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Abstract 

This paper investigates how population decline may affect the optimal path in two types of Ramsey-Cass-
Koopmans (RCK) model with child rearing costs. An optimal path exists in both models under 
economically plausible conditions and a new type of optimal path exists in the model where the discount 
rate is only the time preference rate. Under population decline, the existence and properties of an optimal 
path depend on the range of the rates of population change, regardless of the child rearing costs. First, 
when population decline is mild, the optimal path is a saddle-point path converging to a finite steady state, 
as in the standard RCK model with increasing population. Second, when population decline is faster, the 
optimal path is a saddle-point path converging, by reversible investment, to a finite steady state (i.e., a 
balanced growth path (BGP)), at which per capita consumption is larger than per capita income. Third, 
when population decline is even faster, the optimal path can be an asymptotically BGP, along which both 
per capita consumption and income keep increasing permanently. We show empirical relevance of these 
optimal paths by Japanese data and World Population Prospects 2019. 
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1. Introduction 

In recent years population decline has been observed in many developed countries. In the coming 50 years 
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even developing countries will experience population decline due to a decline in the fertility rate. Global 

population today, as Jones (2022) indicates, has a distinct possibility of declining rather than stabilizing 

in the long run. The world economy could be regarded as entering into the era of population decline.1  

 

[Tables 1 and 2 around here] 

 

It is widely believed in real societies with declining population that population decline has negative 

real effects on economic growth, including negative impacts on national income and thus the pension 

system and the tax system. However, even if population decline decreases the aggregate real income, per 

capita real income (and consumption), which is decisive for economic welfare, will increase if the 

increasing effect on per capita capital (or income) due to population decline dominates the decreasing 

effect on national income. Otherwise, it may decrease per capita income and thus deteriorate economic 

welfare. 

In economics literature, Ritschl (1985) shows in the neoclassical growth model a la Solow (1956) 

that under a negative rate of population change, a steady state with a positive value of per capita capital 

stock exists if the exogenous saving rate is negative. Then, the steady state is unstable, and therefore, if 

the initial level of capital lies below its steady-state level, per capita capital and income decrease over time, 

converging to zero. This may provide a theoretical foundation for the concern that per capita income will 

decrease due to population decline in the growth process.2 More recently, Jones (2022) has shown a 

                             
1 The UN World Population Prospects 2019 provides future predictions of the rates of population change in the main 
regions of the world, where the middle variants of fertility rate (in Tables 1) and the low variants (in Table 2) are shown. 
Even in the middle variant scenario, many regions of the world are expected to experience negative population growth. 
In particular, in 2070, almost all regions and countries presented in the table will experience negative population growth. 
2 Endogenous growth models with scale effect (i.e., the long-run growth rate of per capita output depends positively on 
the size of population), such as Romer (1990), may lead to a reduction in the growth rate of income when population 
decreases. In semi-endogenous growth models without scale effect (i.e., the long-run growth rate of per capita output 
depends positively on the population growth rate, and not on the size of population), such as Jones (1995), the growth 
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theoretical possibility that living standards stagnate rather than continued exponential growth.3 

In the recent trend of growth analysis under population decline, it has been intensively studied 

whether there is an equilibrium growth path along which per capita income and consumption increase.  

In a simple semi-endogenous growth model with an exogenous saving rate and an aggregate capital-input 

externality, Christiaans (2011) shows that the long-run growth rate of per capita output exhibits non-

monotonous dependency on negative population growth rate: when the negative rates of population 

change is close to (resp. far from) zero, the long-run growth rate of per capita output depends positively 

(resp. negatively) on the rate of population change. In particular, the long-run growth rate of per capita 

output becomes negative when the population growth rate gets into the negative range. In the semi-

endogenous research and development (R&D) growth model by Jones (1995) with an exogenous saving 

rate, Sasaki and Hoshida (2017) show that when the population growth rate is negative, the rate of 

technological progress converges to zero and the growth rate of per capita output will be positive. This 

study uses the Cobb-Douglas (CD) production function, whose elasticity of substitution between labor 

and capital is unity.4 Proceeding to a Solow growth model with the CES production function, Sasaki 

(2019) shows that under population decline, the long-run growth rate of per capita output is equal to the 

exogenously given rate of technological progress if the elasticity of substitution is less than unity, which 

is empirically relevant.5 Then, as long as the rate of technological progress is zero, the growth rate of per 

                             
rate of income tends to be lower when faster population decline occurs. It is not clear, however, whether the growth rate 
of income can be negative in these models. 
3 Jones (2020, 2022) investigates long-run consequences of population decline in an endogenous growth model whose 
engine of growth is knowledge production by R&D. When the fertility rate is negative, two steady states exist. One is a 
steady state in which population, knowledge, and standard of living continues to increase exponentially. The other is a 
steady state in which population continues to decrease, and knowledge production and standard of living are stagnant. 
He emphasizes technological progress driven by knowledge production and abstracts capital accumulation. 
4 Sasaki (2015a) builds a small open economy growth model and investigates the relationship between trade patterns 
and the per capita output growth rate. In this model, he shows that per capita output continues to increase even if the rate 
of population growth is negative. 
5 For estimations of the elasticity of substitution between labor and capital, see Rowthorn (1999), Antras (2004) Klump, 
McAdam, and Willman (2007), Chirinko (2008), and Chirinko and Mallick (2017). These studies show that the elasticity 
of substitution is less than unity. 
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capita output is zero. By contrast, if the elasticity of substitution is unity (i.e., CD production function), 

the long-run growth rate of per capita output can be positive even without technological progress. 

Furthermore, Sasaki (2023) has analyzed effects of population decline in a growth model with automation 

capital in final goods production, which is based on Prettner (2019). He finds that when the absolute value 

of negative population growth rate is small, the long-run growth rate of per capita output is positive if the 

saving rate is high whereas it is zero if the saving rate is lower. It is also found that when the associated 

absolute value is large, the long-run growth rate of per capita output is positive irrespective of the saving 

rate.6 

These recent studies are based on a dynamic macroeconomic model which involves either perfect 

competition or market failures such as externalities and imperfect competition (or, increasing return to 

scale). Taking into account the possibility that some marker failures may lead to a reduction in per capita 

income on an equilibrium growth path, it should be of fundamental importance to ask whether the market 

economy system, by itself, has an intrinsic mechanism that can generate a reduction in per capita income 

and consumption in the growth process. For this purpose, we will investigate the existence and properties 

of an equilibrium path in a perfectly competitive market economy. While Ritschl (1985) analyzed a 

perfectly competitive market economy using the Solow growth model with an exogenous saving rate and 

without utility maximization, we will proceed to the Ramsey-Cass-Koopmans optimal growth (RCK) 

model, which endogenizes the saving rate by utility maximization and is thus regarded as the most general 

framework for the analysis of a competitive market economy system. 

This representative dynamic macroeconomic model has never been analyzed under population 

                             
6 Another strand of research involves the production function with non-renewable resources: Sasaki (2021), Sasaki and 
Mino (2021), Mino and Sasaki (2021, 2022). For example, Sasaki (2021) introduces negative population growth in the 
semi-endogenous growth model of Groth and Schou (2002) that considers non-renewable resources in final goods 
production. He shows that even if there are two negative constraints on economic growth (population decline and exhaust 
of resources), the long-run growth rate of per capita output can be positive. 
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decline. The reason must be two folds. First, from an empirical view point, the condition for emerging an 

equilibrium/optimal growth path (we simply call it an “optimal path”) which is peculiar to population 

decline in the RCK model does not seem to be satisfied. The associated condition is that the effective 

depreciation rate of capital is negative, 0n δ+ < , where n  is the rate of population change and δ  the 

depreciation rate of capital. According to Jones (2022), empirically, the (actual and estimated) rates of 

population decline (the absolute value of 0n < ) are 1% or smaller whereas the depreciation rate (δ ) of 

capital is 3% or 5 % or more. Thus, in most cases, we have 0n δ+ >  in a real world. Second, from a 

theoretical viewpoint, it has been believed that properties of the optimal path must be the same or similar 

even if we should derive it under 0n δ+ < . The reason will be that even under 0n δ+ <  a steady state 

exists and the law of motion is basically the same as in the RCK model with increasing population. If so, 

an explicit analysis of an optimal path under population decline would not provide new economic findings. 

In this paper, we introduce child rearing costs into the RCK model to address the empirical concern 

above. Using two types of RCK models in which the discount rate in the intertemporal utility is 0nρ − >  

or 0ρ >  (time preference rate), we investigate the existence and properties of an optimal path under 

population decline and find a new type of optimal path in the latter model. We can confirm that an optimal 

path exists under economically plausible conditions in both models. This means that even under 

population decline, the RCK model remains useful as the theoretical foundation for identifying the socially 

optimal path in a perfectly competitive market economy. 

Under population decline, the existence and properties of an optimal path depends on the range of 

the rates of population change, independently of the child rearing costs. First, when population decline is 

mild, the optimal path is a saddle-point path converging to a finite steady state, at which per capita 

consumption is equal to or smaller than per capita income, as in the standard RCK model with increasing 

population. Second, when population decline is faster (so that the effective depreciation rate of capital is 

negative), the optimal path is a saddle-point path converging to a finite steady state, i.e., a (degenerate) 
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balanced growth path (BGP), at which per capita consumption is larger than per capita income. Then, an 

economy needs to make reversible investment to reach the steady state. Third, when population decline is 

even faster, the optimal path can be an (degenerate) asymptotically BGP, along which both per capita 

consumption and income keep increasing permanently. We show empirically that these optimal paths 

specific to population decline can emerge in realistically relevant ranges of the rates of population decline 

(due to child rearing costs), based on Japanese data and the “low variant” estimation in World Population 

Prospects 2019. 

The important implication from the results above is that under population decline a competitive 

market economy does not have an intrinsic growth mechanism which can decrease per capita income 

and/or consumption utility over time. Rather, a competitive market economy, even under population 

decline, has the intrinsic mechanisms which induce a growth path along which per capita income and 

consumption utility is constant (for the BGP case) or increasing (for the asymptotically BGP case) over 

time. 

This paper is organized as follows. Section 2 presents the RCK model with the discount rate 𝜌𝜌 − 𝑛𝑛. 

Section 3 establishes a theorem on the optimal path for this model. Section 4 analyzes the RCK model 

with the discount rate 𝜌𝜌 and presents a theorem on the optimal path similar to Section 3. Section 5 

presents a theorem on the new type of optimal path and discuss implications for the three theorems. Section 

6 explains empirical relevance of our theoretical results, based on World Population Prospects 2019. 

Section 7 concludes the paper. 

 

2. Ramsey-Cass-Koopmans Model with the Discount Rate 0nρ − >  

2.1 The Model 

Consider the Ramsey-Cass-Koopmans optimal growth (RCK) model of a closed and perfectly competitive 



7 
 

market economy. One final good, which can be either consumed or invested, is produced by using labor 

( )L t  and capital ( )K t . The aggregate production function ( ( ), ( ))F L t K t  satisfies the standard 

neoclassical assumptions, including ( ( ),0)F L t = (0, ( )) 0F K t =  and the constant return-to-scale property 

in ( )L t  and ( )K t . Per capita production function is defined by ( ( )) (1, ( ) / ( ))f k t F K t L t≡  with positive 

and decreasing marginal product of each factor ( ( ( )) 0f k t′ >  and ( ( )) 0f k t′′ < ) and Inada conditions 

(
( ) 0
lim ( ( ))

k t
f k t

→
′ = ∞  and 

( )
lim ( ( )) 0

k t
f k t

→∞
′ = ), where ( ) ( ) / ( )k t K t L t=  is per capita capital. Population, 

which is equal to total labor, is assumed to be changing at an exogenous rate n  at any point in time t: 

( )
( )

L t n
L t

=


dλ≡ −                                                  (1) 

where a dot represents a time derivative. The rate n  of population change equals the difference between 

the domestic fertility rate 0λ ≥  and the mortality rate [0,1]d ∈ 7 and may be either positive or negative. 

In order to show that the rates of population decline below which an optimal path has different properties 

from those in a population-increasing economy can be realistically relevant, we introduce child rearing 

costs.8 

We assume that the birth and rearing of each child costs an amount 0η >  at any point in time t. 

Following Barro and Sala-i-Martin (2004, p.413), the child rearing cost is assumed to be positively related 

to per capita capital ( )k t , i.e., ( ( ))k tη  with '( ( )) 0k tη > . This is because the cost η  tends to rise with 

the opportunity cost of parental time, i.e., parents’ wage rate ( ) ( ( )) ( ) '( ( ))w t f k t k t f k t= − , which is 

increasing in ( )k t . The commodity costs of rearing a child may be either increasing or decreasing in ( )k t , 

                             
7 We assume away international labor movements from an exogenous rate of population change. 
8 The child rearing cost may decrease the absolute value of the population declining rates (i.e., make those rates closer 

to zero) below which an optimal path with different properties from those in a population-increasing economy are induced. 

In section 3 and 5 we will explain that the existence and properties of an optimal path are independent of the child rearing 

costs. 
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which could in general induce a complex form (nonlinearity) of ( ( ))k tη .9 Because the aggregate cost of 

child rearing is ( )L tηλ , the aggregate capital stock evolves over time according to 

( ) ( ) ( ) ( ) ( )K t Y t C t K t L tδ ηλ= − − − , where ( )C t is the aggregate consumption and (0,1)δ ∈  is the 

depreciation rate of capital. Thus, per capita capital is accumulated according to

( ) ( ( )) ( ) ( ) ( ) ( ( ))k t f k t c t n k t k tδ λη= − − + − , where ( ) ( ) / ( )c t C t L t≡  is per capita consumption. To 

simplify the analysis, we use a linear child rearing cost function ( ( )) ( )k t bk tη =  with 0b > . 

The representative household chooses the time path { } 0
( )

t
c t ∞

=
 of per capita consumption to 

maximize its intertemporal utility: 

   ( )

0
( ( )) n tU u c t e dtρ∞ − −= ∫                                             (2) 

subject to per capita capital accumulation function: 

( ) ( ( )) ( ) { (1 ) } ( )k t f k t c t d b k tδ λ= − − − + +                              (3) 

given the initial state 0(0) 0k k= > , where 0ρ >  is the rate of time preference and ( ( ))u c t is the 

instantaneous utility with '( ( )) 0u c t > , "( ( )) 0u c t <  and Inada conditions (
( ) 0
lim '( ( ))

c t
u c t

→
= ∞  and 

( )
lim '( ( )) 0

c t
u c t

→∞
= ). We use the intertemporal utility function (2) in which the discount rate is 0nρ − >  

because it seems the most common formulation in macroeconomics.10 We call the term (1 )d bδ λ− + +  

in (3) the “effective depreciation rate (of capital)”. 

Defining the present-value Hamiltonian function by: 

                             
9 It is shown that a nonlinear child rearing cost function could induce complex dynamics in the Solow growth model in 

Daitoh (2020). 
10 The formulation (2) corresponds to the instantaneous utility function which includes the rate of population change in 

the entire economy, i.e., ( ( )) ntu c t e . In section 4 and 5 we analyze the less common RCK model where the discount rate 

is 0ρ > . It will be shown that there is an optimal path with theoretically different properties from those in the RCK 

model with the discount rate 0nρ − > . 
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( ) ( )( )( ), ( ), ( ), ( ( )) ( ) ( ) ( ) { (1 ) } ( )n tH k t c t t t u c t e t f k t c t d b k tρπ π δ λ− −≡ + − − − + +   (4) 

the optimal path needs to satisfy the first-order conditions: 

   ( )'( ( )) ( ) 0
( )

n tH u c t e t
c t

ρ π− −∂
= − =

∂
             (5) 

   ( )( ) ( ) ( ) { (1 ) }
( )
Ht t f k t d b

k t
π π δ λ∂ ′= − = − − − + +  ∂
          (6) 

and the transversality condition ( lim ( ) ( ) 0
t

t k tπ
→∞

= ), where ( )tπ  is a costate variable. Because the 

Hamiltonian (4) is concave in ( )c t  and ( )k t , these are not only necessary but also sufficient conditions 

for the optimal path. 

The equilibrium dynamics of the model is represented by (3) and the Keynes-Ramsey rule: 

( ) 1 [ '( ( )) { }]
( ) ( ( ))

c t f k t b
c t c t

ρ δ λ
ε

= − + +


,                                (7) 

where ( ( )) ( ) "( ( )) / '( ( ))c t c t u c t u c tε ≡ − . A steady state * *( , )k c  is defined by ( ) ( ) 0k t c t= =  . In what 

follows, we will investigate the existence of a steady state and the conditions for it. 

We always have 0bρ δ λ+ + >  in (7) in the RCK model with 0nρ − > . Suppose here that the 

effective depreciation rate is non-negative, (1 ) 0d bδ λ− + + ≥ , in (3). Then, the kk curve, which is the 

combinations of ( ( ), ( ))k t c t  satisfying ( ) 0k t =  in (3), can be either an increasing curve ( ) ( ( ))c t f k t=  

or an inverted U-shaped curve. The cc curve, which is the combinations of ( ( ), ( ))k t c t  satisfying 

( ) 0c t =  in (7), is a vertical line to the k axis in a phase diagram. Therefore, the law of motion indicates 

that a saddle-point stable steady state uniquely exists given the initial state 0 0k > , as in the standard RCK 

model with increasing population. 

 

2.2 Steady State under Population Decline 

Now we investigate a steady state when the effective depreciation rate is negative,  (1 ) 0d bδ λ− + + < , 
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in (3). This condition could be represented as the range of fertility or population declining rates: 

1 P
d
b

δλ λ−
< − ≡

+
  or  

1P P
bdn n d
b

δλ +
< ≡ − = −

+
                        (8). 

First, let us show the existence of a steady state. On the one hand, the kk curve ( )c t =

( ( )) { (1 ) } ( )f k t d b k tδ λ− − + +  is increasing for all ( ) 0k t ≥ .11 On the other hand, the cc curve remains 

a vertical line at the positive finite value of * 0k >  determined by *'( )f k bρ δ λ= + + . This is because

0bρ δ λ+ + >  always holds in this model. The associated range of fertility or population declining rates 

is: 

Sb
ρ δλ λ+

> − ≡   or  S S
bdn n d

b
ρ δλ + +

> ≡ − = −                     (9). 

Therefore, as shown in Figure 1, there uniquely exists a saddle-point stable steady state E in the positive 

orthant. The necessary and sufficient conditions for its existence, which is (1 ) 0d bδ λ− + + <  under 

0bρ δ λ+ + > , could be represented as the range of the population declining rates, S Pn n n< <  (because 

S Pn n<  holds). In other words, there is no possibility of Sn n≤  in the RCK model with the discount rate 

0nρ − > . When population declines so rapidly that Sn n≤  holds, this RCK model cannot provide any 

information on the optimal paths of a perfectly competitive market economy. 

                             
11 In this case, the marginal product of capital '( ( )) { (1 ) }f k t d bδ λ− − + + remains positive even if k(t) goes to infinity. 

In this sense, the RCK model with declining population may have the same characteristic as the Jones-Manuelli 

(1990,1997) type endogenous growth model. 
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Figure 1. Phase Diagram under Population Decline for (1 ) 0d bδ λ− + + <  

 

Next, we investigate the properties of the steady state under (1 ) 0d bδ λ− + + <  (i.e., Pn n< ) in 

comparison to those under (1 ) 0d bδ λ− + + ≥  (i.e., Pn n≤ ). The most important difference is that the 

steady-state value of per capita consumption is larger than that of per capita income under 

(1 ) 0d bδ λ− + + < , namely, *c * *( ) { (1 ) }f k d b kδ λ= − − + + *( )f k> . This property is shown in Figure 

1, where the increasing kk curve lies above the per capita production function ( ( ))f k t . Notice that under 

(1 ) 0d bδ λ− + + ≥  the steady-state consumption equals or is smaller than the income ( * *( )c f k≤ ), 

because the kk curve may be either ( ) ( ( ))c t f k t=  or an inverted U-shaped curve lying below the function 

( ( ))f k t , which is also true in the standard RCK model with increasing population. 

The intuitive reason for the higher per capita consumption in the steady state is that under a negative 

effective depreciation rate ( (1 ) 0d bδ λ− + + < ) the negative “capital dilution effect” tends to increase per 

capita capital: a decrease in ( )L t  raises the value of ( ) ( ) / ( )k t K t L t=  given K(t). Then, in order for per 

capita capital to be constant over time ( ( ) 0k t = in (3)), per capita consumption must be higher so as to 

cancel out the rise in k(t) due to the negative “capital dilution effect”. 

0

E

( )c t

( )k t

( )c f k=

*: '( )cc f k bρ δ λ= + +

: ( ) { (1 ) }kk c f k d b kδ λ= − − + +

*k

*c

0k
A

R
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Given this fact, when the initial level of capital 0 0k >  is lower than *k , an economy needs to 

consume more than it produces along the transition path (on RE in Figure 1) in order to reach the steady 

state E. Because the final good can be either consumed or invested in the RCK model, the economy could 

consume the existing capital stock by making “reversible investment” (i.e., negative investment/saving) 

at any point in time along the transition path. 

 

Proposition 1: (Existence and Property of a Steady State under Population Decline in the RCK model 

with the Discount Rate 0nρ − > ) 

Consider the RCK model with the discount rate 0nρ − >  and child rearing cost 0b ≥ . Given 

0bρ δ λ+ + >  (i.e., Sn n< ), suppose that the effective depreciation rate is negative, or 

(1 ) 0d bδ λ− + + <  (i.e., Pn n< ). Namely, the population declining rate 0n <  is assumed to satisfy 

S Pn n n< < . Then, 

(1) a saddle-point stable steady state * *( , )k c  uniquely exists. 

(2) Per capita consumption is larger than per capita income in the steady state ( * *( )c f k> ). Then, if the 

initial level of capital 0 0k >  is lower than the steady-state value * 0k > , an economy needs to 

consume some or all of the existing capital stock by making “reversible investment” before it 

converges to the steady state along the transition path. 

 

Notice that this proposition holds in the absence of child rearing cost ( 0b = ). A steady state * *( , )k c  

always exists because the positive steady-state value *k of per capita capital is determined by 

*'( ) 0f k ρ δ= + >  in (7). Taking 0dδ λ− + <  in (3) into account, the steady-state value *c  of per 

capita consumption exceeds that of per capita income, i.e., * * *( ) { }c f k d kδ λ= − − + *( )f k> . 
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2.3 Reversible Investment Constraint 

Result (2) in Proposition 1 indicates that we should consider the maximum possible amount of reversible 

investment at each point in time.12 The maximum level of per capita consumption an economy can attain 

is determined by the sum of per capita net income ( ( )) ( )f k t k tδ−  and the existing capital stock ( )k t , 

namely, ( )c t ≤ ( ( )) (1 ) ( )f k t k tδ+ − . We call this inequality a “reversible investment constraint (RIC)”.13 

We will investigate whether the RIC may be binding or not along the transition path converging to 

the steady state E in Figure 1. The necessary and sufficient condition for the RIC to be non-binding is that 

the RIC curve ( )c t = ( ( )) (1 ) ( )f k t k tδ+ −  (not shown in Figure 1) lies above the kk curve 

( ) ( ( )) { (1 ) } ( )c t f k t d b k tδ λ= − − + + , which is equivalent to 1 { (1 ) }d bδ δ λ− > − − + +  or 

1 (1 ) 0d b λ− + + > . The associated range of fertility or population declining rate is: 

1
1 R

d
b

λ λ−
> − ≡

+
 or 1

1R R
bdn n d
b

λ +
> ≡ − = −

+
                         (10) 

Under the assumptions 0λ ≥  and [0,1]d ∈ , 1 (1 ) 0d b λ− + + ≥  necessarily holds and thus the RIC 

curve lies above or coincides with the kk curve. First, if 1 (1 ) 0d b λ− + + >  ( Rn n< ) holds and thus the 

RIC curve lies above the kk curve, the RIC is non-binding along the transition path ARE starting from 

*
0k k<  which converges to the steady state E in Figure 1. Second, if 1 (1 ) 0d b λ− + + =  ( Rn n= ) holds 

and thus the RIC curve coincides with the kk curve, the RIC is binding at the steady state E.14 This 

condition holds if and only if both 0λ =  and 1d =  hold.15 

                             
12 Since this is a closed economy, international borrowings are impossible. 
13 The analyses of the RCK model with irreversible investment can be found in Arrow and Kurz (1970) and Leonard and 

Long (1992). 
14 When an economy reaches this steady state, the production ceases because all the aggregate capital is consumed 

( 0K = ). 
15 The RCK model cannot provide any information on the optimal paths of a perfectly competitive market economy 
when population declines so rapidly that Rn n<  holds. However, this situation does not seem empirically plausible 
because the absolute value of 0Rn <  estimated from the Japanese data in section 6 is unrealistically large. 
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We summarize the results on the RIC in the next proposition. 

 

Proposition 2（Reversible Investment Constraint along a Transition Path toward a Steady State in the 

RCK model with the Discount Rate 0nρ − > ） 

Consider the RCK model with the discount rate 0nρ − >  and child rearing cost 0b ≥ . Given 

0bρ δ λ+ + >  (i.e., Sn n< ), suppose that the effective depreciation rate is negative, or 

(1 ) 0d bδ λ− + + <  (i.e., Pn n< ), namely, S Pn n n< < . Then, a saddle-point stable steady state * *( , )k c  

exists. 

(1) The RIC is non-binding along the transition path converging to the steady state which starts from the 

initial level of capital 0 0k >  lower than * 0k >  if and only if 1 (1 ) 0d b λ− + + >  or R Pn n n< <  

holds. 

(2) The RIC is binding at the steady state E if and only if 1 (1 ) 0d b λ− + + =  or R Pn n n= <  holds, which 

is equivalent to the facts that both 0λ =  and 1d =  hold. 

 

3. Optimal Path in the RCK Model with Discount Rate 0nρ − >  

In this section we derive an optima path, establishing the first theorem. Given that both Sn n<  and 

Rn n≤  necessarily hold in this RCK model, we first investigate the existence of an optimal path separately 

for the case of Rn n<  (the RIC is non-binding) and the case of Rn n=  (the RIC is binding). Next, we 

identify the optimal path by separating three cases of R Sn n< , S Rn n<  and R Sn n= . This theorem 

identifies the optimal path for the RCK model with the discount rate 0nρ − > , depending on the range of 

exogenous rates of population change. 

 

3.1 Theorem on the Optimal Path 
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𝑘𝑘� 

We investigate what is the optimal path for the case of Rn n<  with the RIC non-binding, using Figure 2. 

It will be shown that the existence of optimal path depends on the initial level of capital 0 0k > . To explain 

it precisely, we define the level k  of per capita capital corresponding to point B at which the saddle-

point path intersects the RIC curve. 

 

Figure 2. The Optimal Path in the RCK Model with the Discount Rate 0nρ − >  

 

First, when the initial condition is 0k k≤ , the optimal path is the saddle-point path converging to 

the steady state E (e.g., AE or BE) because the transversality condition is satisfied along this path. To see 

this, substituting ( )( )f k t bρ δ λ′ = + +  derived from (7) into (6) yields: 

( )( ) ( ) { (1 ) }
( )
t f k t d b
t

π δ λ
π

′= − − − + +  


( ) 0nρ= − − <                    (11) 

Therefore, *lim ( ) ( ) lim ( ) 0
t t

t k t t kπ π
→∞ →∞

= =  holds. 

The other paths are not optimal. On the one hand, any dynamic paths starting from an initial 

consumption (0)c  higher than point A (not shown in Figure 2) necessarily reach the RIC curve and thus, 

O  

𝑐𝑐(0) 

: ( ) { (1 ) }kk c f k d b kδ λ= − − + +  

: ( ) (1 )RIC c f k kδ= + −  

*: '( )cc f k bρ δ λ= + +  

E  

A  

B  

0k

 

0k

 

*k
 

C  

D  

F  
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an economy jumps to the origin (both production and consumption are zero because all the capital is 

consumed). Because the Keynes-Ramsey rule is not satisfied afterwards, this path is not optimal. On the 

other hand, any dynamic paths starting from an initial consumption (0)c  lower than point A (not shown 

in Figure 2) asymptotically approach the horizontal axis. The transversality condition is not satisfied along 

this path. To see this, using ( ) ( ( )) ( ) { (1 ) }
( ) ( ) ( )

k t f k t c t d b
k t k t k t

δ λ= − − − + +


 from (3), we obtain: 

( ) ( ) ( ( )) ( )lim lim '( ( )) 0
( ) ( ) ( ) ( )t t

t k t f k t c tf k t
t k t k t k t

π
π→∞ →∞

   
+ = − + − =   

  


                   (12) 

then, ( ) ( )t k tπ  generally converges to a constant non-zero value, violating the transversality condition. 

Therefore, the optimal path for the initial condition 0k k≤  is only the saddle-point paths converging to 

the steady state E. 

Second, when the initial condition is 0k k< , there does not exist an optimal path. To see this, we 

should notice that a dynamic path starting from any initial level (0)c  of consumption below the RIC 

curve, for example, CDF in Figure 2, asymptotically approaches the horizontal axis as time goes to infinity. 

Thus, the transversality condition is not satisfied for the same reason above. 

It is found in the case of Rn n<  that there exists an optimal path, which is a saddle-point path 

converging to the steady state, for sufficiently low initial levels of capital 0 0k >  satisfying 00 k k< ≤ . 

Let us turn to the case of Rn n=  with the RIC binding and investigate an optimal path. The only 

difference in this case from the case of Rn n<  is that the RIC curve coincides with the kk curve. Thus, 

when an economy moves along the transition path (e.g., AE in Figure 2) and reaches the steady state E 

which lies on the RIC curve, all the capital is consumed and the production ceases at E. Therefore, the 

Keynes-Ramsey rule is violated, and thus an optimal path does not exist. 

Now we derive the optimal path by separating the three cases of R Sn n< , S Rn n<  and R Sn n= . 
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First, when R Sn n<  holds, the range of population declining rates ( Pn n< ) where both Sn n<  and 

Rn n≤  hold is Sn n<  (then Rn n<  also holds). Thus, the optimal path is the saddle-point paths 

converging to the steady state E, which are represented as AE and BE in Figure 2. Second, when S Rn n<  

holds, the range of population declining rates ( Pn n< ) where both Sn n<  and Rn n≤  hold is Rn n≤  

(then Sn n<  also holds). Then, we should separate two subcases: (i) if Rn n<  holds, the optimal path 

is the saddle-point paths converging to E, which are represented as AE and BE in Figure 2, and (ii) If 

Rn n=  holds, the RIC curve coincides with the kk curve and thus the optimal path does not exist. Third, 

when R Sn n=  holds, the range of population declining rates ( Pn n< ) where both Sn n<  and Rn n≤  

hold is S Rn n n= <  only. Thus, the optimal path is the saddle-point paths converging to E, which are 

represented as AE and BE in Figure 2. To sum up, the optimal path is the saddle-point paths converging 

to E for max{ , }S R Pn n n n< < , while it does not exist for S Rn n n< = . 

Therefore, we obtain the first theorem for negative rates of population change. 

 

Theorem 1: (The Optimal Paths in the RCK Model with the Discount Rate 0nρ − > ) 

Consider the Ramsey-Cass-Koopmans model with the discount rate 0nρ − >  and child rearing cost 

0b ≥ , in which 
1P

bdn
b

δ +
≡ −

+
, S

bdn
b

ρ δ+ +
≡ −  and 1

1R
bdn
b

+
≡ −

+
. 

(1) When the rate of population change is positive ( 0n > ) or negative with 0Pn n≤ ≤ , the optimal path 

is a saddle-point path converging to the steady state * *( , )k c  with * *( )c f k≤  for any initial state 

0 0k > . 

(2) When the rate of population decline (the absolute value of 0n < ) is so large that 

max{ , }S R Pn n n n< <  holds, the optimal path is a saddle-point path converging to the steady state 

* *( , )k c  with * *( )c f k>  if the initial state 0k  satisfies 00 k k< ≤ . If the initial state 0k  satisfies 
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0k k< , the optimal path does not exist. 

(3) When the rate of population decline (the absolute value of 0n < ) satisfies S R Pn n n n< = < , the 

optimal path does not exist. 

 

Two remarks should be made for Theorem 1. First, the non-existence results of an optimal path in (2) and 

(3) may not always be a serious problem. On the one hand, the initial condition 0k k<  in result (2) does 

not seem realistically relevant. The steady-state value *k  under population decline with Pn n<  equals 

or larger than the steady-state value under population increase.16 Suppose the exogenous value of n  

continuously decreases from the positive to the negative range when an economy is moving along the 

transition path toward a steady state. The initial state 0k  corresponding to the time when the value of n  

passes 0Pn <  into the range of max{ , }S R Pn n n n< <  should be smaller than the steady-state value *k  

under population decline with Pn n< . Then, 0k k<  will not occur for max{ , }S R Pn n n n< < . On the 

other hand, result (3) occurs only in the extreme case of Rn n= , or equivalently, when both 0λ =  and 

1d =  hold. Thus, we can conclude that result (3) does not occur generically. 

A second remark is that the existence of an optimal path and its property are independent of the child 

rearing cost ( 0b > ). This is because result (2) for max{ , }S R Pn n n n< <  holds independently of whether 

R Sn n≤  or S Rn n<  holds. The necessary and sufficient condition for R Sn n≤  is: 

1 1
b

d b
ρ δ+

≤
− +

                                                    (13). 

This implies that result (2) holds regardless of the fact that the child rearing cost is large or small relative 

to the rates of time preference, capital depreciation and mortality. 

                             
16 Recalling *'( )f k bρ δ λ= + + , this is because the decline in n dλ≡ −  may occur due to a decrease in 0λ >  or an 
increase in 0d ≥ . 
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3.2 Roles of Child Rearing Cost 

Let us explain here why we introduce the child rearing cost in the RCK model with declining population. 

If the child rearing cost were absent ( 0b = ), we would have Pn δ= −  and 1Rn = − , and a steady state 

would exist because *'( ) 0f k ρ δ= + >  would hold (i.e., Sn = −∞ ). From an empirical viewpoint, the 

depreciation rate of capital δ  is 3~5% or higher according to Jones (2022). Thus, Pn  should be minus 

3~5% or lower and Rn  minus 100%. However, according to the United Nations’ World Population 

Prospects (WPP) 2019, the absolute values of population declining rates which have been observed or 

estimated in most population-declining countries are 1% or smaller.17 Given these population declining 

rates in real societies, we should consider that only the case of 0Pn n< <  could actually occur. Then, the 

optimal path would be qualitatively the same as that in a population-increasing economy. 

An introduction of the child rearing cost ( 0b > ) into the model may make the negative values of 

Pn , Sn  and Rn  closer to zero.18 Suppose that the value of 0b >  increases. Then, the absolute value 

of Sn  clearly decreases while that of Rn  turns out to decrease (except for 1d = ) because 

2/ ( 1) /(1 ) 0Rn b d b∂ ∂ = − + ≤  holds. On the other hand, the absolute value of Pn  increases if and only 

                             
17 The estimated average annual rates of population change (as medium variants) in Japan, Greece, Italy and Germany 

for 2020-2025 are -0.40, -0.52, -0.20 and -0.06%, while they are -0.53, -0.47, -0.28 and -0.09% for 2025-2030, 

respectively. 
18 Daitoh (2020) shows that by introducing child rearing cost depending on the rate of population change ( bnLη = ) into 

the Solow growth model, the rates of population decline below which dynamic paths with different properties from those 

under population increase are induced could be closer to zero. He also shows numerically by using the semi-endogenous 

growth model by Christiaans (2011) that such rates of population decline will be sufficiently close to zero when positive 

externalities from knowledge accumulation are strong enough. 
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if 2/ ( ) /(1 ) 0Pn b d bδ∂ ∂ = − + >  holds. If max{ , }R S Pn n n n< < , which implies (1 ) 0d bδ λ− + + < , 

holds, 0d δ− >  must hold and then the value of 0Pn <  gets further from zero as 0b >  increases. The 

child rearing cost may thereby make the range of population declining rates closer to zero, in which the 

optimal path with different properties from those under population increase emerges. Section 6 will show 

that the optimal paths specific to population decline may emerge in empirically relevant situations in the 

future covered by WPP 2019. 

 

3.3 Implications of Theorem 1 

We will now elucidate economic implications of Theorem 1. To begin with, we refer to the conjecture 

which not a few economists may have in mind that under population decline an equilibrium/optimal path 

in the standard growth models would probably have the same or similar properties to those in the 

associated models with increasing population. Even if an equilibrium/optimal path has some different 

properties, such a path may have been considered to emerge just under realistically irrelevant conditions 

(e.g., under too large population declining rates, as was illustrated in subsection 3.2 for the RCK model). 

We find from Theorem 1 that the intuitive conjecture above certainly has a theoretical foundation. 

Even when the population growth rate n dλ≡ −  turns negative, the optimal path under population 

decline for Pn n<  will be a unique saddle-point path converging to the steady state unless both 0λ =  

and 1d =  hold. This is the same property as that in the standard RCK model with increasing population 

except that per capita consumption exceeds per capita income in the steady state, namely, * *( )c f k> (as 

you can see in result (1) and (2) in Theorem 1). 

A new finding from Theorem 1 is that under population decline the economic mechanism, which is 

different from the one under population increase, works with reversible investment on the optimal path. 

When an economy starts from a low initial level of capital *
0k k<  and moves along a transition path 
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converging to the steady state E, it necessarily begins to consume more than it produces (from point R in 

Figure 1) by reversible investment. In this process, per capita capital ( ) ( ) / ( )k t K t L t≡  increases because 

a decrease in ( )K t  due to the negative saving is dominated by the effect of declining population ( )L t  

on RE.19 This mechanism is in sharp contrast to the one in the standard RCK model: per capita capital 

( ) ( ) / ( )k t K t L t≡  increases because an increase in ( )K t  by positive saving dominates the decreasing 

effect of population increase. This new mechanism keeps working permanently when the RIC is non-

binding in the steady state. 

This finding could be regarded as a substantial contribution to the literature on economic growth with 

declining population in that the saving rate endogenously changes from positive to negative values along 

the optimal path in the RCK model. Existing literature focused only on the Solow-type growth models. 

The first study that explicitly analyzed the Solow model with declining population ( 0n < ) was Ritschl 

(1985). Using the Solow model with no depreciation of capital ( 0δ = ), he found that there does not exist 

a steady state but per capita capital k  increases permanently for 0n <  and that if a non-positive saving 

rate ( 0s ≤ ) is assumed a steady state exists but it is unstable.20 He also showed that a stable steady state 

exists if a “classical” saving function is introduced instead of the Solow-type saving function. However, 

the “classical” saving function is not based on solid microeconomic foundation.21 Introducing simple life-

cycle assumptions in a neoclassical framework with no depreciation of capital ( 0δ = ), Felderer (1988) 

showed that a steady state exists for any sign of the population growth rate. 

In all these studies, the saving rate on an equilibrium path is exogenously given at either positive or 

negative value. In contrast, our RCK model reveals that the saving rate endogenously changes from 

                             
19 On AR in Figure 1, an increase in ( )K t  by positive saving dominates the increasing effect of declining population 

( )L t . 
20 The capital-labor ratio either converges to zero or grows unboundedly, depending on the initial condition. 
21 In the “classical” saving function, the saving is positive when the return on capital is greater than a certain level, and 

falls to zero when a minimum rate of return is reached. 
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positive to negative values along an equilibrium/optimal path. 

It is found that explicitly analyzing the effects of population decline on the growth path in the RCK 

model with the discount rate 0nρ − >  not only confirms the intuition but also enables us to understand 

a new economic mechanism that begins to work under population decline. Thus, it seems of substantial 

significance to explicitly analyze a growth model with declining population and investigate the existence 

and properties of an equilibrium/optimal path. 

In the next section, we will proceed to explicitly analyze the RCK model with the discount rate 

0ρ > . This model has been used less commonly in macroeconomics but seems worth analyzing under 

population decline for the reason explained at the beginning of the next section. Section 4 and 5 will 

provide further new findings, including the non-existence of a steady state and the emergence of an optimal 

path which is not a saddle-point path converging to a steady state. 

 

４. The Ramsey-Cass-Koopmans Model with the Discount Rate ρ  

4.1 The Model 

In this section we will analyze the RCK model with the intertemporal utility 

0
( ( )) tU u c t e dtρ∞ −= ∫ ,                                              (14) 

where the discount rate consists only of the time preference rate 0ρ > . This less common formulation in 

macroeconomics has been used in e.g., Blanchard and Fischer (1989) and Sidrauski (1967). 

Let us first explain why this model is worth analyzing even though it may appear to ignore population 

change in the intertemporal utility function. Following Barro and Sala-I-Martin (2004, footnote 4 on 

pp.87-88), however, we could interpret this intertemporal utility as including population change with the 

assumption of decreasing marginal utility in the number of children. To be more specific, suppose that the 

intertemporal utility function is 
*

0
( ( )) tu c t e dtρ∞ −∫ , where * 0ρ >  is the time preference rate at population 
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growth rate 0n = . If we add the assumption that the higher the population growth rate n , the higher the 

discount rate ρ , in a simple form * nρ ρ= + , the intertemporal utility function is 
*

0
( ( )) tu c t e dtρ∞ −∫

( )

0
( ( )) n tu c t e dtρ∞ − −= ∫ 0

{ ( ( )) }nt tu c t e e dtρ∞ −= ∫ . It turns out that this formulation implicitly includes the 

population change (in { ( ( )) }ntu c t e ) and the stronger decreasing effect on the instantaneous utility of 

consumption (by te ρ− ) due to a higher value of n . Thus, to investigate the effects of population change, 

this formulation is theoretically no less important than that in the RCK model with the discount rate 

0nρ − > . 

The representative household maximizes the intertemporal utility (14) instead of (2), subject to the 

same capital accumulation function (3), given the initial state 0(0) 0k k= > . The associated present-value 

Hamiltonian function is: 

( ) ( )( ), ( ), ( ), ( ( )) ( ) ( ) ( ) { (1 ) } ( )tH k t c t t t u c t e t f k t c t d b k tρπ π δ λ−≡ + − − − + +    (15). 

Among the first-order conditions for the optimal path, only (5) is replaced with: 

'( ( )) ( ) 0
( )

tH u c t e t
c t

ρ π−∂
= − =

∂


                                       (16). 

The Euler equation is the same as (6). Then, the Keynes-Ramsey rule (7) is modified into: 

( ) 1 [ '( ( )) { (1 ) }]
( ) ( ( ))

c t f k t d b
c t c t

ρ δ λ
ε

= − + − + +


                        (17). 

Therefore, the equilibrium dynamics is represented by (3) and (17). What differs in the RCK model with 

the discount rate 0ρ >  is that (1 )d bρ δ λ+ − + +  in (17) is not always positive but can be either 

positive, zero or negative. We thus need to investigate the existence of a steady state and properties of 

equilibrium paths by separating these cases. 

Suppose that the effective depreciation rate is non-negative, (1 ) 0d bδ λ− + + ≥ , in (3). 22  If 

                             
22 Under this condition with an equality, * *( )c f k≤  holds in the steady state and thus an economy can reach the steady 

state along a transition path without reversible investment. 
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(1 ) 0d bρ δ λ+ − + + >  holds in (17), a saddle-point stable steady state * *( , )k c  uniquely exists, as in the 

RCK model with the discount rate 0nρ − > . Whenever the former inequality holds the latter necessarily 

holds, but the opposite is not always true.   

 

4.2 Steady State and Equilibrium Path under Population Decline 

In this section we investigate a steady state when the effective depreciation rate is negative, 

(1 ) 0d bδ λ− + + < , in (3), which is equivalent to (8) Pn n< . A new possibility in the RCK model with 

the discount rate 0ρ >  is that not only { (1 ) } 0d bρ δ λ+ − + + >  but also { (1 ) } 0d bρ δ λ+ − + + ≤  may 

hold in (17) even in this case.23 To precisely examine the existence of a steady state, we should separate 

the latter case into { (1 ) } 0d bρ δ λ+ − + + =  and { (1 ) } 0d bρ δ λ+ − + + < . 

First, suppose (1 ) 0d bρ δ λ+ − + + > , which is equivalent to 

 
1 S

d
b

ρ δλ λ+ −
> − ≡

+
   or   

1S S
bdn n d

b
ρ δλ + +

> ≡ − = −
+

 . 

Then, there is a positive finite value of * 0k >  satisfying ( ) 0c t =  in (17) and thus a finite steady state 

* *( , )k c  uniquely exists. The phase diagram for the RCK model with the discount rate 0ρ >  is the same 

as Figure 1 except that the cc curve is represented by *'( ) (1 ) 0f k d bρ δ λ= + − + + > . Thus, the finite 

steady state is saddle-point stable. Here again, because the kk curve is ( ) { (1 ) }c f k d b kδ λ= − − + + , per 

capita consumption is larger than per capita income in the finite steady state, i.e., 

* * * *( ) { (1 ) } ( )c f k d b k f kδ λ= − − + + > . 

Second, suppose (1 ) 0d bρ δ λ+ − + + = , or equivalently, Sλ λ=   or Sn n=  . Then, recalling Inada 

condition lim '( ( )) 0
t

f k t
→∞

= , *'( ) 0f k =  for ( ) 0c t =  in (17) is satisfied at *k = +∞ , implying that the cc 

                             
23 We separate these cases depending on whether or not the cc curve ( ( ) 0c t = ) can be drawn in the positive orthant in a 

phase diagram. 
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curve does not appear in the positive orthant as shown in Figure 3. Substituting (1 )d bδ λ ρ− + + = −  

into (3), we have the kk curve ( )c f k kρ= + . This could be interpreted as saying that a steady state 

defined by ( )c t = ( ) 0k t =  exists on the kk curve at a point with an infinitely long distance from the origin, 

i.e., *k = +∞  and * * *( )c f k kρ= + = +∞ . In other words, there exists a steady state * *( , )k c  in the limit, 

or there is an infinite steady state.24 

Third, suppose (1 ) 0d bρ δ λ+ − + + < , or equivalently, 

1 S
d

b
ρ δλ λ+ −

< − ≡
+

   or25   
1S S

bdn n d
b

ρ δλ + +
< ≡ − = −

+
           (18). 

Then, a steady state * *( , )k c  does not exist for any ( ) 0k t ≥  because there exist neither a finite nor an 

infinite value of * 0k >  which satisfies *'( ) (1 ) 0f k d bρ δ λ= + − + + < . To sum up, given S Pn n< , a 

finite steady state exists when n  satisfies S Pn n n< <  while it does not exist when n  satisfies Sn n≤  . 

                             
24 A steady state in the limit should be regarded as plausible because there are an infinite number of combinations 

( , , , , )d bρ δ λ  of parameter values satisfying (1 ) 0d bρ δ λ+ − + + = . 

25 In this case dρ δ+ <  must hold for 0Sλ > . Then, an increase in 0b >  decreases the fertility rate Sλ , making the 

absolute value of 0S Sn dλ= − <  larger. 
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Figure 3. Property of Equilibrium Paths under { (1 ) } 0d bρ δ λ+ − + + ≤  (i.e., Sn n≤  ) 

 

We find an important property of equilibrium paths26 under Sn n≤   ( { (1 ) } 0d bρ δ λ+ − + + ≤ ) by 

Figure 3. The kk curve is ( )c f k kρ= +  for (1 ) 0d bρ δ λ+ − + + =  while it is 

( ) { (1 ) }c f k d b kδ λ= − − + +  for (1 ) 0d bρ δ λ+ − + + < . In both cases, the law of motion indicates that 

per capita consumption comes to be larger than per capita income (e.g., ( ) ( )c f k k f kρ= + > ) along any 

equilibrium path when time goes to infinity. 

We thus obtain the next proposition. Result (1) for the existence of a steady state is different from 

Proposition 1 while result (2) for the property of equilibrium paths remains the same. 

 

Proposition 3: (Existence of a Steady State and the Property of Equilibrium Paths in the RCK model 

with the Discount Rate 0ρ > ) 

Consider the RCK model with the discount rate 0ρ >  and child rearing cost 0b ≥ . Suppose that the 

                             
26 We call a dynamic path following the law of motion an “equilibrium path”. The optimal path will be an equilibrium 
path along which the intertemporal utility is maximized.  

( )c f k=

( )k t

( )c t

O

kk

0k
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effective depreciation rate is negative, i.e. (1 ) 0d bδ λ− + + <  (i.e., Pn n< ) holds. Then, 

(1) (i) when (1 ) 0d bρ δ λ+ − + + >  (i.e., S Pn n n< < ) holds, a saddle-point stable finite steady state 

* *( , )k c  uniquely exists. (ii) When (1 ) 0d bρ δ λ+ − + + =  (i.e., Sn n=  ), a steady state * *( , )k c  

exists in the limit, or there is an infinite steady state, i.e., * *k c= = +∞ .(iii) When 

(1 ) 0d bρ δ λ+ − + + <  (i.e., Sn n<  ) holds, a steady state does not exist. 

(2) In all the three cases above, when time goes to infinity, per capita consumption comes to be larger 

than per capita income along any equilibrium path starting from the initial level of capital 0 0k > . 

Thus, an economy needs to consume some or all of the existing capital stock by making “reversible 

investment” in the long-run. 

 

Result (2) indicates that we should consider the RIC when identifying the optimal path. As in subsection 

2.3, the RIC curve lies above or coincides with the kk curve because 1 (1 ) 0d b λ− + + ≥  always holds 

(recall that the RIC curve lies above the kk curve unless both 0λ =  and 1d =  hold). 

 

4.3 The Optimal Path in the Presence of a Finite Steady State 

We will derive the optimal path by separating the following four cases based on the condition for a finite 

steady state to exist and the condition for the RIC curve to lie above the kk curve: 

Case A-1: A finite steady state ( S Pn n n< < ) and the RIC above the kk curve ( Rn n< ) 

Case A-2: A finite steady state ( S Pn n n< < ) and the RIC = the kk curve ( Rn n= ) 

Case B-1: No finite steady state ( Sn n≤  ) and the RIC above the kk curve ( Rn n< ) 

Case B-2: No finite steady state ( Sn n≤  ) and the RIC = the kk curve ( Rn n= ) 

Given S Pn n<  and R Pn n< , we should separate the cases of S Rn n<  and R Sn n<  . In section 4 we 

derive the optimal path and investigate its property in the case of S Rn n<  while we will analyze the case 
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of R Sn n<   in section 5.27 The necessary and sufficient condition for S Rn n<  is: 

1ρ δ+ >                                                     (24) 

Note that this condition does not depend on the child rearing cost ( b ). 

Looking at Figure 4 for S Rn n< , the effective range for an optimal path, in which the RIC curve lies 

above or coincides with the kk curve, is R Pn n n≤ < . In this range, a finite steady state always exists 

(because Sn n< ), and thus, either Rn n<  (Case A-1) or Rn n=  (Case A-2) may occur. When n  lies 

in the range R Pn n n< < , Case A-1 occurs. The derivation of an optimal path is based on (3) and (17) and 

thus the same as that in the RCK model with the discount rate 0nρ − >  except that the cc curve is 

replaced with *'( ) (1 ) 0f k d bρ δ λ= + − + + > . Therefore, the optimal path is a saddle-point path 

converging to the steady state, which is qualitatively the same as those (AE and BE) in Figure 2 and 

Theorem 1. 

 

 

 

 

 

 

Figure 4. Effective Range for Optimal Path in the Case of S Rn n<  or 1ρ δ+ >  

 

When Rn n=  holds, Case A-2 occurs. The only difference in Case A-2 from Case A-1 is that the 

RIC curve coincides with the kk curve in Figure 2 and thus the steady state E lies on the RIC curve. Then, 

all the capital stock is consumed and production ceases at E. Because the economy jumps to the origin 

                             
27 We make a comment on the case of R Sn n=   (or, 1ρ δ+ = ) at the end of subsection 4.2. 
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and the Keynes-Ramsey rule does not hold afterwards, there exists no optimal path. However, this non-

existence result is not a serious problem because it occurs only in the exceptional case where both 0λ =  

and 1d =  hold.28 

This establishes Theorem 2 for S Rn n<  or 1ρ δ+ > . Although 1ρ δ+ >  is less likely to be 

satisfied empirically, Theorem 2 is meaningful because it shows that the RCK model with the discount 

rate 0ρ >  may induce qualitatively the same results on the optimal paths as Theorem 1 for the RCK 

model with the discount rate 0nρ − > . 

 

Theorem 2 (The Optima Path in the Absence of a Finite Steady State)  

Consider the Ramsey-Cass-Koopmans model with the discount rate 0ρ >  and child rearing cost 0b > . 

If S Rn n<  or 1ρ δ+ >  holds, the optimal path changes depending on the range of exogenous rates n  

of population change, where 
1P

bdn
b

δ +
≡ −

+
, 

1S
bdn

b
ρ δ+ +

≡ −
+

  and 1
1R

bdn
b

+
≡ −

+
. 

(1) When the rate of population change is positive ( 0n > ) or negative with 0Pn n≤ ≤ , the optimal path 

is a saddle-point path converging to the steady state * *( , )k c  with * *( )c f k≤  for any initial state 

0 0k > . 

(2) When the rate of population decline (the absolute value of 0n < ) is so large that R Pn n n< <  holds, 

the optimal path is a saddle-point path converging to the steady state * *( , )k c  with * *( )c f k>  if the 

initial state 0k  satisfies 00 k k< ≤ . If the initial state 0k  satisfies 0k k< , the optimal path does not 

exist. 

(3) When the rate of population decline satisfies Rn n= , the optimal path does not exist. 

 

                             
28 In other words, this non-existence case does not occur generically. Recall the analysis in subsection 2.3. 
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We should be careful to derive the optimal path when S Rn n=  or 1ρ δ+ =  holds.29 If S R Pn n n n= < ≤  

holds, then Case A-1 occurs and thus we obtain the qualitatively the same result as (2) in Theorem 2. If 

S Rn n n= =  holds, then Case B-2 occurs. We will explain the optimal path for this case in the next section. 

 

5.  New Findings in the RCK Model with the Discount Rate 0ρ >  

In this section we derive the optimal path in the case of R Sn n<   and show new findings in the RCK 

model with the discount rate 0ρ > . 

 

5.1 The Optimal Paths in the Absence of a Finite Steady State 

Looking at Figure 5 for R Sn n<  , the effective range for an optimal path, in which the RIC curve lies 

above or coincides with the kk curve, is R Pn n n≤ < . It is found that a finite steady state exists for 

S Pn n n< <  while no finite steady state exists for R Sn n n≤ ≤  . The optimal path in the former case is 

qualitatively the same as in result (2) of Theorem 2. We should thus explore what will be the optimal path 

in the cases of R Sn n n< ≤   and R Sn n n= ≤   when no finite steady state exists. 

 

 

 

 

 

Figure 5. Effective Ranges for Optimal Path in the Case of R Sn n<   or 

1ρ δ+ <  

                             
29 There are an infinite number of combinations ( , )ρ δ  of parameters satisfying 1ρ δ+ = . 
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Let us first explore the optimal path for R Sn n n< ≤   corresponding to Case B-1, using Figure 6. 

Because Sn n≤   or (1 ) 0d bρ δ λ+ − + + ≤  holds, the cc curve does not appear in the positive orthant. 

Instead, by (17), per capita consumption ( )c t  is increasing for all ( ) 0k t >  over time. Thus, all 

dynamic paths that intersect the kk curve from below, for example, CDF, are not optimal because they 

necessarily reach the RIC curve, violating the Keynes-Ramsey rule, when time goes to infinity. 

 

Figure 6. Phase Diagram in the Absence of a Finite Steady State（Case B-1） 

 

In contrast, we can generally consider equilibrium paths which always lie below the kk curve and 

asymptotically approach the kk curve as time goes to infinity. Among them, the path AE with the highest 

consumption ( )c t  for the same level of capital ( )k t  is optimal because the instantaneous utility ( ( ))u c t  

is maximized at any point in time from 0t =  to t = ∞ . Along this path, the transversality condition is 

satisfied. To see this, because the slope of the kk curve asymptotically approaches 

O  

: ( ) { (1 ) }kk c f k d b kδ λ= − − + +  

: ( ) (1 )RIC c f k kδ= + −
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{ (1 ) } 0d bδ λ− − + + > ,30 we obtain from (3) and (6): 

( ) ( ) ( ( )) ( )lim lim '( ( ))
( ) ( ) ( ) ( )t t

t k t f k t c tf k t
t k t k t k t

π
π→∞ →∞

   
+ = − + −   

  


 

( )lim
( )t

c t
k t→∞

 
= − 

 
(1 ) 0d bδ λ= − + + <                    (19) 

Therefore, lim ( ) ( ) 0
t

t k tπ
→∞

=  holds. 

The optimal path for R Sn n n= ≤   corresponding to Case B-2 is derived in the same way except that 

the RIC curve coincides with the kk curve. Thus, the optimal path is the equilibrium path (like AE in Figure 

6) with the highest consumption ( )c t  for the same level of capital ( )k t , and asymptotically approaches 

the kk curve from below. 

 

Proposition 4（Optimal Path in the Absence of a Finite Steady State） 

Consider the RCK model with the discount rate 0ρ >  and child rearing cost 0b ≥ . Suppose that the 

effective depreciation rate is negative, i.e., (1 ) 0d bδ λ− + + <  ( Pn n< ) holds and a finite steady state 

does not exist ( (1 ) 0d bρ δ λ+ − + + ≤  or Sn n≤  ). Then, whether the RIC curve lies above or coincides 

with the kk curve ( Rn n≤ ), the optimal path is the equilibrium path which always lies below the kk curve 

with the highest consumption for the same level of capital, and asymptotically approaches the kk curve 

from below as time goes to infinity. 

 

5.2 Properties of an Asymptotically Balanced Growth Path 

Next, we investigate the properties of these optimal paths, charactering them in three respects. In what 

follows, we will show that the optimal path turns out to have common properties for

                             
30 Under (1 ) 0d bρ δ λ+ − + + = ,{ (1 ) } 0d bδ λ ρ− + + = − <  holds. The analysis below remains unchanged. 
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(1 ) 0d bρ δ λ+ − + + =  ( Sn n=  ) and (1 ) 0d bρ δ λ+ − + + <  ( Sn n<  ) while the state to which an 

economy converges is different between these cases. 

First, the consumption-capital ratio ( ) / ( )c t k t  asymptotically approaches a positive constant 

{ (1 ) } 0d bδ λ− − + + >  along this path. Second, the asymptotic growth rates of per capita consumption 

and capital along the optimal path turn out to be zero. To see this, we have from (3): 

( ) ( ( )) ( ) { (1 ) }
( ) ( ) ( )

k t f k t c t d b
k t k t k t

δ λ= − − − + +


                              (20) 

By (19) and (20), we obtain along the asymptotic growth path: 

( ) ( )lim lim 0
( ) ( )t t

c t k t
c t k t→∞ →∞

  
= =  

   


                                         (21) 

The asymptotic growth rate of per capita income ( )y t  is also zero because 

( ) / ( ) [ ( ) '( ( )) / ( ( ))]( ( ) / ( ))y t y t k t f k t f k t k t k t=  0→  as t →∞ . 

Third, the state to which the optimal path asymptotically approaches differs, depending on whether 

either (1 ) 0d bρ δ λ+ − + + =  or (1 ) 0d bρ δ λ+ − + + <  holds. When (1 ) 0d bρ δ λ+ − + + =  holds, a 

steady state * *( , )k c  with ( ) ( ) 0c t k t= =  exists in the limit (recall * *k c= = +∞ ). Using 

( ) ( ( ))y t f k t= , ( ) 0y t =  also holds. Then, the optimal path asymptotically approaches the steady state 

with ( ) ( ) 0c t k t= = , that is, it is a (degenerate) asymptotically balanced growth path (BGP). This is a 

theoretically different result from that in the presence of a finite steady state: the optimal path converges 

to the steady state with ( ) ( ) 0c t k t= = , that is, it is a (degenerate) balanced growth path (BGP).31 Despite 

                             
31 Palivos et al. (1997) define a degenerate and nondegenerate BGP and asymptotically BGP. A dynamic path is said to 

be a BGP if ( / )c c cη =   and ( / )k k kη =   are constant over time, and “nondegenerate” if 0cη >  and 0kη >  hold. A 

degenerate BGP corresponds to a stationary state with 0c kη η= = . A dynamic path is said to be an asymptotically BGP if 
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that, we could regard the property of the optimal path as similar between these cases in the sense that an 

economy converges to the steady state where ( )c t  and ( )k t  are constant over time as time goes to 

infinity.32 Note that the limiting values of ( / )c k  are different between the case of a BGP ( ( / )c k = the 

slope of the line connecting the origin and the intersection of the cc and the kk curves) and the case of an 

asymptotically BGP（ ( / )c k =the limit of the slope of the kk curve = 0ρ > ）. 

In contrast, when (1 ) 0d bρ δ λ+ − + + <  holds, the optimal path does not approach the steady state 

with ( ) ( ) 0c t k t= =  because there exist neither a finite nor an infinite value of *k  which satisfy 

*'( ) (1 ) 0f k d bρ δ λ= + − + + < . Instead, an economy asymptotically approaches a state satisfying (21), 

where the growth rates of per capita consumption and capital both approach zero when time goes to 

infinity. Then, we should further clarify such economic mechanism behind this property that the growth 

rate of ( )k t  is higher than the growth rate of the change in ( )k t  along the transition path. To see this, 

on the one hand, differentiating (3) with respect to time and dividing both sides of the resulting equation 

by ( )k t , we have: 

( ) /
( )

dk t dt
k t

=



( )[ '( ( )) { (1 ) }]
( )

c tf k t d b
k t

δ λ= − − + + −



 

It has been found in (21) that as t →∞ , ( ) / ( )c t c t = ( ) / ( ) 0k t k t → . Thus, ( ) / ( )c t k t = ( ) / ( )c t k t  holds 

in the limit. Therefore, as t →∞ , we have: 
{ ( )}/

( )
d k t dt

k t
=




( )'( ( )) { (1 ) }
( )

c tf k t d b
k t

δ λ= − − + + −                  （22） 

On the other hand, we obtain from (3): 
( ) ( ( )) ( ){ (1 ) }
( ) ( ) ( )

k t f k t c td b
k t k t k t

δ λ= − − + + −


             （23） 

                             

lim( / )c t
c cη

→∞
=   and lim( / )k t

k kη
→∞

=   exist and are finite, and “nondegenerate” if 0cη >  and 0kη >  hold.  

32 Because the slope of the kk curve converges to { (1 ) }d bδ λ− − + + = 0ρ > , not only k but also c continues to increase 

in the limit. 
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The growth rate of ( )k t  in (22) is lower than the growth rate of ( )k t  in (23) because 

'( ( )) ( ( )) / ( )f k t f k t k t<  holds by the concavity of ( ( ))f k t . Thus, as time goes to infinity, ( ) / ( )c t c t and 

( ) / ( )k t k t  approach zero even though the values of ( )c t  and ( )k t  do not always approach zero in the 

limit. 

We summarize the results above in the next proposition. 

 

Proposition 5（Properties of the Optimal Path in the Absence of a Finite Steady State） 

 The optimal path derived in Proposition 4 has properties described below. 

(1) The consumption-capital ratio ( ) / ( )c t k t  asymptotically approaches a positive constant 

{ (1 ) } 0d bδ λ− − + + >  along the optimal path, 

(2) The optimal path is a (degenerate) asymptotically BGP, that is, the asymptotic growth rates of per 

capita consumption, capital and income are zero. 

(3) The state to which the optimal path asymptotically approaches depends on the conditions for the 

existence of a steady state: 

(i) when (1 ) 0d bρ δ λ+ − + + =  ( Sn n=  ) holds, the optimal path asymptotically approaches a steady 

state where the level of per capita consumption, capital and income are constant over time, i.e., 

( ) ( ) ( ) 0c t k t y t= = =  . 

(ii) when (1 ) 0d bρ δ λ+ − + + <  ( Sn n<  ) holds, the optimal path asymptotically approaches a state 

where the growth rates of per capita consumption, capital and income equal zero, i.e., 

lim( ( ) / ( )) lim( ( ) / ( )) lim( ( ) / ( )) 0
t t t

c t c t k t k t y t y t
→∞ →∞ →∞

= = =  . 

 

5.3 General Theorem on the Optimal Path 
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Finally, we identify the optimal paths in the case of R Sn n<   by moving down from the value 0Pn <  of 

population decline. When n  lies in the range S Pn n n< < , a finite steady state exists, and the RIC curve 

lies above the kk curve (i.e., Rn n< ). Then, Case A-1 occurs. The optimal path is a saddle-point path 

converging to the finite steady state ( ( ) ( ) 0c t k t= = ) with * *( )c f k>  like AE and BE in Figure 2.  

When Sn n=   holds, an infinite steady state exists, and the RIC curve lies above the kk curve. Then, 

Case B-1 occurs. When n  lies in the range R Sn n n< <  , no steady state exists, and the RIC curve lies 

above the kk curve. Then, Case B-1 occurs. When Rn n=  holds, the RIC curve coincides with the kk 

curve. Because Sn n<   holds, no steady state exists. Then, Case B-2 occurs. In all the three cases 

( R Sn n n≤ ≤  ) of non-existence of a finite steady state, the optimal path is the equilibrium path described 

in Proposition 4. 

We obtain the third theorem on the optimal path for the case of R Sn n<   or 1ρ δ+ < .33 This 

theorem must be realistically more relevant because 1ρ δ+ <  is likely to be satisfied empirically. 

 

Theorem 3:  

Consider the Ramsey-Cass-Koopmans model with the discount rate 0ρ >  and child rearing cost 0b ≥ . 

If R Sn n<   or 1ρ δ+ <  holds, the optimal path changes depending on the range of exogenous rates n  

of population change, where 
1P

bdn
b

δ +
≡ −

+
, 

1S
bdn

b
ρ δ+ +

≡ −
+

  and 1
1R

bdn
b

+
≡ −

+
.  

(1) When the rate of population change is positive ( 0n > ) or negative with 0Pn n≤ ≤ , the optimal path 

is a saddle-point path converging to the steady state ( ( ) ( ) 0c t k t= = ) with * *( )c f k≤  for any initial 

state 0 0k > . 

                             
33 The necessary and sufficient condition for the RIC curve to lie above the kk curve under (1 ) 0d bρ δ λ+ − + + =  is 

1 { (1 ) }d bδ δ λ ρ− > − − + + = , namely, 1 ρ δ> + . This is consistent with the condition for Theorem 3 to hold.  
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(2) When the rate of population decline (the absolute value of 0n < ) is so small that S Pn n n< <  holds, 

the optimal path is a saddle-point path converging to the steady state ( ( ) ( ) 0c t k t= = ) with 

* *( )c f k>  if the initial state 0k  satisfies 00 k k< ≤ . If the initial state 0k  satisfies 0k k< , the 

optimal path does not exist. 

(3) When the rate of population decline (the absolute value of 0n < ) is so large that R Sn n n≤ ≤  holds,34 

the optimal path is the equilibrium path which asymptotically approaches the kk curve from below 

with the properties described in Proposition 5 for any initial state 0 0k > . 

 

An important finding in Theorem 3 is that the RCK model with the discount rate 0ρ > induces a new 

type of optimal path in result (3), which does not appear in the RCK model with the discount rate 

0nρ − > . While the optimal paths in results (1) and (2) in Theorem 3 are qualitatively the same as the 

associated paths in results (1) and (2) in Theorem 1 and 2, which are (degenerated) BGPs. In contrast, the 

optimal paths in result (3) are (degenerate) asymptotically BGPs. Because per capita capital ( )k t  keeps 

increasing along this asymptotically BGP, the real wage rate rises while the real rate of interest declines 

in the long-run. 

Let us make two remarks on Theorem 2 and 3. First, the properties of optimal paths in the RCK model 

with the discount rate 0ρ >  are independent of the child rearing cost ( b ) because the conditions 

separating Theorem 2 and 3 ( 1ρ δ+ <  and 1ρ δ+ > ) do not include 0b ≥ . Second, the RCK model 

with the discount rate 0ρ >  reveals all the possibilities of optimal paths including an asymptotically 

BGP in the RCK model with declining population. It has thus turned out that the RCK model with the 

                             
34 This inequality contains R Sn n n= =   though it does not always contradict R Sn n<  . For R Sn n n= =  , the steady state 

*k = +∞  lies on the kk curve. Then, the optimal path is, as described in (3), the equilibrium path which always lies below 
the kk curve with the highest consumption for the same level of capital, and asymptotically approaches the kk curve from 
below. 
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discount rate 0nρ − >  with the most common formulation of utility function in macroeconomics can 

only provide a limited view for the possibilities of optimal paths (i.e., can induce only the possibility of a 

BGP). In this respect, Theorem 3 could be regarded as the general theorem for the RCK model with 

declining population. 

 

5.4 Economic Implications from the Three Theorems 

We are now ready to discuss economic implications from the three theorems. First, an optimal path exists 

under plausible economic situations in the two RCK models with declining population.35 Thus, even after 

an economy gets into the phase of population decline, the RCK model will remain to be useful as the 

theoretical foundation for deriving the socially optimal path in a perfectly-competitive market economy. 

In addition, according to results (1) and (2) which are common among the three theorems, the optimal 

path turns out to be a saddle-point path converging the steady state, which is the same property as in the 

population-increasing economy. While this seems consistent with our intuitive conjecture,36 to the best of 

our knowledge, no existing studies have explicitly derived these results by rigorous theoretical analysis. 

We also find a new result for the large rates of population decline that per capita consumption comes to 

be larger than per capita income ( * *( )c f k> ) and thus an economy needs to make reversible investment 

in the long-run. This result could be derived because we explicitly analyzed the RCK models with 

declining population. 

Second, taking into account that the solution path in the RCK model can be interpreted as the 

equilibrium path of a decentralized market economy, we could find intrinsic mechanisms that may work 

                             
35 The non-existence of optimal paths (result (2)) in the three theorems occurs only when the initial condition satisfies 

0k k< , which will not actually occur in a population-declining society (recall the explanation just after Theorem 1). The 
non-existence result (3) in Theorem 2 occurs only in the exceptional situation with 0λ =  and 1d = . 
36  These optimal paths emerge for the ranges of population declining rates max{ , }S R Pn n n n< <  for Theorem 1, 

R Pn n n< <  for Theorem 2 and  S Pn n n< <  for Theorem 3. In section 6 we will show the rates of population decline 
estimated in WPP 2019 can be lower than 0Pn < . 
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in the competitive market economy with declining population. In particular, none of the three theorems 

involve any solution paths with decreasing per capita income and consumption. Thus, the competitive 

market economy with declining population turns out to have no intrinsic growth mechanism which 

decreases per capita income and the utility of per capita consumption. This finding should be emphasized 

because there has been a concern in a real society that per capita income and/or welfare may deteriorate 

if population declines so rapidly. In addition, the previous literature on growth mechanism in the perfectly-

competitive market economy seems to share this concern. Ritschl (1985) showed in the Solow-type 

neoclassical growth model that there exists an unstable steady state under population decline if an 

exogenous saving rate is negative. Then, per capita capital k  and thus per capita income ( )f k  reduce 

to zero in the long-run if the initial level of capital 0k  lies below the steady-state value *k .37 We have 

found, however, that this income/welfare-deteriorating result does not apply when we generalize the 

competitive market economy model by endogenizing the saving rate in the RCK model. 

Instead, we find that per capita income and consumption may be constant in the long-run along the 

market equilibrium path because result (2) of the three theorems shows that the solution path converges 

to the steady state with ( ) ( ) 0c t k t= = . This is qualitatively the same property as in the RCK model with 

increasing population. Not only that, under more rapid population decline, we find a new type of market 

equilibrium path in result (3) of Theorem 3: per capita income and consumption increase along the 

asymptotically BGP in the long-run. Thus, even if technological progress is absent, the competitive market 

economy turns out to have the intrinsic growth mechanism which makes per capita income and 

consumption constant or increasing in the long-run. In the terminology by Jones (2022), the competitive 

                             
37 Ritschl (1985) proceeds to show that a steady state exists under population decline when the classical saving function 
is introduced. Felderer (1988) shows the existence of a steady state for any signs of population change by replacing the 
(ad-hoc) classical saving function with the life-cycle hypothesis, which has a sound microeconomic foundation. They 
focused on the existence of a steady state and did not always emphasize the concern about decreasing per capita income 
and welfare. 



40 
 

market economy does not have any mechanisms which induces the “Empty Planet” result but it involves 

the intrinsic mechanism which can induce the “Expanding Cosmos” result. 

Third, we need to deviate from the assumption of perfect competition if we should take into 

consideration the possibility of deteriorating per capita income and welfare in a decentralized market 

economy with declining population. It must be important to incorporate missing factors including 

technological progress, factor-input externalities, increasing returns or imperfect market structure, and 

investigate the consequences and implications by explicitly analyzing the associated growth theories. Then, 

the present analyses of the RCK models may provide the benchmark that enables us to clarify how such 

factors can work through what mechanism in deciding behaviors of per capita income and welfare in the 

market equilibrium and optimal paths under population decline. 

 

6. Empirical Relevance of Growth Paths Specific to Population Decline 

In this section we will show that the optimal paths specific to population decline can emerge in empirically 

more relevant situations than economists have ever thought by introducing the child rearing cost 0b >  

in the RCK model with the discount rate 0ρ > . 

 

6.1 Empirical Strategy and Methodology 

We first derive the critical rates ( , , )P S Pn n n  of population decline numerically and then examine whether 

the rates of population change estimated in the United Nation’s WPP 2019 can be lower than these negative 

critical rates. We take a strategy with the following two points for this empirical investigation. 

First, we use the “low(-fertility) variant” among the three estimations for 2020-2100 provided in WPP 

2019. Taking into consideration that Jones (2022) has recently emphasized global population decline as a 
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distinct possibility,38 it will be of substantial significance to explore a future possibility of realizing a 

growth path specific to population decline under global population decline, which is consistent with the 

“low variant” estimation in many regions of the world.39 

Second, we make use of the data of child rearing costs in Japan provided in Cabinet Office (2005). This 

comprehensive and detailed report is based on the Japanese government’s newest investigation of child 

rearing costs in the Japanese society as a whole. To the best of our knowledge, it is the only source of 

aggregate child rearing costs in Japan,40 where substantial decline in fertility has been observed. 

Let us next explain the methodology for deriving the critical rates ( , , )P S Rn n n , which depend mainly 

on ρ  , δ  and b . First, we set the rate of time preference at ρ =0.01, taking into consideration that 

Jones (2022) sets it at ρ = 0.011. Second, we suppose the depreciation rate of capital 0.03δ =  based on 

the statement by Jones (2022) “Empirically, rates of population decline are perhaps 1 percent or smaller, 

whereas depreciation rates are 3 percent or 5 percent or more.” (p.3492). Third, we estimate the values of 

b  in a real term using ( ) / ( ) ( )b TCRC t t K tλ= . This formula is derived by substituting 

( ) ( ){ ( ) / ( )}t b t K t L tη =  into total child rearing costs ( )TCRC t = ( ) ( ) ( )t t L tη λ  in the entire economy at a 

point in time t. Then, we follow three steps for the estimation of b . 

First, Cabinet Office (2005) reports nominal child rearing costs in the entire economy (including the 

costs for age 18-21) and labor costs for domestic child care (i.e., the opportunity cost of parental leave) 

for 2002. We divide the sum of these costs by the consumer price index in 2002 (evaluated with 2000 

price) and thus obtain the real TCRC. 

                             
38 He mentions “The fact that so many rich countries already have fertility below replacement indicates that a future with 
negative population growth is a possibility that deserves further consideration” on p.3490. 
39 The rates of population change in the “low variant” estimation in WPP 2019 are all negative for Asia, Europe, North 
America and Latin America and Caribbean after 2050. Even if the estimated rates for African countries are included, 
global population decline is predicted after 2055-60 in the “low variant” estimation. 
40 “Report on Investigation of Child Rearing Costs via Internet” (2009) is also available. However, this report provides 
highly disaggregated data separating too many items, so that it is rather difficult to obtain the data of aggregate child 
rearing costs. 
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Second, we find the data of physical capital (K) in a real term for 2000-2009 (evaluated with the average 

price in 2000) in GROSS FIXED CAPITAL FORMATION (installation-base) of the National Accounts 

of Japan. Third, the fertility and death rates (λ  and d ) can be calculated simply by dividing the numbers 

of births and deaths by the total population for each year, taking up the data for 2000-2009 corresponding 

to the period of available data on real physical capital. We use the data in Chapter 2 of Statistical Handbook 

of Japan 2022 for the numbers of births and deaths and Long-term Time Series Data in Population 

Estimates (2020) for the total population (both are provided by Statistics Bureau in Ministry of Internal 

Affairs and Communications of Japan). Then, we can derive the critical rates ( , , )P S Rn n n  for each year 

during 2000-2009 by assuming the real TCRC in 2002 for all years during 2000-2009 (thus, the critical 

rates ( , , )P S Rn n n  for 2002 should be the most reliable). 

 

6.2 Empirical Relevance of the Critical Rates of Population Decline 

In Table 6.1, we show the critical rates ( , , )P S Rn n n  of population decline derived from the RCK model 

with the discount rate 0ρ > . 

 

 

Year 1P
bdn
b

δ +
= −

+
 (%) 

1S
bdn

b
ρ δ+ +

= −
+

  (%) 1
1R

bdn
b

+
= −

+
 (%) 

2000 -1.07 -1.21 -14.66 

2001 -1.08 -1.22 -14.65 

2002 -1.08 -1.22 -14.61 

2003 -1.10 -1.23 -14.41 

2004 -1.11 -1.25 -14.54 

2005 -1.14 -1.28 -14.28 

2006 -1.15 -1.29 -14.80 
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2007 -1.17 -1.32 -15.10 

2008 -1.20 -1.34 -15.34 

2009 -1.19 -1.34 -15.098 

 

Table 6.1 Critical Rates of Population Decline under Depreciation Rate 0.03δ =  

(Source: Authors’ calculation) 

 

Let us compare the critical rates for 2002 ( 1.08Pn = − %, 1.22Sn = − % and 14.61Rn = − %) with the 

rates of population change in the “low variant” estimation in WPP 2019, which we present in Table 6.2. 

 

Region Country n(%) period n(%) Period 

Asia Japan -1.18 2055-60 -1.33 2060-65 

 South Korea -1.20 2050-55 -1.41 2055-60 

 Thailand -1.21 2055-60 -1.32 2060-65 

 Taiwan -1.12 2055-60 -1.24 2060-65 

 China -1.13 2060-65 -1.27 2070-75 

Southern Europe Greece -1.20 2055-60 -1.32 2060-65 

 Italy -1.20 2055-60 -1.31 2060-65 

 Portugal -1.11 2055-60 -1.24 2065-70 

 Spain -1.09 2055-60 -1.26 2060-65 

Eastern Europe Bulgaria -1.15 2030-35 -1.25 2045-50 

 Romania -1.11 2050-55 -1.23 2055-60 

 Moldova -1.13 2040-45 -1.24 2045-50 

 Ukraine -1.11 2040-45 -1.28 2050-55 

Table 6.2 The Estimated Rates of Population Decline Exceeding the Critical Rates 

(Source: World Population Prospects 2019) 

 

It is found that not a few countries in many regions of the world will experience the negative rates of 

population change lower than the critical rates Pn  and Sn  in a few or several decades (though they will 
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still be higher than 0Rn < ). For example, Japan will experience the rates of population decline n= -1.18 

(<-1.08= Pn )% for 2055-60 and n=-1.33 (<-1.22= Sn )% for 2060-65. Then, the Japanese economy will get 

into the phases of S Pn n n< <  and R Sn n n< <  in these periods, respectively (for reference, n=-1.06% 

for 2050-55). While you can find the other countries with similar estimated rates of population decline in 

Table 6.2, there are more countries in the “low variant” estimation in WPP 2019 (the corresponding data 

have not been shown here), which may get into the phases of S Pn n n< <  and R Sn n n< <   by 2100. 

To sum up, by introducing child rearing costs in the RCK model, the optimal paths specific to population 

decline may emerge in empirically more relevant situations than has ever been thought in the future 

covered by WPP 2019. 

 

7. Concluding Remarks 

In this paper we investigate how population decline may affect the optimal path in two types of Ramsey-

Cass-Koopmans (RCK) model with child rearing costs. One is the model with the discount rate 𝜌𝜌 − 𝑛𝑛 >

0 and the other is the model with the discount rate 𝜌𝜌. An optimal path exists in both models under 

economically plausible conditions, that is, the possibilities of non-existence of an optimal path can be 

realized in a theoretically extreme case or should not occur in a real economy which enters into the phase 

of population decline from that of population increase. Therefore, even under population decline, the RCK 

model remains to be a reliable fundamental theory that can identifies the socially optimal path in a 

competitive market economy. 

Furthermore, it is found that a new type of optimal path exists in the RCK model with the discount 

rate 𝜌𝜌, which is also worth analyzing under population decline. The existence and properties of an optimal 

path depend on the range of the rates of population decline, regardless of the child rearing costs. First, 

when population decline is mild, the optimal path is a saddle-point path converging to a finite steady state, 

as in the standard RCK model with increasing population. Second, when population decline is faster, the 
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optimal path is a saddle-point path converging, by reversible investment, to a finite steady state (i.e., a 

balanced growth path (BGP)), at which per capita consumption is larger than per capita income. Third, 

when population decline is even faster, a new type of optimal path emerges in the RCK model with the 

discount rate 𝜌𝜌: the optimal path can be an asymptotically BGP, along which both per capita consumption 

and income keep increasing permanently even without technological progress. We have also show 

empirical relevance of these optimal paths by Japanese data: the negative rates of population change 

estimated in World Population Prospects 2019 can be lower than the theoretical threshold values below 

which an optimal path has different properties from those under population increase. 

Finally, as an interesting suggestion form this paper, if we should pay attention to the widely shared 

concern that per capita income and consumption may decrease due to population decline, we need to 

deviate from the assumption of perfect competition. It is of substantial importance to explicitly analyze 

equilibrium and optimal paths in growth theories with technological progress and/or some market failures 

like factor-input externalities, increasing returns, or imperfect market structure. These directions should 

be further explored in future research on growth theory under population decline. 
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Table 1. Excerpt from World Population Prospects 2019 (with medium fertility rates) 

Medium Variant 

 

Medium variant Average annual rate of population change (percentage)
Region, country or area * 2020-2025 2025-2030 2030-2035 2035-2040 2040-2045 2045-2050 2050-2055 2055-2060 2060-2065 2065-2070 2070-2075 2075-2080 2080-2085 2085-2090 2090-2095 2095-2100

Asia 0.77 0.62 0.49 0.36 0.25 0.14 0.04 -0.05 -0.12 -0.19 -0.25 -0.29 -0.33 -0.35 -0.37 -0.39

Europe -0.05 -0.12 -0.17 -0.20 -0.23 -0.26 -0.29 -0.33 -0.34 -0.32 -0.28 -0.24 -0.19 -0.16 -0.14 -0.14

Latin America and the Caribbean 0.84 0.70 0.56 0.43 0.32 0.22 0.11 0.02 -0.07 -0.16 -0.24 -0.30 -0.36 -0.40 -0.44 -0.46

Northern America 0.59 0.56 0.53 0.45 0.38 0.34 0.32 0.33 0.34 0.33 0.30 0.27 0.25 0.24 0.24 0.25

Eastern Asia 0.21 0.05 -0.08 -0.20 -0.30 -0.40 -0.49 -0.56 -0.59 -0.60 -0.60 -0.60 -0.59 -0.55 -0.51 -0.50

China 0.26 0.09 -0.05 -0.17 -0.27 -0.38 -0.47 -0.54 -0.57 -0.58 -0.59 -0.59 -0.58 -0.55 -0.51 -0.50

China, Hong Kong SAR 0.68 0.67 0.25 0.05 -0.09 -0.16 -0.17 -0.15 -0.15 -0.17 -0.21 -0.21 -0.15 -0.04 0.08 0.17

Japan -0.40 -0.53 -0.60 -0.66 -0.69 -0.69 -0.71 -0.76 -0.82 -0.84 -0.80 -0.70 -0.63 -0.57 -0.54 -0.52

Republic of Korea 0.03 -0.07 -0.18 -0.36 -0.53 -0.69 -0.86 -0.99 -1.03 -1.02 -1.00 -0.97 -0.93 -0.88 -0.83 -0.72

South-Eastern Asia 0.91 0.77 0.63 0.49 0.37 0.26 0.16 0.07 -0.01 -0.08 -0.13 -0.18 -0.23 -0.26 -0.30 -0.33

Cambodia 1.26 1.07 0.94 0.84 0.70 0.56 0.41 0.29 0.17 0.05 -0.06 -0.15 -0.21 -0.26 -0.32 -0.38

Indonesia 0.97 0.83 0.69 0.57 0.44 0.32 0.21 0.12 0.05 -0.01 -0.05 -0.10 -0.14 -0.19 -0.24 -0.28

Lao People's Democratic Re 1.33 1.13 0.95 0.79 0.63 0.47 0.31 0.16 0.02 -0.11 -0.24 -0.34 -0.43 -0.51 -0.58 -0.65

Malaysia 1.19 0.99 0.80 0.62 0.50 0.41 0.33 0.24 0.13 0.02 -0.07 -0.14 -0.17 -0.19 -0.19 -0.21

Myanmar 0.76 0.68 0.54 0.38 0.23 0.11 0.02 -0.05 -0.12 -0.18 -0.25 -0.31 -0.35 -0.37 -0.38 -0.38

Philippines 1.28 1.14 1.00 0.84 0.70 0.57 0.44 0.33 0.23 0.14 0.04 -0.05 -0.13 -0.20 -0.26 -0.30

Singapore 0.77 0.60 0.39 0.18 0.01 -0.12 -0.20 -0.25 -0.28 -0.30 -0.30 -0.28 -0.24 -0.19 -0.13 -0.06

Thailand 0.15 0.01 -0.13 -0.26 -0.39 -0.52 -0.63 -0.71 -0.74 -0.75 -0.74 -0.73 -0.73 -0.74 -0.74 -0.71

Viet Nam 0.76 0.60 0.41 0.28 0.20 0.13 0.03 -0.08 -0.18 -0.25 -0.29 -0.31 -0.31 -0.32 -0.32 -0.34

Southern Asia 1.07 0.92 0.77 0.62 0.48 0.36 0.25 0.14 0.03 -0.08 -0.17 -0.24 -0.30 -0.35 -0.39 -0.42

India 0.92 0.80 0.66 0.50 0.35 0.23 0.13 0.03 -0.08 -0.18 -0.27 -0.34 -0.39 -0.42 -0.45 -0.47

Central & South America

El Salvador 0.48 0.40 0.26 0.18 0.06 -0.05 -0.16 -0.28 -0.41 -0.54 -0.68 -0.83 -0.98 -1.11 -1.22 -1.31

Mexico 0.96 0.81 0.68 0.54 0.41 0.29 0.18 0.08 -0.01 -0.10 -0.17 -0.24 -0.31 -0.38 -0.43 -0.46

Brazil 0.60 0.44 0.30 0.16 0.05 -0.05 -0.15 -0.25 -0.34 -0.43 -0.51 -0.57 -0.61 -0.62 -0.63 -0.62

Chile 0.13 0.22 0.43 0.28 0.14 0.02 -0.08 -0.17 -0.24 -0.29 -0.34 -0.39 -0.41 -0.43 -0.43 -0.41

Eastern Europe -0.24 -0.35 -0.41 -0.43 -0.41 -0.40 -0.41 -0.44 -0.47 -0.47 -0.43 -0.36 -0.28 -0.23 -0.22 -0.23

Belarus -0.14 -0.26 -0.35 -0.37 -0.35 -0.34 -0.34 -0.37 -0.40 -0.41 -0.38 -0.32 -0.24 -0.18 -0.17 -0.21

Bulgaria -0.77 -0.82 -0.88 -0.89 -0.87 -0.86 -0.88 -0.92 -0.94 -0.93 -0.88 -0.80 -0.72 -0.67 -0.68 -0.72

Czechia 0.09 -0.02 -0.10 -0.12 -0.09 -0.06 -0.08 -0.14 -0.20 -0.21 -0.15 -0.06 0.03 0.09 0.11 0.10

Hungary -0.31 -0.37 -0.45 -0.50 -0.51 -0.49 -0.48 -0.49 -0.52 -0.53 -0.50 -0.44 -0.38 -0.34 -0.30 -0.26

Poland -0.18 -0.31 -0.42 -0.50 -0.56 -0.60 -0.64 -0.69 -0.75 -0.83 -0.87 -0.86 -0.79 -0.71 -0.64 -0.60

Republic of Moldova -0.30 -0.45 -0.60 -0.71 -0.78 -0.83 -0.90 -0.98 -1.09 -1.18 -1.21 -1.16 -1.06 -0.95 -0.88 -0.86

Romania -0.49 -0.50 -0.54 -0.58 -0.61 -0.64 -0.67 -0.71 -0.73 -0.71 -0.66 -0.61 -0.57 -0.55 -0.53 -0.54

Russian Federation -0.11 -0.25 -0.31 -0.30 -0.25 -0.22 -0.22 -0.25 -0.27 -0.26 -0.20 -0.12 -0.05 -0.02 -0.03 -0.06

Slovakia -0.04 -0.17 -0.30 -0.40 -0.45 -0.47 -0.49 -0.54 -0.61 -0.67 -0.67 -0.61 -0.52 -0.43 -0.38 -0.37

Ukraine -0.65 -0.70 -0.73 -0.74 -0.75 -0.77 -0.81 -0.85 -0.87 -0.86 -0.82 -0.74 -0.65 -0.59 -0.57 -0.58

Southern Europe -0.22 -0.29 -0.32 -0.36 -0.44 -0.54 -0.65 -0.75 -0.79 -0.77 -0.71 -0.62 -0.54 -0.50 -0.49 -0.49

Greece -0.52 -0.47 -0.42 -0.42 -0.47 -0.56 -0.68 -0.77 -0.81 -0.80 -0.72 -0.62 -0.53 -0.47 -0.46 -0.46

Italy -0.20 -0.28 -0.31 -0.34 -0.43 -0.57 -0.68 -0.77 -0.80 -0.74 -0.64 -0.56 -0.51 -0.49 -0.48 -0.47

Portugal -0.27 -0.30 -0.34 -0.39 -0.47 -0.55 -0.62 -0.67 -0.68 -0.65 -0.57 -0.49 -0.42 -0.40 -0.39 -0.36

Spain -0.08 -0.15 -0.20 -0.24 -0.31 -0.41 -0.55 -0.68 -0.76 -0.77 -0.70 -0.56 -0.42 -0.35 -0.34 -0.36

Western Europe 0.13 0.09 0.05 -0.01 -0.07 -0.12 -0.15 -0.15 -0.13 -0.09 -0.08 -0.07 -0.06 -0.04 -0.02 -0.00

Austria 0.22 0.16 0.08 0 -0.06 -0.12 -0.16 -0.18 -0.16 -0.14 -0.13 -0.13 -0.11 -0.06 0.00 0.05

Belgium 0.29 0.25 0.21 0.16 0.11 0.06 0.01 0.00 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.08

France 0.24 0.19 0.16 0.10 0.03 -0.03 -0.07 -0.09 -0.08 -0.06 -0.05 -0.04 -0.05 -0.06 -0.06 -0.07

Germany -0.06 -0.09 -0.12 -0.16 -0.21 -0.26 -0.28 -0.26 -0.22 -0.17 -0.15 -0.14 -0.11 -0.06 -0.02 0.01

Netherlands 0.21 0.15 0.06 -0.05 -0.14 -0.20 -0.23 -0.22 -0.19 -0.15 -0.13 -0.15 -0.17 -0.17 -0.16 -0.14
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Table 2. Excerpt from World Population Prospects 2019 (with low fertility rates) 

Low Variant 

 

Low Variant Average annual rate of population change (percentage)
Region, country or area * 2020-2025 2025-2030 2030-2035 2035-2040 2040-2045 2045-2050 2050-2055 2055-2060 2060-2065 2065-2070 2070-2075 2075-2080 2080-2085 2085-2090 2090-2095 2095-2100

Asia 0.59 0.35 0.16 0.04 -0.09 -0.24 -0.40 -0.55 -0.69 -0.80 -0.91 -1.01 -1.12 -1.21 -1.30 -1.38

Europe -0.20 -0.35 -0.45 -0.50 -0.54 -0.60 -0.69 -0.79 -0.86 -0.89 -0.89 -0.88 -0.87 -0.87 -0.89 -0.93

Latin America and the Caribbean 0.65 0.41 0.22 0.09 -0.04 -0.18 -0.33 -0.48 -0.62 -0.75 -0.88 -1.01 -1.14 -1.27 -1.38 -1.48

Northern America 0.42 0.30 0.21 0.14 0.07 0.01 -0.05 -0.09 -0.12 -0.15 -0.19 -0.24 -0.30 -0.34 -0.37 -0.37

Eastern Asia 0.05 -0.18 -0.36 -0.49 -0.61 -0.76 -0.90 -1.04 -1.14 -1.22 -1.28 -1.34 -1.40 -1.44 -1.46 -1.52

China 0.10 -0.14 -0.32 -0.45 -0.58 -0.74 -0.89 -1.03 -1.13 -1.20 -1.27 -1.34 -1.41 -1.45 -1.48 -1.54

China, Hong Kong SAR 0.49 0.41 -0.03 -0.19 -0.33 -0.44 -0.51 -0.57 -0.63 -0.67 -0.72 -0.74 -0.71 -0.63 -0.54 -0.44

China, Taiwan Province of Ch -0.05 -0.22 -0.38 -0.54 -0.72 -0.87 -1.00 -1.12 -1.24 -1.34 -1.41 -1.45 -1.42 -1.37 -1.32 -1.25

Japan -0.53 -0.73 -0.87 -0.94 -0.98 -1.01 -1.06 -1.18 -1.33 -1.43 -1.44 -1.39 -1.35 -1.34 -1.37 -1.43

Republic of Korea -0.13 -0.32 -0.48 -0.64 -0.81 -0.99 -1.20 -1.41 -1.56 -1.64 -1.68 -1.70 -1.71 -1.74 -1.79 -1.77

South-Eastern Asia 0.73 0.49 0.29 0.16 0.02 -0.14 -0.29 -0.44 -0.58 -0.69 -0.79 -0.89 -1.00 -1.11 -1.21 -1.30

Cambodia 1.06 0.76 0.57 0.46 0.30 0.09 -0.11 -0.29 -0.46 -0.64 -0.82 -0.98 -1.12 -1.25 -1.39 -1.54

Indonesia 0.79 0.55 0.35 0.22 0.08 -0.09 -0.25 -0.40 -0.52 -0.62 -0.71 -0.80 -0.91 -1.02 -1.14 -1.25

Lao People's Democratic Re 1.12 0.82 0.57 0.41 0.23 0.02 -0.20 -0.40 -0.60 -0.79 -0.99 -1.18 -1.36 -1.55 -1.74 -1.93

Malaysia 0.99 0.69 0.45 0.30 0.17 0.07 -0.06 -0.21 -0.37 -0.51 -0.64 -0.75 -0.84 -0.91 -0.96 -1.01

Myanmar 0.57 0.38 0.16 0.01 -0.15 -0.31 -0.47 -0.61 -0.74 -0.86 -0.98 -1.11 -1.23 -1.33 -1.41 -1.46

Philippines 1.09 0.85 0.64 0.49 0.33 0.16 -0.00 -0.16 -0.31 -0.45 -0.59 -0.73 -0.87 -1.00 -1.13 -1.24

Singapore 0.60 0.36 0.13 -0.06 -0.24 -0.40 -0.53 -0.63 -0.70 -0.74 -0.76 -0.77 -0.76 -0.74 -0.70 -0.61

Thailand -0.01 -0.25 -0.44 -0.57 -0.72 -0.89 -1.06 -1.21 -1.32 -1.38 -1.43 -1.48 -1.57 -1.68 -1.78 -1.84

Viet Nam 0.58 0.33 0.10 -0.02 -0.11 -0.23 -0.38 -0.56 -0.72 -0.85 -0.94 -1.02 -1.10 -1.17 -1.24 -1.32

Southern Asia 0.88 0.63 0.42 0.28 0.13 -0.03 -0.21 -0.38 -0.54 -0.69 -0.83 -0.97 -1.11 -1.23 -1.35 -1.44

India 0.73 0.50 0.30 0.15 -0.00 -0.16 -0.33 -0.50 -0.65 -0.80 -0.94 -1.07 -1.20 -1.32 -1.43 -1.50

Central & South America

El Salvador 0.26 0.08 -0.13 -0.21 -0.35 -0.51 -0.68 -0.87 -1.06 -1.27 -1.51 -1.79 -2.13 -2.49 -2.87 -3.30

Mexico 0.77 0.51 0.32 0.19 0.04 -0.11 -0.28 -0.43 -0.57 -0.70 -0.83 -0.96 -1.10 -1.25 -1.39 -1.51

Brazil 0.41 0.15 -0.05 -0.17 -0.30 -0.43 -0.58 -0.73 -0.89 -1.04 -1.18 -1.31 -1.42 -1.53 -1.63 -1.71

Chile -0.05 -0.05 0.11 -0.04 -0.19 -0.33 -0.47 -0.61 -0.74 -0.85 -0.95 -1.04 -1.14 -1.22 -1.28 -1.33

Eastern Europe -0.39 -0.58 -0.70 -0.74 -0.75 -0.78 -0.85 -0.95 -1.04 -1.11 -1.12 -1.09 -1.05 -1.03 -1.05 -1.12

Belarus -0.29 -0.49 -0.62 -0.67 -0.69 -0.72 -0.78 -0.87 -0.96 -1.02 -1.05 -1.04 -1.00 -0.97 -0.99 -1.07

Bulgaria -0.91 -1.04 -1.16 -1.20 -1.21 -1.25 -1.33 -1.45 -1.57 -1.65 -1.68 -1.67 -1.65 -1.68 -1.79 -1.97

Czechia -0.06 -0.24 -0.37 -0.40 -0.39 -0.39 -0.45 -0.57 -0.69 -0.75 -0.73 -0.65 -0.58 -0.54 -0.54 -0.57

Hungary -0.46 -0.61 -0.74 -0.80 -0.84 -0.85 -0.89 -0.97 -1.08 -1.16 -1.17 -1.15 -1.14 -1.14 -1.14 -1.15

Poland -0.33 -0.54 -0.70 -0.79 -0.87 -0.95 -1.05 -1.17 -1.31 -1.46 -1.59 -1.66 -1.67 -1.65 -1.65 -1.68

Republic of Moldova -0.48 -0.71 -0.90 -1.03 -1.13 -1.24 -1.38 -1.55 -1.76 -1.96 -2.10 -2.17 -2.16 -2.14 -2.16 -2.24

Romania -0.63 -0.73 -0.83 -0.89 -0.95 -1.01 -1.11 -1.23 -1.33 -1.39 -1.40 -1.41 -1.43 -1.48 -1.56 -1.66

Russian Federation -0.27 -0.48 -0.60 -0.61 -0.60 -0.61 -0.66 -0.75 -0.83 -0.87 -0.86 -0.82 -0.77 -0.75 -0.79 -0.87

Slovakia -0.20 -0.40 -0.58 -0.69 -0.77 -0.82 -0.90 -1.02 -1.17 -1.30 -1.37 -1.37 -1.33 -1.29 -1.29 -1.33

Ukraine -0.80 -0.94 -1.03 -1.06 -1.11 -1.18 -1.28 -1.40 -1.51 -1.59 -1.62 -1.60 -1.57 -1.56 -1.61 -1.70

Southern Europe -0.36 -0.51 -0.60 -0.65 -0.74 -0.86 -1.02 -1.18 -1.31 -1.37 -1.35 -1.30 -1.26 -1.27 -1.32 -1.39

Greece -0.66 -0.69 -0.70 -0.72 -0.78 -0.89 -1.04 -1.20 -1.32 -1.38 -1.37 -1.30 -1.24 -1.21 -1.27 -1.34

Italy -0.33 -0.50 -0.58 -0.62 -0.73 -0.88 -1.04 -1.20 -1.31 -1.31 -1.26 -1.21 -1.19 -1.22 -1.28 -1.34

Portugal -0.41 -0.52 -0.62 -0.68 -0.76 -0.87 -0.99 -1.11 -1.21 -1.24 -1.21 -1.14 -1.10 -1.12 -1.18 -1.22

Spain -0.22 -0.36 -0.46 -0.52 -0.60 -0.72 -0.90 -1.09 -1.26 -1.35 -1.33 -1.22 -1.09 -1.05 -1.09 -1.18

Western Europe -0.02 -0.14 -0.24 -0.29 -0.36 -0.44 -0.52 -0.59 -0.62 -0.62 -0.62 -0.64 -0.67 -0.68 -0.70 -0.72

Austria 0.06 -0.08 -0.21 -0.27 -0.34 -0.43 -0.53 -0.61 -0.64 -0.65 -0.67 -0.70 -0.72 -0.70 -0.66 -0.63

Belgium 0.14 0.01 -0.08 -0.14 -0.19 -0.27 -0.36 -0.43 -0.48 -0.48 -0.49 -0.51 -0.53 -0.55 -0.57 -0.60

France 0.09 -0.04 -0.13 -0.20 -0.28 -0.36 -0.45 -0.53 -0.58 -0.60 -0.61 -0.63 -0.68 -0.73 -0.79 -0.85

Germany -0.21 -0.32 -0.40 -0.44 -0.50 -0.58 -0.65 -0.70 -0.71 -0.69 -0.69 -0.70 -0.71 -0.69 -0.68 -0.68

Netherlands 0.06 -0.09 -0.24 -0.34 -0.44 -0.53 -0.61 -0.68 -0.70 -0.69 -0.70 -0.74 -0.82 -0.88 -0.93 -0.95
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