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Abstract

Game theory proves the existence of a stronger punishment than the Nash

reversion in the repeated games. Recent empirical �ndings in Oligopoly, how-

ever, suggest the implementation of the Nash reversion. In a standard repeated

game setting, we propose a potential answer for this empirical puzzle by using

a re�ned version of the discounted utility that exhibits gain/loss asymmetry,

where players discount gains more than losses. Our main result is as follows:

among gain/loss robust subgame perfect equilibria, the Nash reversion o¤ers the

strongest punishment. The robustness is based on the assumption that players

are unsure about their own level of gain/loss asymmetry and choose only the

strategies that are subgame perfect for any level of gain/loss asymmetry they

can perceive as possible.
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1 Introduction

1.1 Overview

Over the decades, theoretical work on repeated games have con�rmed that a choice

of credible punishment is a crucial factor for determining a level of collusion. A

well-known punishment path is a sequence of the static Nash equilibrium action,

and a trigger strategy pro�le that uses this sequence as punishment is called the

Nash reversion strategy pro�le. As for the strongest punishment, Abreu (1988) shows

in his seminal work that the worst subgame perfect equilibrium, referred to as the

optimal penal code, can be used as punishment. Abreu (1986) identi�es this optimal

penal code for repeated Cournot oligopoly and demonstrates that it can be used to

implement a collusive equilibrium path that is not sustainable under the conventional

Nash reversion strategy pro�le.

With Abreu�(1986, 1988) results, we expect that �rms have a strong incentive

to use the optimal penal code in an actual oligopolistic situation. However, in a re-

cent study of the well-known international Oligopoly formed in the Vitamin markets,

Igami and Sugaya (2022) con�rm that the data, as well as the comments by cartel

participants on legal documents, supports the implementation of the Nash reversion

strategy pro�le. Their �nding raises a puzzle: why do �rms choose the Nash reversion

strategy pro�le over alternative equilibrium strategy pro�les that seem to support a

better equilibrium path?

We conjecture that this puzzle is a consequence of the discounted utility, which is

a standard assumption in almost all repeated games without complete patience. Our

claim is that we can propose a potential answer for this puzzle if we use a model that

extends the discounted utility consistently to some of its empirical anomalies. The

anomaly we consider to be a cause of this puzzle is gain/loss asymmetry, which is a

phenomenon whereby a decision maker tends to discount gains more than he discounts

losses. This anomaly was �rst documented by Thaler (1981) and repeatedly con�rmed

in many subsequent experiments.1

Among a few representations that are capable to induces gain/loss asymmetry, we

choose a version of the preference representation suggested by Wakai (2008), which

identi�es a notion of intertemporal utility smoothing as a source of gain/loss asymme-

1See Frederick, Loewenstein, and O�Donoghue (2002) for a survey of experimental studies on

gain/loss asymmetry.
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try. The advantage of Wakai�(2008) representation is that it belongs to a class of the

recursive utility suggested by Koopmans (1960) that describes history-independent,

stationary, and dynamically consistent preferences. In an oligopolistic situation, �rms

are expected to be sophisticated enough to behave rationally so that the assumption

of recursivity is central. Moreover, we want to resolve the puzzle with the minimal

departure from the discounted utility.

Formally, at each time t, some of the players evaluate a payo¤ sequence U =

(u0; u1; :::) based on the following function:

Vt(U) = Vt((ut; ut+1; :::))

� min
�2[�;�]

[(1� �)ut + �Vt+1(U)]

= ut + �max fVt+1(U)� ut; 0g+ �min fVt+1(U)� ut; 0g :

(1)

where � and � are parameters satisfying 0 < � � � < 1. Evaluating function (1) is

one-parameter richer than the discounted utility, which is a special case of (1) with

� = �. The value of (1) also becomes a weighted average of a payo¤ sequence at the

e¤ective selection of discount factors, where an exact form of the representation will

be explained in the text.

Evaluating function (1) exhibits a key feature called recursive gain/loss asymme-

try: the di¤erence between future value Vt+1(U) and current payo¤ ut de�nes a gain

or loss, and gains and losses are discounted by � and �, respectively. Thus, gains

are discounted more than losses. We call � and � the gain discount factor and the

loss discount factor, respectively, whereas the distance between � and � represents

a degree of gain/loss asymmetry. Moreover, it has been shown that the player j

is said to be more time-variability averse than the player i if [�j; �j] � [�i; �i]. A

more time-variability averse player prefers less volatile utility (equivalently, payo¤)

sequences.

Besides the experimental motivation mentioned above, gain/loss asymmetry seems

to be consistent with observed behavior of �rms. To sustain the oligopoly, �rms must

be sensitive enough to avoid future punishment, which suggests the usage of a high

discount factor when they face a future loss. On the other hand, the corporate �nance

literature has documented a short-term oriented nature of managers�objectives. With

a notion of loss aversion in mind, this tendency must be more evident if current payo¤

is regarded as a loss relative to the value receiving in the future, which suggests the

usage of a low discount factor when they face a future gain.
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Given the above intuition, we �rst investigate the properties of the optimal penal

code for the recursive utility because it is the largest class of preference relations that

inherit the key features assumed in the discounted utility. This also helps us to isolate

properties unique to (1). We con�rm that the implications derived by Abreu (1988)

for general stage games and by Abreu (1986) for a particular application to repeated

Cournot oligopoly extend to the recursive utility. For the latter implication, the

optimal penal code has a structure similar to a stick-and-carrot structure shown

in Abreu (1986): a player deviating from a target outcome path will be penalized

severely until it accepts the penalty, and this deviator will receive a better payo¤ as

compensation in a subsequent period once the deviator accepts the penalty.

With this in mind, we now investigate the limiting behavior of the optimal penal

code, where the gain discount factor � converges to zero while a loss discount factor

� is given and �xed. This investigation is possible only for evaluating function (1)

because in the discounted utility model, there is only a single discount factor. We

then identify the property, referred to as a reverse Folk theorem, which is new and

unique to evaluating function (1): Consider the set of pure strategy subgame perfect

equilibria in the repeated game that satisfy a certain regularity condition. Assume

that one of the players preferences are represented by (1). As the gain discount fac-

tor � goes to zero for this player, that is, as the player becomes extremely averse

to a current period loss, the penal code used in the Nash reversion strategy pro�le

asymptotically becomes an optimal penal code. The regularity condition we impose

is called a coherent action space, which generalizes the properties shown in the sym-

metric subgame perfect equilibria. Therefore, our result covers some of asymmetric

subgame perfect equilibria.

Evaluating function (1) is a form of recursive utility, where the optimal penal code

exhibits the stick-and-carrot structure. Because the current utility is weakly less than

the utility of future payo¤s, the gain discount factor � is used to evaluate the future

utility. As a decrease in the gain discount factor � causes the decreased anticipation

of future gain, the player no longer accepts a sever current penalty at a given level of

future compensation. Therefore, the optimal penalty becomes weaker. This suggests

that the gain discount factor � controls the enforceability of the optimal penal code.

Intuitively, our result states that when the enforceability of the optimal penal code

vanishes, the current action in the optimal penal code must converge to the Nash

equilibrium action.

In terms of the role of the loss discount factor �, we investigate the limiting
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behavior of equilibria where a loss discount factor � converges to one while a gain

discount factor � is given and �xed. We show that as the loss discount factor �

approaches to one, the player increasingly fears the penalty so that the player avoids

deviating from the collusive path. Thus, the loss discount factor � determines the

level of deterrence of a given penal code. Moreover, this result is independent of the

gain discount factor �. Therefore, an increase in the loss discount factor � opens a

possibility of collusion even if the player is nearly myopic when facing a current period

loss, that is, when the gain discount factor � is nearly zero.

We now state our main result: the penal code used in the Nash reversion strategy

pro�le is a unique optimal penal code when we restrict an attention to the collection of

the subgame perfect equilibria that are robust to the gain/loss asymmetry in discount

factors. Here, a robust equilibrium is de�ned as a strategy pro�le that is subgame

perfect for any combination of players who are more time-variability averse than the

players with given thresholds of gain and loss discount factors. This assumption

captures a situation where players are unsure about a level of gain/loss asymmetry

except the threshold level and avoid selecting a strategy pro�le that is an equilibrium

only under a particular combination of discount factors. In this sense, we e¤ectively

introduce a selection criteria for subgame perfect equilibria of repeated games.

To study the robust equilibria discussed above, it is essentially identical to con-

sider the strategy that remains as an equilibrium when the players become more

time-variability averse. Thus, a decrease in the gain discount factor � forces the op-

timal penal code to converges to the strategy that generates a sequence of the static

Nash equilibrium action, while an increase in the loss discount factor � makes the

player more foresighted so that collusive payo¤s can be attained. We con�rm that

when the players use the Nash reversion strategy pro�le, a constant sequence that

is an equilibrium under the threshold level of gain/loss asymmetry remains to be an

equilibrium for a more time-variability averse player. This result contrast to the �nd-

ings in a standard discounted utility: the set of equilibria is simply getting smaller if

discount factors decreases. Thus, only the strategy that generates a sequence of the

static Nash equilibrium action remains at the limit, and the players no longer obtain

any collusive payo¤s.

1.2 Outline and Related Literature

The paper proceeds as follows. Section 2 de�nes the setting of the game and examines

the characteristics of evaluating function (1). Assuming a general form of recursive
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utility, Section 3 characterizes the optimal penal code and the associated reversion

strategy pro�le. Section 4 de�nes the coherent action space and derives the reverse

Folk theorem. We also examine the relation between evaluating function (1) and the

standard Folk theorem. Section 5 shows our main result that among the gain/loss

robust subgame perfect equilibria, the Nash reversion strategy pro�le is based on the

strongest punishment. Section 6 concludes the paper with Section 7 acknowledging

the support. Most of proofs are presented in the appendices.

We now review the related literature. As for the models of discounting that

exhibit gain/loss asymmetry, evaluating function (1) is closely related to the models

suggested by Loewenstein and Prelec (1992) and Shalev (1997), both of them are

motivated by loss aversion (Kahneman and Tversky (1979), Tversky and Kahneman

(1991)). Loewenstein and Prelec (1992) de�ne a gain or a loss based on a variation

in a utility sequence, whereas Shalev (1997) de�nes a gain or a loss based on the

di¤erence in utility between adjacent periods. However, the aforementioned models

describe static choices, and it does not belongs to recursive preference.

In terms of consistency with empirical �ndings, Igami and Sugaya (2022) estimate

the repeated game implications based on a more realistic setup that includes a demand

shifter and competitive fringe suppliers. In their model, the �rms engaged in the cartel

�rst expected no break up on the equilibrium path, but the cartel actually broke down

on the course because unforeseen negative news about competitive fringe suppliers

arrived. Our model is regarded as an approximation of the cartel phase as well as

the broke down phase, where in the latter phase �rms produced the Nash equilibrium

quantity.

Some papers study repeated games without the assumption of discounted utility.

Chade, Prokopovych, and Smith (2008) assume that the players have ��� preferences,

and characterize the Strotz-Pollak equilibria by Peleg and Yaari (1973). Obara and

Park (2017) extend the analysis to general discounting functions including the ���

ones as special cases.2 We explore the implications of general recursive utility.

In that sense, their companion paper (Obara and Park (2014)) is more closely

related to ours because it considers a class of time preferences including recursive

utilities as special cases. The authors�results on the structure of Strotz-Pollak equi-

2The ��� preferences are a class of the discount functions with present bias. Obara and

Park (2017) consider both the discounting functions with present bias and the functions with future

bias.
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libria are similar to our results under recursive utility.3 The di¤erence is that while

Obara and Park (2014) examine how the general methodology for the discounted

utility model extends to general time preferences possibly without recursive struc-

ture (under the Strotz-Pollak equilibrium concept), we focus on the case of recursive

gain/loss asymmetry and provide its implications on the determination of the opti-

mal penal code in detail. Their paper also provides a proof for the existence of the

equilibria in their context, where if it is restricted to the recursive utility, it can be

regarded as the proof of Proposition 1.

Kochov and Song (2023) employ the recursive utility criterion by Uzawa (1968)

and Epstein (1983) as well as the recursive utility criterion by Epstein and Zin (1989).

In the former model, a player�s discount factor for the next period depends on the

current period payo¤, whereas in the latter model, the discount factor is �xed for the

deterministic sequences. They �nd situations for the players to manage risk and trade

intertemporally. In our model, we focus on pure strategy subgame perfect equilibria

to derive clear implications for the optimality of the Nash reversion strategy pro�le

via the role of gain/loss asymmetry.

2 Model

2.1 Setting

The stage game, denoted by G =
�
I; fAigIi=1 ; fuig

I
i=1

�
, is an I-player simultaneous

move game, where player i�s action space Ai is a compact metric (therefore, topolog-

ical) space with multiple elements and player i�s payo¤ (possibly atemporal utility)

function ui :
IY
i=1

Ai ! R is continuous.4 By abuse of notation, I indicates both the

number of players and the set of the players. We de�ne A by A �
IY
i=1

Ai and use

q(t) � (q
(t)
1 ; :::; q

(t)
I ) 2 A to denote a vector of actions taken at time t by all players,

where time t varies over N = f0; 1; 2; :::g. We refer to q(t) as an action pro�le or a
time-t action pro�le if we want to emphasize the time period. We also use q(t)�i to

indicate the time-t action pro�le by all players except player i.

3The Strotz-Pollak equilibrium concept reduces to the standard equilibrium concept under re-

cursive utility.
4As usual, the distance is not zero between di¤erent elements in A.
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We consider the supergame G1 obtained by repeating game G in�nitely often.

For each t with t > 0, let H t�1 be de�ned by H t�1 � At, each element of which,

ht�1 � (q(0); :::; q(t�1)), is a series of realized actions at all periods before period t.

We assume that H�1 � A0, which consists of a single element. For each player i,

we focus on a pure strategy si, that is, a sequence of functions si � fsi;tg1t=0, where
si;t : H

t�1 ! Ai for each t. A strategy pro�le s is de�ned by s � (s1; :::; sI), and

let S be the collection of strategy pro�les. We de�ne the time-t action pro�le q(t)(s)

by q(t)(s) � (q
(t)
1 (s); :::; q

(t)
I (s)), where q

(t)
i (s) is the time-t action taken by player i

when the players follow s. A path Q is a sequence of action pro�les denoted by

Q � (q(0); q(1); :::). In particular, Q(s) is the path of the strategy pro�le s, that

is, Q(s) � (q(0)(s); q(1)(s); :::). Moreover, for any path Q 2 (A)1, let Ui(Q) be the
sequence of player i�s payo¤s (ui(q

(0)
1 ; :::; q

(0)
I ); ui(q

(1)
1 ; :::; q

(1)
I ); :::) 2 [ui (A)]

1, where

ui is continuous on A and ui (A) is the image of ui.

We adopt a continuous and strictly monotone utility function Vi;t : [ui (A)]
1 ! R,

where we adopt the product topology on A1 as well as [ui (A)]
1. Because A is

compact and ui is continuous on A, it follows from Tychono¤�s theorem that A1 and

[ui (A)]
1 are compact. Moreover, the continuity of Vi;t implies that the image of Vi;t

is compact. We then say that player i�s preferences follow the recursive utility if Vi;t
satis�es

Vi;t(Ui(Q)) = Wi(ui(q
(t)
1 ; :::; q

(t)
I ); Vi;t+1(Ui(Q))); (2)

where the aggregator function Wi : conv [ui (A)] � R ! R is continuous and strictly
increasing in both arguments. The recursive utility represents all classes of continuous

and dynamically consistent intertemporal preferences, which are history-independent,

stationary, and monotone in payo¤s.5 Furthermore, let Q(q) be a constant sequence

of q 2 A. We then de�ne the implied utility of constant payo¤ ui(q) by

u�i (q) � Vi;0(Ui(Q(q)));

which is continuous on A.6 We interpret u�i (q) as the atemporal utility of action q

expressed in a comparable scale to the utility of payo¤ sequences. We will frequently

utilize this function in the following sections.

5Given history independence, Vi;t depends solely on (ui(q(t)); ui(q(t+1)); :::).
6An open set in A is identi�ed with an open set in C � A1 under the subspace topology, where

C is the collection of all constant paths.
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2.2 Recursive Preferences Exhibiting Gain/Loss Asymmetry

To show the robustness of the Nash reversion strategy pro�le, we later assume that

some or all of the players�utility functions satisfy the following class of the recursive

utility: At each time t, player i evaluates his payo¤ sequence Ui(Q) based on a version

of the model of utility smoothing as developed by Wakai (2008):

Vi;t(Ui(Q)) � min
f�t+�g1�=12[�i;�i]1

( 1X
�=0

(1� �t+�+1)
 

�Y
� 0=1

�t+� 0

!
ui(q

(t+�))

)
; (3)

where �i and �i are parameters satisfying 0 < �i � �i < 1. Thus, representation (3)
leads to a weighted average of a payo¤ sequence, where the sequence of the weights

applied depends on the nature of the payo¤ sequence.7

Representation (3) is a class of the recursive utility (2) under the aggregator

function satisfying the following relation

Wi(ui(q
(t)); Vi;t+1(Ui(Q))) = min

�2[�i;�i]
[(1� �)ui(q(t)) + �Vi;t+1(Ui(Q))]: (4)

Following the explanation in the introduction, we will call �i and �i the gain discount

factor and the loss discount factor, respectively, whereas the distance between �i and

�i represents the degree of gain/loss asymmetry. Moreover, representations (3) and

(4) satisfy the following two properties:

(i) For any q 2 A; u�i (q) = ui(q):
(ii) For any q 2 A; u�i (q) =Wi(ui(q); u

�
i (q)):

Under these conditions, the utility of future payment becomes comparable to the

(implied) utility of the current payment.

The gain/loss asymmetry introduced in (3) expresses the desire to lower the volatil-

ity involved in a payo¤ sequence. To see this further, let U denote a sequence of

payo¤s, and let u denote a sequence of a constant payo¤ u. Then, by following Wakai

(2008), we say that a player j is more time-variability averse than a player i if for

any u and any U ,

Vi;t(u) � Vi;t(U) implies Vj;t(u) � Vj;t(U),
and the latter is strict if the former is strict.

7It is easy to see that
1X
�=0

(1� �t+�+1)
 

�Y
� 0=1

�t+� 0

!
= 1 for any t.
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Two players agree on the ranking of a constant payo¤ sequence, whereas any payo¤

sequence disliked by the player i is disliked by the player j. Moreover, Wakai (2008)

shows that this relation is translated into the set inclusion, that is, the player j is

more time-variability averse than the player i if and only if

[�j; �j] � [�i; �i]; (5)

where [�i; �i] and [�j; �j] represent sets of discount factors for Vi;t and Vj;t, respectively.

To show the robustness of the Nash reversion strategy pro�le, we later examine

the situation where a player is strongly inclined to shift the future payo¤s to the

current period when the utility of the future payo¤s is higher than the utility of the

current payo¤. For example, if a �rm faces a steady stream of pro�ts but encounters

a shortfall in the current pro�t, to satisfy the stockholders request for a steady stream

of dividend payment, it may well have a strong incentive to adjust production plan

to smoothen the stream of pro�ts. Then, the �rm ends up with behaving nearly

myopically when the current pro�t is lower than the future pro�t. This situation

corresponds to the case where the �rm has a signi�cantly small gain discount factor

�i. In Section 4, we will investigate a case where such a tendency progressively become

stronger by letting the gain discount factor �i approach to zero.

3 Background Results of Recursive Utility

In this section, we identify and characterize the optimal penal code under the re-

cursive utility. This analysis highlights the consequences of the key assumptions

inherited from the discounted utility and provides background results for our main

investigation.

Let S� be the set of all pure strategy subgame perfect equilibria of G1. We assume

that S� is nonempty.8 Moreover, for each i, we de�ne vi and vi by

vi � inf fVi;0(Ui(Q(s))) js 2 S�g

and

vi � sup fVi;0(Ui(Q(s))) js 2 S�g ;

8A su¢ cient condition applied to any Wi is that the stage game G has a pure strategy Nash

equilibrium.
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where Vi;0 follows (2). Appendix A shows the existence of subgame perfect equilibria

si and si in S� under which player i�s utility is vi and vi, respectively. This result is

an extension of Abreu�s (1988) Proposition 2 to the situation of recursive utility.

Next, for an (I + 1)-tuple of paths (Q;Q1; : : : ; QI), we de�ne a reversion strategy

pro�le s(Q;Q1; : : : ; QI) as follows: (i) Q is the initial ongoing path, and players play it

until some player deviates unilaterally from it, and (ii) if player j unilaterally deviates

from the current ongoing path, Qj becomes the next ongoing path, and they play it

until some player deviates unilaterally from it.9 If all the players follow this reversion

strategy pro�le without a deviation, the path becomes Q regardless of whether it is

an equilibrium. In Appendix A, we show how to construct si and si based on the

reversion strategy pro�les.

A key result of Abreu (1988) is that for the discounted utility model, any subgame

perfect equilibrium path Q is implemented as a subgame perfect equilibrium by the

reversion strategy pro�le s(Q;Q(s1); : : : ; Q(sI)). Under the equilibrium, the ongoing

path after any player�s unilateral deviation is the player�s worst equilibrium path. The

vector (s1; :::; sI) is called an optimal penal code. Given this result, for an expositional

purpose, we call si the optimal penalty for the player i. We also refer to a collection of

subgame perfect equilibria (s1; :::; sI) as a penal code if there exists some path Q such

that s(Q;Q(s1); : : : ; Q(sI)) becomes the subgame perfect equilibrium in S�. With

this de�nition, a penal code that implements all of the subgame perfect equilibrium

paths via the reversion strategy pro�le is an optimal penal code.

The above result simpli�es the analysis of subgame perfect equilibria because we

can restrict our attention to the paths that are supported by the optimal penal code.

The next proposition shows that the same simpli�cation holds for the recursive utility

(see Appendix A for the proof).

Proposition 1: Suppose that players evaluate payo¤ sequences by (2). Then, for
any subgame perfect equilibrium s� in S�, the equilibrium path Q(s�) can be gen-

erated as the path of the reversion strategy pro�le s(Q(s�); Q(s1); :::; Q(sI)), where

s(Q(s�); Q(s1); :::; Q(sI)) is a subgame perfect equilibrium in S�.

Proposition 1 shows that the nonlinearity introduced on the aggregator function

Wi does not alter the topological nature of the set of pure strategy subgame perfect

9This reversion strategy pro�le s(Q;Q1; :::; QI) corresponds to a simple strategy pro�le in Abreu

(1988).

11



equilibria or the e¤ectiveness of the reversion strategy pro�les. Therefore, monotonic-

ity, continuity, and recursivity are key properties that derive these results. Note that

Wi and ui need not be identical to Wj and u0j if i 6= j, where u0j is the function

obtained from uj by permuting ith and jth element.

Having con�rmed the e¤ectiveness of the reversion strategy pro�le, we next char-

acterize the basic properties of the optimal penal code (see Appendix B for the proof).

For this analysis, let BRi(q
(t)
�i) denote any one of the player i�s best responses in the

stage game G when other players take action pro�le of q(t)�i , where the existence of

BRi(q
(t)
�i) is guaranteed by assumption of ui and A. Then for a given q

(t), BRi(q(t))

denotes a vector of actions where the player i takes an action BRi(q
(t)
�i) and other

players take actions q(t)�i .

Proposition 2: Suppose that players evaluate payo¤ sequences by (2). Then, for
each player i, the optimal penalty si satis�es the following.

(i) u�i
�
q(0)(si)

�
� u�i

�
BRi(q

(0)(si))
�
� vi.

Proposition 2 shows that the worst equilibrium path resembles a stick-and-carrot

structure derived by Abreu (1986) in the repeated Cournot oligopoly, where the play-

ers �rst produce a penalty output and then play the best equilibrium path from

the next period onward. Here, the �rst period action leads to a utility level weakly

lower than the utility of the optimal penalty. This implies that the utility of the

continuation following q(0)(si) is weakly higher than the utility of q(0)(si) so that a

penalty comes before the reward. Again, monotonicity, continuity, and recursivity are

key properties to the above result. Note that to compare the payo¤ levels between

ui
�
q(0)(si)

�
and Ui (Q(si)), q(0)(si) must be evaluated by the implied utility function

u�i , which is comparable in a scale of Vi.

On the other hand, as opposed to the Abreu�(1986) example, the stick-and-carrot

structure holds only for the player�s own optimal penalty. Thus, Proposition 2 (i)

does not imply

u�j
�
q(0)(si)

�
� u�j

�
BRj(q

(0)(si))
�
� vj;

for the player j other than the player i. Because of this result, we call Proposition 2

(i) an initial self punishment.
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4 Reverse Folk Theorem

In this section, by introducing the player whose preferences are represented by (3),

we investigate how the optimal penal code changes as the players becomes more time-

variability averse in the direction of the current period loss. The results in this section

form a basis for de�ning the robustness of the Nash reversion strategy pro�le, which

will be discussed in the next section.

4.1 Coherent Action Space

First, we introduce the player whose preferences are represented by (3).

Assumption 1: A set of players
At least, the �rst K players evaluate payo¤ sequences by the form of utility function

(3), where 1 � K � I.

By abuse of notation, K indicates both the number of players and the set of the

players. We specify such K at each Proposition below. Furthermore, let �(K) be the

vector of gain discount factors de�ned by �(K) � (�1; :::; �K), and let �(K) be the

vector of loss discount factors de�ned by �(K) � (�1; :::; �K). Note that in Assumption
1, we have no restriction on the preferences for the last I�K players except that the

preferences are represented by (2). Thus, for some of those players, the preferences

may follow (3).

For the following subsections, we impose a few restrictions on the structure of

the stage game G as well as on the set of players�actions. The �rst assumption is

concerned with the existence of the Nash equilibrium.

Assumption 2: Nash Equilibrium in the state game G
There exists a unique Nash equilibrium in the state game G, whose equilibrium action

pro�le is denoted by qN = (qN1 ; q
N
2 ; :::; q

N
I ).

Given Assumption 2, the Nash reversion strategy pro�le is a subgame perfect equilib-

rium with a form of the reversion strategy pro�le s(Q;Q(sN); : : : ; Q(sN)) where sN is

the strategy pro�le under which each player plays the static Nash equilibrium action

qNi at every period.

For a general supergame G1, players can take actions freely. Because the set of

equilibria can be highly complex, we restrict our attention by imposing some condi-

tions on players�actions. For this purpose, we introduce the following assumption,

13



which generalize a symmetric path generated by a symmetric subgame perfect equi-

librium based on a symmetric stage game G.

Assumption 3: Coherent Action Space
The players� action space is restricted to A�, called a coherent action space, that

satis�es all of the following conditions.

(i) A� is a closed subset of A.

(ii) ��1i (A
�) = Ai for all i, where ��1i is the projection function from A to Ai.

(iii) qN 2 A�.
(iv) For any distinct q; q0 2 A�, if ui(q) > ui(q0) for some i, uj(q) > uj(q0) for all j.
(v) For any q 2 A�, if ui(BRi(q)) > ui(q) for some i, uj(BRj(q)) > uj(q) for all j.

By Assumption 3 (iii) and (v), ui(BRi(q)) = ui(q) if and only if q = qN . It becomes

clear in the proof that these conditions play a crucial role for deriving the results of

this paper. Note that we do not claim that a coherent action space exists for any

stage game G. We restrict our attention to the stage game G where a coherent action

space exists.

We also introduce a couple of notations to de�ne the collection of subgame perfect

equilibria. Let � be the collection of all paths Q with q(t) 2 A� for all t, and let
S�(�; �(K); �(K)) be the collection of all pure strategy subgame perfect equilibria

whose continuation paths on and o¤ the equilibrium are all in �. This notation

emphasis the dependence of the equilibria on �(K) and �(K). As shown in Lemma A.4

(see Appendix D), Proposition 1 holds for S�(�; �(K); �(K)) replacing S�.

4.2 The Reverse Limit of the Optimal Penal Code

In the Folk theorem, we investigate the behavior of equilibria in the limit of discount

factors. In terms of a limit of discount factors, we have several choices because

representation (3) has two discount factors, gain discount factor �i and loss discount

factor �i. In a usual setting of the discounted utility model, that is, (3) with �i = �i,

we study the behavior of the equilibrium set by approaching the discount factor to

one. This line of research con�rms that an increase in the discount factor induces

collusive behavior. As we show in Section 4.4, for representation (3), this type of

behavior essentially corresponds to the case where loss discount factor �i approaches

to one.

Instead, representation (3) allows us to study the case where collusion becomes

harder even though the players remain farsighted. Such a case is captured by letting

14



the gain discount factor �i approach to zero while keeping loss discount factor �i
unchanged. To see this further, if the player i�s preferences are represented by (3),

the utility of the optimal penal penalty si becomes

Vi;0(Ui(Q(s
i))) = (1� �i)ui(q(0)(si)) + �iVi;1(Ui(Q(si))):

Note that Vi;1(Ui(Q(si))) is the utility of the payo¤ sequence generated by some sub-

game perfect equilibrium, which represents the future gain received as compensation

for accepting the current penalty ui(q(0)(si)). Because Proposition 2 implies that

Vi;1(Ui(Q(s
i))) is weakly larger than vi, the gain factor �i should be used to evaluate

this sequence. As a decrease in �i causes the decreased anticipation of future gain, the

player i no longer accepts a sever current penalty at a given level of future compensa-

tion. Thus, the optimal penalty becomes weaker so that vi increases. This suggests

that the gain discount factor �i controls the enforceability of the optimal penalty.

Formally, for the �rst K players,
n
�
(n)
k

o
denotes any monotonically decreasing

sequence that converges to zero starting at �(0)k = �k, where 1 � k � K. Let

�(n)(K) be the set of gain discount factors de�ned by �(n)(K) � (�(n)1 ; :::; �
(n)
K ), and let

S�(�(n)(K); �(K)) denote the collection of all pure strategy subgame perfect equilibria

if the player k�s gain discount factor is �(n)k for k 2 K, while keeping other preference
parameters �xed. For the �rst K players, we also denote by Vk;0(:; �

0
k; �

0
k) the repre-

sentation (3) based on [�0k; �
0
k] to emphasize the dependence of the gain factor �

0
k and

the loss discount factor �
0
k.

The following proposition states the limiting behavior of the optimal penal code

for a player whose preferences are represented by (3) (see Appendix C for the proof).

Note that this Proposition does not require Assumptions 2 and 3.

Proposition 3: Given Assumption 1 with a �xed K � 1, for each n, let (s1;n; :::; sI;n)
be the optimal penal code in S�(�(n)(K); �(K)). Then for each k 2 K, as �(n)k ap-

proaches to zero,

(i)
���Vk;0(Uk(Q(sk;n)); �(n)k ; �k)� uk �q(0)(sk;n)���� converges to zero.

(ii)
��uk �BRk(q(0)(sk;n))�� uk �q(0)(sk;n)��� converges to zero.

Proposition 2 and Proposition 3 imply that if uk
�
q(0)(sk;n)

�
converses to the point

where q(0)(sk;1) � lim
n!1

q(0)(sk;n), then

uk
�
q(0)(sk;1)

�
= uk

�
BRk(q

(0)(sk;1))
�
= Vk;0(Uk(Q(s

k;1)); 0; �k):
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Here, the utility of the �rst period action is identical to the utility of the optimal

penalty as well as the utility of the best response action. Because u�k(q) = uk(q) in

the representation (3), this means that the utility of the optimal penalty is identical to

the utility of the constant action sequence of q(0)(sk;1). It is clear that if q(0)(sk;1) is a

Nash equilibrium action in the stage game G, Vk;0(Uk(Q(sk;1)); 0; �k) is the utility of

the subgame perfect equilibrium where all players takes the Nash equilibrium action

at any history. As we show in the following subsections, Assumption 3 becomes a

workable su¢ cient condition for this result.

4.3 Reverse Folk Theorem

We derive an important intermediate result by investigating a limiting behavior of the

optimal penal code via the convergence of the gain discount factor. As this e¤ectively

shows the convergence of the worst equilibrium, we call it the reverse Folk theorem,

which contrast with the standard Folk theorem that is used to show the convergence

of the best equilibrium.

Proposition 4: (Reverse Folk Theorem) Given Assumption 1 with a �xed K �
1, Assumption 2, and Assumption 3, let V (n)k;t (:) denote Vk;t(:; �

(n)
k ; �k) for k 2 K,

and let V (n)j;t (:) denote Vj;t(:) for j 2 I=K. Then, for any s 2 S�(�; �(K); �(K)),

if V (0)i;0 (Ui(Q(s))) < V
(0)
i;0 (Ui(Q(s

N))) for some i, then there exists n such that s =2
S�(�; �(n)(K)); �(K)).

Proposition 4 follows directly from Proposition 5 below (so that we do not provide

the proof). It states that if, for some player i, the utility of an equilibrium s is less

than the utility of sN , then s is never be an optimal penalty if the �rst K players

becomes su¢ ciently time-variability averse in the direction of gain. Note that in the

standard Folk theorem, we set a target payo¤ sequence and derive the level of the

discount factor that makes the target sequence an equilibrium payo¤ path. On the

other hand, in the reverse Folk theorem, we set a target utility level of the penalty

and derive the level of the gain discount factor under which the target penalty is no

longer a subgame perfect equilibrium.

Note that Proposition 4 holds even for the case of K = 1, where there is only a

single player whose preferences follow representation (3) and for whom we investigate

a limiting behavior by letting a gain discount factor approach to zero.
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In terms of the proof, Proposition 5 below summarizes the detailed characteris-

tics of the limiting behavior of the optimal penal code in S�(�; �(n)(K)); �(K)) (see

Appendix D for the proof).

Proposition 5: Given Assumption 1 with a �xed K � 1, Assumption 2, and As-

sumption 3, let (s1;n; :::; sI;n) be the optimal penal code in S�(�; �(n)(K)); �(K)). Then,

as �(n)k approaches to zero for all k 2 K,

(i) for any player k 2 K, q(0)(sk;n) converges to qN .

(ii) for any player k 2 K, Vk;0(Uk(Q(si;n)); �(n)k ; �k) converges to uk(qN) for all i 2 I.

(iii) for any player j 2 I=K, Vj;0(Uj(Q(si;n))) converges to u�j(qN) for all i 2 I=K.

(iv) for any s 2
\
n�0
S�(�; �(n)(K); �(K)), ui

�
q(0)(s)

�
� ui

�
qN
�
for all i 2 I.

(v) for any player j 2 I=K, Q(sj;n) converges to Q(sN).

Proposition 5 holds when K = 1. Thus, it states that if at least one of the players�

preferences are represented by (3) and if its gain discount factor �k approaches to zero,

the player i�s utility of the optimal penalty si;n converges to the utility of the strategy

pro�le sN for all players i. Furthermore, except the player k 2 K, the equilibrium
path of a player�s optimal penalty converge to the path induced by the strategy pro�le

sN where all players play the stage game Nash equilibrium action qN at every period.

As for the optimal penalty of the player k 2 K, the initial action taken by all players
converges to the stage game Nash equilibrium action.

The proof of Proposition 5 is based on Proposition 2 and Proposition 3. The

sketch of the proof is as follows: First, for (i), consider k 2 K, and let q� be the limit
of q(0)(sk;n). Then, by the continuity of uk, it follows from Proposition 3 (ii) that

uk (q
�) = uk (BRk(q

�));

where the coherence implied by Assumption 3 (v) leads to q� = qN . With this re-

sult, (ii) follows from Proposition 2. In terms of (iii), if the limit of Vj;0(Uj(Q(sj;n)))

is smaller than u�j
�
qN
�
, then u�j

�
q(0)(sj;m))

�
< u�j

�
qN
�
after a su¢ ciently large m

because Proposition 2 states that u�j
�
q(0)(sj;m))

�
� Vj;0(Uj(Q(s

j;m))). Given the

coherence implied by Assumption 3 (iv), we obtain that uk
�
q(0)(sj;m))

�
< uk

�
qN
�
.

Because of (ii), this relationship can be used to show that Vk;0(Uk(Q(sj;m)); �
(m)
k ; �k) <
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Vk;0(Uk(Q(s
k;m)); �

(m)
k ; �k), which contradicts that sk;m is the optimal penalty at m for

k. Thus, Vj;0(Uj(Q(sj;n))) must converge to u�j
�
qN
�
. A similar logic is applied to the

proof of (iv). As for (v), given the above results, it follows from the strict monotonic-

ity and continuity of Wj that Vj;1(Uj(Q(sj;n))) converges to u�j
�
qN
�
. By repeatedly

applying this argument, we show that a payo¤ sequence Uj(Q(sj;n)) converges to the

sequence of u�j
�
qN
�
. Then, (v) follows from the uniqueness of the stage game Nash

equilibrium. This happens because in Wj, the importance of future payo¤s relative

to the current payo¤ is �xed for any n. On the other hand, for the player k, we can

show only that q(0)(sk;n) converges to qN because the player becomes myopic as n

increases. Lastly, (v) implies that (ii) and (iii) hold for si;n for all i 2 I=K. We leave
all of the technical details to Appendix D.

Next, we examine the conditions that guarantee the convergence of the payo¤

sequence Uk(Q(sk;n)) to Uk(Q(sN)) for k 2 K. This condition is not required for the
reverse Folk theorem, but we examine it for a completeness of the argument. For

this analysis, consider the path (qN ; Q(s)) with s 2
\
n�0
S�(�; �(n)(K)); �(K)). By

Proposition 4, Vk;0(Uk(Q(s)); �
(0)
k ; �k) � uk(qN) so that

Vk;0((uk
�
qN
�
; Uk(Q(s))); �

(0)
k ; �k) (6)

= (1� �(0)k )uk(qN) + �
(0)
k Vk;0(Uk(Q(s)); �

(0)
k ; �k)

� (1� �(0)k )uk(BRk(qN)) + �
(0)
k Vk;0(Uk(Q(s

N)); �
(0)
k ; �k)

= uk(q
N);

which shows that
�
(qN ; Q(s)); Q(sN); :::; Q(sN)

�
is a subgame perfect equilibrium in

S�(�; �(0)(K)); �(K)). Moreover, the repeated application of Proposition 4 (treating

n as 0) implies that Vk;0(Uk(Q(s)); �
(n)
k ; �k) � uk(q

N) for all n. Thus, (6) holds for

each n so that
�
(qN ; Q(s)); Q(sN); :::; Q(sN)

�
is a subgame perfect equilibrium in\

n�0
S�(�; �(n)(K)); �(K)). Furthermore, Vk;0((uk

�
qN
�
; Uk(Q(s))); �

(n)
k ; �k) converges

to uk(qN) as �
(n)
k approaches to zero. Therefore, for the player k, �playing qN at time

0 and following some subgame perfect equilibrium s�becomes an optimal penalty at

the limit. This leaves a possibility that Uk(Q(sk;n)) may not converge to Uk(Q(sN))

for the player k. Note that in an incentive constraint such as (6), only the utility, not

a path, of the penalty matters because Q(sk;n) is a path of thread, which is an out of

the equilibrium path.

The following proposition shows a su¢ cient condition that guarantees the con-

vergence of Uk(Q(sk;n)) to Uk(Q(sN)), which in turn implies that the convergence of
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Q(sk;n) to Q(sN) (see Appendix D for the proof).

Proposition 6: Given Assumption 1 with a �xed K � 1, Assumption 2, and As-

sumption 3, let (s1;n; :::; sI;n) be the optimal penal code in S�(�; �(n)(K)); �(K)). Then,

for the player k 2 K, Q(sk;n) converges to Q(sN) as �(n)k approaches to zero if A is a

�nite set.

If A is a �nite set, Proposition 5 (i) shows that uk
�
q(0)(sk;n)

�
= uk

�
qN
�
for a

su¢ ciently large n. Then, Proposition 2 implies that Vk;0(Uk(Q(sk;n))); �
(n)
k ; �k) =

uk(q
N). As Wk is strictly monotone and continuous, these two equalities lead to

Vk;1(Uk(Q(s
k;n))); �

(n)
k ; �k) = uk(q

N). With this result, it follows from Proposition

5 (ii), Proposition 5 (iv), and the strict monotonicity and continuity of Wk that

uk
�
q(1)(sk;n)

�
= uk

�
qN
�
and Vk;2(Uk(Q(sk;n))); �

(n)
k ; �k) = uk(q

N). By repeatedly

applying this construction, we can show that uk
�
q(t)(sk;n)

�
converges to uk

�
qN
�
for

all t. The conclusion follows from the uniqueness of the stage game Nash equilibrium.

4.4 Relation to the Folk Theorem

Lastly in this section, we consider an alternative limiting case where the loss discount

factor � approaches to one. The result corresponds to the standard folk theorem

of utility function (3).10 Namely, a given level of collusion is always sustainable if

the players�loss discount factor is su¢ ciently large. Thus, the loss discount factor

� is a key to collusion (see Appendix E for the proof). Note that as in the case

of the discounted utility model, we need to assume that all players�preferences are

represented by (3).

Proposition 7: Given Assumption 1 with K = I and Assumption 2, consider a path

Q, where there exists a �xed " > 0 such that uk(q(t))�uk
�
qN
�
> " for each k and for

all t. There exists �� 2 (0; 1) such that

(i) if �k � �� for all k, s(Q;Q(sN); :::; Q(sN)) is a subgame perfect equilibrium in

S�(�; �(K)); �(K)).

Proposition 7 corresponds to the case of the discounted utility model with homo-

geneous or heterogenous �, where the Nash reversion strategy pro�le implements Q

10We do not explore the full potential of the Folk theorem of this setting.
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for any su¢ ciently large �. In particular, Proposition 7 includes the case of the dis-

counted utility by letting �k = �k. On the other hand, Proposition 7 holds regardless

of �k, where full collusion is achieved for any su¢ ciently large �k. This result isolates

the e¤ect of the loss discount factor from the e¤ect of the gain discount factor.

For the proof, consider the Nash reversion strategy pro�le s(Q;Q(sN); :::; Q(sN)).

For this to be a subgame perfect equilibrium, for each player k 2 K,

(1� �k)uk(BRk(q(t))) + �kVk;t+1(Uk(Q(sN))) � Vk;t(Uk(Q)) (7)

must hold at any time t. Observe that by the assumption of Q stated in the propo-

sition, for each k and for all t

uk(BRk(q
(t)))� " > uk(qN);

and

Vk;t(Uk(Q))� " > Vk;t(Uk(Q(sN))) = uk(qN);

which shows that �k needs to be used in (7). Then for a su¢ ciently large �k, (7) is

satis�ed at any time t. Thus, �k determines the level of deterrence of the penal code

sN : as �k becomes larger, the player k increasingly fears the penalty sN so that the

player k avoids deviating from the collusive path. Note that the left hand side of (7)

is independent of �k. Therefore, an increase in �k opens a possibility of collusion even

if the player k is nearly myopic when facing a current period loss, that is, when �k is

nearly zero.

5 Robustness of the Nash Reversion Strategy Pro-

�le

In this section, we show our main result, the re�nement of the subgame perfect

equilibria, where sN indeed becomes a unique optimal penalty. We derive this result

based on the limiting behavior of the optimal penal code

For the following argument, given �(K) and �(K), we introduce the following two

sets.

�(�(K)) �
�
�0(K) = (�01; :::; �

0
K) 2 (0; 1)K j�0k � �k for each k 2 K

	
:

and

�(�(K)) �
n
�
0
(K) = (�

0
1; :::; �

0
K) 2 (0; 1)K

����0k � �k for each k 2 Ko :
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Thus, the players in K who evaluate payo¤ sequences based on �0(K) 2 �(�(K)) and
�
0
(K) 2 �(�(K)) are more time-variability averse than the players in K who evaluate

payo¤ sequences based on �(K) and �(K). We also use �k(�(K)) and �k(�(K)) to

indicate the projection of �(�(K)) and �(�(K)) onto the kth coordinate, that is,

the set of discount factors under which the kth player becomes more time-variability

averse. Furthermore, let S�(�0(K); �
0
(K)) be the set of all pure strategy subgame

perfect equilibria of G1, where for each k 2 K, the player k�s gain and loss discount
factors are �0k and �

0
k, respectively.

We now de�ne the set of gain/loss robust subgame perfect equilibria as follows.

De�nition 1: Given Assumption 1, the set of gain/loss robust subgame perfect equi-
libria S�(�(�(K));�(�(K))) is de�ned by

S�(�(�(K));�(�(K)))

�
(
s 2 S

����� s 2 S�(�0(K); �0(K))
for all �0(K) 2 �(�(K)) and for all �0(K) 2 �(�(K))

)
:

The element of S�(�(�(K));�(�(K))) is an equilibrium in S�(�(K); �(K)), which is

also an equilibrium under any combination of more time-variability averse players,

that is an equilibrium in S�(�0(K); �
0
(K)) for any �0(K) 2 �(�(K)) and �

0
(K) 2

�(�(K)). With Assumptions 2 and 3, S�(�;�(�(K));�(�(K))) is the gain/loss ro-

bust subgame perfect equilibria whose continuation paths on and o¤ the equilibrium

are all in �.

The gain/loss robust equilibrium captures the following situation:

1. At each time t and each history ht, the preferences of the last I �K players as

well as the form of preferences (3) of the �rst K players are common knowledge.

2. For each k, the player k, as well as all other players, are unsure about the player

k�s degree of time-variability aversion except the upper bound of �0k and the

lower bound of �
0
k, that is, �k and �k, respectively. This behavioral unsureness

is common knowledge.

3. To deal with this unsureness, all players consider only the strategy that is an

equilibrium under any combination of �0(K) 2 �(�(K)) and �0(K) 2 �(�(K)).
This choice criteria is also common knowledge.
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Note that we do not assume that the player k�s set of discount factor changes over

time. It is �xed but simply unknown. We might want to consider the set of discount

factor as a type of the player so that each of the �rst K players has uncountable

types. Furthermore, for the case of K = 1, we may assume more: the player k = 1

knows his/her own preferences, but the players other than the player k = 1 are unsure

about the degree of time-variability aversion except the upper bound of �0k and the

lower bound of �
0
k, that is, �k and �k, respectively.

Given above interpretation, we can show that at any time t and any history ht,

the set of gain/loss subgame perfect equilibria is always S�(�(�(K));�(�(K))). We

then introduce a selection criteria for the optimal penalty.

De�nition 2: Given Assumption 1, a penal code (s1;R; :::; sI;R) whose element si;R

is in S�(�(K); �(K)) is called a gain/loss robust optimal penal code if (s1;R; :::; sI;R)

satis�es the following:

(i) For each player i = 1; :::; I, si;R 2 S�(�(�(K));�(�(K))).
(ii) For each player j 2 I=K,

Vj;0(Uj(Q(s
j;R))) = min

�
Vj;0(Uj(Q(s)))

��s 2 S�(�(�(K));�(�(K)))	 :
(iii) For each player k 2 K and any combination of �

0
k 2 �k(�(K)) and �

0
k 2 �k(�(K)),

Vk;0(Uk(Q(s
k;R)); �0k; �

0
k) = min

n
Vk;0(Uk(Q(s)); �

0
k; �

0
k)
��s 2 S�(�(�(K));�(�(K)))o :

Condition (i) states that a gain/loss robust optimal penalty itself is a gain/loss

robust subgame perfect equilibrium. Condition (ii) states that for the player j 2 I=K,
a gain/loss robust optimal penalty attains the least utility among all gain/loss robust

subgame perfect equilibria. Condition (iii) is essentially identical to Condition (ii),

but the player k evaluates each gain/loss robust subgame perfect equilibrium via

the utility function with [�0k; �
0
k] for each �

0
k 2 �k(�(K)) and �

0
k 2 �k(�(K)). Thus,

Condition (iii) implies that sk;R is the strongest penalty regardless of the level of

time-variability aversion.

Note that we cannot directly apply the de�nition of the optimal penal code for

S�(�(�(K));�(�(K))) because the value of Vk;0(Uk(Q(s)); �
0
k; �

0
k) depends on [�

0
k; �

0
k].

Therefore, we need a criteria that is independent of [�0k; �
0
k].

Now, we want to con�rm the optimality of a gain/loss robust optimal penal code.
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Proposition 8: (Optimality of a gain/loss robust optimal penal code) Given
Assumption 1 with a �xed K � 1, let (s1;R; :::; sI;R) be a gain/loss robust optimal

penal code. Then for any s 2 S�(�(�(K));�(�(K))), s(Q(s); Q(s1;R); : : : ; Q(sI;R))
becomes a subgame perfect equilibrium in S�(�(�(K));�(�(K))).

Proposition 8 follows directly from De�nition 2. To see this, consider the case of

(�(K); �(K)). It follows from De�nition 2 that for any s 2 S�(�(�(K));�(�(K))),
for all players i and for all t,

Wi

�
ui
�
BRi(q

(t)(s))
�
; Vi;0(Ui(Q(s

i;R)))
�

(8)

� Wi

�
ui
�
BRi(q

(t)(s))
�
; Vi;0(Ui(Q(s

0)))
�

� Vi;t(Ui(Q(s)));

where for the player k 2 K, Vi;t(:) is referred to as Vi;t(:; �k; �k). The strategy pro�le
s0 is the subgame perfect equilibrium in S�(�(�(K));�(�(K))) used in the strategy

pro�le s as a penalty to defer the deviation.11 Because (8) de�nes the relation based on

the utility functions at (�(K); �(K)) and denies a pro�table one deviation, Lemma A.1

implies that s(Q(s); Q(s1;R); : : : ; Q(sI;R)) becomes a subgame perfect equilibrium in

S�(�(K); �(K)). A similar argument also proves that s(Q(s); Q(s1;R); : : : ; Q(sI;R))

becomes a subgame perfect equilibrium in S�(�0(K); �
0
(K)) for any �0(K) 2 �(�(K))

and �
0
(K) 2 �(�(K)).

Although it is hard to characterize all of the properties of S�(�(�(K));�(�(K))),

the following hightlights the key property implied by the time-variability aversion

(see Appendix F for the proof).

Proposition 9: Suppose that players evaluate payo¤ sequences by (2). Given As-
sumption 1 with a �xed K � 1, let (s1;R; :::; sI;R) be a gain/loss robust optimal penal
code. Then, if

u�i (q) � Wi(ui(BRi(q)); Vi;0(Ui(Q(s
i;R)))) (9)

is satis�ed for all i, a constant path Q = (q; q; q; :::) becomes an equilibrium path in

S�(�(�(K));�(�(K))) generated by the reversion strategy pro�le s(Q;Q(s1;R); :::; Q(sI;R)).

Proposition 9 shows that given the reversion strategy pro�le s(Q;Q(s1;R); :::; Q(sI;R)),

any constant equilibrium pathQ in S�(�(K); �(K)) is an equilibrium path in S�(�0(K); �
0
(K))

for any �
0
(K) 2 �(�(K)) and any �0(K) 2 �(�(K)). Thus, to see whether a constant

11By de�nition, s0 2 S�(�(K); �(K)). (8) is based on this result.
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path Q is an equilibrium path in S�(�(�(K));�(�(K))), we only need to con�rm that

Q is an equilibrium path at (�(K); �(K)) under the gain/loss robust optimal penal

code.

So far, we implicitly assume that S�(�(�(K));�(�(K))) is nonempty and a gain/loss

robust optimal penal code exists. However, it is nontrivial. Proposition 9 gives us a

clue because it suggests that a constant path has a potential to be a gain/loss robust

optimal penal code. For this, Assumptions 2 and 3 again play a crucial role.

The following is the main result of this paper (see Appendix G for the proof).

Proposition 10: (Optimality of the Nash Reversion Strategy Pro�le) Given
Assumption 1 with a �xed K � 1, Assumption 2, and Assumption 3, consider

S�(�;�(�(K));�(�(K))). Then,

(i) (sN ; :::; sN) is a unique gain/loss robust optimal penal code.

Intuitively, Proposition 10 follows from Proposition 5: (sN ; :::; sN) is a gain/loss

robust optimal penal code because for any sequence of
n
�
(n)
1 ; :::; �

(n)
k

o
,

S�(�;�(�(K));�(�(K))) �
\
n�0
S�(�; �(n)(K); �(K));

where for
\
n�0
S�(�; �(n)(K); �(K)), (sN ; :::; sN) captures the limiting behavior of the

optimal penal code. A uniqueness is a consequence of De�nition 2, where even at

(�(K); �(K)), a gain/loss robust optimal penal code must attain the least utility. This

rules out any penalty that attains the least utility only at the limit of
n
�
(n)
1 ; :::; �

(n)
k

o
,

an example of which is shown in the text following Proposition 5. Again, note that

Proposition 10 holds when K = 1. Thus, if one of the players�preferences are repre-

sented by (3) and other players are unsure about the degree of time-variability aver-

sion, then the Nash reversion strategy pro�le becomes the optimal reversion strategy.

6 Summary

In this paper, we have proposed a potential answer for the empirical puzzle: the

Nash reversion strategy pro�le, which is suboptimal in general, was used in an actual

oligopoly. Our main result is that among the gain/loss robust equilibria, the Nash

reversion strategy pro�le is the strongest reversion strategy pro�le. This result follows
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from the reverse Folk theorem, which shows the key role of the gain discount factor as

a source de�ning the enforceability/credibility of the optimal penalty. The weakening

the enforceability of the optimal penal code eventually rules out any punishment path

except that induced by Nash reversion strategy pro�le. The reverse Folk theorem also

helps us to isolate the role of the loss discount factor and con�rm that it is the key to

implementing collusive action because it de�nes a upper bound of the collusive payo¤

via the Nash reversion strategy pro�le.

7 Acknowledgment

We have bene�ted from comments by Atsushi Kajii, Takashi Kunimoto, and sem-

inar participants at the Game Theory Conference 2014 at the Tokyo Institute of

Technology, Keio University, Okayama University, Stony Brook International Con-

ference on Game Theory, University of Hong Kong, Yonsei University, and World

Congress of the Econometric Society 2015. Sekiguchi is thankful to Ishii Memorial

Securities Research Promotion Foundation for its �nancial support. We gratefully

acknowledge the �nancial support from the Japanese government in the form of re-

search grant, Grant-in-Aid for Scienti�c Research (Sekiguchi, 23000001, 26245024,

26380238; Wakai, 23530219, 21K01387).

A: Proof of Proposition 1

For the proof of Proposition 1, we introduce additional notations. We denote by

(si; s�i) a strategy pro�le consisting of si and s�i, where s�i � (sj)j 6=i. Let st �
fsi;tgIi=1. We also use q(t)(st) to denote the time-t action pro�le q(t)(s) interchangeably.
Moreover, for a given strategy pro�le s and a given history ht�1, let Q(s;ht�1) be a

path

Q(s;ht�1) = (q(0)(s;ht�1); q(1)(s;ht�1); : : :)

such that (a) its play at time 0; 1; : : : ; t � 1 coincides with ht�1, and (b) the players
follow s from time t onward. Formally,

(a) (q(0)(s;ht�1); :::; q(t�1)(s;ht�1)) = ht�1, and

(b) q(�)(s;ht�1) = q(�)
��
si;� (q

(0)(s;ht�1); : : : ; q(��1)(s;ht�1))
	I
i=1

�
for all � � t.
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Note that Q(s) = Q(s;h�1). For any t > 0, Q(s) = Q(s;ht�1) holds if and only if

ht�1 = (q(0)(s); :::; q(t�1)(s)).

Next, we introduce the following property.

De�nition A.1 (one-deviation property): A strategy pro�le s is said to satisfy the
one-deviation property if for all t and all ht�1, no player can increase her utility by

changing her current action given the opponents� strategies and the rest of her own

strategy.

The following lemma is the key to prove Proposition 1.

Lemma A.1: A strategy pro�le s is a subgame perfect equilibrium if and only if it

satis�es the one-deviation property.

Proof. The necessity of the one-deviation property follows from the de�nition of

the subgame perfect equilibrium.

For the su¢ ciency, assume that a strategy pro�le s satis�es the one-deviation

property. Suppose, by way of contradiction, that s is not a subgame perfect equilib-

rium. Then, there exist time t, history ht�1, and a player i with a strategy s0i such

that

Vi;t(Ui(Q(s
0
i; s�i;h

t�1))) > Vi;t(Ui(Q(s;h
t�1))): (10)

Given such s0i, we consider a sequence of histories fh�g
1
�=t such that for all � � t,

h� � (q(0)(s0i; s�i;ht�1); : : : ; q(�)(s0i; s�i;ht�1)):

Then, it follows from the product topology adopted to (A)1 that Q(s;h� ) converges

to Q(s0i; s�i;h
t�1) as � goes to in�nity.

Note that Q(s;ht) is a path induced by player i�s one deviation from Q(s;ht�1).

Under the path, player i switches to s0i at time t given h
t�1, and then switches back

to si from time t+ 1 onward against s�i. Therefore, by the one-deviation property,

Vi;t(Ui(Q(s;h
t�1))) � Vi;t(Ui(Q(s;ht))):

Similarly, for any � > t, Q(s;h� ) is a path induced by player i�s one deviation from

Q(s;h��1). Namely, player i switches to s0i at time � given h
��1, and then switches

back to si from time � + 1 onward against s�i. Therefore, by the one-deviation

property,

Vi;� (Ui(Q(s;h
��1))) � Vi;� (Ui(Q(s;h� ))):
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By repeated application of the recursive relation (2) and the strict monotonicity of

Wi in the second argument, it follows that

Vi;t(Ui(Q(s;h
��1))) � Vi;t(Ui(Q(s;h� )))

for any � � t. It follows from iterating this relation that

Vi;t(Ui(Q(s;h
t�1))) � Vi;t(Ui(Q(s;h� )))

for any � � t. Because Q(s;h� ) converges to Q(s0i; s�i;ht�1) as � !1, the continuity
of Vi;t implies

Vi;t(Ui(Q(s;h
t�1))) � Vi;t(Ui(Q(s0i; s�i;ht�1)));

which contradicts (10). �

As another prerequisite for Proposition 1, we need to prove the following Lemma.

Lemma A.2: For each i, there exist subgame perfect equilibria si and si in S� that
satisfy Vi;0(Ui(Q(si))) = vi and Vi;0(Ui(Q(s

i))) = vi, respectively.

For the argument below, we de�ne paths Qi;� and Qi;# for each i as follows: Let�
Qi;k

	1
k=1

be a sequence of subgame perfect equilibrium paths such that

lim
k!1

Vi;0(Ui(Q
i;k)) = vi:

Because A1 is a compact metric space, it has a subsequence converging to Qi;� =

(qi;�(0); qi;�(1); : : :) such that Vi;0(Ui(Qi;�)) = vi. Similarly, let
�
Q0i;k

	1
k=1

be a sequence

of subgame perfect equilibrium paths such that

lim
k!1

Vi;0(Ui(Q
0i;k)) = vi:

Because A1 is a compact metric space, it has a subsequence converging toQi;#, where

Vi;0(Ui(Q
i;#)) = vi.

The proofs of Lemma A.2 and Proposition 1 follow directly from Abreu (1988)

with a minor modi�cation to accommodate the change in the evaluating function.

In particular, the proofs presented in Theorems 5.5 and 5.6 of Fudenberg and Tirole

(1991) immediately extend to the recursive utility. The essence of their proofs is

summarized by the following Lemma.
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Lemma A.3: Let Q0;� = (q0;�(0); q0;�(1); : : :) be a path that is the limit of a se-

quence of subgame perfect equilibrium paths. Then, the reversion strategy pro�le

s� � s(Q0;�; Q1;�; : : : ; QI;�) is a subgame perfect equilibrium.

Proof. Suppose, by way of contradiction, s� is not a subgame perfect equilibrium.
From Lemma A.1, some player j has a pro�table one deviation at some ht�1, where

he chooses q0j at time t. By the construction of s
�, if no players deviate at ht�1 and

thereafter, there exists i 2 f0; : : : ; Ig and � � 0 such that

(q(t)(s�;ht�1); q(t+1)(s�;ht�1); : : :) = (qi;�(�); qi;�(�+1); : : :):

By this and history independence, it follows that

Wj(uj(q
0
j; q

i;�(�)
�j ); vj) > Vj;� (Uj(Q

i;�)):

Because Vj;� , uj, and Wj are continuous and Qi;� is the limit of a sequence of sub-

game perfect equilibrium paths, there exists a subgame perfect equilibrium path

Q̂ = (q̂(0); q̂(1); : : :) such that

Wj(uj(q
0
j; q̂

(�)
�j ); vj) > Vj;� (Uj(Q̂)): (11)

Because Q̂ is a subgame perfect equilibrium path, there exists another subgame per-

fect equilibrium path ~Q such that

Wj(uj(q
0
j; q̂

(�)
�j ); Vj;0(Uj(

~Q))) � Vj;� (Uj(Q̂)) (12)

holds.12 By monotonicity of Wj, (11) and (12) imply Vj;0(Uj( ~Q)) < vj. This is a

contradiction against the de�nition of vj. �

The proofs of Lemma A.2 and Proposition 1:

For Lemma A.2, the existence of si and si is a straightforward consequence of

Lemma A.3 by setting Q0;� = Qi;� and Q0;� = Qi;#, respectively.

As for Proposition 1, �x s� 2 S�. Clearly, Q(s�) is the limit of the sequence of sub-
game perfect equilibrium paths, (Q(s�); Q(s�); : : :). Because Q(si) = Qi;� for each i,

Lemma A.3 immediately proves that the reversion strategy pro�le s(Q(s�); Q(s1); :::; Q(sI))

is a subgame perfect equilibrium. �
12By the stationarity of the action space and history-independent recursive preferences, the set of

subgame perfect equilibrium paths and the set of continuation paths of a subgame perfect equilibrium

coincide.
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B: Proof of Proposition 2

The following is the proof of Proposition 2.

Proof. Because si is a subgame perfect equilibrium in S�, there exists s in S�

such that

vi = Vi;0(Ui(Q(s))) and vi = Wi(ui(q
(0)(si)); vi):

Thus,

vi = Wi(ui(q
(0)(si)); vi)

� Wi(ui(BRi(q
(0)(si)); vi)

= Wi(ui(BRi(q
(0)(si));Wi(ui(q

(0)(si)); vi))

� Wi(ui(BRi(q
(0)(si));Wi(ui(BRi(q

(0)(si));Wi(ui(q
(0)(si)); vi))):

By repeating the above replacement, it follows from the continuity of Wi that

vi � u�i (BRi(q(0)(si))):

As Vi;0 is strictly increasing, the conclusion follows from ui(BRi(q(0)(si))) � ui(q(0)(si)).
�

C: Proof of Proposition 3

The following is the proof of Proposition 3.

Proof. For each k 2 K, let
n
�
(n)
k

o
be any monotonically decreasing sequence that

converges to 0 starting at �(0)k = �k. Let s
k;n be the optimal penalty at �(n)k . By (4),

we denote by
�
uk(q

(0)(sk;n)); Vk;1(Uk(Q(s
k;n)); �

(n)
k ; �k)

�
the utility vector satisfying

Vk;0(Uk(Q(s
k;n)); �

(n)
k ; �k) (13)

= (1� �(n)k )uk(q(0)(sk;n)) + �
(n)
k Vk;1(Uk(Q(s

k;n)); �
(n)
k ; �k);

where by Proposition 2, the gain gain factor �(n)i is used to evaluate the sequence.

Then (13) implies that

Vk;0(Uk(Q(s
k;n)); �

(n)
k ; �k)� uk(q(0)(sk;n)) (14)

= �
(n)
k

n
Vk;1(Uk(Q(s

k;n)); �
(n)
k ; �k)� uk(q(0)(sk;n))

o
;
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where by Proposition 2,

0 � Vk;0(Uk(Q(sk;n)); �(n)k ; �k)� uk(q(0)(sk;n)):

Moreover, let M be de�ned as max fju�1(A)j ; ju�2(A)j ; :::; ju�I(A)j)g, which is indepen-
dent of �(n)k . Then,���Vk;1(Uk(Q(sk;n)); �(n)k ; �k)� uk(q(0)(sk;n))��� � 2M:
Therefore, as �(n)k converges to zero,

n
Vk;0(Uk(Q(s

k;n)); �
(n)
k ; �k)� uk(q(0)(sk;n))

o
con-

verges to zero, which proves (i).

As for (ii), by Proposition 2,

0 � Vk;0(Uk(Q(sk;n)); �(n)k ; �k)� uk(BRk(q(0)(sk;n)))
� Vk;0(Uk(Q(sk;n)); �(n)k ; �k)� uk(q(0)(sk;n));

which, with (14), implies (ii). �

D : Proof of Proposition 5 and Proposition 6

We �rst show the following lemma.

Lemma A.4: Suppose that players evaluate payo¤ sequences by the evaluating func-
tion satisfying (2). Then, under Assumption 1 with a �xed K � 1, Assumption 2,

and Assumption 3, Proposition 1 holds for S�(�; �(K); �(K)) replacing S�.

Proof. It su¢ ces to show that � is compact and S�(�; �(K); �(K)) is nonempty.
For the �rst claim, it su¢ ces to show that � is a closed subset of compact A1,

which follows immediately from Assumption 3 (i). For the second claim, the strategy

pro�le where the players choose qN at any history is a subgame perfect equilibrium

that induces a path in �. Thus, S�(�; �(K); �(K)) is nonempty. �

We provide the proofs in the following order: Proposition 5 and Proposition 6.

The proof of Proposition 5 (The following (Step 1) to (Step 8) constitute a proof).

For each k 2 K, let
n
�
(n)
k

o
be a monotonically decreasing sequence that con-

verges to zero starting at �(0)k = �k. Let
�
s1;n; :::; sI;n

�
be an optimal penal code in

S�(�; �(n)(K)); �(K)).
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(Step 1) For each k 2 K, as n goes to 1, q(0)(sk;n) converges to qN .

Proof. For a given k 2 K, consider a convergent subsequence
�
q(0)(sk;nl)

	
of�

q(0)(sk;n)
	
, the existence of which is guaranteed by the compact metric space A. Let

q� be the limit of
�
q(0)(sk;nl)

	
. Observe that

0 �
��uk �BRk �q(0)(sk;nl)��� uk (q�)�� (15)

�
��uk �BRk �q(0)(sk;nl)��� uk �q(0)(sk;nl)���+ ��uk �q(0)(sk;nl)�� uk (q�)�� :

Then it follows from (ii) of Proposition 3, (15), and continuity of uj that��uk �BRk �q(0)(sk;nl)��� uk (q�)�� converges to zero. (16)

Given (16), we claim that

uk (BRk (q
�))� uk (q�) = 0: (17)

Under Assumption 3, (17) implies that for all j other than k,

uj (BRj (q
�))� uj (q�) = 0;

which shows that

q� = qN .

If (17) holds, any convergent subsequence
�
q(0)(sk;nl)

	
of
�
q(0)(sk;n)

	
must converge

to qN . This means that
�
q(0)(sk;n)

	
converges to qN . Therefore, it su¢ ces to prove

(17).

Suppose, by way of contradiction, that uk (BRk (q�)) � uk (q�) > " > 0 for some
". It follows from continuity of uk that there exists "0 > 0 such that for any q0 2 A
with jq0 �BRk (q�)j < "0,

uk (q
0)� uk (q�) >

"

2
: (18)

Observe that

(q1; :::; qk�1; qk; qk+1; :::; qI)�BRk (q�)
= (q1; :::; qk�1; qk; qk+1; :::; qI)�

�
q�1; :::; q

�
k�1; BRk(q

�
�k); q

�
k+1; :::; q

�
I

�
:

Because q(0)(sk;nl) converges to q�, there exist a su¢ ciently large nl and q0k 2 Ak such
that for all m � nl,����q(0)1 (sk;m); :::; q(0)k�1(sk;m); q0k; q(0)k+1(sk;m); :::; q(0)k (sk;m)��BRk (q�)��� < "0 (19)
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and ��uk �q(0)(sk;m)�� uk (q�)�� < "

4
: (20)

Then it follows from (18), (19), and (20) that for all m � nl,

uk

�
q
(0)
1 (s

k;m); :::; q
(0)
k�1(s

k;m); q0k; q
(0)
k+1(s

k;m); :::; q
(0)
k (s

k;m)
�
� uk

�
q(0)(sk;m)

�
>
"

4
: (21)

Furthermore,

uk
�
BRk

�
q(0)(sk;m)

��
� uk

�
q
(0)
1 (s

k;m); :::; q
(0)
k�1(s

k;m); q0k; q
(0)
k+1(s

k;m); :::; q
(0)
k (s

k;m)
�
:

(22)

Thus, (21) and (22) imply that for all m � nl,

uk
�
BRk

�
q(0)(sk;m)

��
� uk

�
q(0)(sk;m)

�
>
"

4
;

which contradicts to (ii) of Proposition 3. This proves (17). �

(Step 2) As n goes to 1, Vk;0(Uk(Q(sk;n)); �(n)k ; �k) converges to uk(qN).

Proof. Because Vk;0(Uk(Q(sk;n)); �
(n)
k ; �k) � Vk;0(Uk(Q(sN)); �

(n)
k ; �k) = uk(q

N) for

all n, by (i) of Proposition 2, it su¢ ces to prove that uk(q(0)(sk;n)) converges to uk(qN)

as n goes to 1. Given the continuity of uk, this follows from (Step 1). �

For an equilibrium strategy s, consider a player j with j 2 I=K. We denote by�
uj(q

(0)(s)); Vj;1(Uj(Q(s)))
�
the utility vector of a player j that is an argument of Wj

at time 0 satisfying (2).

(Step 3) As n goes to 1, Vj;0(Uj(Q(sj;n))) converges to u�j(qN) = Vj;0(Uj(Q(s
N)))

for a player j 2 I=K.

Proof. Suppose, by way of contradiction, that there exist a player j with j 2 I=K,
" > 0, and a subsequence fVj;0(Uj(Q(sj;nl)))g of fVj;0(Uj(Q(sj;n)))g such that for all
nl, ��Vj;0(Uj(Q(sj;nl)))� u�j(qN)�� � ": (23)

Given that Vj;0(Uj(Q(sj;nl))) � u�j(q
N) = Vj;0(Uj(Q(s

N))), it follows form (23) and

Proposition 2 that for all nl,

u�j(q
(0)(sj;nl)) � Vj;0(Uj(Q(sj;nl))) � u�j(qN)� ": (24)
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Let A� be the set of actions that satis�es

A� �
�
q 2 A� u�j(q) � u�j(qN)� "

	
:

By de�nition, q(0)(sj;nl) 2 A� for all nl. Also, by continuity of u�j ,

u�j(A
�) � u�j(A�):

Thus, there exists q� 2 A� such that

q� � argmax
q2A�

�
u�j(q)

	
. (25)

By construction,

u�j(q
�) < u�j(q

N):

Furthermore, for some k 2 K, the continuity of uk implies that

uk(A
�) � uk(A�):

Let q�� 2 A� be de�ned by

q�� � argmax
q2A�

fuk(q)g .

By Assumption 3, if uk(q��) = u�k(q
N), then u�j(q

��) = u�j(q
N), which contradicts (25).

Therefore, there exists "0 > 0 such that

uk(q
��) < u�k(q

N)� "0: (26)

Given (26), it follows from Proposition 2 that there exists a su¢ ciently large nl
such that for all m � nl,

Vk;0(Uk(Q(s
j;m)); �

(m)
k ; �k)

= min
�k2[�

(m)
k ;�k]

h
(1� �k)uk(q(0)(sj;m)) + �kVk;1(Uk(Q(sj;m)); �(m)k ; ; �k)

i
� (1� �(m)k )uk(q

(0)(sj;m)) + �
(m)
k M

< uk
�
qN
�
� "

0

2

where M is a bound for the absolute value of utility of subgame perfect equilibria.

However, (Step 2) shows that for a su¢ ciently large n0l > nl,

0 � uk(qN)� Vk;0(Uk(Q(sk;n
0
l); �

(n0l)
k ; �k) <

"0

4
:
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The above two inequalities imply that

Vk;0(Uk(Q(s
j;n0l)); �

(n0l)
k ; �k) < Vk;0(Uk(Q(s

k;n0l); �
(n0l)
k ; �k)�

"0

4

which contradicts that sk;n
0
l is the optimal penalty at �

(n0l)
k . �

(Step 4) For any s 2 S�(�; �(n)(K)); �(K)) where uj
�
q(0)(s)

�
< uj

�
qN
�
for some j,

there exists n� > n such that s =2 S�(�; �(n�)(K)); �(K)).

Note that (Step 4) essentially proves Proposition 5 (iv).

Proof. For any s 2 S�(�; �(n)(K)); �(K)) where uj
�
q(0)(s)

�
< uj

�
qN
�
for some

j, there exists " > 0 such that

0 < " <
��uj �q(0)(s)�� uj �qN��� :

By Assumption 3, there exist a player k 2 K and "0 > 0 such that

uk
�
q(0)(s)

�
< uk

�
qN
�
and 0 < "0 <

��uk �q(0)(s)�� uk �qN��� : (27)

It follows from Proposition 2 that there exists a su¢ ciently large n0 such that for all

m � n0,

Vk;0(Uk(Q(s)); �
(m)
k ; �k)

= min
�k2[�

(m)
k ;�k]

h
(1� �k)uk(q(0)(s)) + �kVk;1(Uk(Q(s)); �(m)k ; �k)

i
� (1� �(m)k )uk(q

(0)(s)) + �
(m)
k uk(A)

< uk
�
qN
�
� "

0

2

where uk(A) is a upper bound of uk(A). However, (Step 2) shows that for a su¢ ciently

large n� > n0,

0 � uk(qN)� Vk;0(Uk(Q(sk;n
�
); �

(n�)
k ; �k) <

"0

4
:

The above two inequalities imply that

Vk;0(Uk(Q(s)); �
(n�)
k ; �k) < Vk;0(Uk(Q(s

k;n�)); �
(n�)
k ; �k)�

"0

4
:

Because sk;n
�
is the worst subgame perfect equilibrium for the player k, this shows

that s =2 S�(�; �(n�)(K)); �(K)). �
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(Step 5) For a player j 2 I=K, as n goes to1, Uj(Q(sj;n)) converges to Uj(Q(sN)).

Proof. For a player j 2 I=K, let
�
uj
�
q(0)(sj;n)

�
; Vj;1(Uj(Q(s

j;n)))
�
be the utility

vector of the player j that is an argument of Wj at time 0 satisfying (2). It follows

from (Step 4) that

lim
n!1

inf uj
�
q(0)(sj;n)

�
� uj

�
qN
�
: (28)

Moreover, because Vj;1(Uj(Q(sj;n))) is the utility of some subgame perfect equilibrium

in S�(�; �(n)(K)); �(K)),

Vj;1(Uj(Q(s
j;n))) � Vj;0(Uj(Q(sj;n))): (29)

Given (28) and (29), it follows from (Step 3) and the strict monotonicity of Wj that

lim
n!1

uj
�
q(0)(sj;n)

�
= uj(q

N) and lim
n!1

Vj;1(Uj(Q(s
j;n))) = u�j(q

N):

Next, let
�
uj
�
q(1)(sj;n)

�
; Vj;2(Ui(Q(s

j;n)))
�
be the utility vector of the player j that

is an argument of Wj at time 1 satisfying (2). Because Vj;1(Uj(Q(sj;n))) is the utility

of some subgame perfect equilibrium in S�(�; �(n)(K)); �(K)), it follows from (Step

4) and the strict monotonicity of Wj that (28) replacing 0 with 1 and (29) replacing

1 with 2 hold. Given this result, it follows from (Step 3) and the strict monotonicity

of Wj that

lim
n!1

uj
�
q(1)(sj;n)

�
= uj(q

N) and lim
n!1

Vj;2(Uj(Q(s
j;n))) = u�j(q

N):

By repeating the above construction, we obtain that for all t, uj
�
q(t)(sj;n)

�
converges

to uj
�
qN
�
, which means, in the product topology generated by the metric on A, that

Uj(Q(s
j;n)) converges to Uj(Q(sN)). �

(Step 6) For a player j 2 I=K, as �(n)k approaches to zero for all k 2 K, Q(sj;n)
converges to Q(sN) for all player j.

Proof. We prove this claim by showing that for each t, q(t)(sj;n) converges to qN .
Suppose, by way of contradiction, that for some t and j 2 I=K, there exist an open
set B � A that contains qN and a convergent subsequence

�
q(t)(sj;nl)

	
of
�
q(t)(sj;n)

	
such that q(t)(sj;nl) =2 B for all nl. Because the stage game Nash equilibrium is unique,
it follows from Assumption 3 and the argument leading to (17) that there exists " > 0

such that

uj
�
BRj(q

(t)(sj;nl))
�
� uj

�
q(t)(sj;nl)

�
> " > 0 for all nl. (30)
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(Otherwise, limn!1
��uj �BRj(q(t)(sj;nl))�� uj �q(t)(sj;nl)��� = 0. Then the argument

leading to (17) shows that uk (BRk (q�)) � uk (q�) = 0, where q� is the limit of�
q(0)(sk;nl)

	
. By Assumption 3, this leads to q� = qN .)

Furthermore, by (Step 5), it follows from the strictly monotonicity and continuity

of Vj that as �
(n)
k approaches to zero,

Vj;t+1(Uj(Q(s
j;nl))) converges to u�j

�
qN
�
: (31)

Given that Wj is strictly monotone and continuous, it follows from (Step 3), (30),

and (31) that for a su¢ ciently large nl,

Wj

�
uj
�
BRj(q

(t)(sj;nl))
�
; Vj;0(Uj(Q(s

j;nl)))
�

(32)

> Wj

�
uj
�
q(t)(sj;nl))

�
; Vj;t+1(Uj(Q(s

j;nl)))
�

= Vj;t(Uj(Q(s
j;nl))):

However, (32) implies that the player j can increase the utility by deviating from

sj;nl at time t and accepts the optimal penalty sj;nl. This contradicts that sj;nl is a

subgame perfect equilibrium in S�(�; �(nl)(K)); �(K)). �

(Step 7) For a player k 2 K, as n goes to 1, Vk;0(Uk(Q(si;n)); �(n)k ; �k) converges to
uk(q

N) for all i 2 I:

Proof. For a given k, for each k0 2 K,

Vk;0(Uk(Q(s
k;n)); �

(n)
k ; �k) � Vk;0(Uk(Q(sk

0;n)); �
(n)
k ; �k)

� (1� �(n)k )uk(q(0)(sk
0;n)) + �

(n)
k M; (33)

where M is the upper bound of Vk;0(S�(�; �
(n)(K)); �(K))). As n increases, it follows

from (Step 1) that

uk(q
(0)(sk

0;n)) converges to uk(qN). (34)

Thus, (Step 2), (33), and (34) imply that

Vk;0(Uk(Q(s
k0;n)); �

(n)
k ; �k) converges to uk(q

N).

As for j 2 I=K, it follows from the continuity of Vk;0 and (Step 6) that

Vk;0(Uk(Q(s
j;n)); �

(n)
k ; �k) converges to uk(q

N).

The above two results proves the claim. �
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(Step 8) For a player j 2 I=K, as n goes to 1, Vj;0(Uk(Q(si;n)); �(n)k ; �k) converges
to uk(qN) for all i 2 I=K:

Proof. This follows from the continuity of Vj;0 and (Step 6). �

The proof of Proposition 6.

For the following, let k 2 K be �xed.

(Step 9) As �(n)k approaches to zero, uk
�
q(t)(sk;n)

�
and Vk;t(Uk(Q(sk;n)); �

(n)
k ; �k) con-

verge to uk
�
qN
�
for all t.

Proof. Because A is a �nite set and sN 2 S�(�; �(m)(K)); �(K)) for all m,

it follows from Proposition 2 and (Step 4) that there exists n1 such that for all

m � n1, uk
�
q(0)(sk;m)

�
= uk

�
qN
�
and Vk;0(Uk(Q(sk;m)); �

(m)
k ; �k) = uk(q

N). Because

Wk is strictly monotone and continuous, this implies that Vk;1(Uk(Q(sk;m)); �
(m)
k ; �k) =

uk(q
N). Again, because A is a �nite set, (Step 4) implies that there exists n2 sat-

isfying n2 � n1 such that for all m � n2, uk
�
q(1)(sk;m)

�
� uk

�
qN
�
. Given that

Vk;1(Uk(Q(s
k;m)); �

(m)
k ) = uk(q

N), it then follows from (Step 2) and strict monotonicity

and continuity of Wk that uk
�
q(1)(sk;m

0
)
�
= uk

�
qN
�
and Vi;2(Ui(Q(si;m

0
)); �

(m0)
i ; �k) =

uj(q
N) for a su¢ ciently large m0. By repeatedly applying the same construction,

as �(n)k approaches to zero, uk
�
q(t)(sk;n)

�
and Vk;t(Uk(Q(sk;n)); �

(n)
k ; �k) converge to

uk
�
qN
�
for all t. �

(Step 10) As �(n)k approaches to zero, Q(sk;n) converges to Q(sN).

Proof. Given (Step 9), this follows from (Step 6) by replacing sj;n with sk;n,

where (32) is replaced by the following

min
�k2[�

(nl)

k ;�k]

h
(1� �k)uk

�
BRk(q

(t)(sk;nl))
�
+ �kVk;0(Uk(Q(s

k;nl)); �
(nl)
k ; �k)

i
= (1� ��k)uk

�
BRk(q

(t)(sk;nl))
�
+ ��kVk;0(Uk(Q(s

k;nl)); �
(nl)
k ; �k)

> (1� ��k)uk
�
q(t)(sk;nl)

�
+ ��kVk;t+1(Uk(Q(s

k;nl)); �
(nl)
k ; �k)

� min
�k2[�

(nl)

k ;�k]

h
(1� �k)uk

�
q(t)(sk;nl)

�
+ �kVk;t+1(Uk(Q(s

k;nl)); �
(nl)
k ; �k)

i
:

Here, ��k is the e¤ective selection of the discount factor for the minimization of the �rst

line. This contradicts that sk;nl is a subgame perfect equilibrium in S�(�; �(nl)(K)); �(K)).

�
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E : Proof of Proposition 7

Proof. Consider the Nash reversion strategy pro�le s(Q;Q(sN); :::; Q(sN)), where
there exists a �xed " > 0 such that ui(q

(t)
i ) � ui

�
qN
�
> " for each i and for all t.

Then, it follows from representation (3) that for each i,

Vi;t(Ui(Q))� " > Vi;t(Ui(Q(sN))) = ui(qN) (35)

at any time t. Given that ui(A) is bounded, it follows from (35) that for each i, there

exists ��i satisfying 0 < �
�
i < 1 such that at any time t,

(1� ��i )ui(BRi(q(t))) + ��i Vi;0(Ui(Q(sN))) < Vi;t(Ui(Q)):

Let �� be de�ned by �� � max f��1; :::; ��Ig. Then, for each i and for all �i satisfying
�� � �i < 1,

(1� �i)ui(BRi(q(t))) + �iVi;0(Ui(Q(sN))) � Vi;t(Ui(Q)) (36)

at any time t because

ui(BRi(q
(t))) � ui(q(t)i ) > ui

�
qN
�
= Vi;0(Ui(Q(s

N))

shows that �i must be used in (36). Thus, if �i � �� for all i, it follows from (36) that
s(Q;Q(sN); :::; Q(sN)) is a subgame perfect equilibrium in S�. �

F : Proof of Proposition 9

Proof. For a player j 2 I=K, (9) shows that the play j has no incentive to deviate
from the constant path of q. As for a player k 2 K, (9) shows that

Vk;0(Uk(Q)) = uk(q)

� Wk(uk(BRk(q)); Vk;0(Ui(Q(s
k;R))))

= (1� �k)uk(BRk(q)) + �kVk;0(Uk(Q(sk;R)));

where Q is the constant sequence of q. Here, �k is used to evaluate in the last

line because Wk is strictly monotone and continuous and uk(BRk(q)) � uk(q), so

that uk(BRk(q(t))) � Vk;0(Uk(Q(s
k;R))). The above inequality implies that for any

�
0
k 2 �k(�(K)) and any �

0
k 2 �k(�(K)),

uk(q) � (1� �
0
k)uk(BRk(q)) + �

0
kVk;0(Uk(Q(s

k;R)))

� (1� �0k)uk(BRk(q)) + �
0
kVk;0(Uk(Q(s

k;R)); �0k; �
0
k):
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This shows that the play k has no incentive to deviate from the constant path of q at

any any �
0
k 2 �k(�(K)) and any �

0
k 2 �k(�(K)). �

G: Proof of Proposition 10

Proof. First, De�nition 2 (i) follows because sN 2 S�(�; �0(K); �0(K)) for any �0(K) 2
�(�(K)) and any �0(K) 2 �(�(K)).
Second, for the �rst K players,

n
�
(n)
k

o
denotes any monotonically decreasing se-

quence that converges to zero starting at �(0)k = �k, where 1 � k � K. Given

De�nition 2 (i), Proposition 5 (iii) implies that for j 2 I=K,

Vj;0(Uj(Q(s
N))) = min

(
Vj;0(Uj(Q(s)))

�����s 2\
n

S�(�; �(n)(K)); �(K))

)
:

De�nition 2 (ii) follows because S�(�;�(�(K));�(�(K))) �
\
n

S�(�; �(n)(K)); �(K))

and sN 2 S�(�;�(�(K));�(�(K))).
Third, for De�nition 2 (iii), suppose, by way of contradiction, that there exist

s 2 S�(�;�(�(K));�(�(K))) and (�0(K); �
0
(K)) satisfying �0(K) 2 �(�(K)) and

�
0
(K) 2 �(�(K)) such that for some k 2 K,

uk
�
qN
�
= Vk;0(Uk(Q(s

N)); �0k; �
0
k) > Vk;0(Uk(Q(s)); �

0
k; �

0
k): (37)

For the �rst K players,
n
�
(n)
k

o
denotes any monotonically decreasing sequence that

converges to zero starting at �(0)k = �0k, where 1 � k � K. Then by (3), for any n � 0,

Vk;0(Uk(Q(s)); �
(n)
k ; �

0
k) � Vk;0(Uk(Q(s)); �

(n+1)
k ; �

0
k): (38)

Furthermore, it follows from s 2 S�(�; �(n)(K); �0(K)) that for the optimal penalty
sk;n 2 S�(�; �(n)(K); �0(K)),

Vk;0(Uk(Q(s)); �
(n)
k ; �

0
k) � Vk;0(Uk(Q(sk;n)); �

(n)
k ; �

0
k): (39)

Given (38) and (39), Proposition 5 (ii) implies

Vk;0(Uk(Q(s)); �
0
k; �

0
k) � uk

�
qN
�
;

which contradicts (37). Then De�nition 2 (iii) follows from sN 2 S�(�;�(�(K));�(�(K)))
and uk

�
qN
�
= Vk;0(Uk(Q(s

N)); �0k; �
0
k) for any �

0
k 2 �k(�(K)) and �

0
k 2 �k(�(K)).
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As for the uniqueness of a gain/loss robust optimal penal code (sN ; :::; sN), let

(s1;R; :::; sI;R) be a gain/loss robust optimal penal code. For the following proof, for

each k 2 K, we use Vk;t(Uk(Q(s))) to denote Vk;t(Uk(Q(s)); �k; �k), which is equiv-
alent to Wk

�
uk
�
q(t)(s)

�
; Vi;t+1(Uk(Q(s)); �k; �k)

�
that is strictly monotone in both

arguments.

First, we claim that for each si;R, ui
�
q(t)(si;R)

�
= ui

�
qN
�
for all t. Because Wi

is strictly monotone in both arguments, Conditions (ii) and (iii) of De�nition 2 and

Proposition 5 (iv) imply that

ui
�
q(0)(si;R)

�
� ui

�
qN
�
and Vi;1(Ui(Q(si;R))) � u�i

�
qN
�
: (40)

Given that si;R is an optimal penalty,

Vi;0(Ui(Q(s
i;R))) = Wi

�
ui
�
q(0)(si;R))

�
; Vi;1(Ui(Q(s

i;R)))
�
= u�i

�
qN
�
: (41)

Because Wi is strictly monotone in both arguments, (41) and (40) imply that

ui
�
q(0)(si;R)

�
= ui

�
qN
�
and Vi;1(Ui(Q(si;R))) = u�i

�
qN
�
:

By repeatedly applying the above construction, for all t,

ui
�
q(t)(si;R)

�
= ui

�
qN
�
and Vi;t+1(Ui(Q(si;R))) = u�i

�
qN
�
; (42)

which proves the claim.

Now, we claim that q(t)(si;R) = qN for all t. Suppose, by way of contradiction,

that for some t, q(t)(si;R) 6= qN . Because the stage game Nash equilibrium is unique,

Assumption 3 implies that there exists " > 0 such that for any player j,

uj
�
BRj(q

(t)(si;R))
�
� uj

�
q(t)(si;R)

�
> " > 0:

Given (42), it follows from the strict monotonicity and continuity of Wi that

Wi

�
ui
�
BRi(q

(t)(si;R))
�
; Vi;0(Ui(Q(s

i;R)))
�

(43)

= Wi

�
ui
�
BRi(q

(t)(si;R))
�
; u�i
�
qN
��

> Wi

�
ui
�
q(t)(si;R))

�
; u�i
�
qN
��

= Wi

�
ui
�
q(t)(si;R))

�
; Vi;t+1(Ui(Q(s

i;R)))
�
:

However, (43) implies that the player i can increase the utility by deviating from si;R

at time t and accepts the optimal penalty si;R. This contradicts that si;R is a subgame

perfect equilibrium in S�(�; �(K)); �(K)). �
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