V Ri(x̄, (0, 0)) =

d(0). By V Ri(0, (y, sy)) > 0, for each x′ ∈ X \ {0}, V Ri(x′, (y, sy)) > 0 and thus

d(x′) < d(0). Thus, for each x′ ∈ X,

V Ri(x̄, (0, 0))− V Ri(x′, (0, 0)) = d(0)− V Ri(x′, (x̄, d(0)))

= d(0)− (d(x′)− d(0))

= V Ri(x̄, (y, sy))− V Ri(x′, (y, sy)).

Let (x′, t′) ∈ X(Ri). By Remark 4, it is enough to show V Ri(x̄, (x′, t′)) − t′ =

V Ri(x̄, (0, 0))− V Ri(x′, (0, 0)).

If V Ri(0, (x′, t′)) ≥ V Ri(0, (y, sy)), then by the definition of Ri, V
Ri(x̄, (x′, t′)) −

t′ = V Ri(x̄, (y, sy))− V Ri(x′, (y, sy)) = V Ri(x̄, (0, 0))− V Ri(x′, (0, 0)).

Suppose V Ri(0, (x′, t′)) < V Ri(0, (y, sy)). Let s′ ≡ V Ri(x̄, (x′, t′)). There are three

cases.
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Case 1. s′ < d(x′). By the definition of Ri, t
′ = V Ri(x′, (x̄, s′)) < 0. This con-

tradicts the fact that (x′, t′) ∈ X(Ri).

Case 2. s′ = d(x′). By the definition ofRi, t
′ = V Ri(x′, (x̄, s′)) = min{V Ri(x′, (y, sy)), 0} ≤

0. By t′ ≥ 0, t′ = 0 and V Ri(x′, (y, sy)) ≥ 0. Thus,

V Ri(x̄, (x′, t′))−t′ = d(x′) = V Ri(x̄, (y, sy))−V Ri(x′, (y, sy)) = V Ri(x̄, (0, 0))−V Ri(x′, (0, 0)).

Case 3. s′ > d(x′). By V Ri(0, (x′, t′)) < V Ri(0, (y, sy)), s
′ < V Ri(x̄, (y, sy)). Thus, by

s′ > d(x′), d(x′) < V Ri(x̄, (y, sy)), which implies V Ri(x′, (y, sy)) > 0. Therefore,

V Ri(x̄, (x′, t′))− t′ = s′ − (s′ − d(x′))

= V Ri(x̄, (y, sy))− V Ri(x′, (y, sy))

= V Ri(x̄, (0, 0))− V Ri(x′, (0, 0)).

�

F.4 Proof of Lemma 5

We do the proof in three steps.

Step 1. Constructing a preference relation.

We define a preference relation Ri as follows. Let t∗ ∈ R be such that t∗ <

min{t0, s0}. Let (εx)x∈X ∈ R|X|+ be an object monotonic vector such that ε0 = 0 and

for each x ∈ X \ {0}, εx > 0 but sufficiently close to 0.41 In particular, we take

(εx)x∈X so that it satisfies s0 + εx̄ < 0. For each x ∈ X \ {x̄}, let

V Ri(x, (x̄, tx̄)) = t∗ + εx.

For each x ∈ X \ {0}, let

V Ri(x, (0, s0)) =

s0 + εx if x 6= x̄,

max{tx̄, s0}+ εx̄ if x = x̄.

41Formally, the proof works if (εx)x∈X ∈ R|X|+ is an object monotonic vector that satisfies ε0 = 0

and εx̄ < min{t0 − t∗,minx∈X\{0} sx − s0, sx̄ − tx̄,−s0}.
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Figure 25: An illustration of Ri.

For each t′ ∈ R with t∗ < t′ < s0, and each x ∈ X, let

V Ri(x, (0, t′)) = α · V Ri(x, (0, t∗)) + (1− α)V Ri(x, (0, s0)),

where α ∈ [0, 1] is such that t′ = α · t∗ + (1− α)s0.

Finally, for each t′ ∈ R \ [t∗, s0] and each x ∈ X, let

V Ri(x, (0, t′)) =

V Ri(x, (0, t∗))− (t∗ − t′) if t′ < t∗,

V Ri(x, (0, s0)) + (t′ − s0) if t′ > s0.

Figure 25 illustrates Ri. Note that by the construction of Ri, Ri is bounded. For

each x ∈ X \ {x̄}, since t∗ < t0 and εx is sufficiently close to 0, V Ri(x, (x̄, tx̄)) =

t∗ + εx < tx. Thus, Ri ∈ RMT
t,x̄ . Since tx̄ < sx̄ and εx̄ is sufficiently close to 0,

V Ri(x̄, (0, s0)) = max{tx̄, s0} + εx̄ < sx̄. Further, for each x ∈ X \ {0, x̄}, since εx is

sufficiently close to 0, V Ri(x, (0, s0)) = s0 + εx < sx. Thus, Ri ∈ RMT
s,0 .

Step 2. Ri is object monotonic.

Proof. To show Ri is object monotonic, we only need to prove the object monotonicity

of (V Ri(x, (x̄, tx)))x∈X and (V Ri(x, (0, s0)))x∈X . Let (x, y) ∈ X .

First we show that (V Ri(x′, (x̄, tx)))x′∈X is object monotonic. If x = x̄, then since

t∗ < tx̄ and εy is sufficiently close to 0, V Ri(x̄, (x̄, tx̄)) = tx̄ > t∗ + εy = V Ri(y, (x̄, tx̄)).
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Suppose x 6= x̄. Then, since (εx′)x′∈X is object monotonic, V Ri(x, (x̄, tx̄)) = t∗ + εx >

t∗ + εy = V Ri(y, (x̄, tx̄)). Hence, (V Ri(x′, (x̄, tx)))x′∈X is object monotonic.

Next, we show that (V Ri(x′, (0, s0)))x′∈X is object monotonic. Note that V Ri(x, (0, s0)) ≥
s0 + εx, and since y 6= x̄, V Ri(y, (0, s0)) = s0 + εy. Thus, since (εx′)x′∈X is object

monotonic, V Ri(x, (0, s0)) > V Ri(y, (0, s0)). Therefore, (V Ri(x′, (0, s0)))x′∈X is ob-

ject monotonic, and hence, Ri is object monotonic. �

Step 3. Ri ∈ RP .

Note that by s0 < 0, for each x ∈ X, V Ri(x̄, (0, 0))−V Ri(x, (0, 0)) = V Ri(x̄, (0, s0))−
V Ri(x, (0, s0)). Let (x, t′) ∈ X(Ri). By Remark 4, it is enough to show V Ri(x̄, (x, t′))−
t′ = V Ri(x̄, (0, 0)) − V Ri(x, (0, 0)). Without loss of generality, assume x 6= x̄. Let

s′ ≡ V Ri(0, (x, t′)).

By (x, t′) ∈ X(Ri), t
′ ≥ 0. Since s0 < 0 and εx is sufficiently close to 0,

V Ri(x, (0, s0)) = s0 + εx < 0 ≤ t′. Thus, s′ > s0. Therefore, by the definition

of Ri,

V Ri(x̄, (x, t′))− t′ = V Ri(x̄, (0, s′))− V Ri(x, (0, s′))

= V Ri(x̄, (0, s0)) + (s′ − s0)− (V Ri(x, (0, s0)) + (s′ − s0))

= V Ri(x̄, (0, s0))− V Ri(x, (0, s0))

= V Ri(x̄, (0, s0))− V Ri(x, (0, s0)).

Hence, Ri ∈ RP . �

F.5 Proof of Lemma 6

Suppose by contradiction that
∑

i∈N ′ V
Ri(xi, fi(R)) >

∑
i∈N ′ t

f
i (R). Let ((yi, si))i∈N ∈

Z be such that for each i ∈ N

(yi, si) =

(xi, V
Ri(xi, fi(R))) if i ∈ N ′,

fi(R) otherwise.

It is clear that for each i ∈ N , (yi, si) Ii fi(R). Moreover,∑
i∈N

si =
∑
i∈N ′

V Ri(xi, fi(R)) +
∑

i∈N\N ′
tfi (R) >

∑
i∈N

tfi (R).

By Remark 3, this contradicts efficiency. �
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F.6 Proof of Lemma 7

Suppose by contradiction that xfi (R) 6= 0 and there is j ∈ N \ {i} such that Ri ∈
RQ(Rj). Denote x ≡ xfi (R) + xfj (R). By xfi (R) 6= 0, x > xfj (R). By Ri ∈ RQ(Rj),

vi(x
f
i (R)) < V Rj(x, fj(R))− tfj (R).

Since V Ri(0, fi(R)) = tfi (R)− vi(xfi (R)),

V Ri(0, fi(R)) + V Rj(x, fj(R)) = tfi (R)− vi(xfi (R)) + V Rj(x, fj(R))

> tfi (R) + tfj (R).

This contradicts Lemma 6. �

F.7 Proof of Lemma 8

Since Rj is bounded for each j ∈ N \{i}, there is a pair s̄, s ∈ R++ such that for each

j ∈ N \ {i}, each (x, y) ∈ X , and each t ∈ R,

s < V Rj(x, (y, t))− t < s̄.

Let (εx)x∈X ∈ R|X|+ be an object monotonic vector such that εx̄ < s. Let x ∈ X.

We show that there is Ri ∈ RQ such that xi(Ri, R−i) = x.

Let Ri ∈ RQ be such that for each y ∈ X \ {0},

vi(y) =

n · s̄+ εy if y ≥ x,

εy otherwise.

Since (εx)x∈X is object monotonic, Ri is object monotonic. For simplicity, denote

R ≡ (Ri, R−i). Suppose by contradiction that xfi (R) 6= x. There are two cases.

Case 1. xfi (R) > x. Take any j ∈ N \ {i}. Denote y ≡ xfj (R) + (xfi (R) − x).

Then, y + x = xfi (R) + xfj (R), and by xfi (R) > x, y > xfj (R). By the definition of

(εy′)y′∈X ,

V Ri(x, fi(R)) + V Rj(y, fj(R)) = tfi (R) + vi(x)− vi(xfi (R)) + V Rj(y, fj(R))− tfj (R) + tfj (R)

> tfi (R) + εx − εxf
i (R) + s+ tfj (R)

> tfi (R) + tfj (R),
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which contradicts Lemma 6.

Case 2. xfi (R) 6≥ x. By xfi (R) 6= x̄, vi(x̄) − vi(xfi (R)) = n · s̄ + εx̄ − εxf
i (R) > n · s̄.

Thus,

V Ri(x̄, fi(R)) +
∑

j∈N\{i}

V Rj(0, fj(R))

= tfi (R) + vi(x̄)− vi(xfi (R)) +
∑

j∈N\{i}

(V Rj(0, fj(R))− tfj (R) + tfj (R))

> n · s̄− (n− 1) · s̄+
∑
j∈N

tfj (R)

>
∑
j∈N

tfj (R),

which contradicts Lemma 6. �

F.8 Proof of Lemma 9

Let (x, y) ∈ X . By Xf
i (R−i) = X, there are Ri, R

′
i ∈ R such that xfi (Ri, R−i) = x

and xfi (R′i, R−i) = y. By strategy-proofness, fi(R
′
i, R−i) R

′
i fi(Ri, R−i). This implies

V R′i(x, fi(R
′
i, R−i)) ≤ ti(Ri, R−i). By this and the object monotonicity of R′i,

tfi (R−i; y) = tfi (R′i, R−i) < V R′i(x, fi(R
′
i, R−i)) ≤ tfj (R′i, R−i) = tfj (R−i;x).

Thus, (tfi (R−i;x
′))x′∈X is object monotonic. �

F.9 Proof of Lemma 11

We prove only (ii), because we can prove (i) by setting s = 0 and following the proof

of (ii).

Without loss of generality, assume i = 1 and j = 2. By R3, . . . , Rn ∈ RQ and

Lemma 8, for each R′2 ∈ RQ, Xf
1 (R′2, R−1,2) = X. By Lemma 2, for each R′2 ∈ RQ

with R3, . . . , Rn ∈ RQ(R′2) and each x ∈ X, σ1(R′2, R−1,2;x) = v′2(x̄ − x). Thus, by

R3, . . . , Rn ∈ RQ and Fact 4, there is h1 : (RQ)n−1 → R such that for each R′2 ∈ RQ

with R3, . . . , Rn ∈ RQ(R′2), and each x ∈ X, tf1(R′2, R−1,2;x) = h1(R′2, R−1,2)−v′2(x̄−
x). This implies that for each R′2 ∈ RQ with R3, . . . , Rn ∈ RQ(R′2), and each pair
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x, y ∈ X

tf1(R′2, R−1,2;x) = h1(R′2, R−1,2)− v′2(x̄− x) + v′2(x̄− y)− v′2(x̄− y)

= tf1(R′2, R−1,2; y) + v′2(x̄− y)− v′2(x̄− x). (7)

Take any a ∈ M and let ea = (ea1, . . . , e
a
m) ∈ X be such that for each ` ∈ M ,

ea` = 1 if ` = a and ea` = 0 otherwise. Let x ≡ x̄− ea. Let

R∗ = {R′2 ∈ RQ : for each (y, y′) ∈ X , v′2(y)− v′2(y′) > v2(y)− v2(y′)}.

Note that since R3, . . . , Rn ∈ RQ(R2), for each R′2 ∈ R∗, R3, . . . , Rn ∈ RQ(R′2).

Let t ∈ R|X| be such that for each y ∈ X, ty = tf1(R−1; y). By Xf
1 (R−1) = X and

Lemma 9, t is object monotonic.

Step 1. t0 ≥ −s∗.

Proof. Suppose by contradiction that t0 < −s∗. We first show that we can assume

tea < 0 without loss of generality. To show this, we prove that there is R∗2 ∈ R∗ such

that tf1(R∗2, R−1,2;0) < −s∗ and tf1(R∗2, R−1,2; ea) < 0.

Let R∗2 ∈ RQ be such that v∗2(x̄) > v2(x̄) and v∗2(x̄) − v∗2(x) < −t0. Let s ∈ R|X|

be such that for each y ∈ X, sy = tf1(R∗2, R−1,2; y). We first prove s0 ≤ t0.

Suppose by contradiction that s0 > t0. By t0 < 0, t and s satisfy the condition of

Lemma 4 for 0. Thus, by Lemma 4, there is R′1 ∈ RP such that R′1 ∈ RMT
t,0 ∩RMT

s,x̄ . By

Lemma 10, xf1(R′1, R−1) = 0 and xf1(R′1, R
∗
2, R−1,2) = x̄. Then, xf2(R′1, R

∗
2, R−1,2) = 0.

Further, by R3, . . . , Rn ∈ RQ(R2), Lemma 7 implies that for each j ∈ N \ {1, 2},
xfj (R′1, R−1) = 0. This implies xf2(R′1, R−1) = x̄. However, by v∗2(x̄) > v2(x̄), this

contradicts Fact 3. Hence, s0 ≤ t0.

By t0 < −s∗ and s0 < −s∗. Further, by s0 ≤ t0 < 0, v∗2(x̄) − v∗2(x) < −t0, and

(7),

sea = s0 + v∗2(x̄)− v∗2(x) < s0 − t0 ≤ 0.

Hence, we can assume tea < 0 without loss of generality.

Let R′2, R
′′
2 ∈ R∗ be such that

v′′2(x) < v′2(x) and v′2(x̄) < v′′2(x̄).
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Figure 26: An illustration of R2, R′2, and R′′2.

Figure 26 illustrates R2, R′2, and R′′2. Let s′, s′′ ∈ R|X| be such that for each y ∈ X,

s′y = tf1(R′2, R−1,2; y) and s′′y = tf1(R′′2, R−1,2; y), respectively. By Xf
1 (R′2, R−1,2) =

Xf
1 (R′′2, R−1,2) = X and Lemma 9, s′ and s′′ are object monotonic.

Note that by R′2, R
′′
2 ∈ R∗, R3, . . . , Rn ∈ RQ(R2) ∩ RQ(R′2) ∩ RQ(R′′2). Thus,

for each R′1 ∈ R and each i ∈ N \ {1, 2}, xfi (R′1, R−1) = xfi (R′1, R
′
2, R−1,2) =

xfi (R′1, R
′′
2, R−1,2) = 0.

Claim 1. s′ea = s′′ea .

Proof. To complete the proof, it is enough to show s′ea = tea and s′′ea = tea . We

focus only on the proof of s′ea = tea because the same argument holds for s′′ea = tea .

Suppose by contradiction that s′ea 6= tea . There are two cases.

Case 1. s′ea < tea. By tea < 0, s′ea < 0. Thus, t and s′ satisfy the condition of Lemma 4

for ea. Therefore, by Lemma 4, there is R′1 ∈ RP such that R′1 ∈ RMT
t,0 ∩ RMT

s′,ea . By

Lemma 10, xf1(R′1, R−1) = 0 and xf1(R′1, R
′
2, R−1,2) = ea. Thus, xf2(R′1, R−1) = x̄ and

xf2(R′1, R
′
2, R−1,2) = x. However, by R′2 ∈ R∗, v′2(x̄) − v′2(x) > v2(x̄) − v2(x). This

contradicts Fact 3.

Case 2. s′ea > tea. By tea < 0, t and s′ satisfy the condition of Lemma 4 for

ea. Thus, by Lemma 4, there is R′1 ∈ RP such that R′1 ∈ RMT
t,ea ∩ RMT

s′,x̄ . By

Lemma 10, xf1(R′1, R−1) = ea and xf1(R′1, R
′
2, R−1,2) = x̄. Thus, xf2(R′1, R−1) = x

and xf2(R′1, R
′
2, R−1,2) = 0. However, by R′2 ∈ R∗, v′2(x) > v2(x). This contradicts
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Figure 27: An illustration of R2, R′2, and R′′2.

Fact 3. �

By Claim 1, (7), and the definitions of R′2 and R′′2,

s′′x̄ = s′′ea + v′′2(x) < s′ea + v′2(x) = s′x̄.

By s′ea = tea < 0 and the object monotonicity of s′, s′0 < 0. Thus, s′ and s′′ satisfy

the condition of Lemma 5. Therefore, by Lemma 5, there is R′1 ∈ RP such that

R′1 ∈ RMT
s′,0 ∩ RMT

s′′,x̄. By Lemma 10, xf1(R′1, R
′
2, R−1,2) = 0 and xf1(R′1, R

′′
2, R−1,2) = x̄.

Thus, xf2(R′1, R
′
2, R−1,2) = x̄ and xf2(R′′1, R

′
2, R−1,2) = 0. However, by the definitions

of R′′2 and R′′2, v′2(x̄) < v′′2(x̄), which contradicts Fact 3. �

Step 2. t0 ≤ 0.

Proof. Suppose by contradiction that t0 > 0. Let R′2, R
′′
2 ∈ R∗ be such that

v′′2(x) < v′2(x) and v′2(x̄) < v′′2(x̄) < v′′2(x) + (v2(x̄)− v2(x) + t0).

Note that we can define such preferences since t0 > 0. Note also that v′2(x̄) −
v′2(x) < v′′2(x̄)−v′′2(x). Figure 27 is an illustration of R2, R′2, and R′′2. Let s′, s′′ ∈ R|X|

be such that for each y ∈ X, s′y = tf1(R′2, R−1,2; y) and s′′y = tf1(R′′2, R−1,2; y). By

Xf
1 (R′2, R−1,2) = Xf

1 (R′′2, R−1,2) = X and Lemma 9, s′ and s′′ are object monotonic.

Notice that by R′2, R
′′
2 ∈ R∗, R3, . . . , Rn ∈ RQ(R2) ∩ RQ(R′2) ∩ RQ(R′′2). Thus,

for each R′1 ∈ R and each i ∈ N \ {1, 2}, xfi (R′1, R−1) = xfi (R′1, R
′
2, R−1,2) =

xfi (R′1, R
′′
2, R−1,2) = 0.
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Claim 1. s′ea = s′′ea = tea .

Proof. We only prove s′ea = tea because the same argument holds for s′′ea = tea .

Suppose by contradiction that s′ea 6= tea . There are two cases.

Case 1. s′ea < tea . If s′ea ≥ 0, t and s′ satisfy the condition of Lemma 3 for ea. Further,

if s′ea < 0, then t and s′ satisfy the condition of Lemma 4 for ea. Thus, by Lemmas 3

and 4, there is R′1 ∈ R such that R′1 ∈ RMT
t,0 ∩RMT

s′,ea . By Lemma 10, xf1(R′1, R−1) = 0

and xf1(R′1, R
′
2, R−1,2) = ea. Thus, xf2(R′1, R−1) = x̄ and xf2(R′1, R

′
2, R−1,2) = x. How-

ever, by R′2 ∈ R∗, v′2(x̄)− v′2(x) > v2(x̄)− v2(x), which contradicts Fact 3.

Case 2. s′ea > tea . By the definitions of R′2 and R′′2, v′2(x̄)− v′2(x) < v′′2(x̄)− v′′2(x) <

v2(x̄)− v2(x) + t0. Thus, by (7),

s′0 = s′ea − (v′2(x̄)− v′2(x)) > tea − (v2(x̄)− v2(x) + t0) = t0 − t0 = 0.

By t0 > 0 and the object monotonicity of t , tea > 0. Thus, t and s′ satisfy the

condition of Lemma 3 for ea. Therefore, by Lemma 3, there is R′1 ∈ RP such that

R′1 ∈ RMT
t,ea ∩RMT

s′,x̄ . By Lemma 10, xf1(R′1, R−1) = ea and xf1(R′1, R
′
2, R−1,2) = x̄. Thus,

xf2(R′1, R−1) = x and xf2(R′1, R
′
2, R−1,2) = 0. However, by R′2 ∈ R∗, v′2(x) > v2(x).

This contradicts Fact 3. �

By Claim 1, (7), and v′′2(x) < v′2(x),

s′′x̄ = s′′ea + v′′2(x) < s′ea + v′2(x) = s′x̄.

By Claim 1, t0 > 0, and the object monotonicity of t and s′′,

s′′x̄ > s′′ea = tea > t0 > 0.

Moreover, by Claim 1, (7), and the definition of R′2,

s′0 = s′ea − (v′2(x̄)− v′2(x)) > tea − (v2(x̄)− v2(x)− t0) = t0 − t0 = 0.

Thus, s′ and s′′ satisfy the condition of Lemma 3 for x̄. Therefore, by Lemma 3,

there is R′1 ∈ RP such that R′1 ∈ RMT
s′,0 ∩RMT

s′′,x̄. By Lemma 10, xf1(R′1, R
′
2, R−1,2) = 0
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and xf1(R′1, R
′′
2, R−1,2) = x̄. Thus, xf2(R′1, R

′
2, R−1,2) = x̄ and xf2(R′1, R

′′
2, R−1,2) = 0.

However, by the definitions of R′2 and R′′2, v′2(x̄) > v′′2(x̄). This contradicts Fact 3. �
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