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Abstract

Matching markets often encounter admissibility issues due to social concerns and
regulations that must be respected. A key situation that has not been thoroughly an-
alyzed in the literature involves the market-clearing requirement, which ensures bal-
ance in allocations across multiple matching markets, similar to supply-and-demand
dynamics. To address these admissibility issues, we introduce the concept of an ad-
missible set for such problems. We propose two solutions. The first solution is the
"fairness-guaranteed stable solution." We identify a requirement on admissible sets
that is necessary and sufficient for the non-emptiness of this solution. This require-
ment ensures that an allocation where no agent is assigned any resources is admissible.
We then conduct welfare analysis and comparative statics of this solution. The sec-
ond solution is called "efficiency-guaranteed stability," which focuses on maximizing
efficiency within the constraints of the admissible set. We show that only specific
admissible sets allow this solution to be non-empty.
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1 Introduction

Agents and institutions, which we will call "entities," are usually assigned to each other
according to rules based on the preferences of these entities. "Traditional" many-to-one
matching theory assumes that each institution has its own individual maximal capacity.
For the list of individual capacities, an "admissible set" of allocations can be derived. If
there are no other restrictions, we obtain a traditional admissible set.1

However, in real-life matching markets, entities often face additional constraints beyond
individual capacities. Examples include affirmative action policies or shared capacities
that span multiple institutions. The literature has largely treated these issues in isolation,
analyzing each constraint separately without considering how they may interact in practice.

In fact, many markets seek to address multiple admissibility issues simultaneously. For
instance, an institution may need to meet budget constraints, balance capacity constraints
across multiple institutions, and adhere to affirmative action policies. This is further
complicated by market complementarity, where one market’s admissibility requirements
influence, or are influenced by, those of another market. In such cases, an allocation in one
market can have ripple effects across others, making the matching process more complex.

Particularly, issues on admissible sets caused by complementarity in multiple markets
are governed by balance requirements, which resemble supply-demand dynamics. Insti-
tutions often act as intermediaries across multiple independent matching markets. They
aim to match agents in one market with those in another, but these matches are interdepen-
dent. Admissibility of an allocation depends not only on the characteristics of the entities
in a single market but also on the availability of compatible entities in connected markets.
Without coordination, there is no guarantee that these allocations will align effectively.

Consider, for example, a nursery school that hires teachers and enrolls children. These
processes are typically conducted separately, yet the school must balance the number
and specializations of teachers with the needs and number of children to meet budget
constraints and legal requirements regarding student-teacher ratios. Similarly, refugee
assignments to camps must account for each camp’s physical supplies and medical per-
sonnel. Balanced assignments prevent overcrowding and related issues, such as supply
shortages and health risks. The following example illustrates in more detail how such bal-

1For example, some studies on "matching problems with bilateral contracts" (Hatfield and Milgrom,
2005) do not explicitly define the capacity of an institution. In these models, the capacity of an institution is
implicitly captured by its choice function, which determines the admissible assignments of the institution.
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ance requirements can emerge and why they are essential for efficient market outcomes.

Example 1. (Nursery schools hiring teachers and enrolling children.)
Consider the following situation. There are three schools 𝑠1, 𝑠2, and 𝑠3; two teachers 𝑡1 and
𝑡2; and four children 𝑐1, 𝑐2, 𝑐3, and 𝑐4. Each school 𝑠 has preferences over pairs consisting
of a set of teachers and a set of children; and due to its capacity constraint (e.g., size
of buildings) it can accommodate at most four children and two teachers. Suppose that
the preferences of each school 𝑠 are “separable.” This means that its preferences can be
described in terms of a pair consisting of a preference relation over sets of teachers 𝑇, 𝑃T

𝑠 ;
and a preference relation over sets of children 𝐶, 𝑃C

𝑠 . Each teacher 𝑡 has preferences 𝑃𝑡 over
individual schools and being not assigned any school denoted by 𝑠0; and each guardian of
child 𝑐 (for simplicity, just say each child) has preferences 𝑃𝑐 over individual schools and
𝑠0.

In the existing literature, this children-teacher-school assignment problem is decom-
posed into two distinct problems: a teacher-school assignment problem and a children-
school assignment problem.

𝑃𝑇𝑠1 𝑃𝑇𝑠2 𝑃𝑇𝑠3 𝑃𝑡1 𝑃𝑡2

𝑡1 𝑡2 𝑡1 𝑠1 𝑠2

𝑡2 𝑡1 𝑡2 𝑠2 𝑠1

𝑠3

𝑃𝐶𝑠1 𝑃𝐶𝑠2 𝑃𝐶𝑠3 𝑃𝑐1 𝑃𝑐2 𝑃𝑐3 𝑃𝑐4

𝑐1 𝑐1 𝑐1 𝑠2 𝑠2 𝑠3 𝑠3

𝑐2 𝑐2 𝑐2 𝑠3 𝑠3 𝑠2 𝑠2

𝑐3 𝑐3 𝑐3 𝑠1 𝑠1

𝑐4 𝑐4 𝑐4

(Teacher-school assignment problem) (Children-school assignment problem)

However, those two problems are related in several ways: to satisfy legal and budget-
balance requirements. Suppose that the following admissibility requrements have to be
met:

• There are at most two children per teacher.

• Each nursery school pays each teacher a salary of $3,000.

• Each nursery school earns $2,000 per child for tuition.

• Budget deficit is not allowed.
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To obtain an allocation for the two markets, as a starting point, consider the following
naive process. First, decide a “tentative” allocation for the teacher-school assignment
problem. Remember that for each school, there is a maximal capacity for hiring teachers,
namely 2. For this profile of capacities, a traditional admissible set can be derived. Suppose
that we apply, for this problem, the teacher-proposing deferred acceptance algorithm. This
gives the following stable allocation for this problem:

𝜇𝑇 =

(
𝑠1 𝑠2 𝑠3 𝑠0

𝑡1 𝑡2 ∅ ∅

)
.

Next, from the allocation for the teacher-school problem and the admissibility require-
ments, we can deduce the maximal number of children that each school can admit. In
this case, the capacities of both schools 𝑠1 and 𝑠2 are 2, and that of school 𝑠3 is 0.2 We
now have a traditional admissible set. Again, suppose that we apply, for this problem,
the children-proposing deferred acceptance algorithm. This gives the following stable
allocation for this problem:

𝜇𝐶 =

(
𝑠1 𝑠2 𝑠3 𝑠0

∅ 𝑐1, 𝑐2 ∅ 𝑐3, 𝑐4

)
.

By composing the allocations for the two problems, we obtain the following allocation for
the entire problem:

𝜇 =

(
𝑠1 𝑠2 𝑠3 𝑠0

𝑡1 𝑡2, 𝑐1, 𝑐2 ∅ 𝑐3, 𝑐4

)
.

However, at this allocation, given the number of assigned children, 𝑠1 is assigned too
many teachers to meet its budget. Thus, this allocation is not admissible. The issue is
that, when hiring teachers, a nursery school does not know how many children it will
enroll. Therefore, we have to think of a way of making the allocation admissible. One
simple approach to help school 𝑠1 meet its budget is by preventing it from confirming the
hiring of teacher 𝑡1. Consequently, applying the above sequential process would give the

2For example, consider school 𝑠2. Since it hires one teacher at 𝜇𝑇 , by the first requirements above, it
can enrol at most two children. Further, to meet the budget balance, it indeed needs to enrol exactly two
children. Since here we just naively let the capacity be the maximal number of children that each school can
admit, it is 2.
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following admissible allocation as final outcome:

𝜇′ =

(
𝑠1 𝑠2 𝑠3 𝑠0

∅ 𝑡2, 𝑐1, 𝑐2 ∅ 𝑡1, 𝑐3, 𝑐4

)
.

Consider the following allocation instead:

𝜈 =

(
𝑠1 𝑠2 𝑠3 𝑠0

∅ 𝑡1, 𝑡2, 𝑐1, 𝑐2, 𝑐3, 𝑐4 ∅ ∅

)
.

Allocation 𝜈 respects the admissibility requirements. Obviously, each entity finds their
assignment at 𝜈 at least as desirable as their assignment at 𝜇′; at least one of them (𝑡1, 𝑐3,
and 𝑐4) prefers their assignment at 𝜈.

The difficulty we just described arises from a fundamental economic principle: main-
taining balance between supply and demand. On one hand, the supply of available seats
in a school is determined by the number of teachers hired, which is influenced by teachers’
preferences. On the other hand, the demand for seats is given by children’s preferences.
These two are independently given from one another. In the procedure previously de-
scribed, though, the entire allocation is determined in a way that adjusts the demand to fit
the allocation obtained for the supply-side. It led to inefficiency or instability in the entire
allocation. Similarly, even if we reverse the order in which the markets are cleared, the
final allocation may still fail to meet admissibility requirements, efficiency, or stability.3 To
address this issue, we integrate the two markets and clear them simultaneously, akin to a
market-clearing mechanism.

Our example here, which integrates multiple markets into a single market, is some-
what related to a previous work by Ostrovsky (2008). However, due to the complex way
that admissibility requirements can take, his results are not applicable to the assignment
problem described in this example.

In the literature, admissibility requirements have been modeled in two ways. The first
approach is to define choice functions (or preferences) so as to combine the requirements.
The other way is to directly define the set of admissible allocations (See Section 5.2 for a
detailed discussion). Ostrovsky (2008) follows the first approach; and provide a sufficient

3Namely, there is a profile of preferences for which first having an allocation for the children-school
problem and then for teacher-school problem leads to a violation of admissibility, efficiency, or stability.
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condition on choice functions that guarantees the existence of stable allocations.4 Nev-
ertheless, choice functions of institutions that reflect our requirements do not satisfy the
property. Thus, his result does not help solve all problems that integrate multiple markets
with complex requirements of the type we are interested in. ♣

Our paper models the admissibility requirements by directly defining the set of ad-
missible allocations. An admissible set is defined as an arbitrary subset of the set of all
allocations. This allows us to include any type of requirements or restrictions on allocations
such as the one illustrated in the example above.

For traditional admissible sets, regardless of preferences, stable allocations exist.5 Fur-
ther, stability implies two important properties: efficiency and a fairness notion, freedom
from justified-envy. Unfortunately, for general admissible sets, not only stable alloca-
tions may not exist, but efficiency and freedom from justified-envy may not be compatible
(Proposition 1). Therefore, we propose two types of stability notions as compromises:
efficiency-guaranteed stability and fairness-guaranteed stability.

We start by examining a solution related to the “core.” As commonly understood,
a coalition of entities blocks an allocation if there is an admissible allocation such that (i)
each member of the coalition finds their new assignment at least as desirable as their
original ones while some members prefer the new assignment to the original one, and (ii)
assignments of members of the coalition are in the coalition.6 However, this definition may
not be appropriate for general admissible sets. Consider a problem with three agents 𝑖 , 𝑗 , 𝑘
and two institutions 𝑥, 𝑦. At an allocation, agent 𝑖 is assigned 𝑥, agent 𝑗 is assigned 𝑦, and
agent 𝑘 is not assigned any institution. Suppose that agent 𝑘 prefers 𝑥 to their assignment;
and 𝑥 prefers additionally accepting agent 𝑘 to not doing so. Consider the requirement
on allocations that the total number of agents assigned the two institutions must be at
most 2. According to the definition of a blocking coalition, “the allocation at which agent
𝑖 is assigned 𝑥, agent 𝑗 is not assigned any institution, and agent 𝑘 is assigned 𝑥,” is a
candidate of allocations via which {𝑖 , 𝑘, 𝑥} blocks the original allocation. However, since

4It is actually a conjunction of properties. One of it is called “same-side substitutability.” It is easy to
verify that the situation here cannot be described by any profile of choice functions that satisfy same-side
substitutability.

5We assume that each institution has preferences that respect relative and absolute desirability of an
individual agent, which is also known as “responsiveness”.

6There is an alternative definition as follows: a coalition of entities blocks an allocation if there is an
admissible allocation for the coalition satisfying the same requirements. However, for general admissible sets,
we cannot necessarily talk about admissibility of an allocation for coalition.
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the “irrelevant” agent-institution pair (𝑗 , 𝑦) is forced to sever their relation, such a block
does not seem reasonable in the context of matching. Accordingly, we propose a natural
alternative of blocking notion.

Given an admissible set 𝐹, a coalition 𝐹-blocks an allocation if it blocks the allocation
in the usual sense while not changing the assignment of “irrelevant” entities. We define
an efficiency-guaranteed stable allocation as one in which no coalition can block the allocation
in our sense. Although each efficiency-guaranteed stable allocation is efficient, such an
allocation may violate freedom from justified-envy. Regarding the issue of existence, we
focus on a specific subclass of admissible sets that we call “number-based.” An admissible
set is number-based if, whenever an allocation is admissible, any allocation at which, for each
institution, the same number of agents is assigned to the institution is also admissible. We
identify a necessary condition on admissible sets in the class that guarantees the existence
of such allocations (Theorem 1). Unfortunately, even within the number-based admissible
sets, such allocations rarely exist.

We then focus on another stability notion, fairness-guaranteed stability, which achieves
fairness while possibly allowing some Pareto improvement. More concretely, we require
that an allocation meet the outside option lower bound, be free of justified envy, and be
"fairness-constrained non-wasteful”, meaning it contains no “fairness-constrained waste.”
Fairness-constrained waste, in contrast to waste in the allocation, permits certain positions
in institutions to remain vacant. Specifically, even if these positions could be redistributed
to a set of agents who would prefer them to their assignments, doing so would result
in justified envy.7 We identify a necessary and sufficient condition on the admissible
set that ensures the non-emptiness of this solution. In contrast to the negative result
pertaining to the efficiency-guaranteed stability, that condition can be seen as a minimal
requirement on admissible sets. Formally, the fairness-guaranteed stable solution is not
empty-valued if and only if the null allocation (i.e., no agent is assigned any institution)
is admissible (Theorem 2). Further, we provide an alternative result in the domain of
preferences where every entity prefers anyone in the other entity to being unassigned. We
identify a sufficient condition on the class of admissible sets for which this solution is not
empty-valued (Theorem 3).

In the light of the trade-off between efficiency and fairness that we uncovered in

7It is easy to see that fairness-constrained non-wastefulness coincides with non-wastefulness for tradi-
tional admissible sets.
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our environment, one of these requirements has to be sacrificed. Nonetheless, fairness-
guaranteed stability achieves maximal welfare among allocations that meet the outside
option lower bound and are free of justified-envy (Proposition 3).

We then conduct a comparative static exercise on the set of fairness-guaranteed stable
allocations with respect to enlargement of admissible sets.

The rest of the paper proceeds as follows. In Section 2, we describe the model. In
Section 3, we introduce the concept of efficiency-guaranteed stability and present some
key results regarding this solution concept. In Section 4, we introduce our main solution
concept, fairness-guaranteed stability, and analyze its properties. In Section 4.1, we identify
the conditions on admissible sets for which the fairness-guaranteed solution is non-empty.
In Section 4.2, we study the comparative statics of the solution with respect to enlargement
of admissible sets. In Section 5, we discuss the restriction of the domain of preferences and
the relation to the literature. All proofs in the main text are provided in the Appendix A.

2 Model

There are a finite set of agents 𝐴 and a finite set of institutions 𝐼. We call the components
of 𝐴 ∪ 𝐼 entities. An agent is assigned at most one institution, while an institution can
be assigned to multiple agents. Each agent 𝑎 ∈ 𝐴 has strict preferences 𝑅𝑎 over 𝐼 ∪ {∅},
where ∅ means being assigned the outside option.8 Let ℛ𝑎 be the set of all preferences of
agent 𝑎 ∈ 𝐴. Each institution 𝑖 ∈ 𝐼 has strict preferences 𝑅𝑖 over 2𝐴. Let ℛ𝑖 be the set of
all preferences of institution 𝑖 ∈ 𝐼. Given ℎ ∈ 𝐴 ∪ 𝐼, 𝑃ℎ is the asymmetric part of 𝑅ℎ . Let
ℛ ≡ ∏

ℎ∈𝐴∪𝐼 ℛℎ . Let 𝑅 ∈ ℛ be our generic notation for a profile of preferences. If there is
no danger of confusion, we write 𝑎 𝑅𝑖 𝑎′ instead of {𝑎} 𝑅𝑖 {𝑎′}, and 𝐴∪ 𝑎 𝑅𝑖 𝐴∪ 𝑎′ instead
of 𝐴 ∪ {𝑎} 𝑅𝑖 𝐴 ∪ {𝑎′}.

Institution 𝑖’s preferences 𝑅𝑖 are separable if both of the following conditions hold:9

(i) for each 𝐴′ ⊆ 𝐴 and each pair 𝑎, 𝑎′ ∈ 𝐴 \ 𝐴′,

𝐴′ ∪ 𝑎 𝑅𝑖 𝐴′ ∪ 𝑎′ ⇐⇒ 𝑎 𝑅𝑖 𝑎
′, and

8A binary relation is strict if it is complete, transitive, and antisymmetric.
9Separability is closely related to what the literature calls responsiveness with respect to a capacity. In

the definition of responsiveness, the second requirement of separability is modified as follows: for a set of
agents, adding a “desirable” agent improves the set “if the capacity allows it.” Since explicit capacities for
each institution are not present in our model, the property cannot be property defined. Consequently, we
instead directly deem such an allocation as inadmissible.
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(ii) for each 𝐴′ ⊆ 𝐴 and each 𝑎 ∈ 𝐴 \ 𝐴′,

𝐴′ ∪ 𝑎 𝑅𝑖 𝐴′ ⇐⇒ 𝑎 𝑅𝑖 ∅.

Throughout the paper, we assume that for each 𝑖 ∈ 𝐼, 𝑅𝑖 are separable.
An allocation is a function 𝜇 : 𝐴 ∪ 𝐼 → 2𝐴 ∪ 𝐼 ∪ {∅} satisfying the following conditions:

(i) for each 𝑎 ∈ 𝐴, 𝜇(𝑎) ∈ 𝐼 ∪ {∅},

(ii) for each 𝑖 ∈ 𝐼, 𝜇(𝑖) ∈ 2𝐴, and

(iii) for each 𝑎 ∈ 𝐴 and each 𝑖 ∈ 𝐼, 𝜇(𝑎) = 𝑖 if and only if 𝑎 ∈ 𝜇(𝑖).

Let ∅ be the null allocation; that is, for each 𝑎 ∈ 𝐴, ∅(𝑎) = ∅. Let 𝑀 be the set of all
allocations.

Each problem has its own admissible set 𝐹, which is defined as a non-empty subset of
all allocations, 𝐹 ⊆ 𝑀 with 𝐹 ≠ ∅. For each 𝜇 ∈ 𝑀, if 𝜇 ∈ 𝐹, then 𝜇 is 𝐹-admissible. For
simplicity, we say that 𝜇 is admissible. A problem is a list (𝐴, 𝐼, 𝑅, 𝐹). In what follows,
unless otherwise mentioned, we fix (𝐴, 𝐼, 𝐹). Thus, a problem is simply described as a
profile 𝑅.

An allocation 𝜇 ∈ 𝐹 meets the outside option lower bound for 𝑅 ∈ ℛ if

(i) for each 𝑎 ∈ 𝐴, 𝜇(𝑎) 𝑅𝑎 ∅, and

(ii) for each 𝑖 ∈ 𝐼 and each 𝑎 ∈ 𝜇(𝑖), 𝑎 𝑃𝑖 ∅.

Suppose that there is no institution that any agent prefers to their outside option.
Then, if an allocation that meets the outside option lower bound exists for the problem, it
is unique— it is the null allocation. Namely, if for each problem, such an allocation exists
for that problem, the null allocation is admissible. Conversely, as long as the null allocation
is in the admissible set, since for each problem the null allocation meets the outside option
lower bound, there is an allocation that meets the outside option lower bound regardless
of preferences. Hence, we have the following observation:

Observation 1. Let 𝐹 ⊆ 𝑀 be an admissible set. For each 𝑅 ∈ ℛ, there is an allocation that meets
the outside option lower bound for 𝑅 if and only if ∅ ∈ 𝐹.
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The following two properties of allocations are essential. For each pair 𝜇, 𝜈 ∈ 𝐹, 𝜈 Pareto
dominates 𝜇 for 𝑅 ∈ ℛ if (i) for each ℎ ∈ 𝐴 ∪ 𝐼, 𝜈(ℎ) 𝑅ℎ 𝜇(ℎ) and (ii) there is ℎ ∈ 𝐴 ∪ 𝐼 such
that 𝜈(ℎ) 𝑃ℎ 𝜇(ℎ). Allocation 𝜇 ∈ 𝐹 is efficient for 𝑅 ∈ ℛ if no other admissible allocation
Pareto dominates 𝜇 for 𝑅. Allocation 𝜇 ∈ 𝐹 is free of justified envy for 𝑅 ∈ ℛ if for each pair
(𝑎, 𝑖) ∈ 𝐴 × 𝐼, if 𝑖 𝑃𝑎 𝜇(𝑎), then for each 𝑎′ ∈ 𝜇(𝑖), 𝑎′ 𝑃𝑖 𝑎.

Let 𝑃 be the correspondence that associates with each problem the set of allocations
that meet the outside option lower bound and are efficient. Similarly, let 𝐸 be the corre-
spondence that associates with each problem the set of allocations that meet the outside
option lower bound and are free of justified envy.

3 Preliminary observation

In traditional matching problems, 𝐹 is derived only by a profile of institution by institution
maximal capacities. Formally, an admissible set 𝐹 is traditional if there is 𝑐 ∈ N𝐼+ such that

𝐹 = {𝜇 ∈ 𝑀 | for each 𝑖 ∈ 𝐼 , |𝜇(𝑖)| ≤ 𝑐𝑖}.

In traditional admissible sets, efficiency and fairness are compatible. However, in
general, efficiency and fairness are incompatible:

Proposition 1. There are problems (𝐴, 𝐼, 𝐹, 𝑅) such that 𝑃(𝑅) ∩ 𝐸(𝑅) = ∅.10 11

Accordingly, we first consider a solution that places more importance on efficiency than
on fairness. Our first attempt extends the notion of the “core”. To begin with, we formally
define the core in our environment.12 Consider a pair of admissible allocations 𝜇, 𝜈 ∈ 𝐹.
A set of entities, or coalition, 𝐶 ⊆ 𝐴 ∪ 𝐼 blocks 𝜇 for 𝑅 ∈ ℛ via 𝜈 if the following holds:

(i) for each 𝑎 ∈ 𝐶 ∩ 𝐴, 𝜈(𝑎) 𝑅𝑎 𝜇(𝑎) and 𝜈(𝑎) ∈ 𝐶 ∪ {∅},

(ii) for each 𝑖 ∈ 𝐶 ∩ 𝐼, 𝜈(𝑖) ⊆ 𝐶 and 𝜈(𝑖) 𝑅𝑖 𝜇(𝑖), and

(iii) there is ℎ ∈ 𝐶 such that 𝜈(ℎ) 𝑃ℎ 𝜇(ℎ).

10All proofs are included in the Appendix A.
11In the literature, some classes of admissible sets are uncovered for which efficient and free of justified-

envy allocations exist for each problem. For example, see Kamada and Kojima (2017).
12More formally, since we distinguish preferences from admissible allocations, our notion of core is referred

to as “𝛼-core” in the literature.
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An allocation 𝜇 ∈ 𝐹 is in the core of 𝑅 ∈ ℛ if it meets the outside option lower bound for 𝑅
and no coalition blocks 𝜇 for 𝑅.

When 𝐹 is not traditional, this core notion seems too strong to be appropriate. This is
because there may be too much freedom for the choices of allocations via which a coalition
may block a given allocation (𝜈 in the above definition). In essence, in the definition
above, the assignment for entities outside the coalition 𝐶 at the proposed allocation 𝜈

is not necessarily equal to the original assignment at 𝜇. Put differently, to ensure the
admissibility of 𝜈, there might exist an agent-institution pair outside of 𝐶 that may need to
be unmatched. What is more concerning is the possibility that an agent outside of 𝐶 could
be reassigned an institution to which that agent prefers the outside option. To prevent
this, we uniquely identify the allocation via which a coalition can block in a manner that
does not alter the assignments of those not involved in 𝐶.

Consider a pair of admissible allocations 𝜇, 𝜈 ∈ 𝐹. A pair consisting of a set of agents
and a set of institutions 𝐶 ⊆ 𝐴 ∪ 𝐼 𝐹-blocks 𝜇 for 𝑅 ∈ ℛ via 𝜈 if the following holds:

(i) 𝐶 blocks 𝜇 for 𝑅 via 𝜈,

(ii) for each 𝑎 ∈ 𝐴\𝐶 with 𝜇(𝑎) ∈ 𝐶, 𝜈(𝑎) = ∅, and

(iii) for each 𝑎 ∈ 𝐴\𝐶 with 𝜇(𝑎) ∈ 𝐼\𝐶, 𝜈(𝑎) = 𝜇(𝑎).

Definition 1. An allocation 𝜇 ∈ 𝐹 is efficiency-guaranteed stable for 𝑅 ∈ ℛ if it meets the
outside option lower bound for 𝑅 and no coalition 𝐹-blocks 𝜇 for 𝑅.

Note that even if there is no 𝐹-blocking coalition at an allocation, the allocation may
violate the outside option lower bound (See Example 4 in Appendix B).

Proposition 2. For each 𝑅 ∈ ℛ, any efficiency-guaranteed stable allocation for 𝑅 is efficient for 𝑅.

We ask whether efficiency-guaranteed stable allocations exist irrespective of what
(𝐴, 𝐼, 𝑅) is. We begin by focusing on a class of admissible sets for which admissibility
only depends on the number of assigned agents in each institution, which we call the
distribution of agents across institutions. For each 𝜇 ∈ 𝑀, let 𝑤(𝜇) ≡ (|𝜇(𝑖)|)𝑖∈𝐼 be the
distribution of 𝜇. Namely, for each 𝑖 ∈ 𝐼, 𝑤𝑖(𝜇) represents the number of agents to which
institution 𝑖 is assigned at 𝜇. For each 𝑤 ∈ Z|𝐼 |+ , the 𝐿1-norm of 𝑤, | |𝑤 | | ≡ Σ𝑖∈𝐼𝑤𝑖 , is the
number of agents to which an institution is assigned at 𝜇. An admissible set 𝐹 ⊆ 𝑀 is
number-based if for each pair 𝜇, 𝜇′ ∈ 𝑀, whenever 𝑤(𝜇) = 𝑤(𝜇′) and 𝜇 ∈ 𝐹, then 𝜇′ ∈ 𝐹. For
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each number-based admissible set 𝐹 ⊆ 𝑀, there is an indicator function 𝑓 : Z|𝐼 |+ → {0, 1}
such that for each 𝑤 ∈ Z|𝐼 |+ , 𝑓 (𝑤) = 1 if and only if (i) | |𝑤 | | ≤ |𝐴| and (ii) for each 𝜇 ∈ 𝑀

with 𝑤(𝜇) = 𝑤, 𝜇 ∈ 𝐹. Given admissible set 𝐹 and corresponding indicator function 𝑓 , a
distribution 𝑤 ∈ Z|𝐼 |+ is admissible if 𝑓 (𝑤) = 1.

We impose a condition on a number-based admissible set 𝐹. For each pair of vectors
𝑤1, 𝑤2 ∈ Z|𝐼 |+ with | |𝑤1 | | = | |𝑤2 | |, let 𝑊(𝑤1, 𝑤2) ⊆ Z|𝐼 |+ be the following set of non-negative
|𝐼 |-dimensional vectors:

𝑊(𝑤1, 𝑤2) ≡ {𝑤 ∈ Z|𝐼 |+ | (i) 𝑤 ≤ 𝑤1 ∨ 𝑤2 and (ii) | |𝑤 | | > | |𝑤1 | | = | |𝑤2 | |}.

𝑤∗

𝑤𝑖1

𝑤𝑖2

𝑂

𝑤1 𝑤1 ∨ 𝑤2

𝑤2

{𝑤 ∈ Z|𝐼 | | | |𝑤 | | = |𝐴|}

Figure 1: The distributions in the orange area corresponds to 𝑊(𝑤1 , 𝑤2) with the case of |𝐼 | = 2,
where the boundary passing through 𝑤1 and 𝑤2 is not included. In-betweeness requires
that if there is no admissible distribution in blue area, then an admissible distribution 𝑤∗

exists in the orange area.

Let a pair of 𝑤1 ∈ Z|𝐼 |+ and 𝑤2 ∈ Z|𝐼 |+ have the same 𝐿1-norm. Then, the condition on the
number-based 𝐹, defined formally below, indicates that there is an allocation in 𝐹 whose
distribution is in𝑊(𝑤1, 𝑤2).

Definition 2. A number-based admissible set 𝐹 ⊆ 𝑀 satisfies in-betweenness if its corre-
sponding indicator function 𝑓 satisfies the following condition:
For each pair of admissible distributions 𝑤1, 𝑤2 ∈ Z|𝐼 |+ satisfying
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(i) | |𝑤1 | | = | |𝑤2 | |,

(ii) | |𝑤1 ∨ 𝑤2 | | ≤ |𝐴|, and

(iii) {𝑤 ∈ Z|𝐼 |+ | 𝑓 (𝑤) = 1} ⊆ {𝑤 ∈ Z|𝐼 |+ | 𝑤 ≤ 𝑤1 ∨ 𝑤2},

there is an admissible distribution 𝑤∗ ∈𝑊(𝑤1, 𝑤2).

Let 𝐸𝑆 be the correspondence that associates with each problem the set of efficiency-
guaranteed stable allocations for the problem. Theorem 1 states that, for number-based
admissible sets, in-betweenness plays a crucial role for 𝐸𝑆 to be well-defined:

Theorem 1. Let 𝐹 ⊆ 𝑀 be a number-based admissible set. For each 𝑅 ∈ ℛ, 𝐸𝑆(𝑅) ≠ ∅ only if (1)
∅ ∈ 𝐹 and (2) 𝐹 satisfies in-betweenness.13

From Theorem 1, unfortunately, even for a certain domain of admissible sets, very
stringent condition on the admissible set is required for the efficiency-guaranteed stable
solution to be non–empty-valued14

Since an efficiency-guaranteed stable allocation places efficiency above fairness, even if
such an allocation exists, it generally violates freedom from justified-envy:

Example 2. (ES allows justified-envy.)
Let 𝐴 = {𝑎, 𝑏} and 𝐼 = {𝑖 , 𝑗}. Let 𝐹 ⊆ 𝑀 and 𝑅 ∈ ℛ be the following:

𝐹 =

{(
𝑖 𝑗

𝑏 𝑎

)
,

(
𝑖 𝑗

𝑎 𝑏

)
,∅

}
,

𝑅𝑎 𝑅𝑏

𝑖 𝑗

𝑗 𝑖

∅ ∅

,

𝑅𝑖 𝑅 𝑗

𝑎 𝑎

𝑏 𝑏

∅ ∅

.

13When we study number-based admissible sets, we induce the indicator function 𝑓 that corresponds to
𝐹. On the contrary, the literature studies a problem where the indicator function 𝑓 : Z|𝐼 |+ → {0, 1} is given
as a primitive of the problem (e.g. Kamada and Kojima (2017); Aziz et al. (2022)). To adapt such models,
we modify in-betweenness by simply dropping the requirement (ii) on the pair 𝑤1 and 𝑤2. This condition,
in-betweeness∗ is a necessary condition on 𝑓 that guarantees the non-emptiness of 𝐸𝑆 regardless of the set of
agents. Formally, we have the following statement that is a counterpart result about an implication of (1)
and (2) in Theorem 1 of Kamada and Kojima (2017):
Theorem 1∗: For each set of agents 𝐴 and each profile 𝑅 ∈ ℛ, 𝐸𝑆(𝑅) ≠ ∅ only if (1) 𝑓 (0) = 1 and (2) 𝑓 satisfies in-
betweeness∗. Note that its proof is analogous to the proof of Theorem 1 except the part specifying a particular
set 𝐴.

14See Example 3 in Appendix B for the non-existence of efficiency-guaranteed stable allocations.
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Let the first allocation in 𝐹 be 𝜇, and the second allocation in 𝐹 be 𝜇′. Consider 𝜇. Then, 𝑎
prefers 𝑖 to their assignment at 𝜇, namely 𝑗. Further, 𝑖 is assigned 𝑏, to which 𝑎 is preferred
according to 𝑅𝑖 . Then, (𝑎, 𝑖) has justified-envy at 𝜇.

However, no coalition 𝐹-blocks 𝜇 for 𝑅. Suppose by contradiction that there is 𝐶 ⊆
𝐴 ∪ 𝐼 that 𝐹-blocks 𝜇 for 𝑅 via 𝜈 ∈ 𝐹. First, suppose that 𝜈 = ∅. Since each agent is
assigned an institution that they prefer to their outside option at 𝜇, no agent would benefit
from belonging to the coalition. Thus, 𝜈 ≠ ∅, so that 𝜈 = 𝜇′. By the second and third
requirements of the definition of 𝐹-blocking, 𝑏 ∈ 𝐶 ∩ 𝐴. However, this is contrary to the
first requirement of the definition of 𝐹-blocking. Therefore, no coalition blocks 𝜇 for 𝑅 via
some admissible allocation, so that 𝜇 ∈ 𝐸𝑆(𝑅). ♣

4 Main Results

In the previous section, we showed that our first approach raises an existence issue;
efficiency-guaranteed stable allocations rarely exist. Consequently, in contrast to priori-
tizing efficiency over fairness, this section delves into an alternative solution concept that
places a greater emphasis on fairness.

In this section, we introduce our principal solution, “fairness-guaranteed stability.” We
establish its non-emptiness under a minimal condition on admissible sets; and we examine
its comparative statics with respect to admissible sets.

4.1 Fairness-guaranteed stability

For traditional admissible sets, the core coincides with what we refer to as “the stable
correspondence.” It is characterized by three key properties: meeting the outside option
lower bound, freedom from justified-envy, and “non-wastefulness.” Given an allocation 𝜇,
an agent 𝑎 ∈ 𝐴, and an institution 𝑖 ∈ 𝐼, 𝜇 is wasteful for 𝑖 from the perspective of 𝑎 if 𝑖 would
enable 𝑎 to occupy its vacant position and both would benefit from doing so.15 Importantly,
given an allocation and an institution, there may be multiple agents of whose perspective
an allocation is wasteful for the institution. In such cases, determining who should occupy
the vacant position first may be important. A natural candidate is the agent who is most
preferred by the institution among such agents. We concern waste from the perspective of

15For detail, see Appendix C.2.
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such an agent, which we informally call “fairness-constrained waste.”
The following is a group-version of such a “non-wastefulness” requirement, also taking

admissibility into consideration. An allocation 𝜇 ∈ 𝐹 is fairness-constrained non-wasteful for
𝑅 if no set of distinct agents 𝐴′ ⊆ 𝐴 and no sequence of institutions (𝑖𝑎)𝑎∈𝐴′ ∈ 𝐼𝐴

′ indexed
by agents in 𝐴′ satisfy the following three requirements:

(i) for each 𝑎 ∈ 𝐴′, 𝑖𝑎 𝑃𝑎 𝜇(𝑎) and 𝑎 𝑃𝑖𝑎 ∅,

(ii) for each pair 𝑎 ∈ 𝐴′ and 𝑏 ∈ 𝐴 \ {𝑐 ∈ 𝐴′|𝑖𝑐 = 𝑖𝑎},

[𝑏 ∈ 𝐴′ and 𝑖𝑎 𝑃𝑏 𝑖𝑏] ⇒ 𝑎 𝑃𝑖𝑎 𝑏

[𝑏 ∉ 𝐴′ and 𝑖𝑎 𝑃𝑏 𝜇(𝑏)] ⇒ 𝑎 𝑃𝑖𝑎 𝑏

(iii) the following allocation 𝜈 is admissible: for each 𝑏 ∈ 𝐴,

𝜈(𝑏) =
{
𝑖𝑏 if 𝑏 ∈ 𝐴′

𝜇(𝑏) otherwise.

Condition (ii) corresponds to what we previously described as the distinction between
“fairness-constrained waste” and “waste.” In other words, we do not consider “waste”
as an actual waste if it gives rise to an additional occurrence of justified-envy. Impor-
tantly, for traditional admissible sets, fairness-constrained non-wastefulness is equal to
non-wastefulness. Remember that the property is a component of the core’s characteriza-
tion explained above.

Now we are ready to define our main solution concept and result.

Definition 3. An allocation 𝜇 ∈ 𝐹 is fairness-guaranteed stable for 𝑅 ∈ ℛ if it meets the
outside option lower bound for 𝑅, is free of justified envy for 𝑅, and is fairness-constrained
non-wasteful for 𝑅.

Let 𝐹𝑆 be the correspondence that associates with each problem the set of fairness-
guaranteed stable allocations for the problem.

Theorem 2. Let 𝐹 ⊆ 𝑀 be an admissible set. For each 𝑅 ∈ ℛ, 𝐹𝑆(𝑅) ≠ ∅ if and only if ∅ ∈ 𝐹.

One may wonder why we consider a group-version of waste as opposed to a pairwise
version of waste. The reason is that, for general admissible sets, the pairwise notion seems
inappropriate. To see this, we first formally define the pairwise version.
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An allocation 𝜇 ∈ 𝐹 is pairwise fairness-constrained non-wasteful for 𝑅 ∈ ℛ if no pair of
agent 𝑎 ∈ 𝐴 and institution 𝑖 ∈ 𝐼 satisfies

(i) 𝑖 𝑃𝑎 𝜇(𝑎) and 𝑎 𝑃𝑖 ∅,

(ii) for each 𝑏 ∈ 𝐴 \ 𝑎, 𝑖 𝑃𝑏 𝜇(𝑏) implies 𝑎 𝑃𝑖 𝑏, and

(iii) the following allocation 𝜈 is admissible: for each 𝑏 ∈ 𝐴,

𝜈(𝑏) =
{
𝑖 if 𝑏 = 𝑎

𝜇(𝑏) otherwise.

We also define the notion of pairwise fairness-guaranteed stability.

Definition 4. An allocation 𝜇 ∈ 𝐹 is pairwise fairness-guaranteed stable for 𝑅 ∈ ℛ if it meets
the outside option lower bound for 𝑅, is free of justified envy for 𝑅, and is pairwise
fairness-constrained non-wasteful for 𝑅.

Let 𝑃𝐹𝑆 be the correspondence that associates with each problem the set of pairwise
fairness-guaranteed stable allocations for the problem. The existence of pairwise fairness-
guaranteed stable allocations follows immediately from Theorem 2.

Corollary 1. Let 𝐹 ⊆ 𝑀 be an admissible set. For each 𝑅 ∈ ℛ, a pairwise fairness-guaranteed
stable allocation for 𝑅 exists if and only if ∅ ∈ 𝐹.

Both solutions reduce to stability for traditional admissible sets. However, the pair-
wise notion seems inappropriate for general admissible sets. To see this, recall Ex-
ample 2. Both ∅ and 𝜇′ are pairwise fairness-guaranteed stable for the problem, and
clearly ∅ is Pareto dominated by 𝜇′. That is, there is an admissible set for which a pair-
wise fairness-guaranteed stable allocation may be Pareto dominated by another pairwise
fairness-guaranteed stable allocation.

In contrast, although fairness-guaranteed stable allocations achieve fairness while leav-
ing the possibility of some Pareto improvement, it is “fairness-constrained efficient”;
namely there is no improvement among allocations that meet the outside option lower
bound and are free of justified envy. Formally, an allocation is fairness-constrained efficient
for 𝑅 ∈ ℛ if it is in 𝐸(𝑅) and no allocation in 𝐸(𝑅) Pareto dominates it. Let 𝐸𝐸 be the
correspondence that associates with each problem the set of fairness-constrained efficient
allocations. We have the following relations between solutions:
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Proposition 3. For each 𝑅 ∈ ℛ, 𝐹𝑆(𝑅) ⊆ 𝐸𝐸(𝑅) ⊆ 𝐸(𝑅).

To conclude this subsection, we formally illustrate our leading example, Example 1 in
Introduction.

Example 1 (revisited). Let 𝐴 = {𝑡1, 𝑡2, 𝑐1, 𝑐2, 𝑐3, 𝑐4} and 𝐼 = {𝑠𝑡1, 𝑠
𝑐
1 , 𝑠

𝑡
2, 𝑠

𝑐
2 , 𝑠

𝑡
3, 𝑠

𝑐
3}. For conve-

nience, let 𝑇 = {𝑡1, 𝑡2} and 𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}. The profile of preferences is as follows:

𝑃𝑠𝑡1
𝑃𝑠𝑡2

𝑃𝑠𝑡3
𝑡1 𝑡2 𝑡1

𝑡2 𝑡1 𝑡2

∅ ∅ ∅
,

𝑃𝑡1 𝑃𝑡2

𝑠𝑡1 𝑠𝑡2
𝑠𝑡2 𝑠𝑡1
∅ 𝑠𝑡3

∅

,

𝑃𝑠𝑐1 𝑃𝑠𝑐2 𝑃𝑠𝑐3
𝑐1 𝑐1 𝑐1

𝑐2 𝑐2 𝑐2

𝑐3 𝑐3 𝑐3

𝑐4 𝑐4 𝑐4

∅ ∅ ∅

,

𝑃𝑐1 𝑃𝑐2 𝑃𝑐3 𝑃𝑐4

𝑠𝑐2 𝑠𝑐2 𝑠𝑐3 𝑠𝑐3
𝑠𝑐3 𝑠𝑐3 𝑠𝑐2 𝑠𝑐2
𝑠𝑐1 𝑠𝑐1 ∅ ∅
∅ ∅

Let 𝑀̃ ⊆ 𝑀 be the set of allocations such that for each 𝜇 ∈ 𝑀̃ and each 𝑖 ∈ {1, 2, 3},
𝜇(𝑠𝑡

𝑖
) ⊆ 𝑇 and 𝜇(𝑠𝑐

𝑖
) ⊆ 𝐶. The set of all allocations that meet the requirements illustrated

in Example 1 is the following:

𝐹 ≡
{
𝜇 ∈ 𝑀̃ | ∀𝑖 ∈ {1, 2, 3}, |𝜇(𝑠𝑡

𝑖
)| = 2|𝜇(𝑠𝑐

𝑖
)|
}
.

For this problem (𝐴, 𝐼, 𝑅, 𝐹),

𝐹𝑆(𝑅) =
{(

𝑠𝑡1 𝑠𝑐1 𝑠𝑡2 𝑠𝑐2 𝑠𝑡3 𝑠𝑐3
∅ ∅ 𝑡1, 𝑡2 𝑐1, 𝑐2, 𝑐3, 𝑐4 ∅ ∅

)}
.

As noted in the Introduction, the following allocation 𝜇 is not fairness-guaranteed
stable:

𝜇 =

(
𝑠𝑡1 𝑠𝑐1 𝑠𝑡2 𝑠𝑐2 𝑠𝑡3 𝑠𝑐3
∅ ∅ 𝑡2 𝑐1, 𝑐2 ∅ ∅

)
.

Let 𝐴′ ≡ {𝑐3, 𝑐4, 𝑡1} and (𝑖𝑐3 , 𝑖𝑐4 , 𝑖𝑡1) ≡ (𝑠𝑐2 , 𝑠
𝑐
2 , 𝑠

𝑡
2). Then, it is easy to see that 𝜇 is not

fairness-guaranteed stable for 𝑅 due to (𝐴′,(𝑖𝑎)𝑎∈𝐴′).
However, 𝜇 is a pairwise fairness-guaranteed stable allocation. As noted in the Intro-

duction, 𝜇 is Pareto dominated by 𝐹𝑆(𝑅). Hence, we should care about the general group
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version of a fairness-guaranteed stable allocation rather than about its pairwise version.16

4.2 Comparative statics

The specification of an admissible set reflects some policy or restrictions in matching
markets. Therefore, a market designer will want to know the welfare effect of changes in
admissible sets. Our next task is to analyze comparative statics with respect to admissible
sets. Throughout this subsection, we fix (𝐴, 𝐼, 𝑅) and vary 𝐹 ⊆ 𝑀. Accordingly, our
generic notation for a problem is an admissible set 𝐹 instead of a preference profile 𝑅. For
each admissible set 𝐹 ⊆ 𝑀, let 𝐹𝑆(𝐹) be the set of fairness-guaranteed stable allocations
for 𝐹.

Proposition 4 indicates that, within fairness-guaranteed stable allocations, expanding
the admissible set never hurts all entities.17

Proposition 4. Let 𝐹, 𝐹′ ⊆ 𝑀 be a pair of problems such that 𝐹 ⊆ 𝐹′. Then, for each 𝜇 ∈ 𝐹𝑆(𝐹′),
there is no 𝜈 ∈ 𝐹𝑆(𝐹) that Pareto dominates 𝜇 for 𝐹′.

5 Discussion

5.1 Restriction on the domain of preferences

In some applications, it is natural to assume that (i) each agent prefers any institution to
the outside option and (ii) each institution prefers filling its position to leaving it vacant.
In this subsection, for such a class of preferences, we investigate how the results change.

16Note that other than 𝜇 and 𝐹𝑆(𝑅), there are three more pairwise fairness-guaranteed stable allocations

for the problem:
(
𝑠𝑡1 𝑠𝑐1 𝑠𝑡2 𝑠𝑐2 𝑠𝑡3 𝑠𝑐3
𝑡1 𝑐1 , 𝑐2 ∅ ∅ ∅ ∅

)
,

(
𝑠𝑡1 𝑠𝑐1 𝑠𝑡2 𝑠𝑐2 𝑠𝑡3 𝑠𝑐3
∅ ∅ ∅ ∅ 𝑡2 𝑐1 , 𝑐2

)
, and ∅.

17As a special case of the relation 𝐹 ⊆ 𝐹′, we can consider the effect of institution-capacities incremental
on agents’ welfare in a traditional matching problem. Assume that each institution 𝑖 ∈ 𝐼 has a capacity
that represents the maximum number of agents it can accommodate. Adding capacities is a good example
of expanding admissible sets. We can regard adding one capacity of institution 𝑖 ∈ 𝐼 as introducing one
institution (with the same preference as institution 𝑖) into the problem. By the classical result such as
Crawford (1991), as long as we focus on agent-optimal stable allocations (formally defined in Appendix B
in the Online Appendix), introducing one institution makes all agents weakly better off, while making all
institutions weakly worse off. Since fairness-guaranteed stability corresponds to agent-optimal stability in
the traditional matching problems (see Proposition 6 in Appendix C.2), adding capacities makes all agents
weakly better off, while making institutions weakly worse off in terms of fairness-guaranteed stability. This
result is consistent with Proposition 4.
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For each 𝑎 ∈ 𝐴, let ℛ𝑎 ⊆ ℛ𝑎 be the class of all-acceptable preferences for agents:

ℛ𝑎 ≡ {𝑅𝑎 ∈ ℛ𝑎 | for each 𝑖 ∈ 𝐼 , 𝑖 𝑅𝑎 ∅}.

Similarly, for each 𝑖 ∈ 𝐼, let ℛ 𝑖 ⊆ ℛ𝑖 be the class of all-acceptable preferences of agents:

ℛ 𝑖 ≡ {𝑅𝑖 ∈ ℛ𝑖 | for each 𝑎 ∈ 𝐴, 𝑎 𝑅𝑖 ∅}.

Let ℛ ≡ ∏
ℎ∈𝐴∪𝐼 ℛℎ be the all-acceptable class.

An admissible set 𝐹 ⊆ 𝑀 is weakly number-based if there is 𝜇 ∈ 𝐹 such that for each
𝜈 ∈ 𝑀 with 𝑤(𝜈) = 𝑤(𝜇), 𝜈 ∈ 𝐹. Namely, for any weakly number-based admissible set,
there is at least one list of numbers such that each allocation whose number-distribution
corresponds to the list is admissible.18 Obviously, each number-based admissible set is
also weakly number-based.

Theorem 3 states that as long as there is at least one “admissible number distribution”,
the existence of fairness-guaranteed stable allocations is guaranteed.

Theorem 3. Let 𝐹 ⊆ 𝑀 be a weakly number-based admissible set. For each 𝑅 ∈ ℛ, 𝐹𝑆(𝑅) ≠ ∅.

For each admissible set 𝐹 ⊆ 𝑀, if ∅ ∈ 𝐹, then 𝐹 is weakly number-based, but the
converse does not hold. Since for “the full domain of preferences”, ∅ ∈ 𝐹 is necessary
and sufficient for 𝐹𝑆 to be well-defined, Theorem 3 strengthens the existence result of
fairness-guaranteed stable allocations by restricting the domain of preferences.

5.2 Related literature

In this section, we discuss how our paper relates to the previous literature. There are two
main approaches to study matching problems with complex requirements on them.

One approach consists in defining a choice function by combining social requirements
and institution’s preferences: for example, in school choice problems (Echenique and
Yenmez, 2015; Ehlers et al., 2014; Erdil and Kumano, 2019; Sönmez and Yenmez, 2022),
and in army branch assignment problems (Sönmez and Switzer, 2013; Kominers and

18An interesting subclass of weakly number-based admissible sets describes a floor constraint: an admissible
set 𝐹 ⊆ 𝑀 represents a floor constraint if for each 𝜇, 𝜈 ∈ 𝑀 with 𝑤(𝜇) ≤ 𝑤(𝜈), 𝜇 ∈ 𝐹 implies 𝜈 ∈ 𝐹. In the
class of floor constraints, Akin (2021) defines floor-respecting stability and shows its existence. Our efficiency-
guaranteed stability corresponds to floor-respecting stability in this class. Hence, 𝐸𝑆 is well-defined for floor
constraints.
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Sönmez, 2016). Stability in the usual sense can be defined with such a profile of choice
functions without any modification. Further, in the literature, a combination of properties
on choice functions has been uncovered that guarantees the existence of stable allocations.19
However, some requirements on matching markets cannot be represented by means of a
single choice function that represents a single institution’s preferences. For example, a
single choice function cannot express the requirement that a particular number of agents
should be assigned some set of institutions.

The other approach consists in explicitly defining admissible allocations in addition
to institution’s preferences. This approach reflects constraints such as social concerns or
market restrictions more directly, as done in this paper. On one hand, it can describe
situations more freely than the former approach; on the other hand, a solution concept
such as stability must be modified to fit the model. There are a number of studies of
matching problems with constraints that follow this approach. We introduce some of
them by categorizing them into specific classes of admissible sets.

Other than the class of number-based admissible sets, which we denote by ℱ # intro-
duced in Section 3, we introduce two more special classes: the general upper-bound class
ℱ and the institution-by-institution class ℱ

∏
.20 Figure 2 illustrates the entire class of

admissible sets and each subclass:

19More precisely, the defined choice functions are required to satisfy a sort of substitutability. See Hatfield
and Kojima (2010) for example. Another example is a model with supply chain networks (Ostrovsky, 2008).
The model can illustrate the situation in Example 1 with choice functions that encompass the requirements
on the market. However, the induced choice function does not satisfy “same-side substitutability” that is a
sufficient condition on choice functions to guarantee existence of stable allocations. However, in the example,
as we saw, stable allocations exist.

20Formal definitions of ℱ and ℱ
∏

are in Appendix C.1 and C.2, respectively.
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The set of all admissible sets

ℱ

ℱ # ℱ
∏

[1]
[3] [4]

[2]

[5]

Figure 2: Classification of admissible sets.

In class [1], many-to-one matching problems have been developed with an admissible
set associated with only the list of capacities (or ceiling constraints) (Gale and Shapley,
1962). Other than ceiling constraints or capacities, an admissible set is also subjected to
floor-constraints (where each institution has a minimum number of agents it must accept).
This allows us to study both [1] and [2] (e.g. (Akin, 2021)). Besides the list of institution-
wise capacities, there would be a type of ceiling constraints restricting the number of
agents that a set of institutions can jointly accommodate. Problems with such admissible
sets, namely, both [1] and [3], is investigated (Kamada and Kojima, 2015, 2017, 2018).21 In
both [1] and [4], a fairness-guaranteed solution, named “the student-optimal fair solution,”
is investigated in Kamada and Kojima (2023).22 The solution coincides with one of our
solutions, the fairness-guaranteed stable solution.23 A nursery school assignment problem
under a “balance” requirement that differs from the one illustrated in Example 1 is studied
in Kamada and Kojima (2022). The admissible set investigated in their model allows us to

21Also, see Aziz et al. (2022) and Cho et al. (2022).
22While they relax the assumption of general upper-bound at the model level, they retain it for their main

results.
23See also Root (2019) and Delacrétaz et al. (2023).
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study not only the entire class of [1] but also a part of [5], which balances the number of
“inter-district transfer of children.” Even though the admissible set illustrated in Example 1
also belongs to [5], it is not in the class studied in Kamada and Kojima (2022). Note that our
model allows us to accommodate any admissible set in the above figure. More importantly,
in any admissible set, as long as the null allocation is admissible, fairness-guaranteed stable
allocations exist.
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Appendix

A Proofs

Proof of Proposition 1

The proof is by means of an example. Let 𝐴 = {𝑎, 𝑏} and 𝐼 = {𝑖}. Let 𝜇 ∈ 𝑀 be such that
𝜇(𝑎) = 𝑖 and 𝜇(𝑏) = ∅. Let 𝐹 = {∅, 𝜇}.

Let 𝑅 ∈ ℛ be such that (i) each agent prefers institution 𝑖 to being unmatched and (ii)
institution 𝑖 prefers agent 𝑏 to agent 𝑎 and to being unmatched. Then, 𝑃(𝑅) = {𝜇} and
𝐸(𝑅) = {∅}. □

Proof of Proposition 2

Let𝑅 ∈ ℛ and𝜇 ∈ 𝐹. Suppose that an allocation 𝜈 ∈ 𝐹 Pareto dominates𝜇 for𝑅. Let𝐴′ ≡ 𝐴

and 𝐼′ ≡ 𝐼. We claim that 𝐶 = 𝐴′ ∪ 𝐼′ 𝐹-blocks 𝜇 for 𝑅 via 𝜈. Since 𝜈 Pareto dominates 𝜇

for 𝑅, the first requirement in the definition of 𝐹-blocking coalitions holds. Further, since
𝐴 \ 𝐴′ = 𝐼 \ 𝐼′ = ∅, all the other requirements trivially hold. Hence, 𝜇 ∉ 𝐸𝑆(𝑅). □

Proof of Theorem 1

Let 𝐹 ⊆ 𝑀 be a number-based admissible set and let 𝑓 be the corresponding indicator
function. If ∅ ∉ 𝐹, then Observation 1 implies that there is a problem for which no
allocation meets the outside option lower bound. Hence, let us assume that ∅ ∈ 𝐹.

Suppose by contradiction that 𝐹 violates in-betweenness. Then, there is a pair of
admissible distributions 𝑤1, 𝑤2 ∈ Z|𝐼 |+ such that

(i) | |𝑤1 | | = | |𝑤2 | |,

(ii) | |𝑤1 ∨ 𝑤2 | | ≤ |𝐴|,

(iii) {𝑤 ∈ Z|𝐼 |+ | 𝑓 (𝑤) = 1} ⊆ {𝑤 ∈ Z|𝐼 |+ | 𝑤 ≤ 𝑤1 ∨ 𝑤2}, and

(iv) for each 𝑤∗ ∈𝑊(𝑤1, 𝑤2), 𝑓 (𝑤∗) = 0.
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We claim that there is a problem for which any admissible allocation that meets the
outside option lower bound has an 𝐹-blocking coalition.

Step 1: Construction of the problem.

We first define the following three sets:

𝐼1 ≡ {𝑖 ∈ 𝐼 | 𝑤1
𝑖 > 𝑤2

𝑖 } =
{
𝑖11 , 𝑖

1
2 , ..., 𝑖

1
|𝐼1 |

}
,

𝐼2 ≡ {𝑖 ∈ 𝐼 | 𝑤2
𝑖 > 𝑤1

𝑖 } =
{
𝑖21 , 𝑖

2
2 , ..., 𝑖

2
|𝐼2 |

}
, and

𝐼= ≡ {𝑖 ∈ 𝐼 | 𝑤1
𝑖 = 𝑤

2
𝑖 } =

{
𝑖=1 , 𝑖

=
2 , ..., 𝑖

=

|𝐼= |

}
.

Then, {𝐼1, 𝐼2, 𝐼=} is a partition of 𝐼.
For each 𝑖 ∈ 𝐼, let 𝑚𝑖 ≡ min{𝑤1

𝑖
, 𝑤2

𝑖
} and 𝑤𝑖 ≡ max{𝑤1

𝑖
, 𝑤2

𝑖
}. Let 𝑚 ≡ (𝑚𝑖)𝑖∈𝐼 and

𝑤 ≡ (𝑤𝑖)𝑖∈𝐼 .
By Assumption (ii), | |𝑤 | | ≤ |𝐴|. Then, there is 𝐴∗ ⊆ 𝐴 such that |𝐴∗ | = | |𝑤 | |. For

convenience, let {𝐴0, 𝐴1, 𝐴2} be a partition of 𝐴∗ such that (i) |𝐴0 | = | |𝑚 | |, (ii) |𝐴1 | =
| |𝑤1 | | − ||𝑚 | |, and (iii) |𝐴2 | = | |𝑤2 | | − ||𝑚 | |. By Assumption (i), |𝐴1 | = |𝐴2 |. Let {𝐴(𝑖)}𝑖∈𝐼 be a
partition of 𝐴0 such that for each 𝑖 ∈ 𝐼, |𝐴(𝑖)| = 𝑚𝑖 . For each 𝑖 ∈ 𝐼, let 𝐴(𝑖) = {𝑎 𝑖1, 𝑎

𝑖
2, ..., 𝑎

𝑖
𝑚𝑖
}.

For convenience, we define an allocation that may not be admissible. Let 𝜇̄ ∈ 𝑀 be
such that (i) for each 𝑖 ∈ 𝐼=, 𝜇̄(𝑖) = 𝐴(𝑖), (ii) for each 𝑖 ∈ 𝐼1, 𝐴(𝑖) ⊆ 𝜇̄(𝑖) ⊆ 𝐴(𝑖) ∪ 𝐴2, (iii) for
each 𝑖 ∈ 𝐼2, 𝐴(𝑖) ⊆ 𝜇̄(𝑖) ⊆ 𝐴(𝑖) ∪ 𝐴1, and (iv) 𝑤(𝜇̄) = 𝑤.24

Given 𝜇̄, we introduce two more notations. For each 𝑘 ∈ {1, 2, ..., |𝐼2 |}, let 𝐴1
𝑘
≡

𝜇̄(𝑖2
𝑘
)\𝐴(𝑖). Similarly, for each 𝑘 ∈ {1, 2, ..., |𝐼1 |}, let 𝐴2

𝑘
≡ 𝜇̄(𝑖1

𝑘
)\𝐴(𝑖).

Let 𝑅 ∈ ℛ be the following:

• Preference for 𝑎 ∈ 𝐴 \ 𝐴∗

For each 𝑎 ∈ 𝐴\𝐴∗ and each 𝑖 ∈ 𝐼,

𝑅𝑎 : ∅, 𝑖.

• Preference for 𝑎 ∈ 𝐴0 =
⋃
𝑖∈𝐼 𝐴(𝑖)

24By 𝑤(𝜇̄) = 𝑤 and the construction of 𝐴, for each 𝑎 ∈ 𝐴, 𝜇̄(𝑎) ≠ ∅.
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For each 𝑖 ∈ 𝐼, each 𝑎 ∈ 𝐴(𝑖), and each 𝑖′ ∈ 𝐼\{𝑖},

𝑅𝑎 : 𝑖 , ∅, 𝑖′.

• For each 𝑘 ∈ {1, 2, ..., |𝐼2 |}, preference for 𝑎 ∈ 𝐴1
𝑘

For each 𝑖 ∈ 𝐼=, and each 𝑖′ ∈ 𝐼1,

𝑅𝑎 : ..., 𝑖 , ..., 𝑖′, ..., 𝑖2𝑘−1, 𝑖
2
𝑘−2, ..., 𝑖

2
1 , 𝑖

2
|𝐼2 | , ..., 𝑖

2
𝑘+1, 𝑖

2
𝑘︸                                 ︷︷                                 ︸

𝐼2

,∅

• For each 𝑘 ∈ {1, 2, ..., |𝐼1 |}, preference for 𝑎 ∈ 𝐴2
𝑘

For each 𝑖 ∈ 𝐼=, and each 𝑖′ ∈ 𝐼2,

𝑅𝑎 : ..., 𝑖 , ..., 𝑖′, ..., 𝑖1𝑘−1, 𝑖
1
𝑘−2, ..., 𝑖

1
1 , 𝑖

1
|𝐼1 | , ..., 𝑖

1
𝑘+1, 𝑖

1
𝑘︸                                 ︷︷                                 ︸

𝐼1

,∅

• For each 𝑘 ∈ {1, 2, ..., |𝐼1 |}, preference for 𝑖1
𝑘
∈ 𝐼1

1. For each 𝑎 ∈ 𝐴(𝑖1
𝑘
), each 𝑎′ ∈ 𝐴1, each 𝑎′′ ∈ 𝐴2, and each 𝑎′′′ ∈ 𝐴\(𝐴(𝑖1

𝑘
) ∪𝐴1 ∪𝐴2),

𝑅𝑖1
𝑘

: ..., 𝑎, ..., 𝑎′′, ..., 𝑎′, ..., ∅, ..., 𝑎′′′, ...

2. For each (𝑎1, ..., 𝑎 |𝐼1 |) ∈
∏|𝐼1 |
ℓ=1 𝐴

2
ℓ
,

𝑅𝑖1
𝑘

: ..., 𝑎𝑘 , ..., 𝑎𝑘−1, ..., 𝑎1, ..., 𝑎 |𝐼1 | , ..., 𝑎 |𝐼1 |−1, ..., 𝑎𝑘+1, ...

• For each 𝑘 ∈ {1, 2, ..., |𝐼2 |}, preference for 𝑖2
𝑘
∈ 𝐼2

1. For each 𝑎 ∈ 𝐴(𝑖2
𝑘
), each 𝑎′ ∈ 𝐴1, each 𝑎′′ ∈ 𝐴2, and each 𝑎′′′ ∈ 𝐴\(𝐴(𝑖2

𝑘
) ∪𝐴1 ∪𝐴2),

𝑅𝑖2
𝑘

: ..., 𝑎, ..., 𝑎′, ..., 𝑎′′, ..., ∅, ..., 𝑎′′′, ...

2. For each (𝑎1, ..., 𝑎 |𝐼2 |) ∈
∏|𝐼2 |
ℓ=1 𝐴

1
ℓ
,

𝑅𝑖2
𝑘

: ..., 𝑎𝑘 , ..., 𝑎𝑘−1, ..., 𝑎1, ..., 𝑎 |𝐼2 | , ..., 𝑎 |𝐼2 |−1, ..., 𝑎𝑘+1, ...

25



• Preference for 𝑖 ∈ 𝐼=

For each 𝑎 ∈ 𝐴(𝑖), each 𝑎′ ∈ 𝐴2, each 𝑎′′ ∈ 𝐴1, and each 𝑎′′′ ∈ 𝐴\(𝐴(𝑖) ∪ 𝐴1 ∪ 𝐴2),

𝑅𝑖 : ..., 𝑎, ..., 𝑎′, ..., 𝑎′′, ..., ∅, ..., 𝑎′′′, ...

Then, we have a problem (𝐴, 𝐼, 𝑅, 𝐹). Again, we simply refer to the problem as 𝑅.
(End of Step 1.)

Suppose by contradiction that 𝐸𝑆(𝑅) ≠ ∅. Let 𝜇 ∈ 𝐸𝑆(𝑅). Let 𝐼 ≡ {𝑖 ∈ 𝐼1 ∪ 𝐼2 |
𝐴(𝑖) ⊈ 𝜇(𝑖)}. Namely, 𝐼 is the set of institutions such that each institution 𝑖 ∈ 𝐼 is not
assigned a student in 𝐴(𝑖) at 𝜇. The following step illustrates the requirements on 𝜇.

Step 2: There is {𝐴̃(𝑖)}𝑖∈𝐼\(𝐼∪𝐼=) such that (i) for each 𝑖 ∈ 𝐼\(𝐼 ∪ 𝐼=), 𝐴̃(𝑖) ⊆ 𝐴1 ∪ 𝐴2 and (ii)
𝜇 is the following:

for each 𝑖 ∈ 𝐼 , 𝜇(𝑖)


⊊ 𝐴(𝑖) if 𝑖 ∈ 𝐼

⊆ 𝐴(𝑖) if 𝑖 ∈ 𝐼=

= 𝐴(𝑖) ∪ 𝐴̃(𝑖) otherwise.

· · · · · (∗)

To prove the statement, we provide a lemma. The lemma states that no institution 𝑖 in
𝐼 ∪ 𝐼= is assigned any agent who does not belong to 𝐴(𝑖).

Lemma 1. For each 𝑖 ∈ 𝐼 ∪ 𝐼=, 𝜇(𝑖) ⊆ 𝐴(𝑖).

Proof of Lemma 1. Suppose by contradiction that there is 𝑖 ∈ 𝐼 ∪ 𝐼= such that 𝜇(𝑖) ⊈ 𝐴(𝑖);
namely, there is an agent-institution pair (𝑎, 𝑖) ∈ 𝐴× 𝐼 such that (i) 𝑖 ∈ 𝐼∪ 𝐼=, (ii) 𝑎 ∈ 𝐴\𝐴(𝑖),
and (iii) 𝜇(𝑎) = 𝑖.

First, we claim that there is 𝑎′ ∈ 𝐴(𝑖) such that 𝜇(𝑎′) ≠ 𝑖. Suppose 𝑖 ∈ 𝐼. Then, by the
definition of 𝐼, the claim automatically holds. Suppose 𝑖 ∈ 𝐼=. Suppose by contradiction
that for each 𝑎′ ∈ 𝐴(𝑖), 𝜇(𝑎′) = 𝑖. Then,𝑚𝑖+1 = |𝐴(𝑖)| + |{𝑎}| ≤ 𝑤𝑖(𝜇) together with𝑤𝑖 = 𝑚𝑖

imply 𝑤𝑖 < 𝑤𝑖(𝜇); namely 𝑤(𝜇) ≰ 𝑤. Then, Assumption (iii) implies 𝑓 (𝑤(𝜇)) = 0. This
means that 𝜇 is not admissible, a contradiction. Hence, there is 𝑎′ ∈ 𝐴(𝑖) such that 𝜇(𝑎′) ≠ 𝑖

for the case of 𝑖 ∈ 𝐼=, too.
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For 𝜇 to meet the outside option lower bound for 𝑅, by construction of 𝑅, 𝜇(𝑎′) = ∅.
Let 𝐴′ ≡ (𝜇(𝑖) ∪ {𝑎′})\{𝑎}, 𝐼′ ≡ {𝑖}, and 𝜈 ∈ 𝑀 be the allocation such that

for each 𝑎̄ ∈ 𝐴, 𝜈(𝑎̄) =


𝑖 if 𝑎̄ = 𝑎′

∅ if 𝑎̄ = 𝑎

𝜇(𝑎̄) otherwise.

Since 𝑤(𝜈) = 𝑤(𝜇) and 𝑓 (𝑤(𝜇)) = 1, 𝜈 ∈ 𝐹. Agent 𝑎 and institution 𝑖 prefer 𝜈 to 𝜇, and
any other member of the coalition match the same ones at 𝜈 as the ones at 𝜇. Hence, (𝐴′, 𝐼′)
𝐹-blocks 𝜇 for 𝑅 via 𝜈.

By Lemma 1 and construction of 𝐼, there is a family of (possibly empty) disjoint sets
{𝐴̃(𝑖)}𝑖∈𝐼\(𝐼∪𝐼=) such that (i) for each 𝑖 ∈ 𝐼\(𝐼 ∪ 𝐼=), 𝐴̃(𝑖) ⊆ 𝐴1 ∪𝐴2 and (ii) 𝜇 is the following:

for each 𝑖 ∈ 𝐼 , 𝜇(𝑖)


⊊ 𝐴(𝑖) if 𝑖 ∈ 𝐼

⊆ 𝐴(𝑖) if 𝑖 ∈ 𝐼=

= 𝐴(𝑖) ∪ 𝐴̃(𝑖) otherwise.

· · · · · (∗)

(End of Step 2.)

In the next step, we check the distribution of 𝜇.

Step 3: 𝑤(𝜇) ∈𝑊(𝑤1, 𝑤2).

Suppose not, one of the following holds:

1. | |𝑤(𝜇)| | ≤ ||𝑤1 | | = | |𝑤2 | | or

2. 𝑤(𝜇) ≰ 𝑤.

If 𝑤(𝜇) ≰ 𝑤, then by Assumption (iii), 𝜇 is not admissible. Hence, it is not the case that
𝑤(𝜇) ≰ 𝑤. Suppose that | |𝑤(𝜇)| | ≤ ||𝑤1 | | = | |𝑤2 | |.

Step 3-1: For each 𝑎′ ∈ 𝐴1 ∪ 𝐴2, 𝜇(𝑎′) ∈ 𝐼1 ∪ 𝐼2.

We claim that for each 𝑎′ ∈ 𝐴1, 𝜇(𝑎′) ∈ 𝐼1 ∪ 𝐼2.25 Suppose by contradiction that there is

25The statement such that for each 𝑎′ ∈ 𝐴2, 𝜇(𝑎′) ∈ 𝐼1 ∪ 𝐼2 can be shown analogously.
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𝑎′ ∈ 𝐴1 such that 𝜇(𝑎′) ∉ 𝐼1 ∪ 𝐼2. Let 𝑎′ ∈ 𝐴1 be such that 𝜇(𝑎′) ∉ 𝐼1 ∪ 𝐼2.
The next lemma shows that no institution in 𝐼1 (𝐼2, respectively) is assigned an agent in

𝐴1 (𝐴2, respectively) at 𝜇.

Lemma 2. (1) For each 𝑖 ∈ 𝐼1\𝐼, 𝐴̃(𝑖) ⊆ 𝐴2 and (2) for each 𝑖 ∈ 𝐼2\𝐼, 𝐴̃(𝑖) ⊆ 𝐴1.

Proof of Lemma 2. First, we claim that for each 𝑎 ∈ 𝐴2, 𝜇(𝑎) ∈ 𝐼1 ∪ {∅}. By (∗) obtained in
Step 2, 𝜇(𝑎′) = ∅. Then, by an analogous argument to one made in the proof of Lemma 1,
it is easy to see that for each 𝑎 ∈ 𝐴2, 𝜇(𝑎) ∉ 𝐼2. Again by (∗), for each 𝑎 ∈ 𝐴2, 𝜇(𝑎) ∈ 𝐼1∪{∅},
which implies (1).

Suppose that there is 𝑎′′ ∈ 𝐴2 such that 𝜇(𝑎′′) = ∅. By construction of 𝑅, an analogous
argument to one made in Lemma 1 leads to the condition that for each 𝑎 ∈ 𝐴1, 𝜇(𝑎) ∈
𝐼2 ∪ {∅}. Hence, (ii) holds. On the contrary, suppose that for each 𝑎′′ ∈ 𝐴2, 𝜇(𝑎′′) ≠ ∅.
Then, for each 𝑎 ∈ 𝐴2, 𝜇(𝑎) ∈ 𝐼1. By (∗) and by Assumption (iii), for each 𝑎 ∈ 𝐴1,
𝜇(𝑎) ∈ 𝐼2 ∪ {∅}. Again, (2) holds in this case.

Before moving to the next lemma, let 𝐼 ≡ {𝑖 ∈ 𝐼2 | 𝑤𝑖(𝜇) > 𝑚𝑖}.

Lemma 3. For each 𝑖 ∈ 𝐼 and each 𝑎 ∈ 𝜇̄(𝑖)\𝐴(𝑖), 𝜇(𝑎) = ∅.

Proof of Lemma 3. Suppose by contradiction that there is a pair (𝑎, 𝑖) ∈ 𝐴 × 𝐼 such that (i)
𝑎 ∈ 𝜇̄(𝑖)\𝐴(𝑖) and (ii) 𝜇(𝑎) ≠ ∅. Without loss of generality, suppose that 𝑖 ∈ 𝐼2; and let
𝑖2
𝑘0 ≡ 𝑖. By construction of 𝜇̄, 𝑎 ∈ 𝐴1. By Lemma 2 and by (∗), 𝜇(𝑎) ∈ 𝐼. Let 𝑖2

𝑘1 ≡ 𝜇(𝑎).
Since 𝑖2

𝑘0 ∈ 𝐼 and 𝑎 ∉ 𝐴(𝑖2
𝑘0), 𝜇(𝑎) ≠ 𝑖2

𝑘0 ; namely 𝑖2
𝑘1 ≠ 𝑖2

𝑘0 . Then, Assumption (iii) implies
that there is 𝑎1 ∈ 𝐴1

𝑘1 such that 𝜇(𝑎1) ≠ 𝑖2
𝑘1 . By Lemma 2, 𝜇(𝑎1) ∈ 𝐼 ∪ {∅}. If 𝜇(𝑎1) = ∅, then

((𝜇(𝑖2
𝑘1) ∪ {𝑎1})\{𝑎}, {𝑖2

𝑘1}) 𝐹-blocks 𝜇 for 𝑅 via an admissible allocation that is obtained
from 𝜇 by replacing 𝑎 with 𝑎1 by 𝑖2

𝑘1 . This violates 𝜇 ∈ 𝐸𝑆(𝑅). Hence, 𝜇(𝑎1) ∈ 𝐼\{𝑖2
𝑘1}. Let

𝑖2
𝑘2 ≡ 𝜇(𝑎1). An analogous argument shows that there is 𝑎2 ∈ 𝐴1

𝑘2 such that 𝜇(𝑎2) ≠ 𝑖2
𝑘2 . By

repeating this argument, and since 𝑖2
𝑘0 ∈ 𝐼, Assumption (iii) and Lemma 2 imply that there

are 𝑖2
𝑘∗ ∈ 𝐼, 𝑎

∗ ∈ 𝐴1
𝑘∗ , and 𝑎 ∈ 𝜇(𝑖2

𝑘∗) such that 𝜇(𝑎∗) = ∅ and 𝑎 ∉ 𝐴1
𝑘∗ .

Let 𝑎 ∈ 𝜇(𝑖2
𝑘∗) with 𝑎 ∉ 𝐴1

𝑘∗ . Then, by an analogous argument to one made in Lemma 1,
((𝜇(𝑖2

𝑘∗)∪{𝑎∗})\{𝑎}, {𝑖2
𝑘∗}) 𝐹-blocks𝜇 for 𝑅 via an admissible allocation, a contradiction.

Lemma 4. Suppose |𝐼2 | ≥ 3. Let a distinct triple 𝑘1, 𝑘2, 𝑘3 ∈ {1, 2, ..., |𝐼2 |}, 𝑎1 ∈ 𝐴1
𝑘1 , and

𝑎3 ∈ 𝐴1
𝑘3 . Then, we have

𝑎1 𝑃𝑖2
𝑘2
𝑎3 ⇒ 𝑖2

𝑘3 𝑃𝑎1 𝑖
2
𝑘2 .
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Proof of Lemma 4. Suppose that 𝑎1 𝑃𝑖2
𝑘2
𝑎3.

Case 1: 𝑘1, 𝑘3 ∈ [1, 𝑘2). By construction of 𝑅𝑖2
𝑘2

, 𝑘1 > 𝑘3. Then, 𝑘2 > 𝑘1 > 𝑘3 holds. By
construction of 𝑅𝑖2

𝑘2
, we have 𝑖2

𝑘3 𝑃𝑎1 𝑖
2
𝑘2 . Similarly, if 𝑘1, 𝑘3 ∈ (𝑘2, |𝐼2 |], then 𝑘1 > 𝑘3 > 𝑘2, so

that 𝑖2
𝑘3 𝑃𝑎1 𝑖

2
𝑘2 .

Case 2: 𝑘1 ∈ [1, 𝑘2) and 𝑘3 ∈ (𝑘2, |𝐼2 |]. Since 1 ≤ 𝑘1 < 𝑘2 < 𝑘3 ≤ |𝐼2 |, by construction of
𝑅𝑎1 , 𝑖2𝑘3 𝑃𝑎1 𝑖

2
𝑘2 𝑃𝑎1 𝑖

2
𝑘1 .

Case 3: 𝑘3 ∈ [1, 𝑘2) and 𝑘1 ∈ (𝑘2, |𝐼2 |]. By construction of 𝑅𝑖2
𝑘2

, 𝑎3 𝑃𝑖2
𝑘2
𝑎1, so that this is not

the case.

The next lemma states that each agent in 𝐴1 who is assigned an institution prefers any
institution in (𝐼2 ∩ 𝐼) ∪ 𝐼1 ∪ 𝐼= to their assignment.

Lemma 5. For each 𝑎 ∈ 𝐴1 with 𝜇(𝑎) ∈ 𝐼2; and each 𝑖 ∈ (𝐼2 ∩ 𝐼) ∪ 𝐼1 ∪ 𝐼=, 𝑖 𝑃𝑎 𝜇(𝑎).

Proof of Lemma 5. Let 𝑎 ∈ 𝐴1 with 𝜇(𝑎) ∈ 𝐼2. By construction of preferences, it is obvious
that for each 𝑖 ∈ 𝐼1 ∪ 𝐼=, 𝑖 𝑃𝑎 𝜇(𝑎). In what follows, we claim that for each 𝑖 ∈ 𝐼2 ∩ 𝐼,
𝑖 𝑃𝑎 𝜇(𝑎). Suppose that 𝐼2 ∩ 𝐼 ≠ ∅; otherwise, the statement obviously holds. Without loss
of generality, suppose that 𝑎 ∈ 𝐴1

𝑘
; namely 𝑎 ∈ 𝜇̄(𝑖2

𝑘
)\𝐴(𝑖2

𝑘
). For clarity of the proof, rename

𝑎 as 𝑎𝑘 .
First, suppose that 𝜇(𝑎𝑘) = 𝜇̄(𝑎𝑘), namely 𝜇(𝑎𝑘) = 𝑖2

𝑘
. By (∗), since 𝑎𝑘 ∉ 𝐴(𝑖2

𝑘
) and

𝜇(𝑎𝑘) = 𝑖2
𝑘
, 𝑖2
𝑘
∉ 𝐼. Then, by construction of preferences, for each 𝑖 ∈ 𝐼2 ∩ 𝐼, 𝑖 𝑃𝑎𝑘 𝑖2𝑘 = 𝜇(𝑎𝑘).

Second, suppose that 𝜇(𝑎𝑘) ≠ 𝜇̄(𝑎𝑘). Without loss of generality, let 𝑖2
𝑘′ ≡ 𝜇(𝑎𝑘). Note

that 𝑖2
𝑘
≠ 𝑖2

𝑘′; and by (∗) and Lemma 3, {𝑖2
𝑘
, 𝑖2
𝑘′} ∩ 𝐼 = ∅. Let 𝑘′′ ∈ {1, 2, ..., |𝐼2 |} be such that

𝑖2
𝑘′′ ∈ 𝐼

2 ∩ 𝐼. Then, 𝑘, 𝑘′, and 𝑘′′ are all distinct. Let 𝑎𝑘′′ ∈ 𝐴1
𝑘′′. By Lemma 3, 𝜇(𝑎𝑘′′) = ∅.

Then, if 𝑎𝑘′′ 𝑃𝑖2
𝑘′
𝑎𝑘 , by a similar argument to one made in Lemma 1, 𝜇 is 𝐹-blocked for 𝑅

via an admissible allocation. Hence, 𝑎𝑘 𝑃𝑖2
𝑘′
𝑎𝑘′′. By Lemma 4, 𝑖2

𝑘′′ 𝑃𝑎𝑘 𝑖
2
𝑘′ = 𝜇(𝑎𝑘). Since 𝑖2

𝑘′′

is arbitrarily chosen from 𝐼2 ∩ 𝐼, for each 𝑖 ∈ 𝐼2 ∩ 𝐼, 𝑖 𝑃𝑎𝑘 𝜇(𝑎𝑘).

We conclude Step 3-1 by constructing an allocation 𝜈 from 𝜇 such that 𝑤(𝜈) = 𝑤1, and
showing that a coalition 𝐹-blocks 𝜇 for 𝑅 via 𝜈. To do this, we need additional notations.
For each 𝑖 ∈ 𝐼=, let 𝑒𝑖 ≡ 𝑚𝑖 − |𝜇(𝑖)| and let 𝑒 ≡ ∑

𝑖∈𝐼= 𝑒𝑖 . By (∗), for each 𝑖 ∈ 𝐼=, 𝑒𝑖 ≥ 0.
First, we claim that each agent in

⋃
𝑖∈𝐼2\𝐼(𝜇(𝑖)\𝐴(𝑖)) can be reassigned to some institution

outside of 𝐼2 \ 𝐼 so as to be its distribution is less than𝑤1. To do this, we show the following
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equation: ∑
𝑖∈𝐼2\𝐼

(|𝜇(𝑖)| − 𝑚𝑖) ≤
∑
𝑖∈𝐼2∩𝐼

(𝑚𝑖 − |𝜇(𝑖)|) +
∑
𝑖∈𝐼1

(𝑤𝑖 − |𝜇(𝑖)|) + 𝑒 · · · (∗∗)

Note that by assumption, we have | |𝑤(𝜇)| | ≤ ||𝑤1 | |; so that

| |𝑤(𝜇)| | ≤ ||𝑤1 | |
⇐⇒

∑
𝑖∈𝐼=

|𝜇(𝑖)| +
∑
𝑖∈𝐼1

|𝜇(𝑖)| +
∑
𝑖∈𝐼2

|𝜇(𝑖)| ≤
∑
𝑖∈𝐼=

𝑚𝑖 +
∑
𝑖∈𝐼1

𝑚𝑖 +
∑
𝑖∈𝐼2

𝑚𝑖 + |𝐴1 |

⇐⇒
∑
𝑖∈𝐼2

(|𝜇(𝑖)| − 𝑚𝑖) ≤
∑
𝑖∈𝐼1

(𝑚𝑖 − |𝜇(𝑖)|) + |𝐴1 | +
∑
𝑖∈𝐼=

(𝑚𝑖 − |𝜇(𝑖)|)

⇐⇒
∑
𝑖∈𝐼2

(|𝜇(𝑖)| − 𝑚𝑖) ≤
∑
𝑖∈𝐼1

(𝑤𝑖 − |𝜇(𝑖)|) +
∑
𝑖∈𝐼=

(𝑚𝑖 − |𝜇(𝑖)|) ∵ |𝐴1 | =
∑
𝑖∈𝐼1

(𝑤𝑖 − 𝑚𝑖)

⇐⇒
∑
𝑖∈𝐼2\𝐼

(|𝜇(𝑖)| − 𝑚𝑖) +
∑
𝑖∈𝐼2∩𝐼

(|𝜇(𝑖)| − 𝑚𝑖) ≤
∑
𝑖∈𝐼1

(𝑤𝑖 − |𝜇(𝑖)|) +
∑
𝑖∈𝐼=

(𝑚𝑖 − |𝜇(𝑖)|)

⇐⇒
∑
𝑖∈𝐼2\𝐼

(|𝜇(𝑖)| − 𝑚𝑖) ≤
∑
𝑖∈𝐼2∩𝐼

(𝑚𝑖 − |𝜇(𝑖)|) +
∑
𝑖∈𝐼1

(𝑤𝑖 − |𝜇(𝑖)|) +
∑
𝑖∈𝐼=

(𝑚𝑖 − |𝜇(𝑖)|)

⇐⇒
∑
𝑖∈𝐼2\𝐼

(|𝜇(𝑖)| − 𝑚𝑖) ≤
∑
𝑖∈𝐼2∩𝐼

(𝑚𝑖 − |𝜇(𝑖)|) +
∑
𝑖∈𝐼1

(𝑤𝑖 − |𝜇(𝑖)|) + 𝑒.

Then, we construct, from 𝜇, an admissible allocation 𝜈 whose distribution is exactly 𝑤1

in the following manner:

Case 1:
∑
𝑖∈𝐼2\𝐼(|𝜇(𝑖)| − 𝑚𝑖) ≤

∑
𝑖∈𝐼2∩𝐼(𝑚𝑖 − |𝜇(𝑖)|).

Let each agent in
⋃
𝑖∈𝐼2\𝐼(𝜇(𝑖)\𝐴(𝑖)) be reassigned to an institution 𝑖 in 𝐼2 ∩ 𝐼 so

that each 𝑖 ∈ 𝐼2 ∩ 𝐼 is assigned at most 𝑚𝑖 agents. Let this allocation be denoted
by 𝜈1. Since

∑
𝑖∈𝐼2\𝐼(|𝜇(𝑖)| − 𝑚𝑖) ≤

∑
𝑖∈𝐼2∩𝐼(𝑚𝑖 − |𝜇(𝑖)|), the allocation 𝜈1 indeed

exists.

We construct 𝜈 from 𝜈1 as follows: For each 𝑖 ∈ 𝐼2∩ 𝐼 that is assigned fewer than
𝑚𝑖 agents at 𝜈1, let it be reassigned some agents in 𝐴(𝑖)\𝜇(𝑖) so as to be assigned
exactly 𝑚𝑖 agents. Then, for each 𝑖 ∈ 𝐼=, all 𝐴(𝑖)\𝜇(𝑖) agents are assigned to 𝑖.
Then, for each each 𝑖 ∈ 𝐼1, let each agent in 𝐴2∪𝐴(𝑖) who are assigned ∅ at 𝜇 be
assigned to 𝑖 so as to be assigned exactly 𝑤𝑖 agents; let the resulting allocation
be 𝜈. By (∗) and Lemma 2, 𝑤(𝜈) = 𝑤1.
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Case 2:
∑
𝑖∈𝐼2\𝐼(|𝜇(𝑖)| − 𝑚𝑖) >

∑
𝑖∈𝐼2∩𝐼(𝑚𝑖 − |𝜇(𝑖)|).

Let 𝐵̄ ⊆ ⋃
𝑖∈𝐼2\𝐼(𝜇(𝑖)\𝐴(𝑖)) be such that |𝐵̄| =

∑
𝑖∈𝐼2∩𝐼(𝑚𝑖 − |𝜇(𝑖)|); and 𝐵 ≡

(⋃𝑖∈𝐼2\𝐼(𝜇(𝑖)\𝐴(𝑖)))\𝐵̄.

Just let each agent in 𝐵̄ be reassigned to an institution 𝑖 in 𝐼2 ∩ 𝐼 in a way that
makes each 𝑖 ∈ 𝐼2 ∩ 𝐼 be assigned exactly 𝑚𝑖 agents; and let it 𝜈1.

Case 2-1: |𝐵| ≤ 𝑒.

Let each agent in 𝐵 be reassigned to an institution in 𝐼= so that each 𝑖 ∈ 𝐼=

is assigned at most 𝑚𝑖 agents. Let this allocation be denoted by 𝜈2. From 𝜈2,
perform the operation as we did in Case 1; we obtain a corresponding 𝜈.

Case 2-2: |𝐵| > 𝑒.

Let 𝐶̄ ⊆ 𝐵 be such that |𝐶̄ | = 𝑒; and 𝐶 ≡ 𝐵\𝐶̄. Let each agent in 𝐶̄ be reassigned
to an institution 𝑖 in 𝐼= so that each 𝑖 ∈ 𝐼= is assigned at most 𝑚𝑖 agents.
Let this allocation be denoted by 𝜈2. Then, from 𝜈2, let each agent in 𝐶 be
reassigned to an institution in 𝐼1. Perform the operation as in Case 1; we obtain
a corresponding 𝜈.

Let 𝐼′ ≡ {𝑖 ∈ 𝐼 | 𝜇(𝑖) ≠ 𝜈(𝑖)}\𝐼 and let 𝐴′ ≡ ⋃
𝑖∈𝐼′ 𝜈(𝑖). By construction of preferences

and Lemma 5, for each 𝑎 ∈ 𝐴′, 𝜈(𝑎) 𝑅𝑎 𝜇(𝑎). By separability of institutions’ preferences,
for each 𝑖 ∈ 𝐼′, 𝜈(𝑖) 𝑃𝑖 𝜇(𝑖). Hence, 𝐴′ ∪ 𝐼′ 𝐹-blocks 𝜇 for 𝑅 via 𝜈, a contradiction.

Step 3-2: | |𝑤(𝜇)| | = | |𝑤 | | − 𝑒.

By Step 3-1, every agent 𝑎′ ∈ 𝐴1 ∪ 𝐴2 is assigned an institution 𝑖 ∈ 𝐼1 ∪ 𝐼2 at 𝜇; that is,⋃
𝑖∈𝐼1∪𝐼2 𝐴̃(𝑖) = 𝐴1 ∪ 𝐴2. By Assumption (iii), 𝐼 = ∅ holds. Then, we have∑

𝑖∈𝐼1∪𝐼2
𝑤𝑖(𝜇) =

∑
𝑖∈𝐼1∪𝐼2

(|𝐴(𝑖)| + |𝐴̃(𝑖)|)

=
∑

𝑖∈𝐼1∪𝐼2
(𝑚𝑖 + |𝐴̃(𝑖)|)

=
∑

𝑖∈𝐼1∪𝐼2
𝑚𝑖 + |𝐴1 | + |𝐴2 | ∵

⋃
𝑖∈𝐼1∪𝐼2

𝐴̃(𝑖) = 𝐴1 ∪ 𝐴2

=
∑

𝑖∈𝐼1∪𝐼2
𝑤𝑖 ∵ 𝑤 = 𝑤1 ∨ 𝑤2. (1)
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We claim that for each 𝑖 ∈ 𝐼1 ∪ 𝐼2, 𝑤𝑖(𝜇) = 𝑤𝑖 . Since 𝜇 ∈ 𝐹, Assumption (iii) implies
that for each 𝑖 ∈ 𝐼1 ∪ 𝐼2, 𝑤𝑖(𝜇) ≤ 𝑤𝑖 . Then, if there is 𝑖 ∈ 𝐼1 ∪ 𝐼2 such that 𝑤𝑖(𝜇) ≠ 𝑤𝑖 ,∑
𝑖∈𝐼1∪𝐼2 𝑤𝑖(𝜇) <

∑
𝑖∈𝐼1∪𝐼2 𝑤𝑖 . This violates equation (1). Hence, for each 𝑖 ∈ 𝐼1 ∪ 𝐼2,

𝑤𝑖(𝜇) = 𝑤𝑖 . Then,

| |𝑤(𝜇)| | =
∑

𝑖∈𝐼1∪𝐼2
𝑤𝑖(𝜇) +

∑
𝑖∈𝐼=

𝑤𝑖(𝜇)

=
∑

𝑖∈𝐼1∪𝐼2
𝑤𝑖 +

∑
𝑖∈𝐼=

𝑤𝑖(𝜇) ∵ ∀𝑖 ∈ 𝐼1 ∪ 𝐼2, 𝑤𝑖(𝜇) = 𝑤𝑖

=
∑

𝑖∈𝐼1∪𝐼2
𝑤𝑖 +

∑
𝑖∈𝐼=

(𝑚𝑖 − 𝑒𝑖) ∵ ∀𝑖 ∈ 𝐼=, 𝑒𝑖 = 𝑚𝑖 − 𝑤𝑖(𝜇)

=
∑

𝑖∈𝐼1∪𝐼2
𝑤𝑖 +

∑
𝑖∈𝐼=

𝑤𝑖 −
∑
𝑖∈𝐼=

𝑒𝑖 ∵ ∀𝑖 ∈ 𝐼=, 𝑤1
𝑖 = 𝑤

2
𝑖

= | |𝑤 | | − 𝑒.

Step 3-3: Conclusion of Step 3.

First, we claim that 𝑒 <
∑
𝑖∈𝐼1(𝑤𝑖(𝜇) − 𝑚𝑖). Suppose by contradiction that

∑
𝑖∈𝐼1(𝑤𝑖(𝜇) −

𝑚𝑖) ≤ 𝑒. Then, by a similar argument to one made in Case 2-1 in Step 3-1, there is an
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admissible allocation 𝜂 via which a coalition 𝐹-blocks 𝜇 for 𝑅, a contradiction. Hence,

| |𝑤(𝜇)| | = | |𝑤 | | − 𝑒 ∵ Step 3-2

> | |𝑤 | | −
∑
𝑖∈𝐼1

(𝑤𝑖(𝜇) − 𝑚𝑖) ∵ 𝑒 <
∑
𝑖∈𝐼1

(𝑤𝑖(𝜇) − 𝑚𝑖)

=
∑
𝑖∈𝐼

𝑤𝑖 −
∑
𝑖∈𝐼1

(𝑤𝑖(𝜇) − 𝑚𝑖)

=
∑
𝑖∈𝐼2

𝑤𝑖 +
∑
𝑖∈𝐼=

𝑤𝑖 +
∑
𝑖∈𝐼1

𝑚𝑖 ∵ ∀𝑖 ∈ 𝐼1, 𝑤𝑖(𝜇) = 𝑤𝑖

=
∑
𝑖∈𝐼2

𝑤𝑖 +
∑
𝑖∈𝐼=

𝑚𝑖 +
∑
𝑖∈𝐼1

𝑚𝑖 ∵ ∀𝑖 ∈ 𝐼=, 𝑤1
𝑖 = 𝑤

2
𝑖

=
∑
𝑖∈𝐼2

(𝑚𝑖 + |𝐴̃(𝑖)|) +
∑
𝑖∈𝐼=

𝑚𝑖 +
∑
𝑖∈𝐼1

𝑚𝑖 ∵ ∀𝑖 ∈ 𝐼2, 𝑤𝑖(𝜇) = 𝑤𝑖

=
∑
𝑖∈𝐼2

𝑚𝑖 + |𝐴1 | +
∑
𝑖∈𝐼=

𝑚𝑖 +
∑
𝑖∈𝐼1

𝑚𝑖

=
∑
𝑖∈𝐼

𝑚𝑖 + |𝐴1 |

= | |𝑤1 | |.

This contradicts to the assumption that | |𝑤(𝜇)| | ≤ ||𝑤1 | |. In conclusion, 𝑤(𝜇) ∈𝑊(𝑤1, 𝑤2).
(End of Step 3.)

The conclusion of Step 3 violates Assumption (iv). □

Proof of Theorem 2

If ∅ ∉ 𝐹, then for a problem, no allocation meets the outside option lower bound for the
problem (Observation 1).

To the contrary, suppose that ∅ ∈ 𝐹. Let 𝑅 ∈ ℛ. To prove existence, we construct a
fairness-guaranteed stable allocation step by step. We say that allocation 𝜇 ∈ 𝐹 is fair for 𝑅
if it meets the outside option lower bound and is free of justified envy for 𝑅.

Step 0: Find a fair allocation for 𝑅.
Note that ∅ is fair for 𝑅. Hence, there is a fair allocation for 𝑅. Let 𝜇0 be a fair allocation
for 𝑅.

Step 𝑡(≥ 1): Eliminate waste.
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Let 𝜇𝑡−1 be a fair allocation for 𝑅, which is obtained in Step 𝑡 − 1 of the proof. If 𝜇𝑡−1 is
fairness-constrained non-wasteful, then 𝜇𝑡−1 ∈ 𝐹𝑆(𝑅). Thus, suppose that 𝜇𝑡−1 is fairness-
constrained wasteful. Let 𝐴′ ⊆ 𝐴 and (𝑖𝑎)𝑎∈𝐴′ ∈ 𝐼𝐴′ be such that

(i) for each 𝑎 ∈ 𝐴′, 𝑖𝑎 𝑃𝑎 𝜇𝑡−1(𝑎) and 𝑎 𝑃𝑖𝑎 ∅,

(ii) for each 𝑎 ∈ 𝐴′ and each 𝑏 ∈ 𝐴\{𝑐 ∈ 𝐴′ | 𝑖𝑐 = 𝑖𝑎},

[𝑏 ∈ 𝐴′ and 𝑖𝑎 𝑃𝑏 𝑖𝑏] =⇒ 𝑎 𝑃𝑖𝑎 𝑏

[𝑏 ∉ 𝐴′ and 𝑖𝑎 𝑃𝑏 𝜇
𝑡−1(𝑏)] =⇒ 𝑎 𝑃𝑖𝑎 𝑏,

(iii) the following allocation 𝜈 is admissible: for each 𝑏 ∈ 𝐴,

𝜈(𝑏) =

𝑖𝑏 if 𝑏 ∈ 𝐴′

𝜇𝑡−1(𝑏) otherwise
.

Let 𝐼′ ≡ ⋃
𝑎∈𝐴′{𝑖𝑎}. Let 𝜇𝑡 ≡ 𝜈 be the allocation defined in the above. First, we claim

that 𝜇𝑡 meets the outside option lower bound for 𝑅. Let 𝑎 ∈ 𝐴′. By (i), 𝜇𝑡(𝑎) 𝑃𝑎 𝜇𝑡−1(𝑎).
Since 𝜇𝑡−1 meets the outside option lower bound for 𝑅, 𝜇𝑡−1(𝑎) 𝑅𝑎 ∅. By transitivity of
preferences, 𝜇𝑡(𝑎) 𝑅𝑎 ∅. Let 𝑎 ∈ 𝐴\𝐴′. By (iii), 𝜇𝑡(𝑎) = 𝜇𝑡−1(𝑎), so that 𝜇𝑡(𝑎) 𝑅𝑎 ∅.

Let 𝑖 ∈ 𝐼′. By (i), for each 𝑎 ∈ 𝜇𝑡(𝑖)\𝜇𝑡−1(𝑖), 𝑎 𝑃𝑖 ∅. Since 𝜇𝑡−1 meets the outside option
lower bound for 𝑅, for each 𝑎 ∈ 𝜇𝑡(𝑖), 𝑎 𝑅𝑖 ∅. Let 𝑖 ∈ 𝐼\𝐼′. Then 𝜇𝑡(𝑖) ⊆ 𝜇𝑡−1(𝑖). Since 𝜇𝑡−1

meets the outside option lower bound for 𝑅, for each 𝑎 ∈ 𝜇𝑡(𝑖), 𝑎 𝑃𝑖 ∅.
Second, we claim that 𝜇𝑡 is free of justified envy for 𝑅. Suppose by contradiction that

there is a pair (𝑎, 𝑖) ∈ 𝐴 × 𝐼 such that 𝑖 𝑃𝑎 𝜇𝑡(𝑎) and there is 𝑎′ ∈ 𝜇𝑡(𝑖) such that 𝑎 𝑃𝑖 𝑎′.
We claim that 𝑖 𝑃𝑎 𝜇𝑡−1(𝑎). Suppose that 𝑎 ∈ 𝐴′. By (i), 𝜇𝑡(𝑎) 𝑃𝑎 𝜇𝑡−1(𝑎). By transitivity

of preferences, since 𝑖 𝑃𝑎 𝜇𝑡(𝑎), 𝑖 𝑃𝑎 𝜇𝑡−1(𝑎). Suppose that 𝑎 ∈ 𝐴\𝐴′. By (iii),𝜇𝑡(𝑎) = 𝜇𝑡−1(𝑎),
so that 𝑖 𝑃𝑎 𝜇𝑡−1(𝑎).

Then, since 𝜇𝑡−1 is free of justified envy for 𝑅, for each 𝑎′′ ∈ 𝜇𝑡−1(𝑖), 𝑎′′ 𝑃𝑖 𝑎. If 𝑖 ∉ 𝐼′, then
since 𝜇𝑡(𝑖) = 𝜇𝑡−1(𝑖)\𝐴′, 𝜇𝑡(𝑖) ⊆ 𝜇𝑡−1(𝑖). This violates the supposition that there is 𝑎′ ∈ 𝜇𝑡(𝑖)
such that 𝑎 𝑃𝑖 𝑎′. Suppose that 𝑖 ∈ 𝐼′. If 𝑎′ ∈ 𝜇𝑡−1(𝑖), then since 𝜇𝑡−1 is free of justified envy
for 𝑅, 𝑎′ 𝑃𝑖 𝑎, a contradiction. Suppose that 𝑎′ ∉ 𝜇𝑡−1(𝑖). Then, 𝜇𝑡(𝑎′) = 𝑖 ≠ 𝜇𝑡−1(𝑎′), so that
by (iii), 𝑎′ ∈ 𝐴′. Since 𝑎 ∈ 𝐴 \ {𝑐 ∈ 𝐴′ | 𝑖𝑐 = 𝑖} and 𝑖 𝑃𝑎 𝜇𝑡(𝑎), by (ii), 𝑎′ 𝑃𝑖 𝑎 must hold
regardless of whether 𝑎 ∈ 𝐴′ or not. This is a contradiction to the fact that 𝜇𝑡 is not free of
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justified envy for 𝑅.
By construction of 𝜇𝑡 , for each 𝑎 ∈ 𝐴, 𝜇𝑡(𝑎) 𝑅𝑎 𝜇𝑡−1(𝑎). Hence, 𝜇𝑡 Pareto dominates for

the agents 𝜇𝑡−1.
Since the set of admissible allocations is finite, so that it is bounded above according to

the agents’ preferences, there is 𝑘 ∈ N+ such that 𝜇𝑘 ∈ 𝐹𝑆(𝑅). □

Proof of Proposition 3

Let 𝑅 ∈ ℛ and 𝜇 ∈ 𝐹𝑆(𝑅). Suppose by contradiction that 𝜇 ∉ 𝐸𝐸(𝑅). Since 𝜇 meets the
outside option lower bound and is free of justified envy for 𝑅, there is 𝜈 ∈ 𝐸(𝑅) such that 𝜈
Pareto dominates 𝜇 for 𝑅. Let 𝐴′ ≡ {𝑎 ∈ 𝐴 | 𝜈(𝑎) ≠ 𝜇(𝑎)} and for each 𝑎 ∈ 𝐴′, let 𝑖𝑎 ≡ 𝜈(𝑎).

We claim that the pair consisting of 𝐴′ and (𝑖𝑎)𝑎∈𝐴′ satisfies (i)–(iii) in the definition
of fairness-constrained non-wastefulness. Since 𝜈 Pareto dominates 𝜇, for each 𝑎 ∈ 𝐴′,
𝑖𝑎 = 𝜈(𝑎) 𝑃𝑎 𝜇(𝑎). Since 𝜈 meets the outside option lower bound for 𝑅, for each 𝑎 ∈ 𝐴′,
𝑎 𝑃𝑖𝑎 ∅. Thus, the pair consisting of𝐴′ and (𝑖𝑎)𝑎∈𝐴′ satisfies (i). Moreover, for each 𝑎 ∈ 𝐴\𝐴′,
𝜈(𝑎) = 𝜇(𝑎). Hence, the pair also satisfies (iii).

Lastly, we check that the pair also satisfies (ii). Let 𝑎 ∈ 𝐴′ and 𝑏 ∈ 𝐴 \ {𝑐 ∈ 𝐴′ | 𝑖𝑐 = 𝑖𝑎}.
Suppose that 𝑏 ∈ 𝐴′ and 𝑖𝑎 𝑃𝑏 𝑖𝑏 . Since 𝑖𝑏 = 𝜈(𝑏), 𝑖𝑎 = 𝜈(𝑎), and 𝜈 is free of justified envy
for 𝑅, 𝑎 𝑃𝑖𝑎 𝑏 holds. Suppose that 𝑏 ∉ 𝐴′ and 𝑖𝑎 𝑃𝑏 𝜇(𝑏). Since 𝜇(𝑏) = 𝜈(𝑏), 𝑖𝑎 = 𝜈(𝑎), and 𝜈

is free of justified envy for 𝑅, 𝑎 𝑃𝑖𝑎 𝑏 holds. Therefore, the pair consisting of 𝐴′ and (𝑖𝑎)𝑎∈𝐴′

satisfies (ii).
In conclusion, 𝜇 is fairness-constrained wasteful for 𝑅, so that 𝜇 ∉ 𝐹𝑆(𝑅), a contradic-

tion. □

Proof of Proposition 4

Let 𝐹, 𝐹′ ⊆ 𝑀 be a pair of problems with 𝐹 ⊆ 𝐹′. Let a pair (𝜇, 𝜈) ∈ 𝐹𝑆(𝐹) × 𝐹𝑆(𝐹′). Then,
by Proposition 3, (𝜇, 𝜈) ∈ 𝐸𝐸(𝐹) × 𝐸𝐸(𝐹′). Since 𝐸𝐸(𝐹) ⊆ 𝐹 ⊆ 𝐹′, 𝜇 ∈ 𝐹′. Since 𝜈 ∈ 𝐸𝐸(𝐹′),
𝜇 does not Pareto dominate 𝜈; otherwise 𝜈 ∉ 𝐸𝐸(𝐹′). □

Proof of Theorem 3

Let 𝐹 ⊆ 𝑀 be a weakly number-based admissible set. Then, there is 𝑤 ∈ Z𝐼+ such that
for each 𝜇 ∈ 𝑀 with 𝑤(𝜇) = 𝑤, 𝜇 ∈ 𝐹. Let 𝑅 ∈ ℛ. For each 𝑖 ∈ 𝐼, set 𝑤𝑖 as a capacity of
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institution 𝑖 and then apply the DA algorithm. Since the preference profile is all-acceptable,
DA produces an allocation, denoted by 𝜇0, whose distribution is 𝑤. Since DA is free of
justified envy, 𝜇0 is free of justified envy for 𝑅. Moreover, since the preference profile is
all-acceptable, 𝜇0 meets the outside option lower bound for 𝑅. Then, by the same argument
in the proof of Theorem 2, there is 𝜇∗ ∈ 𝐹 such that 𝜇∗ ∈ 𝐹𝑆(𝑅). □

B Examples

Example 3. (𝐸𝑆 may be empty-valued.)
Let 𝐴 = {𝑎, 𝑏} and 𝐼 = {𝑖 , 𝑗}. Let 𝑅 ∈ ℛ be the following:

𝑅𝑎 𝑅𝑏 𝑅𝑖 𝑅 𝑗

𝑖 𝑗 {𝑏} {𝑎}
𝑗 𝑖 {𝑎} {𝑏}
∅ ∅ ∅ ∅

Let 𝐹 ⊆ 𝑀 be number-based and let 𝑓 be the corresponding indicator function such that
for each 𝑤 ∈ Z|𝐼 |+ , 𝑓 (𝑤) = 1 if and only if | |𝑤 | | ≤ 1.

We claim that any allocation that meets the outside option lower bound for 𝑅 has an
𝐹-blocking coalition for 𝑅 via an admissible allocation. Let 𝜇 be an allocation that meets
the outside option lower bound for 𝑅. Note that, according to 𝑓 , at most one agent can
be matched with an institution at 𝜇. Further, since ({𝑎}, {𝑖}) 𝐹-blocks ∅ via an admissible
allocation at which agent 𝑎 is assigned institution 𝑖 and no other agent is assigned any
institution. Hence, at 𝜇, one and only one agent is assigned an institution.

By symmetry of the preference profile, without loss of generality, we check the case
in which agent 𝑎 is matched with an institution. If agent 𝑎 is matched with institution 𝑖

at 𝜇, then ({𝑏}, {𝑖}) 𝐹-blocks 𝜇 via an admissible allocation at which agent 𝑏 is assigned
institution 𝑖 and no other agent is assigned any institution. Moreover, if agent 𝑎 is matched
with institution 𝑗 at 𝜇, then ({𝑎}, {𝑖}) 𝐹-blocks 𝜇 via an admissible allocation in which
agent 𝑎 is assigned institution 𝑖 and no other agent is assigned any institution. Therefore,
no efficient-guaranteed stable allocation exists for the problem. ♣

Example 4. (Outside option lower bound and non-existence of 𝐹-blocking coalition are indepen-
dent.)
Let 𝐴 = {𝑎, 𝑏, 𝑐} and 𝐼 = {𝑖 , 𝑗}. Let 𝑅 ∈ ℛ be the following:
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𝑅𝑎 𝑅𝑏 𝑅𝑐 𝑅𝑖 𝑅 𝑗

𝑖 𝑗 ∅ {𝑎, 𝑐} {𝑏}
∅ ∅ {𝑎} ∅

{𝑐}
∅

Let 𝐹 ⊆ 𝑀 be number-based and let 𝑓 be the corresponding indicator function such that
for each 𝑤 ∈ Z|𝐼 |+ , 𝑓 (𝑤) = 1 if and only if 𝑤 ∈ {(0, 0), (0, 1), (2, 1)}.

Consider the following two admissible allocations 𝜇 and 𝜇′:

𝜇 =

(
𝑖 𝑗

𝑎, 𝑐 𝑏

)
and 𝜇′ =

(
𝑖 𝑗

∅ 𝑏

)
.

Since ∅ 𝑃𝑐 𝜇(𝑐) = 𝑖, 𝜇 does not meet the outside option lower bound for 𝑅. We claim
that no coalition 𝐹-blocks 𝜇 for 𝑅. Suppose by contradiction that a coalition 𝐴′∪ 𝐼′ ⊆ 𝐴∪ 𝐼
𝐹-blocks 𝜇 for 𝑅 via an admissible allocation 𝜈. It is easy to verify that agent 𝑐 is the only
agent who can be potentially better off at 𝜇. Then, 𝑐 ∈ 𝐴′ and thus 𝜈(𝑐) = ∅. Since 𝜈 ∈ 𝐹,
𝑤(𝜈) ∈ {(0, 0), (0, 1)}. In either case, 𝜈(𝑎) = ∅, implying 𝜇(𝑎) = 𝑖 𝑃𝑎 ∅ = 𝜈(𝑎). By the first
requirement in the definition of an 𝐹-blocking coalition, 𝑎 ∉ 𝐴′. Then, by the second and
third requirements in the definition of an 𝐹-blocking coalition, 𝜇(𝑎) = 𝑖 ∈ 𝐼′. However,
𝑤(𝜈) ∈ {(0, 0), (0, 1)} implies 𝜈(𝑖) = ∅, which violates the first requirement of 𝐹-blocking
coalitions. Therefore, 𝜇 has no 𝐹-blocking coalition.

In contrast, ∅ meets the outside option lower bound for 𝑅 but ({𝑏}, { 𝑗}) 𝐹-blocks ∅ for
𝑅 via 𝜇′. ♣

C Relation to the literature

In Appendix C, we relate our paper to the literature. In Appendix C.1, we formally
introduce “general upper-bound” class of admissible sets. Then, we compare our solutions
to solutions proposed in the literature. In Appendix C.2, we formally define “institution-
by-institution” class of admissible sets. Then, we compare our solutions to solutions
proposed in the literature.
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C.1 Number-based and general upper-bound class

First, we formally define general upper-bound class denoted by ℱ .26 To do this, first, we
define a suballocation of an allocation. For each pair of allocations 𝜇, 𝜈 ∈ 𝑀, 𝜈 is a
suballocation of 𝜇 if for each 𝑎 ∈ 𝐴, 𝜈(𝑎) ∈ {∅, 𝜇(𝑎)}. For each 𝜇 ∈ 𝑀, let 𝑆𝐵(𝜇) be the set of
all suballocations of 𝜇. A general upper-bound class is, formally,

ℱ ≡ {𝐹 ⊆ 𝑀 | for each pair 𝜇, 𝜈 ∈ 𝑀, if 𝜈 ∈ 𝑆𝐵(𝜇) and 𝜇 ∈ 𝐹, then 𝜈 ∈ 𝐹}.

Namely, constraints that belong to the class allow admissible allocations to remain admis-
sible when some agents unmatch their assignment.

Kamada and Kojima (2017) consider the number-based class that satisfies the general
upper-bound, that is, ℱ ∩ ℱ #. Note that for the number-based class, an admissible set
𝐹 ⊆ 𝑀 is general upper-bound if and only if for each 𝑤, 𝑤′ ∈ Z|𝐼 |+ , 𝑤′ ≤ 𝑤 and 𝑓 (𝑤) = 1
imply 𝑓 (𝑤′) = 1, where 𝑓 is the indicator function that corresponds to 𝐹.27

We introduce three pairwise stability notions proposed in the literature for admissible
sets in ℱ ∩ ℱ #. Each of them is a combination of three properties: meeting the outside
option lower bound, being freedom from justified envy, and being their own non-wasteful.
We begin with a few notations. For each 𝑖 ∈ 𝐼, let 𝑒 𝑖 ∈ Z|𝐼 |+ be the 𝑖-th unit vector, and
let 0 ∈ Z|𝐼 |+ be the zero-vector. In addition, let 𝑒∅ ≡ 0. First, we introduce three non-
wastefulness notions:

An allocation 𝜇 ∈ 𝐹 is KK non-wasteful for 𝑅 ∈ ℛ if no agent-institution pair (𝑎, 𝑖) ∈ 𝐴× 𝐼
satisfies

(i) 𝑖 𝑃𝑎 𝜇(𝑎) and 𝑎 𝑃𝑖 ∅, and

(ii) 𝑓 (𝑤(𝜇) + 𝑒 𝑖 − 𝑒𝜇(𝑎)) = 1.

An allocation 𝜇 ∈ 𝐹 is KK strongly non-wasteful for 𝑅 ∈ ℛ if no agent-institution pair
(𝑎, 𝑖) ∈ 𝐴 × 𝐼 satisfies

(i) 𝑖 𝑃𝑎 𝜇(𝑎) and 𝑎 𝑃𝑖 ∅, and

(ii) 𝑓 (𝑤(𝜇) + 𝑒 𝑖) = 1.

26The term is introduced in Kamada and Kojima (2023) for slightly different meanings.
27The literature has analyzed the general upper-bound class as a whole and includes research on efficient

allocations (Imamura and Kawase, 2022). There is another subclass of constraints, called the matroid class.
It is a subclass of ℱ and has some intersection with both ℱ # and ℱ

∏
.
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An allocation𝜇 ∈ 𝐹 is ABB non-wasteful for𝑅 ∈ ℛ if no agent-institution pair (𝑎, 𝑖) ∈ 𝐴×𝐼
satisfies

(i) 𝑖 𝑃𝑎 𝜇(𝑎) and 𝑎 𝑃𝑖 ∅,

(ii) for each 𝑐 ∈ {𝑏 ∈ 𝐴 | 𝑖 𝑃𝑏 𝜇(𝑏) and 𝑏 𝑃𝑖 𝑎}, 𝑓 (𝑤(𝜇) + 𝑒 𝑖 − 𝑒𝜇(𝑐)) = 1, and

(iii) 𝑓 (𝑤(𝜇) + 𝑒 𝑖 − 𝑒𝜇(𝑎)) = 1.

Then, we define three pairwise stability notions for each non-wastefulness notion: An
allocation 𝜇 ∈ 𝐹 is KK pairwise (KK pairwise weakly; ABB pairwise, resp.) stable for 𝑅 ∈ ℛ if it
meets the outside option lower bound, is free of justified envy, and KK non-wasteful (KK
strongly non-wasteful; ABB non-wasteful, resp.) for 𝑅.28

We define four correspondences. Let 𝑆𝐾𝐾 be the correspondence that associates each
problem with the set of KK-pairwise stable allocations for the problem. Similarly, 𝑊𝑆𝐾𝐾

and 𝑆𝐴𝐵𝐵 associate each problem with the set of KK pairwise weakly stable allocations
and ABB pairwise stable allocations, respectively. An allocation 𝜇 ∈ 𝐹 is agent-optimal KK
pairwise weakly stable for 𝑅 ∈ ℛ if it is in𝑊𝑆𝐾𝐾(𝑅) and no allocation in𝑊𝑆𝐾𝐾(𝑅) dominates
𝜇 for the agents for 𝑅. Let𝑊𝑆

𝐾𝐾
be the correspondence that associates each problem with

the set of all agent-optimal KK pairwise weakly stable allocations for the problem.
We have the following relations between those solutions and solutions presented in

our paper:

Proposition 5. Let 𝐹 ∈ ℱ ∩ ℱ #. We have the following:

(1) For each 𝑅 ∈ ℛ,

𝐹𝑆(𝑅) =𝑊𝑆
𝐾𝐾(𝑅) ⊆ 𝑃𝐹𝑆(𝑅) = 𝑆𝐴𝐵𝐵(𝑅) ⊆ 𝑊𝑆𝐾𝐾(𝑅).

(2) For each 𝑅 ∈ ℛ,

𝐸𝑆(𝑅) ⊆ 𝑆𝐾𝐾(𝑅) ⊆ 𝑃𝐹𝑆(𝑅).

(3) There is 𝐹 ∈ ℱ ∩ ℱ # and 𝑅 ∈ ℛ such that
28KK pairwise stability is originally called strong stability in Kamada and Kojima (2017). However, in the

current paper, in order to distinguish “pairwise” notions and “group-wise” notions, we gave it a different
name. ABB pairwise stability is originally called cut-off stability in Aziz et al. (2022).
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𝑆𝐾𝐾(𝑅)\𝐹𝑆(𝑅) ≠ ∅ and 𝐹𝑆(𝑅)\𝑆𝐾𝐾(𝑅) ≠ ∅.

Proof of Proposition 5. Let 𝐹 ∈ ℱ ∩ ℱ # and 𝑓 be the corresponding indicator function.

(1) Let 𝑅 ∈ ℛ.
𝑃𝐹𝑆(𝑅) ⊆ 𝑆𝐴𝐵𝐵(𝑅)

Let 𝜇 ∈ 𝑃𝐹𝑆(𝑅). Suppose that 𝜇 ∉ 𝑆𝐴𝐵𝐵(𝑅). Since 𝜇 meets the outside option lower
bound and is free of justified envy for 𝑅, there exists an agent-institution pair (𝑎, 𝑖) ∈ 𝐴× 𝐼
that satisfies the three requirements in the definition of ABB non-wastefulness. We claim
that 𝜇 is pairwise fairness-constrained wasteful for 𝑅.

First, let 𝐴′ ≡ {𝑏 ∈ 𝐴 | 𝑖 𝑃𝑏 𝜇(𝑏)} and let 𝑎′ ∈ 𝐴′ be the agent such that for each 𝑐 ∈ 𝐴′,
𝑎′ 𝑅𝑖 𝑐. We check that 𝑓 (𝑤(𝜇) + 𝑒 𝑖 − 𝑒𝜇(𝑎′)) = 1. If 𝑎′ = 𝑎 holds, then by (iii) in the definition
of ABB non-wastefulness, 𝑓 (𝑤(𝜇) + 𝑒 𝑖 − 𝑒𝜇(𝑎

′)) = 1. If 𝑎′ ≠ 𝑎 holds, then by 𝑎′ 𝑃𝑖 𝑎 and
(ii) in the definition of ABB non-wastefulness, 𝑓 (𝑤(𝜇) + 𝑒 𝑖 − 𝑒𝜇(𝑎′)) = 1. Let 𝜈 ∈ 𝑀 be the
following: for each 𝑏 ∈ 𝐴,

𝜈(𝑏) =
{
𝑖 if 𝑏 = 𝑎′

𝜇(𝑏) otherwise.

It is easy to check that 𝑤(𝜈) = 𝑤(𝜇) + 𝑒 𝑖 − 𝑒𝜇(𝑎′). By 𝑓 (𝑤(𝜇) + 𝑒 𝑖 − 𝑒𝜇(𝑎′)) = 1, 𝑓 (𝑤(𝜈)) = 1,
so that 𝜈 is admissible. Hence, (iii) in the definition of pairwise fairness-constrained
non-wastefulness holds.

Second, to check (ii) in the definition of pairwise fairness-constrained non-wastefulness,
let 𝑏 ∈ 𝐴 \ {𝑎′} with 𝑖 𝑃𝑏 𝜇(𝑏). Then, by 𝑏 ∈ 𝐴′ and the definition of 𝑎′, 𝑎′ 𝑃𝑖 𝑏. So, (ii) in
the definition of pairwise fairness-constrained non-wastefulness holds.

Lastly, note that by 𝑎′ ∈ 𝐴′, 𝑖 𝑃𝑎′ 𝜇(𝑎′), and by transitivity of 𝑃𝑖 and the definition of 𝑎′,
𝑎′ 𝑅𝑖 𝑎 𝑃𝑖 ∅. Hence, (i) in the definition of pairwise fairness-constrained non-wastefulness
holds.

Therefore, due to (𝑎′, 𝑖), 𝜇 is not pairwise fairness-constrained wasteful, a contradiction
to 𝜇 ∈ 𝑃𝐹𝑆(𝑅).

𝑆𝐴𝐵𝐵(𝑅) ⊆ 𝑃𝐹𝑆(𝑅)
Let 𝜇 ∈ 𝑆𝐴𝐵𝐵(𝑅). Suppose that 𝜇 ∉ 𝑃𝐹𝑆(𝑅). Since 𝜇 meets the outside option lower

bound and is free of justified envy for 𝑅, there exists an agent-institution pair (𝑎, 𝑖) ∈ 𝐴× 𝐼
that satisfies the three requirements in the definition of pairwise fairness-constrained
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non-wastefulness. Let 𝜈 ∈ 𝐹 be the admissible allocation described by (iii) in pairwise
fairness-constrained non-wastefulness. We claim that 𝜇 is ABB wasteful for 𝑅.

First, it is easy to check that 𝑤(𝜇) + 𝑒 𝑖 − 𝑒𝜇(𝑎) = 𝑤(𝜈). Since 𝜈 is admissible—that is,
𝑓 (𝑤(𝜈)) = 1—we have 𝑓 (𝑤(𝜇) + 𝑒 𝑖 − 𝑒𝜇(𝑎)) = 1. So, (iii) in the definition of ABB non-
wastefulness holds.

Second, to check (ii) in the definition of ABB non-wastefulness, let 𝑏 ∈ 𝐴 \ 𝑎 with
𝑖 𝑃𝑏 𝜇(𝑏). By (ii) in the definition of pairwise fairness-constrained non-wastefulness,
𝑎 𝑃𝑖 𝑏. Hence, {𝑐 ∈ 𝐴 | 𝑖 𝑃𝑐 𝜇(𝑐) and 𝑐 𝑃𝑖 𝑎} = ∅. So, (ii) in the definition of ABB
non-wastefulness trivially holds.

Lastly, note that by the definition of pairwise fairness-constrained non-wastefulness,
𝑖 𝑃𝑎 𝜇(𝑎) and 𝑎 𝑃𝑖 ∅. Thus, (i) in the definition of ABB non-wastefulness trivially holds.

Therefore, due to (𝑎, 𝑖), 𝜇 is ABB wasteful, a contradiction to 𝜇 ∈ 𝑆𝐴𝐵𝐵(𝑅).

𝑆𝐴𝐵𝐵(𝑅) ⊆ 𝑊𝑆𝐾𝐾(𝑅)
This relation has been shown in Proposition 4 in Aziz et al. (2022).

𝐹𝑆(𝑅) ⊆ 𝑃𝐹𝑆(𝑅):
By definition of pairwise fairness-constrained non-wastefulness and fairness-constrained

non-wastefulness, we are done.

𝐹𝑆(𝑅) ⊆ 𝑊𝑆
𝐾𝐾(𝑅)

Let 𝜇 ∈ 𝐹𝑆(𝑅). Suppose that 𝜇 ∉ 𝑊𝑆
𝐾𝐾(𝑅). Then, (∗) 𝜇 is not KK pairwise weakly

stable for 𝑅, or (∗∗) 𝜇 is KK pairwise weakly stable for 𝑅; and there is 𝜈 ∈ 𝑊𝑆𝐾𝐾(𝑅) that
Pareto dominates for the agents 𝜇 for 𝑅.

Suppose that (∗) holds. For the number-based and general upper-bound class, we
understand that any pairwise fairness-guaranteed stable allocation is KK pairwise weakly
stable. Hence, 𝜇 is not pairwise fairness-guaranteed stable for 𝑅, a contradiction to 𝜇 ∈
𝐹𝑆(𝑅).

Suppose that (∗∗) holds. Then, there exists 𝜈 ∈𝑊𝑆𝐾𝐾(𝑅) such that

∀𝑎 ∈ 𝐴, 𝜈(𝑎) 𝑅𝑎 𝜇(𝑎),
∃𝑎 ∈ 𝐴, 𝜈(𝑎) 𝑃𝑎 𝜇(𝑎).
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Let 𝐴′ ≡ {𝑎 ∈ 𝐴 | 𝜈(𝑎) 𝑃𝑎 𝜇(𝑎)} and for each 𝑎 ∈ 𝐴′, let 𝑖𝑎 ≡ 𝜈(𝑎). Note that since 𝜇 meets
the outside option lower bound for 𝑅, 𝑖𝑎 ∈ 𝐼. Then, (i) for each 𝑎 ∈ 𝐴′, 𝑖𝑎 = 𝜈(𝑎) 𝑃𝑎 𝜇(𝑎) and
𝑎 𝑃𝑖𝑎 ∅, where the latter holds by being outside option lower bound of 𝜈 for 𝑅. Moreover,
since 𝜈 is free of justified envy for 𝑅, (ii) for each 𝑎 ∈ 𝐴′ and 𝑏 ∈ 𝐴 \ {𝑐 ∈ 𝐴′|𝑖𝑐 = 𝑖𝑎}, if
𝑏 ∈ 𝐴′ and 𝑖𝑎 𝑃𝑏 𝜈(𝑏) = 𝑖𝑏 , then 𝑎 𝑃𝑖𝑎 𝑏 holds; if 𝑏 ∉ 𝐴′ and 𝑖𝑎 𝑃𝑏 𝜈(𝑏) = 𝜇(𝑏), then 𝑎 𝑃𝑖𝑎 𝑏

holds. In addition, it is easy to check that (iii) for each 𝑏 ∈ 𝐴, if 𝑏 ∈ 𝐴′, then 𝜈(𝑏) = 𝑖𝑏 ; if
𝑏 ∉ 𝐴′, then 𝜈(𝑏) = 𝜇(𝑏). Hence, 𝜇 satisfies (i)–(iii) in the definition of fairness-constrained
non-wastefulness, a contradiction to 𝜇 ∈ 𝐹𝑆(𝑅).

𝑊𝑆
𝐾𝐾(𝑅) ⊆ 𝐹𝑆(𝑅)
Let 𝜇 ∈ 𝑊𝑆

𝐾𝐾(𝑅). Suppose 𝜇 ∉ 𝐹𝑆(𝑅). Since 𝜇 is admissible, free of justified envy,
and meets the outside option lower bound for 𝑅, there exist a set of agents 𝐴′ ⊆ 𝐴

and a sequence of institutions (𝑖𝑎)𝑎∈𝐴′ ∈ 𝐼𝐴
′ satisfying (i)–(iii) in fairness-constrained

non-wastefulness. Let 𝜈 ∈ 𝐹 be the admissible allocation described by (iii) in fairness-
constrained non-wastefulness. Then, we understand that

∀𝑎 ∈ 𝐴 \ 𝐴′, 𝜈(𝑎) = 𝜇(𝑎) 𝑅𝑎 𝜇(𝑎),
∀𝑎 ∈ 𝐴′, 𝜈(𝑎) = 𝑖𝑎 𝑃𝑎 𝜇(𝑎).

Hence, 𝜈 Pareto dominates for the agents 𝜇 for 𝑅. Since 𝜇 is an agent-optimal KK pairwise
weakly stable for 𝑅, 𝜈 is not KK pairwise weakly stable for 𝑅. Note that since 𝜇 meets
the outside option lower bound and is free of justified envy for 𝑅, (ii) and (iii) in fairness-
constrained non-wastefulness imply that 𝜈 also meets the outside option lower bound and
is free of justified envy for 𝑅. Thus, there is a pair (𝑎, 𝑖1) ∈ 𝐴× 𝐼 such that 𝑖1 𝑃𝑎 𝜈(𝑎), 𝑎 𝑃𝑖1 ∅,
and 𝑓 (𝑤(𝜈) + 𝑒 𝑖1) = 1.

Let 𝑎1 ∈ 𝐴 be the agent such that for each 𝑎′ ∈ 𝐴 with 𝑖1 𝑃𝑎′ 𝜈(𝑎′) and 𝑎′ 𝑃𝑖1 ∅, 𝑎1 𝑅𝑖1 𝑎
′.

Consider the following allocation: for each 𝑎′ ∈ 𝐴,

𝜈1(𝑎′) =
{
𝑖1 if 𝑎′ = 𝑎1

𝜈(𝑎′) otherwise.

That is, the allocation 𝜈1 just assigns agent 𝑎1 with institution 𝑖1, while assigning anyone else
with the same institution (possibly ∅) at 𝜈. Since 𝑤(𝜈) + 𝑒 𝑖1 ≥ 𝑤(𝜈1) and 𝑓 (𝑤(𝜈) + 𝑒 𝑖1) = 1,
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general upper-bound implies 𝑓 (𝑤(𝜈1)) = 1; that is, 𝜈1 is admissible. It is easy to check that
𝜈1 meets the outside option lower bound for 𝑅. Moreover, by the definition of 𝑎1, 𝜈1 is
free of justified envy for 𝑅. Since 𝜈1 Pareto dominates for the agents 𝜈 for 𝑅, 𝜈1 also Pareto
dominates for the agents 𝜇 for 𝑅 Thus, 𝜈1 cannot be KK pairwise weakly stable for 𝑅. Since
𝜈1 is admissible, free of justified envy, and meets the outside option lower bound for 𝑅,
there is a pair (𝑎′, 𝑖2) ∈ 𝐴 × 𝐼 such that 𝑖2 𝑃𝑎′ 𝜈1(𝑎′), 𝑎′ 𝑃𝑖2 ∅, and 𝑓 (𝑤(𝜈1) + 𝑒 𝑖2) = 1.

Let 𝑎2 ∈ 𝐴 be the agent such that for each 𝑎′′ ∈ 𝐴 with 𝑖2 𝑃𝑎′′ 𝜈1(𝑎′′) and 𝑎′′ 𝑃𝑖2 ∅,
𝑎2 𝑅𝑖2 𝑎

′′. Consider the following allocation: for each 𝑎′′ ∈ 𝐴,

𝜈2(𝑎′′) =
{
𝑖2 if 𝑎′′ = 𝑎2

𝜈1(𝑎′′) otherwise.

That is, the allocation 𝜈2 just assigns agent 𝑎2 with institution 𝑖2, while assigning anyone else
with the same institution (possibly∅) at 𝜈1. Since𝑤(𝜈1)+𝑒 𝑖2 ≥ 𝑤(𝜈2) and 𝑓 (𝑤(𝜈1)+𝑒 𝑖2) = 1,
general upper-bound implies 𝑓 (𝑤(𝜈2)) = 1; that is, 𝜈1 is admissible. It is easy to check that
𝜈2 meets the outside option lower bound for 𝑅. Moreover, by the definition of 𝑎2, 𝜈2 is free
of justified envy for 𝑅. Since 𝜈2 Pareto dominates 𝜈1 in terms of agents’ welfare, 𝜈2 also
Pareto dominates 𝜇 in terms of agents’ welfare. Thus, 𝜈2 cannot be KK pairwise weakly
stable for 𝑅. Since 𝜈2 is admissible, free of justified envy, and meets the outside option
lower bound for 𝑅, there is a pair (𝑎′′, 𝑖3) ∈ 𝐴 × 𝐼 such that 𝑖3 𝑃𝑎′′ 𝜈2(𝑎′′), 𝑎′′ 𝑃𝑖3 ∅, and
𝑓 (𝑤(𝜈2) + 𝑒 𝑖3) = 1.

By repeating the same procedure, due to finiteness of allocations, we obtain admissi-
ble allocation 𝜈𝑡 at which any agent is assigned with the most preferred institution. The
allocation 𝜈𝑡 is obviously KK pairwise weakly stable for 𝑅 and Pareto dominates for the
agents 𝜇 for 𝑅, a contradiction to 𝜇 ∈𝑊𝑆

𝐾𝐾(𝑅).

(2) Let 𝑅 ∈ ℛ.
𝐸𝑆(𝑅) ⊆ 𝑆𝐾𝐾(𝑅)

Suppose that there exists an allocation 𝜇 ∈ 𝐸𝑆(𝑅) \ 𝑆𝐾𝐾(𝑅). Since 𝜇 is not KK pairwise
stable but efficiency-guaranteed stable for 𝑅, (∗) 𝜇 is not free of justified envy for 𝑅 or (∗∗)
𝜇 is KK wasteful for 𝑅.

Suppose (∗). Then, there exists an agent-institution pair (𝑎, 𝑖) ∈ 𝐴× 𝐼 such that 𝑖 𝑃𝑎 𝜇(𝑎)
and there is 𝑎′ ∈ 𝜇(𝑖) with 𝑎 𝑃𝑖 𝑎

′. Consider a set of agents 𝐴′ ≡ (𝜇(𝑖) \ {𝑎′}) ∪ {𝑎}, a set
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of institutions 𝐼′ ≡ {𝑖}, and an allocation 𝜈 ∈ 𝑀 such that 𝜈(𝑎) = 𝑖, 𝜈(𝑎′) = ∅, and for all
𝑎′′ ∈ 𝐴 \ {𝑎, 𝑎′}, 𝜈(𝑎′′) = 𝜇(𝑎′′). Since 𝑤(𝜈) = 𝑤(𝜇) − 𝑒𝜇(𝑎) and 𝑓 (𝑤(𝜇)) = 1, the general
upper-bound implies 𝑓 (𝑤(𝜈)) = 1; that is, 𝜈 is admissible. Then, it is easy to check that
𝐶 = 𝐴′ ∪ 𝐼′ 𝐹-blocks 𝜇 for 𝑅 via the admissible allocation 𝜈. Therefore, 𝜇 ∉ 𝐸𝑆(𝑅), a
contradiction.

Suppose that (∗∗) holds. Then, there exists an agent-institution pair (𝑎, 𝑖) ∈ 𝐴 × 𝐼 such
that 𝑖 𝑃𝑎 𝜇(𝑎), 𝑎 𝑃𝑖 ∅, and 𝑓 (𝑤(𝜇)+ 𝑒 𝑖 − 𝑒𝜇(𝑎)) = 1. Consider a set of agents 𝐴′ ≡ 𝜇(𝑖)∪ {𝑎}, a
set of institutions 𝐼′ ≡ {𝑖}, and an allocation 𝜈 ∈ 𝑀 such that 𝜈(𝑎) = 𝑖 and for all 𝑎′ ∈ 𝐴\{𝑎},
𝜈(𝑎′) = 𝜇(𝑎′). Note that 𝑤(𝜈) = 𝑤(𝜇)+ 𝑒 𝑖 − 𝑒𝜇(𝑎). Hence, by the supposition, 𝜈 is admissible.
Then, it is easy to check that 𝐶 = 𝐴′ ∪ 𝐼′ 𝐹-blocks 𝜇 for 𝑅 via an admissible allocation 𝜈.
Therefore, 𝜇 ∉ 𝐸𝑆(𝑅), a contradiction.

𝑆𝐾𝐾(𝑅) ⊆ 𝑃𝐹𝑆(𝑅)
By (1) in Proposition 5, we understand 𝑃𝐹𝑆(𝑅) = 𝑆𝐴𝐵𝐵(𝑅). Also, by Proposition 4 in

Aziz et al. (2022), 𝑆𝐾𝐾(𝑅) ⊆ 𝑆𝐴𝐵𝐵(𝑅). Hence, we are done.

(3) We prove the statement by means of an example. Let 𝐴 = {𝑎, 𝑏, 𝑐} and 𝐼 = {𝑖 , 𝑗 , 𝑘}. Let
𝑅 ∈ ℛ be the following:

𝑅𝑎 𝑅𝑏 𝑅𝑐 𝑅𝑖 𝑅 𝑗 𝑅𝑘

𝑖 𝑗 𝑘 {𝑎, 𝑏} {𝑎, 𝑏} {c}
𝑗 𝑖 ∅ {𝑏} {𝑎} ∅
∅ ∅ {𝑎} {𝑏}

∅ ∅

Let 𝐹 ∈ ℱ ∩ ℱ # and let 𝑓 be the corresponding indicator function such that for each
𝑤 ∈ Z|𝐼 |+ , 𝑓 (𝑤) = 1 if and only if for some 𝑤′ ∈ {(1, 0, 1), (1, 1, 0), (0, 1, 1)}, 𝑤 ≤ 𝑤′.

Consider two allocations, 𝜇 and 𝜈:

𝜇 =

(
𝑖 𝑗 𝑘

𝑏 ∅ 𝑐

)
and 𝜈 =

(
𝑖 𝑗 𝑘

𝑏 𝑎 ∅

)
.

Then, it is easy to check that 𝜇 ∈ 𝐹𝑆(𝑅) \ 𝑆𝐾𝐾(𝑅) and 𝜈 ∈ 𝑆𝐾𝐾(𝑅) \ 𝐹𝑆(𝑅).
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C.2 Traditional admissible sets

First, we formally define institution-by-institution class denoted by ℱ
∏

. It is defined as
follows:

ℱ
∏

≡
{
𝐹 ⊆ 𝑀 | there is (𝐹𝑖)𝑖∈𝐼 ∈ (22𝐴)𝐼 such that 𝐹 = {𝜇 ∈ 𝑀 | for each 𝑖 ∈ 𝐼 , 𝜇(𝑖) ∈ 𝐹𝑖}

}
.

Note that for each 𝐹 ∈ ℱ ∩ℱ #∩ℱ
∏

, there is 𝑐 ∈ Z|𝐼 |+ such that 𝐹 is a traditional admissible
set associated with 𝑐.

An allocation 𝜇 ∈ 𝐹 is non-wasteful for 𝑅 ∈ ℛ if there is no pair of agent 𝑎 ∈ 𝐴 and
institution 𝑖 ∈ 𝐼 such that

(i) 𝑖 𝑃𝑎 𝜇(𝑎) and 𝑎 𝑃𝑖 ∅, and

(ii) |𝜇(𝑖)| < 𝑐𝑖 .

Definition 5. An allocation 𝜇 ∈ 𝐹 is stable for 𝑅 ∈ ℛ if it meets the outside option lower
bound, is free of justified envy, and is non-wasteful for 𝑅.

An allocation 𝜇 ∈ 𝐹 is agent-optimal stable for 𝑅 ∈ ℛ if it is stable and no stable alloca-
tion Pareto dominates for the agents it. Let 𝑆 be the correspondence that associates each
problem with the set of stable allocations for the problem. Analogously, let 𝐴𝑆 be the cor-
respondence that associates each problem with the set of agent-optimal stable allocations
for the problem.

Proposition 6. Let 𝐹 ⊆ 𝑀 be a traditional admissible set. For each 𝑅 ∈ ℛ,

𝐹𝑆(𝑅) = 𝐴𝑆(𝑅) ⊆ 𝐸𝑆(𝑅) = 𝑃𝐹𝑆(𝑅) = 𝑆(𝑅).

Proof of Proposition 6. Let 𝐹 ⊆ 𝑀 be a traditional admissible set and let 𝑅 ∈ ℛ.

𝐸𝑆(𝑅) = 𝑆(𝑅)
It is easy to see that for the traditional 𝐹 ⊆ 𝑀, any efficiency-guaranteed stable alloca-

tion is in the core, and vice versa. Since the core is equal to the set of stable allocations, we
have 𝐸𝑆(𝑅) = 𝑆(𝑅).

𝑃𝐹𝑆(𝑅) ⊆ 𝑆(𝑅)
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It suffices to show that pairwise fairness-constrained non-wastefulness implies non-
wastefulness. Let 𝜇 ∈ 𝐹 be an allocation that is wasteful for 𝑅. Then, there is a pair of
agent 𝑎 ∈ 𝐴 and institution 𝑖 ∈ 𝐼 that satisfy 𝑖 𝑃𝑎 𝜇(𝑎), 𝑎 𝑃𝑖 ∅, and |𝜇(𝑖)| < 𝑐𝑖 . Consider the
following allocation 𝜈: for each 𝑏 ∈ 𝐴,

𝜈(𝑏) =

𝑖 if 𝑏 = 𝑎

𝜇(𝑏) otherwise
.

Since |𝜇(𝑖)| < 𝑐𝑖 and 𝐹 is traditional, 𝜈 ∈ 𝐹; that is, 𝜈 is admissible.
Let 𝐴′ ≡ {𝑎′ ∈ 𝐴 | 𝑖 𝑃𝑎′ 𝜇(𝑎′)} and let 𝑎∗ ∈ 𝐴′ be such that for all 𝑎′′ ∈ 𝐴′ \ {𝑎∗}, 𝑎∗ 𝑃𝑖 𝑎′′.

Then, due to (𝑎∗, 𝑖), 𝜇 is pairwise fairness-constrained wasteful for 𝑅. Hence, pairwise
fairness-constrained non-wastefulness implies non-wastefulness.

𝑆(𝑅) ⊆ 𝑃𝐹𝑆(𝑅)
It suffices to show that non-wastefulness implies pairwise fairness-constrained non-

wastefulness. Let 𝜇 ∈ 𝐹 be an allocation that is pairwise fairness-constrained wasteful for
𝑅. Then, there is a pair of agent 𝑎 ∈ 𝐴 and institution 𝑖 ∈ 𝐼 that satisfy the three require-
ments in pairwise fairness-constrained non-wastefulness. Let 𝜈 ∈ 𝐹 be the admissible
allocation described by (iii) in pairwise fairness-constrained non-wastefulness. Since 𝜈 is
admissible and 𝐹 is traditional, |𝜈(𝑖)| ≤ 𝑐𝑖 . By the construction of 𝜈 and 𝑎 ∈ 𝜈(𝑖) \ 𝜇(𝑖),
|𝜇(𝑖)| < 𝑐𝑖 holds. Then, due to (𝑎, 𝑖), 𝜇 is wasteful for 𝑅. Hence, non-wastefulness implies
pairwise fairness-constrained non-wastefulness.

𝐹𝑆(𝑅) ⊆ 𝑃𝐹𝑆(𝑅)
By definition of pairwise fairness-constrained non-wastefulness and fairness-constrained

non-wastefulness, we are done.

𝐹𝑆(𝑅) = 𝐴𝑆(𝑅)
Since 𝐹 is traditional, the set of stable allocations corresponds to the set of KK pairwise

weakly stable allocations. Hence, 𝐴𝑆(𝑅) = 𝑊𝑆
𝐾𝐾(𝑅) holds. By Proposition 5, 𝐹𝑆(𝑅) =

𝑊𝑆
𝐾𝐾(𝑅). Since any traditional 𝐹 ⊆ 𝑀 falls into the number-based class, we have 𝐹𝑆(𝑅) =

𝐴𝑆(𝑅).
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