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Abstract

We study consistency in multi-unit object allocation problems with money. Ob-

jects are identical and each agent has a multi-demand and quasi-linear preferences. We

consider the class of weak object monotonic preferences and that of single-peaked pref-

erences. We first show that on those domains, if a rule satisfies consistency, strategy-

proofness, individual rationality, no subsidy, non-wasteful tie-breaking, and minimal

tradability, then it is a sequential dictatorship rule. Since not all sequential dictator-

ship rule are strategy-proof and consistent, we then focus on a specific class of sequential

dictatorship rules which we call sequential dictatorship rules with lowest tie-breaking.

On the weakly object monotonic domain, when the reservation prices are increasing

in the number of objects, sequential dictatorship rules with lowest tie-breaking satisfy

consistency and independence of unallocated objects if and only if there is a common

priority ordering for more than one object and this is an acyclic ordering of the pri-

ority ordering for one object. We also show that this condition is a necessary and

sufficient condition for a sequential dictatorship rule with lowest tie-breaking to satisfy

consistency and independence of unallocated objects on the single-peaked domain.
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1 Introduction

We investigate consistent allocation rules in the problem of allocating identical objects

with money. Consistency requires that if an allocation is selected by a rule for an

economy and some of the agents leave with their assigned objects, then for the re-

duced economy, the rule should choose the allocation at which each of the remaining

agents receives the same consumption bundle as before. Consistency has been studied

in many economic models, and its desirability has been discussed from various point

of views. For example, consistency is considered to be a solidarity principle, a ro-

bustness requirement, etc.—The desirability of consistency is argued comprehensively

in Thomson (2012). Klaus and Nichifor (2020) introduce consistency in an object

allocation with money. They show that consistency, incentive constraints and other

mild conditions imply the serial dictatorship: This result is extended to the case of

heterogeneous objects (Klaus and Nichifor, 2021). However, they assume that agents

are unit-demand, that is, each agent could receive at most one object. Our goal is to

investigate the implication of consistency in the environment where there are identical

objects and each agent can receive multiple objects.

Formally, an economy in our model consists of three components: A set of agents,

the number of (identical) objects available in the economy, and preferences of the

agents. A (consumption) bundle consists of a pair of a quantity of objects, and a

payment level. We assume that preferences are quasi-linear. A set of preferences

is called a domain. We consider two specific domains. The first one is the domain

of weakly object monotonic preferences. Weak object monotonicity requires that at

each payment level, receiving more objects should be at least as desirable as receiving

less. The other one is the domain of single-peaked preferences. If a preference is single-

peaked, there is a unique optimal consumption level of the object, and at each payment

level, the agent is made at least as well off if the number of objects she receives is closer

to the optimal level.

An (allocation) rule specifies an allocation for each economy. We follow the same

set of properties of rules studied in Klaus and Nichifor (2020, 2021). Aside from

consistency, there are six properties. A rule is strategy-proof if each agent has an

incentive to report her true preferences. A rule is individually rational if no agent

receives a bundle that makes her worse off than she would be if she had received no

object and paid nothing. No subsidy requires that the payment of each agent should

be nonnegative. Independence of unallocated objects has a similar spirit as consistency.

It requires that the allocation should remain the same even if some of the unassigned

objects are removed from the economy. Non-wasteful tie-breaking requires that if an

agent receives an object, her bundle should not be indifferent to receiving no object and
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paying nothing. Thus, together with individual rationality, non-wasteful tie-breaking

means that an agent will be made better off by participating in the mechanism as long

as she receives an object. Minimal tractability requires that given a number of objects,

there is an economy with the same number of objects where no object is unassigned.

A rule is sequential dictatorship if each number of objects is associated with a

reservation price and a priority order over agents, and the allocation for an economy

is determined as follows: The agent who has the highest priority with respect to the

number of objects existing in the economy chooses the most preferred number of objects

at the reservation prices, pays the associated reservation price, and leaves; Next, the

agent who has the highest priority among the remaining agents with respect to the

number of objects existing in the reduced economy chooses a consumption bundle as

in the first agent and leaves; This process continues until all the agent in the economy

makes a decision. A serial dictatorship rule is a sequential dictatorship rule where the

priority order is common for each number of objects.

Our first result shows that on the weakly object monotonic domain and the single-

peaked domain, the only rules that satisfy the above mentioned properties are se-

quential dictatorship rules (Theorem 1). Thus, while this result demonstrates a link

between consistency and dictatorship as in Klaus and Nichifor (2020, 2021), our result

is slightly different from their results in that they show that serial dictatorship rules

are the only rules that satisfy the list of properties. Another difference is that while

the results in Klaus and Nichifor (2020, 2021) are characterization results, our result

is not. Sequential dictatorship rules satisfy all the properties other than consistency,

strategy-proofness, and independence of unallocated objects. But some of them violate

some of the three properties.

Thus, we then ask when sequential dictatorship rules satisfy consistency, strategy-

proofness, and independence of unallocated objects. We first observe that the tie-

breaking rule plays an important role for a sequential dictatorship rule to satisfy these

three properties (Example 1). Thus, we focus on a specific tie-breaking rule. A rule

is sequential dictatorship rule with lowest tie-breaking if it is a sequential dictatorship

with a tie-breaking rule such that if an agent who is making a decision has multiple

optimal consumption bundles, the consumption bundle with the lowest number of ob-

jects among them is selected. This tie-breaking rule is one of the natural candidates

from the view point of increasing the number of agents who receive objects, which is

sometimes a goal in practice. Sequential dictatorship rules with lowest tie-breaking are

strategy-proof. Hence, we investigate when they satisfy consistency and independence

of unallocated objects.

The result depends on the domain. On the weakly object monotonic domain, we

show that a sequential dictatorship rule with lowest tie-breaking satisfies consistency
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and independence of unallocated objects if and only if it satisfies the list of conditions

we identify (Theorem 2). While the conditions are complicated, the result provides a

useful tool for verifying whether a sequential dictatorship rule with lowest tie-breaking

satisfies consistency and independence of unallocated objects. For instance, it is some-

times reasonable to focus on reservation prices that are increasing in the number of

objects. Theorem 2 tells that a sequential dictatorship rule with lowest tie-breaking

and increasing reservation prices satisfies consistency and independence of unallocated

objects if and only if there is a common priority ordering for more than one object and

this is an acyclic ordering of the priority ordering for one object (Corollary 1).

On the single-peaked domain, the condition in Corollary 1 is obtained without as-

suming the monotonicity of reservation prices. That is, on the single-peaked domain,

a sequential dictatorship rule with lowest tie-breaking satisfies consistency and inde-

pendence of unallocated objects if and only if there is a common priority ordering for

more than one object and this is an acyclic ordering of the priority ordering for one

object (Theorem 3).

This paper is organized as follows. The next section reviews the related literature.

Section 2 sets up the model and introduces properties of rules. Section 3 defines

sequential dictatorship rules. Section 4 provides our results and independence of our

axioms. All the proofs appear in Appendix.

1.1 Related literature

The desirability of sequential and serial dictatorship rules has been discussed in various

environments. In object allocation problems without money, if each agent can receive at

most one object, serial dictatorship rule is the only one that satisfies efficiency, strategy-

proofness, non-bossiness, and neutrality (Svensson, 1999). When an agent can receive

multiple objects but monetary transfers are not allowed, there is a connection between

sequential dictatorship rules and solidarity principles. For example, serial dictatorship

rules are the only rules that satisfy efficiency, strategy-proofness, and either population

monotonicity or consistency (Klaus and Miyagawa, 2002).

In object allocation problems without money, non-bossiness is also a key to induce

sequential and serial dictatorship rules. Indeed, when an agent can receive multiple

objects, sequential dictatorship rules are the only rules that satisfy efficiency, strategy-

proofness, and non-bossiness (Pápai, 2001; Ehlers and Klaus, 2003), and serial dicta-

torship rules are the only rules that satisfy resource monotonicity together with the

above mentioned three properties (Ehlers and Klaus, 2003).1

1A similar result is obtained in the environment where each agent is restricted to receive always the same

amount of objects (Hatfield, 2009).
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Klaus and Nichifor (2020) is the first paper that introduces serial dictatorship rules

in object allocation problems with money, and their result is extended to the case of

heterogeneous objects (Klaus and Nichifor, 2021). Their results and ours demonstrate

that there is a link between solidarity principles and sequential dictatorship rules even

in the environment with money. For non-bossiness, when there is a single object,

sequential dictatorship rules are the only rules that satisfy strategy-proofness, non-

bossiness, individual rationality, and no subsidy (Shinozaki, 2022).2

Acyclicity of priorities has been considered as a condition that guarantees the de-

sirability of certain rules. For example, in priority-based object allocation problems

without money, acyclicity is known as a necessary and sufficient condition for the de-

ferred acceptance rule to be efficient (Ergin, 2002). In the same model, the top trading

cycle rule is stable if and only if the priorities are acyclic (Kesten, 2006). It is also true

that the immediate acceptance rule is strategy-proof and stable if and only if priorities

are acyclic (Kumano, 2013). The acyclicity conditions introduced in those papers are

all different. The acyclicity conditions imposed in Kesten (2006) and Kumano (2013)

are stronger than that in Ergin (2002). But the acyclicity conditions in Kesten (2006)

and Kumano (2013) are independent. Our acyclicity condition is the one introduced

by Ergin (2002).

Acyclicity conditions are related to consistency. Indeed, the deferred acceptance

rule is consistent if and only if priorities are acyclic (Ergin, 2002), and the immediate

acceptance rule is consistent if and only if priorities are acyclic (Kumano, 2013). Our

paper is related to these papers in the sense that our results demonstrate that con-

sistency (and other conditions) lead to acyclicity of priorities even in the model with

money if preferences are single-peaked or reservation prices are increasing.

In object allocation problems with money, the Vickrey rule and the minimum price

Walrasian rule have played central roles.3 The Vickrey rule is the unique rule that

satisfies efficiency, strategy-proofness, individual rationality, and no subsidy for losers

if preferences are quasi-linear (Holmström, 1979). When preferences are not neces-

sarily quasi-linear and agents are unit-demand, the minimum price Walrasian rule is

the only rule for those properties (Saitoh and Serizawa, 2008; Sakai, 2008; Morimoto

and Serizawa, 2015; Zhou and Serizawa, 2018). When agents are multi-demand like

our model, a Walrasian equilibrium may not exits. When preferences are quasi-linear,

the existence of a Walrasian equilibrium is guaranteed if preferences satisfy gross sub-

2To be precise, Shinozaki (2022) characterizes sequential dictatorship using pairwise strategy-proofness,

and non-imposition. Non-bossiness implies pairwise strategy-proofness, and non-imposition is equivalent to

individual rationality and no subsidy under strategy-proofness.
3These rules are equivalent when agents are unit-demand and either objects are identical or preferences

are quasi-linear.
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stitutability (Kelso and Crawford, 1982).4 When preferences may not be quasi-linear,

a Walrasian equilibrium exists if and only if a Walrasian equilibrium exists in the

corresponding quasi-linear economies (Baldwin et al., 2023). Our paper is different

from those papers in that we focus on sequential dictatorship rules. Miyagawa (2001)

considers the house allocation problem with money and shows that if a rule satis-

fies strategy-proofness, non-bossiness, individual rationality, and ontoness, then it is

a fixed-price core mechanism. This paper is similar to ours in that both papers show

that a list of axioms leads to fixed prices.

2 Preliminaries

We consider an economy where multiple units of an object are to be allocated to a

set of agents, and each agent pays some amount of money. We allow an agent to

receive multiple units of the object. Thus, a (consumption) bundle of an agent is a

pair Z+ × R.5 The set of potential agents is N. Let N be the family of subsets of N
such that for each N ∈ N , 0 < |N | < ∞.

2.1 Preferences

Each agent i has a complete and transitive preference relation Ri over Z+×R. Through-
out the paper, we assume that each preference relation Ri satisfies the following prop-

erties.

Quasi-linearity: There is a valuation function vi : Z+ → R such that (i) vi(0) = 0, and

(ii) for each pair (x, t), (y, s) ∈ Z+×R, (x, t) Ri (y, s) if and only if vi(x)−t ≥ vi(y)−s.

Desirability of the object: For each x ∈ Z+ \ {0}, (x, 0) Ri (0, 0).

We consider two classes of preferences.

Definition 1 A preference relation Ri is weakly object monotonic if for each pair

x, y ∈ Z+ with x ≥ y, and each t ∈ R, (x, t) Ri (y, t).

Let RWO be the class of weakly object monotonic preferences.

4The existence result is extended to the cases where certain complementarities are allowed (Sun and Yang,

2006; Teytelboym, 2014; Baldwin and Klemperer, 2019).
5Z+ denotes the set of nonnegative integers.
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Figure 1: Consumption set and indifference curves.

Definition 2 A preference relation Ri is single-peaked if there is p(Ri) ∈ Z+ such

that for each pair x, y ∈ Z+ and each t ∈ R, if y < x < p(Ri) or y > x > p(Ri),

(p(Ri), t) Pi (x, t) Ri (y, t).

Let RSP be the class of single-peaked preferences.

Figure 1 is an illustration of the consumption set Z+ × R. In this diagram, each

horizontal line represents the set of real numbers, and each point on the lines represents

a payment for the amount of the object specified on the left side of the line. The vertical

dotted line in this diagram connects the points where the payment is zero. For example,

the point z corresponds to the consumption bundle (1, t).

The kinked lines are “indifference curves” of a preference relation Ri. That is, if

bundles are on the same indifference curve, the bundles are indifferent for the preference

relation. For example, z and z′ in Figure 1 are on the same indifference curve, and

hence, z Ii z
′. Bundles to the left (resp. right) of an indifference curve are better (resp.

worse) than the bundles on the indifference curve. Indifference curves of a quasi-linear

preference relation are parallel to each other as shown in Figure 1. Thus, we can

illustrate a quasi-linear preference relation by drawing just a single indifference curve.

The valuation function of a quasi-linear preference relation corresponds to the payment

levels at the bundles indifferent to (0, 0).

The preference relation in Figure 1 is weakly object monotonic since the valuation

function is nondecreasing. On the other hand, the preference relation in Figure 2 is

single-peaked. It has a unique peak, which is 1, and when the payment is fixed, the

agent finds an amount x ∈ Z+ of the object at least as well as another one y ∈ Z+ if x

is closer to 1 than y.
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Figure 2: An indifference curve of a single-peaked preference relation.

2.2 Economies, rules, and properties of rules

An economy is a tuple e := (N,m,R) ∈ N × Z+ × R|N |, where m is the number

of (identical) objects available in the economy and R := (R1, . . . , R|N |) ∈ R|N | is a

preference profile for N . Given N ∈ N , R ∈ R|N |, and N ′ ⊆ N , denote RN ′ = (Ri)i∈N ′ .

Let E be a generic notation for the set of economies and call it a domain. We use the

notation R to denote the class of preferences associated with E . Let EWO be the set of

economies such that for each (N,m,R) ∈ EWO, R ∈ (RWO)|N |, and call it the weakly

object monotonic domain. Similarly, let ESP be the set of economies such that for each

(N,m,R) ∈ ESP , R ∈ (RSP )|N |, and call it the single-peaked domain.

Given (N,m) ∈ N × Z+, a (feasible) allocation for (N,m) is a tuple ((xi, ti))i∈N ∈
(Z+ × R)|N | such that

∑
i∈N xi ≤ m. Denote the set of allocations for (N,m) by

A(N,m).

An (allocation) rule is a mapping f : E → ∪(N,m)∈N×Z+
A(N,m) such that for each

e := (N,m,R) ∈ E , f(e) ∈ A(N,m). Given e := (N,m,R) ∈ E and i ∈ N , let fi(e)

be the consumption bundle assigned to agent i at e, and we write fi(e) = (xi(e), ti(e))

where xi(e) ∈ {1, . . . ,m} is the number of objects assigned to i and ti(e) is her payment.

Given e := (N,m,R) ∈ E and N ′ ⊆ N , let fN ′(e) = (fi(e))i∈N ′ .

Now we introduce properties of rules. The first property requires that the rule

should be consistent in the sense that if some agents leave an economy with their

assigned bundles, the allocation for the remaining agents remain the same.
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Consistency: For each (N,m,R) ∈ E and each N ′ ⊆ N ,

fN ′(N,m,R) = f(N ′,m−
∑

i∈N\N ′

xi(N,m,R), RN ′).

The following property requires that each agent should always have an incentive to

report her true preference relation.

Strategy-proofness: For each (N,m,R) ∈ E , each i ∈ N , and each R′
i ∈ R,

fi(N,m,R) Ri fi(N,m, (R′
i, R−i)).

The following property requires that an agent should not be assigned a bundle that

makes her worse off than she would be if she had received no object and paid nothing.

Individual rationality: For each e := (N,m,R) ∈ E and each i ∈ N , fi(e) Ri (0, 0).

The next property requires that the payment of each agent should be nonnegative.

No subsidy: For each e := (N,m,R) ∈ E and each i ∈ N , ti(e) ≥ 0.

The following property has a similar spirit as consistency. It requires that when the

allocation should remain the same even if some of the unassigned objects are removed

from the economy.

Independence of unallocated objects: For each (N,m,R) ∈ E and each m′ ∈ Z+ with

m > m′ ≥
∑

i∈N xi(N,m,R),

f(N,m,R) = f(N,m′, R).

The following property requires that if an agent receives objects, her assigned bundle

is not indifferent to receiving no object and paying nothing.

Non-wasteful tie-breaking: For each e := (N,m,R) ∈ E , there is no agent i ∈ N such

that xi(e) ̸= 0 and fi(e) Ii (0, 0).

The final property requires that there is always an economy where no object is

unallocated.

Minimal tradability: For each (N,m) ∈ N×Z+, there isR ∈ R|N | such that
∑

i∈N xi(N,m,R) =

m.
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3 Sequential dictatorship rules

Given m,m′ ∈ Z+ with m ≤ m′, let [m,m′]Z := {m,m + 1, . . . ,m′}. We call it an

(integer) interval. In particular, for each m ∈ Z+, let [m] := [0,m]Z. A reservation

price is a mapping r : Z+ → R+ such that r(0) = 0. Given a preference relation Ri, a

reservation price r, and m ∈ Z+, let

B(Ri,m, r) := {x ∈ [m] : for each y ∈ [m], (x, r(x)) Ri (y, r(y))}.

A priority ordering is a complete, antisymmetric, and transitive binary relation ≻
over N. Given a priority ordering ≻ and N ⊆ N, let top(≻, N) ∈ N be the agent

who has the highest priority in N . That is, for each i ∈ N with i ̸= top(≻, N),

top(≻, N) ≻ i.

Definition 3 A rule f on E is a sequential dictatorship if there are a profile of reser-

vation prices (ri)i∈N and a profile of priority orderings (≻m)m∈Z+ such that for each

e := (N,m,R) ∈ E, f(e) is determined as follows:

• Let i1 := top(≻m, N). If 0 /∈ B(Ri1 ,m, ri1), then xi1(e) ∈ B(Ri1 ,m, ri1) and

ti1(e) = ri1(xi1(e)). Otherwise, fi1(e) = (0, 0).

• Let k ∈ [2, |N |]Z and denote ik = top(≻m−
∑

k′<k xik′
(e), N \ {i1, . . . , ik−1}). If

0 /∈ B(Rik ,m −
∑

k′<k xik′ (e), rik), then xik(e) ∈ B(Rik ,m −
∑

k′<k xik′ (e), rik)

and tik(e) = rik(xik(e)). Otherwise, fik(e) = (0, 0).

A rule f is a serial dictatorship if it is a sequential dictatorship and for each pair

m,m′ ∈ Z+, ≻m=≻m′
.

4 Results

Our first result states that if the domain is either the weakly object monotonic or the

single-peaked domain, then a rule that satisfies the list of properties we consider must

be a sequential dictatorship rule.

Theorem 1 Let E ∈ {EWO, ESP }. Let f be a rule on E that satisfies consistency,

strategy-proofness, individual rationality, no subsidy, independence of unallocated ob-

jects, non-wasteful tie-breaking, and minimal tradability. Then f is a sequential dic-

tatorship rule.

It is easy to see that sequential dictatorship rules satisfy, individual rationality, no

subsidy, non-wasteful tie-breaking, and minimal tradability. However some sequential

dictatorship rules or even some serial dictatorship rules violate consistency, strategy-

proofness, or independence of unallocated objects. The following is an example of a
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serial dictatorship that violates consistency, strategy-proofness, and independence of

unallocated objects.

Example 1 Let E = {EWO, ESP }.Let r ∈ R++. For each i ∈ N, let ri be such that

for each m ∈ Z+, ri(m) = m · r. Let δ ∈ R++. Let i, j, k ∈ N be distinct agents. Let

R∗
i ∈ R be such that for each x ∈ [4] with x > 0,

v∗i (x) = x · r + δ.

Let R∗
j := R∗

i . Note that for each m ∈ [4] with m > 0, B(R∗
i ,m, ri) = B(R∗

j ,m, rj) =

[1,m]Z.

Let R∗
k ∈ R be such that for each x ∈ [4],

v∗k(x) =

0 if x ≤ 1,

x · r + δ otherwise.

Note that in both RWO and RSP there are preferences that satisfy the condition of R∗
i

and preferences that satisfy the condition of R∗
k. Denote R∗ := (R∗

i , R
∗
j , R

∗
k).

Let

E∗ := {(N,m,R) : N ⊆ {i, j, k},m ≤ 4, Ri = R∗
i , Rj = R∗

j , Rk ∈ R}.

Let f be a serial dictatorship rule such that the associated reservation price vector

is (ri)i∈N, the corresponding priority ordering ≻ satisfies i ≻ j ≻ k, and for each

e := (N,m,R) ∈ E∗,

xi(e) =

2 if e = ({i, j, k}, 4, R∗),

minB(Ri,m, ri) otherwise,

and

xj(e) = minB(Rj ,m− xi(e), rj).

By the definition of f , xi({i, j, k}, 4, R∗) = 2, xj({i, j, k}, 4, R∗) = 1, and thus

fk({i, j, k}, 4, R∗) = (0, 0). On the other hand, xi({i, j, k}, 3, R∗) = xi({i, k}, 3, R∗
−j) =

1. Hence, f violates consistency and independence of unallocated objects.

Let R′
k ∈ R be such that for each x ∈ [4],

v′k(x) =

0 if x ≤ 1,

x · r + 2δ otherwise.

By the definition of f , xi({i, j, k}, 4, (R∗
i , R

∗
j , R

′
k)) = xj({i, j, k}, 4, (R∗

i , R
∗
j , R

′
k)) = 1,

and thus, fk({i, j, k}, 4, (R∗
i , R

∗
j , R

′
k)) = (2, 2r). Thus, fk({i, j, k}, 4, (R∗

i , R
∗
j , R

′
k)) P

∗
k fk({i, j, k}, 4, R∗).

Hence, f is not strategy-proof.
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The above example shows that tie-breaking rules play an important role to deter-

mine whether a sequential dictatorship rule satisfies consistency, strategy-proofness,

and independence of unallocated objects. Indeed, tie-breaking rules are the only factor

that makes a sequential dictatorship rule manipulable.6 Given this observation, in the

next section we focus on sequential dictatorship rules with specific tie-breaking rules,

and investigate when those rules satisfies the properties we impose.

4.1 Sequential dictatorship with lowest tie-breaking

We focus on sequential dictatorship rules where ties are broken in such a way that each

agent is assigned the lowest number of objects among her most preferred numbers of

objects. This tie-breaking rule is reasonable when the planner wants to increase the

number of agents who receive an object.

Definition 4 A rule f on E is a sequential dictatorship rule with lowest tie-breaking

if there are a profile of reservation prices (ri)i∈N and a profile of priority orderings

(≻m)m∈Z+ such that for each e := (N,m,R), f(e) is determined as follows:

• Let i1 := top(≻m, N). Then, xi1(e) = minB(Ri1 ,m, ri1) and ti1(e) = ri1(xi1(e)).

• Let k ∈ [2, |N |]Z and denote ik = top(≻m−
∑

k′<k xik′
(e), N \ {i1, . . . , ik−1}). Then,

xik(e) = minB(Rik ,m−
∑

k′<k xik′ (e), rik) and tik(e) = rik(xik(e)).

Note that sequential dictatorship rules with lowest tie-breaking are strategy-proof.

On the other hand, sequential dictatorship rules with lowest tie-breaking may not

satisfy consistency and independence of unallocated objects. Therefore, we investigate

when a sequential dictatorship rules with lowest tie-breaking satisfy the two properties.

Before stating our results in this section, we introduce the notion of acyclicity.

Given a priority ordering ≻, N ⊆ N, and i ∈ N , let ranki(≻, N) be the rank of agent

i among N with respect to ≻.

Definition 5 Let ≻ and ≻′ be priority orderings over N. Then, ≻ is an acyclic

ordering of ≻′ if for all i ∈ N, |ranki(≻′,N)− ranki(≻,N)| ≤ 1.

Remark 1 Let ≻ and ≻′ be priority orderings over N. Then, ≻ is an acyclic ordering

of ≻′ if and only if there are no i, j, k ∈ N such that i ≻ j ≻ k and k ≻′ i.

6To be precise, take a sequential dictatorship rule with reservation prices (ri)i∈N and an economy e :=

(N,m,R). If each agent i ∈ N has strict preferences over the set of bundles that the rule may assign to her,

that is, {(x, ri(x)) : x ≤ m}, then no agent benefits from misreporting her preferences at the economy.
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4.1.1 Weakly object monotonic domain

We first introduce some notations. For each pair i, j ∈ N, let Mi,j := {m ∈ Z+ : i ≻m

j}. Note that for each pair i, j ∈ N, Mi,j can be described as a collection of disjoint

intervals. That is, there is a collection Ii,j of intervals such that Mi,j = ∪I∈Ii,jI and

for each distinct pair I, I ′ ∈ Ii,j , I ∩ I ′ = ∅. For each m ∈ Mi,j , let Ii,j(m) be the

interval in Ii,j that contains m. For each m ∈ Mi,j let mi,j := min Ii,j(m). Note that

if mi,j > 1, j ≻mi,j−1 i. Finally, let Mmin
i,j := {mi,j : m ∈ Mi,j}.

To state our result on the weakly object monotonic domain, we introduce the notion

of feasible path. Let f be a sequential dictatorship and denote the corresponding

reservation prices and priority orderings by (ri)i∈N and (≻m)m∈Z+ , respectively. Given

m ∈ Z+ and K ∈ [2, |N |]Z, a pair ({ik}Kk=1, {xk}Kk=1) of sequences of distinct agents

and positive integers is a feasible path at m if the following hold:

• For each k ∈ [1,K − 1]Z, ik = top(≻m−
∑

k′∈[1,k−1]Z
xk′ , {ik}Kk′=k).

• For each k ∈ [1,K − 1]Z and each x ∈ [xk + 1,m −
∑

k′∈[1,k−1]Z
xk′ ]Z, rik(xk) ≤

rik(x).

• m−
∑

k∈[1,K]Z
xk ≥ 0.

The feasible path guarantees that there is an economy with {i1, . . . , iK} and m

objects such that each agent ik receives xk objects under sequential dictatorship rules

with lowest tie-breaking. The first condition states that under sequential dictatorship

rules, agents make a decision in the order of i1, i2, . . . , iK as long as each agent ik

chooses xk in her tern. The second condition states that for each k ∈ [1,K]Z, there is

indeed a preference relation such that ik selects xk in her turn. To see this point, take

any k ∈ [1,K]Z. Let Rik ∈ R be such that for each x ∈ Z+,

vik(x)


= 0 if x < xk,

> rik(xk) if x = xk,

= vik(xk) otherwise.

Then, minB(Rik ,m −
∑

k′∈[1,k−1]Z
xk′ , rik) = xk, and hence, ik is assigned xk under

sequential dictatorship rules with lowest tie-breaking. Finally, the third condition

states that it is feasible that each agent ik receives xk when there are m objects in the

economy.

The following result provides a necessary and sufficient condition for a sequential

dictatorship rule with lowest tie-breaking to satisfy consistency and independence of

unallocated objects when the domain is the weakly object monotonic domain.
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Theorem 2 Let E = EWO. Let f be a sequential dictatorship with lowest tie-breaking

on E, and (ri)i∈N and (≻m)m∈Z+ be the corresponding reservation prices and priority

orderings, respectively. Then, the following conditions are equivalent.

• f satisfies consistency and independence of unallocated objects.

• For each i, j ∈ N with i ̸= j, f satisfies the following three conditions.

1. For each m ∈ Mmin
i,j and each x ∈ [2,m− 1]Z, ri(m) < ri(x).

2. Suppose j ≻1 i. Let m ∈ Mi,j. If ri(1) ≤ minx∈[mi,j ,m]Z ri(x), then there is

no k ∈ N such that i ≻m k and k ≻m−1 j.

3. Suppose i ≻1 j. Let m ∈ Mi,j be such that mi,j > 1. If ri(1) ≤ minx∈[mi,j ,m]Z ri(x),

then there is no feasible path ({ik}Kk=1, {xk}Kk=1) at m such that

– (i1, x1) = (i, 1),

– iK = j,

– for some L ⊆ [2,K − 1]Z, j = top(≻m−
∑

k∈L xk , {ik}k∈[1,K]Z\L).

Theorem 2 gives a useful tool to verify whether a sequential dictatorship rule with

lowest tie-breaking satisfies consistency and independence of unallocated objects. For

example, it is sometimes reasonable to consider reservation prices that are increasing

in the number of objects. Theorem 2 provides conditions on priority orderings that are

compatible with consistency and independence of unallocated objects when reservation

prices are increasing.

Formally, let f be a sequential dictatorship rule with lowest tie-breaking that satis-

fies consistency and independence of unallocated objects, and (ri)i∈N and (≻m)m∈Z+ be

the corresponding reservation prices and priority orderings, respectively. Assume that

for each i ∈ N, ri is increasing, i.e., for each pair x, x′ ∈ Z+ with x > x′, ri(x) > ri(x
′).

Suppose that for some i, j ∈ N and m,m′ ∈ Z+ with m > m′ > 1, i ≻m j and j ≻m′
i.

Condition 1 of Theorem 2 implies that ri(m
′) > ri(mi,j). Bym′ < mi,j , this contradicts

the fact that ri is increasing. Hence, Condition 1 implies that for each pair m,m′ ∈ Z+

with m > m′ > 1, ≻m=≻m′
.

Next, suppose that for some i, j ∈ N, i ≻2 j and j ≻1 i. By Condition 2 of

Theorem 2, there is no k ∈ N such that i ≻2 k ≻1 j. That is, ≻2 is an acyclic ordering

of ≻1. Therefore, we obtain the following corollary.

Corollary 1 Let E = EWO. Let f be a sequential dictatorship with lowest tie-breaking

on E, and (ri)i∈N and (≻m)m∈Z+ be the corresponding reservation prices and priority

orderings, respectively. Assume that for each i ∈ N, ri is increasing. Then, the follow-

ing conditions are equivalent.

• f satisfies consistency and independence of unallocated objects.
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• (≻m)m∈Z+ satisfies the following two conditions.

1. For each k, k′ ∈ Z+ with k ≥ 2 and k′ ≥ 2, ≻k=≻k′.

2. ≻1 is an acyclic ordering of ≻k, where k ≥ 2.

4.1.2 Single-peaked domain

When preferences are single-peaked, the condition of Corollary 1 is a necessary and

sufficient condition for a sequential dictatorship with lowest tie-breaking to satisfy

consistency and independence of unallocated objects.

Theorem 3 Let E = ESP . Let f be a sequential dictatorship with lowest tie-breaking

on E, and (ri)i∈N and (≻m)m∈Z+ be the corresponding reservation prices and priority

orderings, respectively. Then, the following conditions are equivalent.

• f satisfies consistency and independence of unallocated objects.

• (≻m)m∈Z+ satisfies the following two conditions.

1. For each k, k′ ∈ Z+ with k ≥ 2 and k′ ≥ 2, ≻k=≻k′.

2. ≻1 is an acyclic ordering of ≻k, where k ≥ 2.

4.2 Independence of axioms

The conclusion of Theorem 1 does not hold if we drop any of the properties, as shown by

the following examples. Throughout this section, we assume that for each m,m′ ∈ Z+,

≻m=≻m′
=≻, and for each i ∈ N, ri : Z+ → R+ is increasing. Also, for each i ∈ N, let

r0i be such that for each m ∈ Z+, r
0
i (m) = 0.

Example 2 (Consistency) Let f be such that for each e := (N,m,R) ∈ E, and each

i ∈ N ,

• if i = top(≻, N),

xi(e) = minB(Ri,m, ri) and ti(e) = ri(xi(e)),

• otherwise, fi(e) = (0, 0).

This rule satisfies all axioms in Theorem 1 but consistency.

Example 3 (Strategy-proofness) Let f be such that for each e := (N,m,R) ∈ E and

each i ∈ N ,

xi(e) = minB(Ri,m−
∑

j≻i xj(e), r
0
i ) and ti(e) = vi(xi(e)).

This rule satisfies all axioms in Theorem 1 but strategy-proofness.
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Example 4 (Individual rationality) Let f be such that for each e := (N,m,R) ∈ E,
and each i ∈ N ,

• if i = top(≻, N), fi(e) = (m,P ), where P ∈ R be such that P > 0,

• otherwise, fi(e) = (0, 0).

This rule satisfies all axioms in Theorem 1 but individual rationality.

Example 5 (No subsidy) Let f be such that for each e := (N,m,R) ∈ E, and each

i ∈ N ,

• if i = top(≻, N), fi(e) = (m,P ), where P ∈ R be such that P < 0,

• otherwise, fi(e) = (0, 0).

This rule satisfies all axioms in Theorem 1 but no subsidy.

Example 6 (Independence of unallocated objects) Let f be such that for each e :=

(N,m,R) ∈ E, and each i ∈ N ,

• if {j ∈ N : (m, rj(m))Pj (0, 0))} = ∅, fi(e) = (0, 0) and

• if {j ∈ N : (m, rj(m))Pj (0, 0))} ̸= ∅,

fi(e) =

(m, ri(m)) if i = top(≻, {j ∈ N : (m, rj(m))Pj (0, 0))}),

(0, 0) otherwise.

This rule satisfies all axioms in Theorem 1 but independence of unallocated objects.

Example 7 (Non-wasteful tie-breaking) Let f be such that for each e := (N,m,R) ∈
E, and each i ∈ N ,

xi(e) = maxB(Ri,m−
∑

j≻i xj(e), ri) and ti(e) = ri(xi(e)).

This rule satisfies all axioms in Theorem 1 but non-wasteful tie-breaking.

Example 8 (Minimal tradability) The no-trade rule satisfies all axioms in Theorem 1

but not minimal tradability.7

A Proofs

We introduce a notation for sequential dictatorship rules, which will be used in . We will

use this notation in the proofs of Theorems 2 and 3. Let f be a sequential dictatorship

and denote the corresponding priority orderings (≻m)m∈Z+ . For each e := (N,m,R) ∈
E , let i1(e) = top(≻m, N), and for each k ∈ [2, |N |]Z,

ik(e) = top(≻m−
∑

k′<k xik′ (e)
(e)

, N \ {i1(e), . . . , ik−1(e)}).
7The no trade rule is a rule such that for each economy, each agent is assigned (0, 0).
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A.1 Proof of Theorem 1

The proof consists of six steps.

Step 1 For each i ∈ N, there is a reservation price ri : Z+ → R+ such that for each

e := (N,m,R) ∈ E with i ∈ N , ti(e) = ri(xi(e)).

Proof : Let i ∈ N. We first show the following claim.

Claim 1 Let m ∈ Z+. There is ri(m) ∈ R+ such that for each Ri ∈ R with xi({i},m,Ri) =

m, ti({i},m,Ri) = ri(m).

Proof : By minimal tradability, there is Ri ∈ R such that xi({i},m,Ri) = m. Let

ri(m) := ti({i},m,Ri). By no subsidy, ri(m) ≥ 0.

Suppose that there is R′
i ∈ R such that xi({i},m,R′

i) = m and ti({i},m,R′
i) ̸=

ri(m). Without loss of generality, assume ti({i},m,R′
i) > ri(m). Then,

fi({i},m,Ri) = (m, ri(m))P ′
i (m, ti({i},m,R′

i)) = fi({i},m,R′
i),

which contradicts strategy-proofness. Hence, ti({i},m,R′
i) = ri(m). □

Let e := (N,m,R) ∈ E be such that i ∈ N . By consistency and independence of

unallocated objects,

fi(e) = fi({i},m−
∑

j∈N\{i}

xj(e), Ri) = fi({i}, xi(e), Ri).

Hence, by Claim 1, ti(e) = ti({i}, xi(e), Ri) = ri(xi(e)). ■

To simplify the notation, for each i ∈ N, each m ∈ Z+, and each Ri ∈ R, we write

Bi(Ri,m) instead of B(Ri,m, ri) throughout the proof of Theorem 1.

Step 2 Let e = (N,m,R) ∈ E and i ∈ N . Then, xi(e) ∈ Bi(Ri,m−
∑

j∈N\{i} xj(e)).

Proof : Denote m′ := m −
∑

j∈N\{i} xj(e). By consistency, xi(e) = xi({i},m′, Ri).

Thus, to complete the proof, it is sufficient to show to show xi({i},m′, Ri) ∈ Bi(Ri,m
′).

Letm∗ := maxBi(Ri,m
′). Ifm∗ = 0, then individual rationality implies xi({i},m′, Ri) ∈

Bi(Ri,m
′). Thus, assume m∗ > 0.

Claim 2 There is R′
i ∈ R such that xi({i},m′, R′

i) = m∗.

Proof : If m∗ = m′, minimal tradability guarantees the existence of such a preference

relation. Thus, assume m∗ < m′. The proof depends on the domain we consider.

Case 1. E = EWO. Since Ri is weakly object monotonic, for each x ∈ [m∗ + 1,m′]Z,
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Figure 3: An illustration of R′
i when m′ = 5, m∗ = 3, and R = RWO.

ri(m
∗) < ri(x). Let δ ∈ R++ be such that δ < minx∈[m∗+1,m′]Z ri(x) − ri(m

∗). Let

R′
i ∈ R be such that for each x ∈ Z+,

v′i(x) =

0 if x < m∗,

ri(m
∗) + δ otherwise.

Figure 3 is an illustration of R′
i for the case where m′ = 5 and m∗ = 3. By

individual rationality and non-wasteful tie-breaking, xi({i},m′, R′
i) ≥ m∗. Further,

for each x ∈ [m∗ + 1,m′]Z, vi(x) − ri(x) = ri(m
∗) + δ − ri(x) < 0, which implies

(0, 0) P ′
i (x, ri(x)). Thus, xi({i},m′, R′

i) ≤ m∗. Hence, xi({i},m′, R′
i) = m∗.

Case 2. E = ESP . Let δ ∈ R+ and R′ ∈ R be such that for each x ∈ Z+,

v′i(x) =

ri(m
∗) + δ if x = m∗,

0 otherwise.

Figure 4 is an illustration of R′
i for the case where m′ = 5 and m∗ = 3. Since

ri(x) ≥ 0 for each x ∈ Z+, individual rationality and non-wasteful tie-breaking imply

that xi({i},m′, R′
i) = m∗. □

By Claim 2, there is R′
i ∈ R such that fi({i},m′, R′

i) = (m∗, ri(m
∗)). By strategy-

proofness, fi({i},m′, Ri) Ri fi({i},m′, R′
i) = (m∗, ri(m

∗)). Hence, by m∗ ∈ Bi(Ri,m
′),

xi({i},m′, Ri) ∈ Bi(Ri,m
′). ■
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Figure 4: An illustration of R′
i when m′ = 5, m∗ = 3, and R = RSP .

Given i ∈ N and m ∈ Z+, we introduce the following notations.

Ri(m) := {Ri ∈ R : for each x ∈ [1,m− 1]Z, (m, ri(m)) Pi (0, 0) Ri (x, ri(x))}, and

R+
i (m) := {Ri ∈ R : (m, ri(m)) Pi (m− 1, ri(m)) Pi · · · Pi (1, ri(1)) Pi (0, 0)}.

Step 3 Let i ∈ N and m ∈ Z+. Then, Ri(m) ̸= ∅ and R+
i (m) ̸= ∅.

Proof : Let δ ∈ R++ and Ri ∈ R be such that for each x ∈ [m],

vi(x) =

0 if x < m,

ri(m) + δ if x = m.

Note that in both RWO and RSP , there is a preference relation that satisfies the above

condition. Clearly, Ri ∈ Ri(m), and thus, Ri(m) ̸= ∅.
Next, we show R+

i (m) ̸= ∅. Let δ ∈ R++. We define Ri ∈ R as follows: Let

vi(1) = ri(1) + δ, and for each x ∈ [1,m]Z, inductively define

vi(x) = vi(x− 1) + max{ri(x)− ri(x− 1), 0}+ δ.

Figure 5 is an illustration of Ri. Note that in both RWO and RSP , there is a

preference relation that satisfies the above condition.

We show Ri ∈ R+
i (m). To show this claim, it is sufficient to show that for each
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Figure 5: An illustration of Ri in Step 3.

x ∈ [1,m]Z, (x, ri(x)) Pi (x− 1, ri(x− 1)). Let x ∈ [1,m]Z. Then,

vi(x)− ri(x) = vi(x− 1) + max{ri(x)− ri(x− 1), 0}+ δ − ri(x)

> vi(x− 1) + ri(x)− ri(x− 1)− ri(x)

= vi(x− 1)− ri(x− 1),

which implies (x, ri(x)) Pi (x−1, ri(x−1)). Thus, Ri ∈ R+
i (m), and hence, R+

i (m) ̸= ∅.
■

Remark 2 By individual rationality and non-wasteful tie-breaking, for each e :=

(N,m,R) and each i ∈ N , if Ri ∈ Ri(m), then xi(e) ∈ {0,m}.

Step 4 Construction of priority orderings.

To construct priority orderings, we show the following claims.

Claim 3 Let e := (N,m,R) ∈ E be such that R ∈
∏

i∈N Ri(m). There is i ∈ N such

that xi(e) = m.

Proof : Suppose by contradiction that for each i ∈ N , xi(e) ̸= m. By R ∈
∏

i∈N Ri(m)

and Remark 2, for each i ∈ N , xi(N,m,R) = 0. Take any i ∈ N . By Ri ∈ Ri(m),

Bi(Ri,m) = {m}. Thus, by Step 2, xi({i},m,Ri) = m. Therefore, xi({i},m,Ri) ̸=
xi(N,m,R), contradicting consistency. □

Claim 4 Let i, j ∈ N be such that i ̸= j, and m ∈ Z+. There is k ∈ {i, j} such that

for each R ∈ Ri(m)×Rj(m), xk({i, j},m,R) = m.
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Proof : Take any R ∈ Ri(m) × Rj(m). By Claim 3, either xi({i, j},m,R) = m or

xj({i, j},m,R) = m. Without loss of generality, assume xi({i, j},m,R) = m.

Let R′ ∈ Ri(m)×Rj(m). We show xi({i, j},m,R′) = m. By xi({i, j},m,R) = m,

R′
i ∈ Ri(m), and strategy-proofness, xi({i, j},m, (R′

i, Rj)) = m. Thus, xj({i, j},m, (R′
i, Rj)) =

0.

By strategy-proofness, (0, 0) = fj({i, j},m, (R′
i, Rj)) Rj fj({i, j},m,R′). Thus, by

R′
j ∈ Rj(m) and Remark 2, xj({i, j},m,R′) = 0. Hence, by Claim 3, xi({i, j},m,R′) =

m. □

Given m ∈ Z+, let ≻m be a binary relation over N such that for each distinct pair

i, j ∈ N,
i ≻m j ⇔ [∀R ∈ Ri(m)×Rj(m), xi({i, j},m,R) = m].

By Claim 4, this binary relation is complete and antisymmetric.

Finally, we show that for each m ∈ Z+, ≻m is transitive. Let m ∈ Z+ and i, j, k ∈ N
be such that i ≻m j and j ≻m k. Let R ∈

∏
ℓ∈{i,j,k}Rℓ(m). By Claim 3, there is an

agent who receives m objects at f({i, j, k},m,R).

If xj({i, j, k},m,R) = m, then by consistency, xj({i, j},m,R−k) = m, contradict-

ing i ≻m j. If xk({i, j, k},m,R) = m, then by consistency, xk({j, k},m,R−i) = m, con-

tradicting j ≻m k. Thus, xi({i, j, k},m,R) = m. By consistency, xi({i, k},m,R−j) =

xi({i, j, k},m,R) = m. Thus, by the definition of ≻m, i ≻m k. Hence, ≻m is transitive.

Step 5 Let (N,m) ∈ N × Z+ and i ∈ N be such that i = top(≻m, N). Let R ∈∏
j∈N R+

j (m). Then xi(N,m,R) = m.

Proof : We begin with a claim which states that there is exactly one agent who receives

the object.

Claim 5 |{j ∈ N : xj(N,m,R) ̸= 0}| = 1.

Proof : First suppose {j ∈ N : xj(N,m,R) ̸= 0} = ∅. Then, xj(N,m,R) = 0 for

each j ∈ N and thus Bi(Ri,m−
∑

j∈N\{i} xj(N,m,R)) = Bi(Ri,m). This and Step 2

imply xi(N,m,R) ∈ Bi(Ri,m). By Ri ∈ R+
i (m), Bi(Ri,m) = {m}. This contradicts

xi(N,m,R) = 0.

Now, suppose |{j ∈ N : xj(N,m,R) ̸= 0}| > 1. Let j, k ∈ {ℓ ∈ N : xℓ(N,m,R) ̸=
0} and denote m′ := xj(N,m,R) + xk(N,m,R). Without loss of generality, assume

j ≻m′
k. By consistency and independence of unallocated objects,

xj(N,m,R) = xj({j, k},m−
∑

ℓ∈N\{j,k}

xℓ(N,m,R), (Rj , Rk)) = xj({j, k},m′, (Rj , Rk)).
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Thus, by xj(N,m,R) < m′, xj({j, k},m′, (Rj , Rk)) < m′. By Rj ∈ R+
j (m),

(m′, rj(m
′)) Pj fj({j, k},m′, (Rj , Rk)).

LetR′ ∈ Rj(m
′)×Rk(m

′). By Remark 2, fj({j, k},m′, (R′
j , Rk)) ∈ {(0, 0), (m′, rj(m

′))}.
Thus, by (m′, rj(m

′)) Pj fj({j, k},m′, (Rj , Rk)) and strategy-proofness, xj({j, k},m′, (R′
j , Rk)) =

0. By Step 2 and Rk ∈ R+
k (m

′), xk({j, k},m′, (R′
j , Rk)) ∈ Bk(Rk,m

′) = {m′}. There-

fore, by strategy-proofness and R′
k ∈ Rk(m

′), fk({j, k},m′, R′) = (m′, rk(m
′)). How-

ever, this contradicts j ≻m′
k. □

Let j ∈ {k ∈ N : xk(N,m,R) ̸= 0}. We show that j = i. Suppose by contradiction

that j ̸= i. By Step 2 and Rj ∈ R+
j (m), xj(N,m,R) ∈ Bj(Rj ,m) = {m}, and

so xj(N,m,R) = m. Thus, by consistency, xj({i, j},m,R{i,j}) = m. However, this

contradicts i ≻m j. ■

Step 6 Let (N,m) ∈ N × Z+ and i ∈ N be such that i = top(≻m, N). Let R ∈ R|N |.

Then, xi(N,m,R) ∈ Bi(Ri,m).

Proof : Let R′ ∈
∏

j∈N R+
j (m). By Step 5 and i = top(≻m, N), xi(N,m,R′) = m.

Claim 6 xi(N,m, (R′
i, R−i)) = m.

Proof : We show that for each N ′ ⊆ N \ {i}, if xi(N,m, (RN ′\{j}, R
′
−N ′\{j})) = m for

each j ∈ N ′, then xi(N,m, (RN ′ , R′
−N ′)) = m. Note that by xi(N,m,R′) = m, this

completes the proof.

Let N ′ ⊆ N \{i}. Assume that for each j ∈ N ′, xi(N,m, (RN ′\{j}, R
′
−N ′\{j})) = m.

For each j ∈ N ′, by strategy-proofness,

(0, 0) = fj(N,m, (RN ′\{j}, R
′
−N ′\{j}))R

′
j fj(N,m, (RN ′ , R′

−N ′)).

Thus, by individual rationality and non-wasteful tie-breaking, for each j ∈ N ′,

xj(N,m, (RN ′ , R′
−N ′)) = 0.

By consistency, xi(N,m, (RN ′ , R′
−N ′)) = xi(N\N ′,m,R′

−N ′). ByR′
−N ′ ∈

∏
j∈N\N ′ R+

j (m),

i = top(≻m, N\N ′), and Step 5, xi(N\N ′,m,R′
−N ′) = m. Hence, xi(N,m, (RN ′ , R′

−N ′)) =

m. □

Let m∗ := maxBi(Ri,m). Suppose m∗ = m. By strategy-proofness and Claim 6,

fi(N,m,R)Ri fi(N,m, (R′
i, R−i)) = (m, ri(m)). Hence xi(N,m,R) ∈ Bi(Ri,m). Next,

suppose m∗ = 0. Then, individual rationality implies xi(N,m,R) ∈ Bi(Ri,m).
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Figure 6: An illustration of R′
i in Step 6 when m = 5, m∗ = 3, and R = RWO.

Finally, suppose 0 < m∗ < m. There are two cases.

Case 1. R = RWO. By m∗ = maxBi(Ri,m), for each x ∈ [m∗+1,m]Z, ri(m
∗) < ri(x).

Take δ ∈ R++ such that 2δ < minx∈[m∗+1,m]Z ri(x)− ri(m
∗). Let R′′

i ∈ R be such that

for each x ∈ Z+,

v′′i (x) =


0 if x < m∗

ri(m
∗) + 2δ if m∗ ≤ x < m,

ri(m) + δ otherwise.

Figure 6 is an illustration of Ri for the case where m = 5 and m∗ = 3. It is

clear that R′′
i is weakly object monotonic. Note that by 2δ < minx∈[m∗+1,m]Z ri(x) −

ri(m
∗), {x ∈ [m] : (x, ri(x)) P

′′
i (0, 0)} = {m∗,m}. By Claim 6 and strategy-proofness,

fi(N,m, (R′′
i , R−i)) R′′

i fi(N,m, (R′
i, R−i)) = (m, ri(m)). Thus, xi(N,m, (R′′

i , R−i)) ∈
{m∗,m}.

Suppose xi(N,m, (R′′
i , R−i)) = m. Then for each j ∈ N \{i}, xj(N,m, (R′′

i , R−i)) =

0. Thus, by Step 2, m = xi(N,m, (R′′
i , R−i)) ∈ Bi(R

′′
i ,m), However, v′′i (m

∗)−ri(m
∗) =

2δ > δ+ ri(m)− ri(m) = v′′i (m)− ri(m). This implies m /∈ Bi(R
′′
i ,m), a contradiction.

Thus, xi(N,m, (R′′
i , R−i)) = m∗.

By strategy-proofness, fi(N,m,R)Ri fi(N,m, (R′′
i , R−i)) = (m∗, ri(m

∗)). Hence,

by m∗ ∈ Bi(Ri,m), xi(N,m,R) ∈ Bi(Ri,m).

Case 2. R = RSP . Let v∗ := maxx∈[m∗,m]Z ri(x) and δ ∈ R++. Let R′′
i ∈ R be such
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Figure 7: An illustration of R′
i in Step 6 when m = 5, m∗ = 3, and R = RSP .

that for each x ∈ Z+,

v′′i (x) =


0 if x < m∗,

v∗ + ri(m
∗) + 2δ if x = m∗,

v∗ + δ if x > m∗.

Figure 7 is an illustration of Ri for the case where m = 5 and m∗ = 3. Note that Ri is

single-peaked. Note also that {x ∈ [m] : (x, ri(x)) P
′′
i (0, 0)} = [m∗,m]Z. By Claim 6

and strategy-proofness, fi(N,m, (R′′
i , R−i)) R

′′
i fi(N,m, (R′

i, R−i)) = (m, ri(m)). Thus,

xi(N,m, (R′′
i , R−i)) ∈ [m∗,m]Z.

Suppose that there is x ∈ [m∗+1,m]Z such that xi(N,m, (R′′
i , R−i)) = x. By consis-

tency and independence of unallocated objects, xi({i}, x, R′′
i ) = xi(N,m, (R′′

i , R−i)) =

x. By Step 2, x = xi({i}, x, R′′
i ) ∈ Bi(R

′′
i , x). However, by the definition of R′′

i ,

vi(m
∗)−ri(m

∗) = v∗+2δ > vi(x)−ri(x), a contradiction. Hence, xi(N,m, (R′′
i , R−i)) =

m∗.

By strategy-proofness, fi(N,m,R)Ri fi(N,m, (R′′
i , R−i)) = (m∗, ri(m

∗)). Hence,

by m∗ ∈ Bi(Ri,m), xi(N,m,R) ∈ Bi(Ri,m). ■

Step 7 Completing the proof.

Let e := (N,m,R) ∈ E . Let i1 := top(≻m, N). By Step 6, xi1(e) ∈ Bi1(Ri1 ,m).

Next, let i2 := top(≻m−xi1
(e), N \ {i1}). By consistency, xi2(e) = xi2(N \ {i1},m −

xi1(e), R−i1). By Step 6, xi2(N \ {i1},m− xi1(e), R−i1) ∈ Bi2(Ri2 ,m− xi1(e)). Thus,

xi2(e) ∈ Bi2(Ri2 ,m − xi1(e)). By continuing this procedure, we obtain the desired

result. ■
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Figure 8: An illustration of Ri and Rj in the proof of Condition 1 when m = 5, m′ = 3, and

ri = rj.

A.2 Proof of Theorem 2

Our proof consists of two parts. In Part I, we show that if f satisfies consistency and

independence of unallocated objects, then it satisfies Conditions 1, 2, and 3. In Part

II, we show the other direction.

Part I. Suppose f satisfies consistency and independence of unallocated objects. Take

any pair of agents i, j ∈ N. Let m ∈ Z+.

Condition 1: Suppose by contradiction that there exist m ∈ Mmin
i,j and m′ ∈ [2,m−1]Z

such that ri(m) ≥ ri(m
′). Without loss of generality, we can assume that for each

m′′ ∈ [m′ + 1,m− 1]Z, ri(m
′′) ≥ ri(m).

Let Ri ∈ R be such that for each x ∈ Z+,

vi(x)


= 0 if x < m′,

> ri(m
′) if x = m′,

= vi(m
′) otherwise.

Let Rj ∈ R be such that for each x ∈ Z+,

vj(x)

= 0 if x < m− 1,

> rj(m− 1) otherwise.

Denote R := (Ri, Rj) and e := ({i, j},m,R). Figure 9 illustrates Ri and Rj for the

case where m = 5, m′ = 3, and ri = rj .
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Figure 9: An illustration of Ri and Rk in the proof of Condition 2 when m = 5 and ri = rk.

For each x ∈ [m′−1], ri(x) ≥ 0, and thus, (m′, ri(m
′)) Pi (x, 0) Ri (x, ri(x)). Thus,

by ri(m
′) ≤ minx∈[m′+1,m]Z ri(x), m

′ = minB(Ri,m, ri). Therefore, by i ≻m j and the

definition of f , xi(e) = minB(Ri,m, ri) = m′. By m′ > 1, m−m′ < m′ − 1. Thus, by

the definition of f and the definition of Rj , xj(e) = minB(Rj ,m−m′, rj) = 0.

Let e′ := ({i, j},m−1, R). By m′ < m and xi(e)+xj(e) = m′, xi(e)+xj(e) ≤ m−1.

Thus, by independence of unallocated objects, xj(e
′) = xj(e) = 0.

However, by m ∈ Mmin
i,j , j ≻m−1 i. Thus, xj(e

′) = minB(Rj ,m − 1, rj). By the

definition of Rj , minB(Rj ,m− 1, rj) = m− 1 ̸= 0, a contradiction.

Condition 2: Suppose by contradiction that ri(1) ≤ minx∈[mi,j ,m]Z ri(x) and there is

k ∈ N such that i ≻m k and k ≻m−1 j.8 Since f satisfies Condition 1, we can assume

that for each x ∈ [2,mi,j − 1]Z, ri(x) > ri(mi,j) ≥ ri(1).

Let Ri ∈ R be such that for each x ∈ Z+,

vi(x)

> ri(1) if x = 1,

= vi(1) otherwise.

Let Rj ∈ R be such that vj(1) > rj(1). Let Rk ∈ R be such that for each x ∈ Z+,

vk(x)


= 0 if x < m− 1,

> rk(m− 1) if x = m− 1,

= vk(m− 1) otherwise.

8By m ∈ Mi,j and j ≻1 i, m ≥ mi,j > 1.
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Let R := (Ri, Rj , Rk) and e := ({i, j, k},m,R). By the definition of f ,

xi(e) = 1, xk(e) = m− 1, and xj(e) = 0.

Let e′ := ({i, j}, 1, (Ri, Rj)). By j ≻1 i and vj(1) > rj(1), xj(e
′) = 1. However, by

m− xk(e) = 1 and xj(e) = 0, this contradicts consistency.

Condition 3: Suppose by contradiction that ri(1) ≤ minx∈[mi,j ,m]Z ri(x) and there is a

feasible path ({ik}Kk=1, {xk}Kk=1) at m such that

• (i1, x1) = (i, 1),

• iK = j,

• for some L ⊆ {i2, . . . , iK−1}, j = top(≻m−
∑

ik∈L xk , {i0, i1, . . . , iK} \ L).

Since f satisfies Condition 1, we can assume that for each x ∈ [2,mi,j − 1]Z, ri(x) >

ri(mi,j) ≥ ri(1).

Let Ri ∈ R be such that for each x ∈ Z+,

vi(x)

> ri(1) if x = 1,

= vi(1) otherwise.

For each k ∈ [2,K − 1]Z, let Rik ∈ R be such that for each x ∈ Z+,

vik(x)


= 0 if x < xk,

> rik(xk) if x = xk,

= vik(xk) otherwise.

Let Rj ∈ R be such that vj(1) = rj(1) + δ and for each x ∈ Z+ with x > 1,

vj(x) = vj(x− 1) + max{rj(x)− rj(x− 1), 0}+ δ.

Note that for each x ∈ Z+, B(Rj , x, rj) = {x}.
Let N := {i1, . . . , iK}, R := (Ri1 , . . . , RiK ), and e := (N,m,R). By the definitions

of f and feasible path, xi(e) = 1, for each k ∈ [2,K − 1]Z, xik(e) = xk, and xj(e) =

m− 1−
∑

k∈[2,K−1]Z
xk.

Let e′ := (N \ L,m−
∑

ik∈L xk, RN\L). By j = top(N \ L,m−
∑

ik∈L xk) and the

definition of Rj ,

xj(e
′) = minB(Rj ,m−

∑
ik∈L

xk, rj) = m−
∑
ik∈L

xk > m− 1−
∑

k∈[2,K−1]Z

xk = xj(e).

This contradicts consistency.

Part II. Suppose f satisfies Conditions 1, 2, and 3. We show that f satisfies consistency

and independence of unallocated objects.
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Claim 7 Let e := (N,m,R) ∈ E, N ′ ⊆ N , and m′ ∈ [m] be such that
∑

i∈N ′ xi(e) ≤
m′. Denote e′ = (N ′,m′, RN ′). Let i ∈ N ′. Denote j := i1(e

′). If mi(e) > mj(e) and

mi(e) ≥ m′, then xi(e) ≤ 1.

Proof : Suppose by contradiction that mi(e) > mj(e), mi(e) ≥ m′, and xi(e) > 1. Let

m∗ = mi(e). By m∗ > mj(e), i ≻m∗
j. By j = i1(e

′), j ≻m′
i. Thus, by m∗ ≥ m′,

m′ < m∗
i,j . By

∑
k∈N ′ xk(e) ≤ m′, xi(e) ≤ m′. Therefore,

1 < xi(e) < m∗
i,j .

By Condition 1, ri(xi(e)) > ri(m
∗
i,j). This implies that (m∗

i,j , ri(m
∗
i,j)) Pi (xi(e), ri(xi(e)).

Thus, by m∗ ≥ m∗
i,j , xi(e) /∈ B(Ri,m

∗, ri), a contradiction. □

Consistency. Suppose by contradiction that there are e := (N,m,R) ∈ E and N ′ ⊆ N

such that fN ′(e) ̸= f(N ′,m−
∑

i∈N\N ′ xi(e), RN ′). Let m′ := m−
∑

i∈N\N ′ xi(e) and

e′ := (N ′,m −
∑

i∈N\N ′ xi(e), RN ′). We assume m′ < m without loss of generality.

For each k ∈ [1, |N |]Z, denote ik := ik(e). Similarly, for each k ∈ [1, |N ′|]Z, denote
jk := ik(e

′).

Step 1 There are e∗ := (N∗,m∗, R∗) and N∗∗ ⊆ N∗ such that

(a) i1(e
∗) ̸= i1(e

∗∗),

(b) xi1(e∗∗)(e
∗) ̸= xi1(e∗∗)(e

∗∗),

(c) i1(e
∗) ∈ N∗∗ and xi1(e∗)(e

∗) ̸= 0,

where e∗∗ = (N∗∗,m∗ −
∑

i∈N∗\N∗∗ xi(e
∗), R∗

N∗∗).

Proof : By fN ′(e) ̸= f(e′), there is K ′ ∈ [1, |N ′|]Z such that fjK′ (e) ̸= fjK′ (e
′) and for

each k ∈ [1,K ′ − 1]Z, fjk(e) = fjk(e
′). Let

N̂ ′ := {j1, . . . , jK′−1}.

Let K ∈ [1, |N |]Z be such that iK ∈ N ′\N̂ ′, xiK (e) ̸= 0, and for each k ∈ [1,K−1]Z,

ik /∈ N ′ \ N̂ ′ or xik(e) = 0. Let

N̂ := {i1, . . . , iK−1}.

Let e∗ := (N∗,m∗, R∗) ∈ E be such that

N∗ = N \ N̂ , m∗ = m−
∑
i∈N̂

xi(e), and R∗ := RN∗ .

Let N∗∗ := N ′ \ (N̂ ∪ N̂ ′) and e∗∗ := (N∗∗,m∗ −
∑

i∈N∗\N∗∗ xi(e
∗), R∗

N∗∗). It is clear

that N∗∗ ⊆ N∗. Note that m∗ = m−
∑

i∈N̂ xi(e) = m−
∑

k∈[1,K−1] xik(e) = miK (e).
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Claim 8 m∗ −
∑

i∈N∗\N∗∗ xi(e
∗) = mjK′ (e

′)

Proof : By N∗∗ ⊆ N∗ and the definitions of N∗ and N∗∗,∑
i∈N∗\N∗∗

xi(e
∗) =

∑
i∈N∗

xi(e)−
∑

i∈N∗∗

xi(e)

=
∑

i∈N\N̂

xi(e)−
∑

i∈N ′\(N̂∪N̂ ′)

xi(e)

=
∑
i∈N

xi(e)−
∑
i∈N̂

xi(e)− (
∑
i∈N ′

xi(e)−
∑
i∈N̂ ′

xi(e)−
∑

i∈(N ′\N̂ ′)∩N̂

xi(e))

=
∑

i∈N\N ′

xi(e)−
∑
i∈N̂

xi(e) +
∑
i∈N̂ ′

xi(e) +
∑

i∈(N ′\N̂ ′)∩N̂

xi(e)

=
∑

i∈N\N ′

xi(e)−
∑
i∈N̂

xi(e) +
∑
i∈N̂ ′

xi(e),

where the last equality follows since for each i ∈ (N ′ \ N̂ ′) ∩ N̂ , xi(e) = 0. Therefore,

by m′ = m−
∑

i∈N\N ′ xi(e) and m∗ = m−
∑

i∈N̂ xi(e),

m∗ −
∑

i∈N∗\N∗∗

xi(e
∗) = m−

∑
i∈N̂

xi(e)− (
∑

i∈N\N ′

xi(e)−
∑
i∈N̂

xi(e) +
∑
i∈N̂ ′

xi(e))

= m′ −
∑
i∈N̂ ′

xi(e)

= m′ −
∑
i∈N̂ ′

xi(e
′)

= mjK′ (e
′),

where the third equality follows since for each i ∈ N̂ ′, xi(e) = xi(e
′). □

Claim 9 Let K ′′ ∈ [1, |N |]Z be such that iK′′ = jK′. Then, K ′′ > K

Proof : Suppose by contradiction that K ′′ ≤ K. Then,

miK′′ (e) = m−
∑

k∈[1,K′′−1]Z

xik(e) ≥ m−
∑

k∈[1,K−1]Z

xik(e) = miK (e) = m∗.

Thus, by Claim 8,

mjK′ (e) = miK′′ (e) ≥ m∗ −
∑

i∈N∗\N∗∗

xi(e
∗) = mjK′ (e

′).

Note that xjK′ (e) ≤ mik′′ (e
′). Therefore, by mjK′ (e) ≥ mjK′ (e

′) and xjK′ (e) =

minB(RjK′ ,mjK′ (e), rjK′ ), xjK′ (e) = minB(RjK′ ,mjK′ (e
′), rjK′ ). By the definition of

f , this implies xjK′ (e) = xjK′ (e
′). However, this contradicts the definition of jK′ . □
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It is clear from the definition of iK that iK ∈ N∗. By N∗ = N \ N̂ = {ik : k ∈
[K, |N |]Z} and the definition of iK , for each i ∈ N∗, iK ≻miK

(e) i. Thus,

i1(e
∗) = iK .

By the definition of jK′ , jK′ ∈ N ′ \ N̂ ′. By Claim 9, jK′ /∈ N̂ . Thus, jK′ ∈ N∗∗.

By N∗∗ = N ′ \ (N̂ ∪ N̂ ′) ⊆ {jk : k ∈ [K ′, |N ′|]Z} and the definition of jK′ , for each

i ∈ N∗∗, jK′ ≻mjK′ (e
′) i. Thus, by Claim 8,

i1(e
∗∗) = jK′ .

Now we show that Conditions (a), (b), and (c) are satisfied. First, by Claim 9,

i1(e
∗) = iK ̸= iK′′ = jK′ = i1(e

∗∗).

Note that by N∗ = {ik; k ∈ [K, |N |]Z} and m∗ = miK (e), for each i ∈ N∗, xi(e
∗) =

xi(e). Note also that by mi1(e∗∗)(e
∗∗) = mjK′ (e

′), fi1(e∗∗)(e
∗∗) = fjK′ (e

′). Thus, by the

definition of jK′ ,

xi1(e∗∗)(e
∗∗) = xjK′ (e

′) ≠ xjK′ (e) = xjK′ (e
∗) = xi1(e∗∗)(e

∗).

Finally, by the definition of iK , xi1(e∗)(e
∗) = xiK (e

∗) = xiK (e) ̸= 0. Further, by the

definition of iK , iK ∈ N ′ \ N̂ ′ and iK /∈ N̂ . Hence, i1(e
∗) = iK ∈ N∗∗. □

By Step 1, without loss of generality, we can assume that

• i1 ̸= j1.

• xj1(e) ̸= xj1(e
′),

• i1 ∈ N ′ and xi1(e) ̸= 0,

We also assume without loss of generality that for each i ∈ N , xi(e) ̸= 0. Denote i = i1

and j = j1. Note that by m > m′ and Claim 7, xi(e) = 1.

Step 2 m′ > mj(e).

Proof : Suppose by contradiction that mj(e) ≥ m′. By the definition of f , xj(e) =

minB(Rj ,mj(e), rj). Then, by xj(e) ≤ m′ ≤ mj(e), this implies xj(e) = minB(Rj ,m
′, rj).

Thus, by the definition of f , xj(e
′) = xj(e), contradicting the definition of j. □

Step 3 j ̸= i2(e).

Proof : Suppose by contradiction that j = i2(e). By i = i1(e) and xi(e) = 1, mj(e) =

m− 1. However, by Step 2, m′ > mj(e). This implies m′ ≥ m, a contradiction. □
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Step 4 i ≻1 j.

Proof : By i = i1, i ≻m j. By j = j1 and i ∈ N ′, j ≻m′
i. Thus, bym > m′, mi,j > m′.

Note that if there is x ∈ [mi,j ,m]Z such that ri(x) < ri(1), then (x, ri(x)) Pi (1, ri(1)),

contradicting the fact that 1 = xi(e) ∈ B(Ri,m, ri). Therefore,

ri(1) ≤ min
x∈[mi,j ,m]Z

ri(x).

By Step 3 and i = i1, i2 /∈ {i, j}. By i = i1, i ≻m i2. Further, by xi(e) = 1,

mi2(e) = m− 1. Thus, i2 ≻m−1 j. Hence, by Condition 2, i ≻1 j. □

Let K ∈ [1, |N |]Z be such that j = iK . By Step 3, K > 2. Let

N∗ := {i1, . . . , iK}.

We assume, without loss of generality, that for each k ∈ [2,K − 1]Z, xik(e) ̸= 0.9 By

Step 2, there is K ′ ∈ [1,K − 1]Z such that miK′ (e) ≥ m′ and miK′+1
(e) < m′. Let

N∗∗ := {i1, · · · iK′}.

Step 5 The pair ({ik}Kk=1, {xik(e)}Kk=1)) is a feasible path at m.

Proof : Let k ∈ [1,K − 1]Z. Note that m −
∑

k′∈[1,k−1]Z
xik′ (e) = mk(e). Thus, for

each k′ ∈ [k + 1,K], ik ≻m−
∑

k′′∈[1,k−1]Z
xik′′

(e)
ik′ .

Let x ∈ [xik(e) + 1,m −
∑

k′∈[1,k−1]Z
xik′ (e)]Z. Suppose by contradiction that

rik(xik(e)) > rik(x). Then, (x, rik(x)) Pik (xik(e), rik(xik(e))). Since mik(e) = m −∑
k′∈[1,k−1]Z

xik′ (e), x ≤ mik(e). Thus, xik(e) /∈ B(Rik ,mik(e), Rik), a contradiction.

Finally, it is clear that m−
∑

k∈[1,K]Z
xik(e) ≥ 0. Hence, ({ik}Kk=1, {xik(e)}Kk=1)) is

a feasible path at m. □

Step 6 Completing the proof.

9If {ik : k ∈ [2,K−1]Z and xik(e) = 0} ̸= ∅, let N∗ := {i1, . . . , iK}\{ik : k ∈ [2,K−1]Z and xik(e) = 0}.
Then, the rest of the proof works.
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We derive a violation of Condition 3. Note that∑
k∈N∗∗∩N ′

xk(e) =
∑

k∈N∗∗∩N ′

xk(e) +
∑

k∈N∗∗\N ′

xk(e)−
∑

k∈N∗∗\N ′

xk(e)

= m−miK′+1
(e)−

∑
k∈N∗∗\N ′

xk(e)

> m−m′ −
∑

k∈N∗\N ′

xk(e)

=
∑

k∈N\N ′

xk(e)−
∑

k∈N∗\N ′

xk(e)

=
∑

k∈N∗\N ′

xk(e) +
∑

k∈N\(N∗∪N ′)

xk(e)−
∑

k∈N∗\N ′

xk(e)

=
∑

k∈N∗\N ′

xk(e),

where the inequality follows from miK′+1
(e) < m′ and N∗∗ ⊆ N∗, and the third equality

follows from m′ = m−
∑

k∈N\N ′ xk(e). By Claim 7, for each k ∈ N∗∗ ∩N ′, xk(e) ≤ 1.

Therefore, there is N̂ ⊆ N∗∗ ∩N ′ such that i /∈ N̂ and∑
k∈N̂

xk(e) =
∑

k∈N\(N ′∪N∗)

xk(e).

Let L := N̂ ∪ (N∗ \N ′). Note that N̂ ∩ (N∗ \N ′) = ∅. Then,

m−
∑
k∈L

xk(e) = m−(
∑
k∈N̂

xk(e)+
∑

k∈N∗\N ′

xk(e)) = m−(
∑

k∈N\(N ′∪N∗)

xk(e)+
∑

k∈N∗\N ′

xk(e)) = m′.

Further, note that for each k ∈ N∗ \ L, k ∈ N ′. Therefore, by j = j1, j = top(≻m′

, N∗ \ L). This contradicts Condition 3.

Independence of unallocated objects. Suppose by contradiction that there are e :=

(N,m,R) ∈ E and m′ ∈ Z+ such that
∑

i∈N xi(e) ≤ m′ < m and f(e) ̸= f(N,m′, R).

Denote e′ := (N,m′, R). For each k ∈ [1, |N |]Z, denote ik := ik(e) and i′k := ik(e
′),

respectively.

By f(e) ̸= f(e′), there is K ∈ [1, |N |]Z such that xi′K (e
′) ̸= xi′K (e) and for each

k ∈ [1,K−1]Z, xi′k(e
′) = xik(e). Let N

∗ := {i′1, . . . , i′K−1}. Since f satisfies consistency

as we have shown,

f(N \N∗,m−
∑
i∈N∗

xi(e), RN\N∗) = fN\N∗(e), and

f(N \N∗,m′ −
∑
i∈N∗

xi(e
′), RN\N∗) = fN\N∗(e′).
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Note that i1(N \N∗,m′−
∑

i∈N∗ xi(e
′), RN\N∗) = i′K . Thus, without loss of generality,

we can assume that

fi′1(e) ̸= fi′1(e
′).

Claim 10 mi′1
(e) < m′.

Proof : Suppose by contradiction that mi′1
(e) ≥ m′. By xi′1(e) ≤ m′ and xi′1(e) =

minB(Ri′1
,mi′1

(e), ri′1), xi′1(e) = minB(Ri′1
,m′, ri′1). By the definition of f , this implies

xi′1(e
′) = xi′1(e), a contradiction. □

Let K ′ ∈ [1, |N |]Z be such that i′1 = iK′ . By Claim 10 and m > m′, K ′ > 1. By

m′ > mi′1
(e) and Claim 7, there is k ∈ [1,K ′− 1]Z such that mik(e) = m′. This implies

that ik ≻m′
i′1. However, this contradicts i

′
1 = top(N,≻m′

). ■

A.3 Proof of Theorem 3

Our proof consists of two parts. In Part I, we show that if f satisfies consistency and

independence of unallocated objects, then it satisfies Conditions 1 and 2. In Part II,

we show the other direction.

Part I. Suppose that f satisfies consistency and independence of unallocated objects.

Condition 1. To show Condition 1, it is sufficient to show that for each m ∈ Z+ with

m > 1, and each pair i, j ∈ N, if i ≻m j, then i ≻m+1 j. Suppose by contradiction that

there are m ∈ Z+ and i, j ∈ N such that m > 1, i ≻m j and j ≻m+1 i.

Let Ri ∈ R be such that for each x ∈ Z+,

vi(x)

> max{ri(m), rj(m)} if x = m,

= 0 otherwise.

Let Rj := Ri and R = (Ri, Rj). Note that for each k ∈ {i, j}, B(Rk,m + 1, rk) =

B(Rk,m, rk) = {m}. Let e := ({i, j},m+ 1, R) and e′ := ({i, j},m,R).

By j ≻m+1 i and the definition of f , xj(e) = m and xi(e) = 0. Then, by indepen-

dence of unallocated objects, xi(e
′) = xi(e) = 0. However, by i ≻m j and the definition

of f , xi(e
′) = m, a contradiction.

Condition 2. By Condition 1, it is sufficient to show that ≻2 is an acyclic ordering

of ≻1. Suppose by contradiction that there are i, j, k ∈ N such that i ≻2 j ≻2 k and

k ≻1 i.
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Let Ri ∈ R be such that for each x ∈ Z+,

vi(x)

> max{ri(1), rk(1)} if x = 1,

= 0 otherwise.

Let Rj ∈ R be such that for each x ∈ Z+,

vj(x) =

> rj(2) if x = 2,

= 0 otherwise.

Let Rk := Ri. Note that for each ℓ ∈ {i, k} and each m ∈ Z+ \{0}, B(Rℓ,m, rℓ) = {1}.
Note also that B(Rj , 2, rj) = {2}. Let R := (Ri, Rj , Rk). Let e := ({i, j, k}, 3, R) and

e′ := ({i, k}, 1, R−j).

By ≻3=≻2 and the definition of f , xi(e) = 1, xj(e) = 2, and xk(e) = 0. By

consistency, xk(e
′) = xk(e) = 0. However, by k ≻1 i and B(Rk,m, rk) = {1}, xk(e′) =

1, a contradiction.

Part II. Suppose f satisfies Conditions 1 and 2. To prove that f satisfies consistency

and independence of unallocated objects, it is sufficient to show the following: For each

e := (N,m,R) ∈ E , each N ′ ⊆ N , and each m′ ∈ Z+ with
∑

i∈N ′ xi(e) ≤ m′ ≤ m,

fN ′(e) = f(N ′,m′, RN ′).

Let e := (N,m,R) ∈ E , N ′ ⊆ N , and m′ ∈ Z+ be such that
∑

i∈N ′ xi(e) ≤ m′ ≤ m.

Denote e′ := (N ′,m′, RN ′). For simplicity, for each k ∈ [1, |N |]Z, denote ik := ik(e).

Also, for each k ∈ [1, |N ′|]Z, denote jk := ik(e
′).

Suppose by contradiction that fN ′(e) ̸= f(e′). Then, there K ∈ [1, |N ′|]Z such that

xjK (e
′) ̸= xjK (e) and for each k ∈ [1,K − 1]Z, xjk(e

′) = xjk(e). Note that∑
k∈[K,|N ′|]Z

xjk(e) ≤ m′ −
∑

k∈[1,K−1]Z

xjk(e) = m′ −
∑

k∈[1,K−1]Z

xjk(e
′) = mjK (e

′).

Claim 11 miK(e′)(e
′) > 1.

Proof : Suppose by contradiction that mjK(e′)(e
′) ≤ 1. If mjK(e′)(e

′) = 0, then

xjK (e) = xjK (e
′) = 0, a contradiction. Thus, mjK(e′)(e

′) = 1. Note that xjK (e) ≤
mjK (e

′) = 1. There are two cases.

Case 1. xjK (e
′) = 0. By mjK (e

′) and the definition of f , (0, 0) RjK (1, rjK (1)). By this

and xjK (e) ≤ 1, xjK (e) = 0 = xjK (e
′), a contradiction.
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Case 2. xjK (e
′) = 1. By xjK (e

′) ̸= xjK (e), xjK (e) = 0. Also by xjK (e
′) = 1,

(1, rjK (1)) PjK (0, 0). Thus, by xjK (e) = 0, mjK (e) = 0.

Note that

m−
∑

j∈N\N ′

xj(e)−
∑

k∈[1,K−1]Z

xjk(e) ≥
∑
j∈N ′

xj(e)−
∑

k∈[1,K−1]Z

xjk(e) =
∑

k∈[K,|N ′|]Z

xjk(e) = 1,

where the inequality follows from
∑

j∈N xj(e) ≤ m. Thus, by mjK (e) = 0, there is

j ∈ {jk : k ∈ [K, |N ′|]Z} such that xj(e) ≥ 1. By xj(e) ≤ mjK (e
′) = 1, xj(e) = 1.

By j ∈ {jk : k ∈ [K, |N ′|]Z} and mjK (e
′) = 1, jK ≻1 j. Further, by xj(e) = 1,

mj(e) ≥ 1. If mj(e) = 1, then by mjK (e) = 0, j ≻1 jK , a contradiction. Thus,

mj(e) > 1.

By mj(e) > 1 and Condition 1, j ≻2 jK . By mj(e) > 1 and mjK (e) = 0, there is

k ∈ N \ {jK , j} such that mj(e) > mk(e) > mjK (e).

If mk(e) = 1, then k ≻1 jK ≻1 j and j ≻2 jK , contradicting the fact that ≻2 is an

acyclic ordering of ≻1. If mk(e) > 1, then j ≻2 k ≻2 jK and jK ≻1 j, contradicting

the fact that ≻2 is an acyclic ordering of ≻1. □

By Claim 11, mjK (e
′) ≥ 2. We show mjK (e) ≥ mjK (e

′). Suppose by contradiction

that mjK (e) < mjK (e
′). Note that by m −

∑
i∈N\N ′ xi(e) −

∑
k∈[1,K−1]Z

xjk(e) ≥
mjK (e

′), there is k ∈ [K + 1, |N ′|]Z such that mjk(e) > mjK (e). By Condition 1, this

implies jk ≻2 jK . However, by mjK (e
′) ≥ 2, K < k, and Condition 1, jK ≻2 jk, a

contradiction. Hence, mjK (e) ≥ mjK (e
′).

Since mjK (e) ≥ mjK (e
′), B(RjK ,mjK (e

′), rjK ) ⊆ B(RjK ,mjK (e), rjK ). Thus, by

xjK (e) = minB(RjK ,mjK (e), rjK ) and xjK (e) ≤ mjK (e
′), xjK (e) = minB(RjK ,mjK (e

′), rjK ).

Hence, by the definition of f , xi(e
′) = xi(e), a contradiction. ■
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