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Abstract: 

This study empirically investigates the differences in risk preferences and loss aversion between humans 

and generative AI. We conduct a nationwide online survey of 4,838 individuals and generate AI 

responses under identical conditions by using personas constructed from demographic attributes. The 

results show that in gain domains, both humans and the AI select risk-averse options and exhibit similar 

preference patterns. However, in loss domains, AI shows a stronger risk-loving tendency and responds 

more sharply to individual attributes such as gender, age, and income. We retrain the AI by fine-tuning 

it based on human choice data. After fine-tuning, the AI’s preference distribution moves closer to that 

of humans, with loss-related decisions showing the greatest improvement. Using Wasserstein distance, 

we also confirm that fine-tuning reduces the behavioral gap between AI and humans. 
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1. Introduction

As artificial intelligence (AI) has increasingly automated judgment processes, concerns have arisen 

regarding its legitimacy and explainability. Human-in-the-loop (HITL), a framework that integrates 

human and AI in economic decision making (Rahwan, 2018; Rahwan et al., 2019), offers both 

theoretical and practical responses to these concerns. The comparison of bias structures between 

humans and AI plays a central role in understanding the value of HITL. AI often inherits biases from 

its training data. It tends to reproduce the structural biases embedded in past economic behavior and 

institutions. Meanwhile, as behavioral economics reveals, human decision making also reflects 

systematic deviations due to emotion-driven cognitive biases. Understanding these distinct bias 

structures and creating designs that allow mutual correction between humans and AI are essential for 

achieving rationality. Therefore, when designing HITL-based decision systems, the commonalities and 

differences between algorithmic and cognitive biases, from both theoretical and empirical perspectives, 

must be examined to provide a theoretical foundation for developing reliable decision-support systems 

that leverage the complementary strengths of human judgment and AI reasoning. 

To advance this line of analysis, systematic biases that arise in human decision making must be first 

clarified. Humans often deviate from the predictions of standard utility-maximization models. In 

particular, under conditions of risk or uncertainty, existing studies observe behavioral patterns such as 

the certainty effect and loss aversion. Kahneman and Tversky (1979) organize these tendencies into a 

theoretical framework known as prospect theory, which is the basis for studies that document various 

forms of irrational judgments. Tversky and Kahneman (1992) estimate the degree of loss aversion at 

approximately λ = 2.25 and suggest that people experience losses about twice as intensely as equivalent 

gains and therefore tend to avoid them. Falk et al. (2018) conducts a cross-national survey of 

approximately 80,000 individuals in 76 countries. They find that loss aversion varies not only across 

cultures but also according to individual attributes, such as age, gender, and education. Brown et al. 

(2024) conduct a meta-analysis of 150 studies in economics and psychology, reporting a median loss 

aversion coefficient of approximately λ = 1.69. These findings offer a foundational understanding of 

human behavior that informs the design of HITL systems, particularly regarding the role of human 

agents within such frameworks. 

In recent years, the rise of generative AI, exemplified by models such as ChatGPT, has sparked 

growing interest in whether the cognitive biases commonly observed in humans also appear in AI. As 

generative AI models are trained on large-scale human-generated language data, these models may 

inherently acquire humanlike tendencies and biases. If generative AI can replicate such biases, it can 

serve as a practical alternative in fields such as social surveys, economic experiments, and policy 

simulations. However, concerns remain regarding the amplification of biases and the unpredictability 

of AI-generated outputs. Thus, understanding the behavioral patterns and limitations of AI responses 
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has become a central research challenge. Against this backdrop, more studies have compared the 

judgment patterns of humans and AI to identify similarities and differences. 

An important question is whether assigning specific personas to generative AI leads to more humanlike 

outputs. A persona refers to a set of hypothetical individual attributes, such as age, gender, education, 

income, and cultural background, assigned to an AI agent to generate responses with greater consistency 

and personality. Many previous studies embed such attribute information directly into the prompt, 

reporting improved output coherence. Park et al. (2024) use detailed interview data from 1,052 

American respondents to test how well AI agents replicate actual human behavior when assigned 

attributes such as age and political orientation. Their results indicated a matching rate of up to 85%. Jia 

et al. (2024) assign demographic profiles to GPT models and measure their risk preferences and loss 

aversion. They find that differences in gender and educational attainment significantly affect the 

estimated loss aversion coefficients and probability weighting. In summary, the findings suggest that 

generative AI can replicate humanlike behavioral patterns and provide valuable insights for future 

empirical and applied research. 

Several studies reveal that generative AI shows consistent patterns in gain-and-loss scenarios. That is, 

while generative AI exhibits risk-averse behavior similar to that of humans, it tends to show weaker 

loss aversion. Qiu et al. (2024) report that the GPT-4 has a loss aversion coefficient of 1.09, compared 

to 2.56 for actual consumers, suggesting that the model underestimates losses relative to gains. Jia et al. 

(2024) find that although generative AI generally behaves in a risk-averse manner, it tends to outweigh 

the probabilities of rare events. Meanwhile, model-level comparisons reveal several important 

differences. Ross et al. (2024) demonstrate that GPT-4 generates the most stable and humanlike 

preference structures compared to other models, such as Claude and Gemini, which exhibit greater 

variability in their outputs. Chen et al. (2025) highlight the sensitivity of AI preferences to phrasing 

prompts. Even when presented with identical choice tasks, generative AI produces different responses 

depending on contextual cues, indicating a lack of internal consistency and a high dependence on 

prompt design. 

Fine-tuning is the process of retraining a pretrained foundation model on additional data related to 

specific tasks or domains, thereby adjusting its output tendencies and performance to meet objectives. 

Although many existing studies do not explicitly fine-tune models using human data, they are concerned 

that reinforcement learning from human feedback (RLHF), often implemented as part of HITL, may 

significantly affect the behavior of the model. Santurkar et al. (2023) show that large language models 

(LLMs) tend to produce outputs biased toward liberal, highly educated, and high-income groups, and 

underrepresent the views of older adults, low-income individuals, and religious communities. The 

RLHF process may reinforce specific value systems and amplify the underlying biases. Hagendorff et 

al. (2023) note that although RLHF improves the models’ ability to avoid intuitive errors and generate 

accurate responses, it risks entrenching normative assumptions within the model. In contrast, Park et al. 
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(2024) adopt a different approach by embedding actual human response data into a prompt to construct 

individual AI agents. Although this does not constitute formal fine-tuning, it effectively injects human 

knowledge into the model and functions as an implicit calibration method. These findings suggest that 

generative AI exhibits humanlike behavioral tendencies when conditioned on social attributes and 

contextual framing but still lacks consistent judgment across various settings. Although RLHF may 

enhance coherence and response quality, empirical evaluations of its effects remain limited. Therefore, 

assessing how well generative AI replicates human decision-making biases before and after fine-tuning 

represents a key research agenda in both behavioral economics and applied AI. 

This study compares the similarities and differences in decision-making biases, specifically risk 

preferences and loss aversion, between humans and generative AI (GPT-4). Specifically, it analyzes 

how individual attributes influence these biases across the two entities. Our study designs a unified 

experimental framework to analyze the presence and direction of biases using equivalent tasks for both 

humans and AI. We conduct a nationwide online survey of 4,838 Japanese adults and explore the 

relationship between individual attributes such as age, gender, household income, and their response 

patterns. Based on these demographic profiles, we construct virtual personas and present the same set 

of questions to the GPT-4 under multiple temperature settings. We then quantitatively compare the AI-

generated responses with human preferences to evaluate both the divergence and degree of alignment 

in their underlying decision structures. 

At this point, loss aversion is broadly defined as a property of the value function wherein the slope in 

the loss domain is steeper than that in the gain domain, typically resulting in risk-averse behavior in the 

gain domain and risk-seeking behavior in the loss domain4. Our empirical analysis reveals that, in the 

gain domain, humans and GPT-4o exhibit broadly similar patterns of risk aversion. In contrast, in the 

loss domain, GPT-4o demonstrates significantly stronger risk-seeking tendencies than humans, 

indicating a divergence in risk attitudes that may stem from differences in the degree or functional form 

of loss aversion. Moreover, the results suggest that GPT-4o is more sensitive to demographic cues in its 

decision-making, with individual attributes such as age and income exerting a stronger influence on AI-

generated responses than on human choices. 

We also fine-tune the AI model using web-based survey data on human loss aversion. Our results show 

that the AI’s choice patterns and marginal effects for demographic attributes become more aligned with 

human behavior. In particular, in the loss domain, the fine-tuned AI exhibits preference structures that 

more closely resemble those of humans, positioning it between the pre-trained AI and actual human 

 
4 However, our study does not directly estimate differences in the slope of the value function between 
the gain and loss domains. Rather, we focus on a key behavioral implication of loss aversion—namely, 
the reversal of risk preferences between these domains—as observed in both human and AI agents. It 
should be noted, however, that the stronger risk-seeking behavior observed in the loss domain may be 
attributable to differences in the curvature of the value function. 
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respondents in terms of behavioral traits. However, in some cases, signs of overfitting or divergence are 

observed, particularly in terms of accuracy and distributional fit. We also evaluate the distributional 

similarity using the Wasserstein distance. The fine-tuned AI displays a statistically closer alignment 

with human choice distributions than the pre-trained model. These results suggest that fine-tuning 

contributes to the convergence of behavioral distributions between AI and humans. 

The remainder of this paper is organized as follows. Section 2 reviews previous studies that compare 

generative AI with human behavior. Section 3 describes the survey design and data collection 

procedures. Section 4 introduces the estimation methods for behavioral biases and compares the 

decision patterns of humans and pretrained AI using the collected data. Section 5 describes the fine-

tuning process based on human choice patterns and compares the behavior of the fine-tuned AI with 

that of humans. Section 6 compares the bias tendencies of humans, pre-trained AI, and fine-tuned AI 

and summarizes their interrelationships. Section 7 discusses the main findings. Lastly, Section 8 

concludes the study and outlines future research directions. 

 

2. Related Literature 
 

We review previous studies that compare decision-making patterns and cognitive biases between 

generative AI and humans5. Table 1 lists the studies based on the following seven dimensions: 1) type 

of bias or experimental task examined; 2) version and type of generative AI used; 3) target population 

and sample size; 4) extent to which LLMs replicate average human behavior; 5) replicability of human 

responses when conditioned on socioeconomic attributes; 6) whether the model incorporates human 

feedback, such as fine-tuning; and 7) metrics used to evaluate differences in response distributions 

between humans and LLMs. 

 
5  Several studies examine the research applications of LLMs, outlining both their potential and 

limitations. Demszky et al. (2023) provide a systematic overview of how LLMs can be applied in 

psychology and highlight the risks of biased outputs when cultural biases or underrepresented groups 

are not adequately captured in the training data. Hagendorff (2023) introduces the concept of "machine 

psychology," proposing a framework that treats LLMs as virtual participants in psychological 

experiments and draws attention to the ethical concerns associated with this approach. Sarstedt et al. 

(2024) review studies comparing so-called "silicon samples" with human respondents to assess the 

applicability of LLMs in consumer behavior and marketing research. They find that LLMs can achieve 

high replicability in tasks such as brand evaluation and framing effects but also note their limitations in 

replicating preference formation and behavioral decision-making tasks. These reviews offer valuable 

guidance for incorporating LLMs into social science research and provide critical perspectives on 

ethical governance and future application areas. 
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＜Table 1: Prior Studies on Decision-Making and Cognitive Biases: Generative AI vs. Humans＞ 

 

We introduce studies that compare human decision-making with that of large LLMs through economic 

experiments. We first focus on game-theoretic experiments that involve social preferences such as 

altruism and strategic interactions. Although these studies do not directly compare AI behavior with 

human data, they evaluate LLM behavior in economic games by allowing multiple models to interact 

with one another (e.g., Akata et al., 2025; Guo, 2023; Kitadai et al., 2024; Tsuchihashi, 2023; Lorè and 

Heydari, 2024). Akata et al. (2025) conduct repeated games using GPT-3, GPT-3.5, and GPT-4 in 

scenarios such as the Prisoner’s Dilemma and the Battle of the Sexes, each with different payoff 

matrices. They show that GPT-4 exhibits humanlike cooperative behavior but frequently struggles to 

maintain implicit coordination. However, coordination success rates significantly improve when a 

"cooperative persona" is introduced in the prompt. Guo (2023) assigns GPT-4 personas such as “fair” 

and “selfish” and repeatedly runs ultimatum games and the Prisoner’s Dilemma. They show that the 

“fair” persona generates offer and rejection thresholds close to human averages, while the “selfish” 

persona leads to low offers and high acceptance rates. Kitadai et al. (2024) conduct simulations of the 

ultimatum game using GPT-3.5 and GPT-4. They demonstrate that enhancing the reasoning abilities of 

GPT-based generative agents yields outcomes closer to theoretical predictions than to actual human 

experimental data. Lorè and Heydari (2024) present four two-player games under five contextual 

framing conditions and compare the behavior of GPT-3.5, GPT-4, and LLaMa-2. They reveal that GPT-

4 tends to select strategies consistent with game-theoretic rationality depending on the game structure. 

In contrast, GPT-3.5 and LLaMa-2 exhibit greater sensitivity to contextual framing. Tsuchihashi (2023) 

examines GPT-3.5's bidding behavior in sealed-bid auctions. They find that in first-price auctions (FPA), 

the model overbids similarly to humans, whereas in second-price auctions (SPA), it submits truthful 

bids in line with theory. Furthermore, when given a “student persona,” GPT-3.5 places more 

theoretically consistent bids in FPA and underbids in SPA, suggesting that persona conditioning affects 

strategic behavior. 

Several studies compare the behavior of LLMs with human decisions through experiments on social 

preferences (e.g., Horton, 2023; Brookins and DeBacker, 2024; Mei et al., 2024; Xie et al., 2024). 

Horton (2023) conceptualizes LLMs as Homo Silicus, a virtual economic agent, and presents GPT-3 

with standard behavioral economics tasks, such as fairness evaluations, status quo bias, and responses 

to minimum wage policies. They show that the model exhibits biases consistent with those observed in 

previous human experiments. Moreover, its decision patterns vary depending on the assigned persona, 

such as selfish, fair-minded, or efficiency-oriented. Brookins and DeBacker (2024) repeatedly run 

dictator and prisoner’s dilemma games using GPT-3.5 to assess its tendency toward fairness and 
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cooperation. They find that the model tends to behave more altruistically than humans, particularly in 

contexts that emphasize efficiency, in which its behavior aligned more closely with human patterns. 

Mei et al. (2024) analyze how GPT-3.5 and GPT-4 replicate human behavior by comparing model 

outputs with a dataset of approximately 90,000 human decisions across six game types. Using a Turing 

test framework, they find that GPT-4’s responses closely resemble the human average. However, the 

model also displays a centralizing tendency, avoiding extreme responses. Xie et al. (2024) evaluate five 

models, including GPT-4o, using games such as the dictator and ultimatum game. They assess the 

differences in response distributions between LLMs and humans using the Wasserstein distance. Overall, 

LLMs demonstrate fairer and more cooperative behavior than humans, with GPT-4o producing the 

distribution most similar to human responses. 

Meanwhile, several experimental studies examine loss aversion and risk preferences in LLMs (Jia et 

al., 2024; Qiu et al., 2024; Ross et al., 2024; Chen et al., 2025; Macmillan-Scott and Musolesi, 2024). 

Jia et al. (2024) present choice tasks related to loss aversion and probability weighting to GPT-4, Claude, 

and Gemini. They show that all models exhibit risk-averse behavior, with GPT-4 demonstrating loss-

aversion patterns similar to those of humans. They also report substantial variations in output depending 

on the prompt conditions based on demographic attributes. Ross et al. (2024) comprehensively analyze 

12 LLMs, including GPT-4, focusing on biases such as inequality aversion, loss aversion, and time 

discounting. The models reveal intense guilt and weak envy in terms of social preferences. While they 

respond rationally to gains, their behavior under losses deviates from rational expectations. Additionally, 

the LLMs display stronger time discounting than human subjects. Chen et al. (2025) examine 18 

cognitive biases, including risk attitudes. They show that GPT-3.5 tends to be risk-seeking for gains and 

risk-averse for losses, while GPT-4 exhibits more consistent risk aversion and lower susceptibility to 

framing effects. Macmillan-Scott and Musolesi (2024) evaluate 12 cognitive bias tasks, including the 

conjunction and gambler’s fallacies. They show that GPT-3.5 reproduces many humanlike biases, 

whereas GPT-4 achieves a higher overall accuracy. Finally, although not based on an economic 

experiment, Qiu et al. (2024) simulate health insurance plan choices (n = 5,998) using GPT-4 to assess 

whether the model could replicate human decisions under risk. They show that while the aggregate 

choice distributions resemble those of humans, individual-level agreement is low. The estimated loss 

aversion coefficient for GPT-4 (1.09) is substantially lower than the human average (2.56), suggesting 

that the model systematically underweights losses relative to human decision-makers. 

Other studies examine the reproducibility of survey responses using generative AI. Santurkar et al. 

(2023), Park et al. (2024), and Dominguez-Olmedo et al. (2025) compare AI-generated outputs with 

actual public opinion and survey data to evaluate the degree of alignment and divergence. In the domain 

of cognitive biases, some studies investigate the extent to which LLMs replicate cognitive errors and 

reflective thinking patterns (Aher et al., 2023; Binz and Schulz, 2023; Hagendorff et al., 2023). 

Additionally, research on political attitudes and voting behavior analyze the reproducibility of AI 
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outputs under specific political ideologies and demographic conditions (Argyle et al., 2023; Motoki et 

al., 2024; Bisbee et al., 2024). Lastly, additional studies explore the behavioral alignment between AI 

and humans in various domains, covering topics such as market research, economic forecasting, 

environmental awareness, and tourism behavior (Brand et al., 2023; Bybee, 2023; Lee et al., 2024; Li 

et al., 2024; Xiong et al., 2024).  

In summary, these studies demonstrate that generative AI can replicate human behavior and judgment 

under specific conditions. Moreover, they highlight that such reproducibility heavily depends on model 

configurations, including demographic prompts, contextual framing, question formats, and the design 

of personas or instructions. 

Recent LLMs, such as GPT-4, exhibit a strong ability to replicate average tendencies and aggregate-

level human judgments with high accuracy. However, they show apparent limitations in reproducing 

extreme responses or generating outputs based on specific demographic attributes. Issues such as 

“hyperaccuracy bias” and excessive internal consistency may lead to unnaturally uniform or non-

human-like outputs. Moreover, LLMs are prone to systematic bias when responding to prompts 

involving socially marginalized or culturally underrepresented groups. 

Many prior studies comparing human and generative AI decision-making do not clarify the evaluation 

metrics used to assess reproducibility. Notably, only Santurkar et al. (2023) and Xie et al. (2024) employ 

the Wasserstein distance, a metric adopted in this study. Other studies rely on Kullback–Leibler (KL) 

divergence to compare distributions. However, the KL divergence may fail to capture differences in the 

overall shape of the distributions, making it inadequate for identifying substantive disparities between 

AI-generated and human response patterns. Therefore, using the Wasserstein distance is more 

appropriate. 

In addition, although many studies evaluate the average-level reproducibility of AI responses, few 

consider individual attributes. Even when generative AI exhibits behavior similar to that of humans, 

divergent response patterns may emerge under more granular conditions or when evaluations are made 

at the individual level. Although incorporating human responses into AI training may improve 

reproducibility, only a few studies have implemented such a feedback mechanism. Given these gaps, 

this study offers a more rigorous framework for evaluating the similarities and differences between 

generative AI and human behavior. Compared to prior work, our approach provides advantages in terms 

of the validity of its analytical methods and precision of reproducibility assessments. 

 

3. Survey Design 

 

3.1. Design of the Web-Based Survey 

We conduct a web-based survey (December 2024) through an online survey company, targeting 

domestic residents aged 20–65. We divide Japan into nine regions and allocate respondents to balance 
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gender and age groups within each region. Participants are informed in advance that the survey aims to 

investigate the relationship between consumer attributes and preferences. They would receive 

compensation for their participation in the study. We obtain responses from 5,040 participants. After 

excluding 202 incomplete responses, the final sample includes 4,838 participants. The survey includes 

individual attributes, such as gender, age, and household income. It also contains multiple questions on 

cognitive biases and psychological characteristics that cover Big Five personality traits, time 

preferences, ultimatum games, and the trolley problem. In this study, we focus on gender, age, and 

household income as individual attributes. Regarding psychological characteristics, we focus only on 

risk preferences and loss aversion based on prospect theory. Table 2 presents descriptive statistics of the 

respondents’ attributes6. 

 

＜Table 2: Descriptive Statistics＞ 

 

3.2. Questions on Prospect Theory 

In this section, we discuss the questionnaire used to measure risk preferences and loss aversion. As a 

reference, the following choice tasks concerning gains and losses are presented to students at Stanford 

University and the University of British Columbia by Tversky and Kahneman (1988): 

 

Problem 1. (n=126) 

Assume yourself richer by $300 than you are today. You are offered a choice between 

A. A sure gain of $100, or 

B. A 50% chance to gain $200 and A 50% chance to lose $0. 

 

Problem 2. (n=128) 

Assume yourself richer by $500 than you are today. You are offered a choice between 

A. A sure loss of $100, or 

B. A 50% chance to lose $200, and A 50% chance to lose $0. 

 

Participants are presented with two choices (A and B) with equivalent expected values in both the gain 

and loss domains. In Problem 1, which corresponds to the gain domain, 72% of participants select the 

sure gain option (A), whereas 28% choose the risky option (B). This indicates a risk-averse preference 

in the gain domain, in which most participants prefer certainty over risk. However, in Problem 2, which 

 
6 Income is categorized into six groups: "Less than JPY 3 million," "JPY 3 million to less than JPY 5 
million," "JPY 5 million to less than JPY 7 million," "JPY 7 million to less than JPY 10 million," "JPY 
10 million to less than JPY 15 million," and "JPY 15 million or more." Class values are set as follows: 
JPY 3 million, JPY 4 million, JPY 6 million, JPY 8.5 million, JPY 12.5 million, and JPY 15 million. 
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corresponds to the loss domain, 36% of the participants select the sure option (A), while 64% choose 

the risky option (B). This suggests a risk-seeking tendency in the loss domain, in which participants 

gamble on the possibility of avoiding loss by accepting a higher potential loss. 

Another important point is the difference in the choice tendencies between Problems 1 and 2. Although 

both problems present identical monetary amounts and probability structures from the same wealth 

reference point, the observed choices differ. This preference asymmetry reflects framing effects 

consistent with loss aversion7 . This tendency highlights a behavioral pattern that deviates from the 

rational decision-making predicted by the standard expected utility theory, showing that human 

decisions are heavily influenced by frameworks such as reference points. Based on Tversky and 

Kahneman (1988), we present the following questions: 

 

Question 1. Imagine you receive an additional JPY 30,000 on top of your current wealth and are asked 

to choose between the options below. Which option would you choose? 

Option 1: Receive a guaranteed JPY 10,000 

Option 2: A 50% chance of receiving 20,000 yen and a 50% chance of receiving nothing 

 

Question 2. Imagine you receive an additional JPY 50,000 on top of your current wealth and are asked 

to choose between the options below. Which option would you choose? 

Option 1: Lose 10,000 yen with certainty 

Option 2: A 50% chance of losing JPY 20,000 and a 50% chance of losing nothing 

 

Since our survey targets domestic residents in Japan, questions are presented in the Japanese language, 

and monetary amounts are displayed in JPY (with an exchange rate of USD 1 = JPY 100). 

 

3.3. Survey Design for Generative AI 

We implement "personas" constructed from actual web-based survey attribute information into 

generative AI and compare the AI’s decision tendencies with those of humans under identical conditions. 

Specifically, we extract representative patterns of attributes from human data and input them into 

 
7 Kahneman and Tversky (1979) reports a similar tendency. The structure of the questions and the 
results in their study are as follows. In PROBLEM 1, the proportions of participants choosing options 
A and B are 16% and 84%. In contrast, in PROBLEM 2, the proportions of participants choosing options 
C and D are 69% and 31%, respectively. 
Problem 1. 
In addition to whatever you own, you have been given 1,000. You are now asked to choose between: A: 
($1,000, 0.50), and B: ($500). 
Problem 2. 
In addition to whatever you own, you have been given 2,000. You are now asked to choose between: C: 
($-1,000, 0.50), and D: ($-500). 
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prompts to assign virtual personas to the AI. Then, we present the same questions as in the web-based 

survey to these personas and collect their responses, enabling a condition-controlled comparative 

analysis. We use OpenAI’s GPT-4o as the generative AI model. Unlike the general ChatGPT interface, 

GPT-4o is accessible via the OpenAI API, allowing program-based operation. Using the API, we can 

automate large-scale response generation with Python code, enabling systematic analysis under 

numerous persona conditions8. 

The process of collecting responses from generative AI is as follows. First, we extract the three 

attributes (gender, age, and household income) from web-based survey data and save them in CSV 

format. Second, we create a Python script that references this CSV file and links it to the OpenAI GPT-

4o model to automate the response generation process (see Figure 1). Lines 1–5 of the script import 

necessary libraries (e.g., pandas, csv, and openai) for reading CSV files and communicating with the 

OpenAI API. Line 6 sets the API key (authentication information) to enable the use of the OpenAI API. 

Lines 9–10 specify the path to the CSV file containing the analysis targets. Lines 12–24 define the 

function “extract_reason_and_answer” to extract "reason" and "answer" from the generated responses, 

outputting "unknown" if no reasoning is provided. Lines 26–53 define the function 

“generate_reason_and_answer”, which constructs prompts based on each persona’s attributes (gender, 

age, household income) and generates AI responses via the API. Line 55 applies this process to all 4,838 

samples on the DataFrame, storing the extracted reasons and answers as separate variables. The 

subsequent code saves the response data as CSV files for further analysis. 

 

<Figure 1: Python Script for AI Question Presentation and Response Collection> 

 

To control variability in the generated responses, we also adjust the “temperature” parameter, which 

controls the randomness, and collect responses under three different temperature settings9. By adjusting 

the temperature, we could evaluate the impact of probabilistic fluctuations on AI decision tendencies. 

Through these procedures, we reproduce 4,838 personas with attributes identical to those of the web-

based survey participants on GPT-4o and obtain responses to the two-choice tasks (see Table 3)10. Then, 

we apply a logit model to the response data and quantitatively analyze the generative AI’s tendencies 

regarding risk preferences and loss aversion. 

 
8 In addition to GPT-4o, we also collect responses to the same questions from other chat-based language 
models, including OpenAI’s GPT-3.5, Google’s Gemini 2.0 Flash, and DeepSeek’s DeepSeek-R1. The 
results of these comparisons are discussed in Section 7. 
9 The temperature parameter ranges from 0 (minimum) to 2 (maximum), with a default value of 1. 
Higher temperatures lead to increased randomness in the generated text. However, when the 
temperature exceeds 1, the analysis results become unstable in our setting. 
10 Unlike the general ChatGPT interface, responses generated via the OpenAI API are stateless and 
independent, ensuring response independence comparable to that in web-based surveys. 
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<Table 3: Example of Responses Using OpenAI API> 

 

3.4. Estimation Methods for Behavioral Biases 

We present the estimation method used to clarify the impact of respondent attributes on risk preferences 

and loss aversion. 11  In the questionnaire, respondents are asked to choose between two options: 

“Option 1: JPY 10,000 with 100%” or “Option 2: JPY 20,000 with 50%.” Therefore, the responses can 

be treated as binary variables. In this study, the binary responses are treated as dependent variables, and 

the three attributes are treated as independent variables. The estimation is conducted using the maximum 

likelihood method. Suppose that the error terms associated with the utility of each choice follow a type-

I extreme value distribution. In this case, the difference in the error terms follows a logistic distribution; 

thus, using a logit model is appropriate. The choice probability in the logit model is as follows: 

 

P(Yi = 1| X1i, X2i, X3i) =
1

1 + e−(β0+β1X1i+β2X2i+β3X3i)
 

 

where i  denotes each respondent. The dependent variable Yi  equals 1 if the respondent selects 

“Option 1: JPY 10,000 with 100%” and 0 if they select “Option 2: JPY 20,000 with 50%.” X1i is a 

dummy variable for the gender of respondent i that takes the value of 1 if the respondent is female, 

and 0 if the respondent is male. X2i  represents the respondent i′ s age in 10-year increments. X3i 

indicates the respondent i′s household income in 1-million- JPY increments. 

 

4. Comparison of Biases between Humans and Pre-Trained AI12 

 
4.1. Overview of Choice Patterns 

Table 4 presents the choice results for each question obtained from human respondents and the 

generative AI. For each question, a binary variable is defined: Option 1 (a certain gain/loss of 10,000 

yen) is coded as 1 and Option 2 as 0. The average of this variable represents the average selection rate 

of Option 1. 

 

<Table 4: Choice Results: Human vs. Pre-trained AI> 

 
11 From this point forward, we refer to both the web-based survey participants and generative AIs with 
implemented personas as “respondents.” The terms “individual” and “answer” are used in the same 
unified manner. 
12 Generative AI in this section is not yet fine-tuned, unlike what is introduced after Section 5. Therefore, 

we call this generative AI “Pre-trained AI” for convenience. 
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We first review the results of the web-based survey. For Question 1, 88.4% of the human respondents 

select Option 1 (a sure gain of JPY 10,000), whereas only 11.6% choose Option 2 (a 50% chance of 

gaining JPY 20,000 or nothing). This result suggests a strong risk-averse tendency in the gain domain. 

For Question 2, 57.7% choose Option 1 (a sure loss of JPY 10,000), while 42.3% choose Option 2 (a 

50% chance of losing JPY 20,000 or nothing). Although the result indicates some degree of risk-seeking 

behavior, no clear tendency is found in the loss domain. Then, we examine the response results from 

the generative AI under the default setting of temperature = 1.0. For Question 1, 91.1% of the 

respondents select the sure gain option, indicating a clear tendency toward risk aversion in the gain 

domain. However, for Question 2, only 11.0% choose the sure loss option, whereas the majority opt for 

the probabilistic loss, indicating a distinct risk-seeking tendency in the loss domain. In summary, the 

results suggest that humans and generative AI display a high level of risk aversion in the gain domain. 

In contrast, in the loss domain, while the generative AI exhibits a clear risk-seeking tendency, the human 

responses do not display a similarly strong pattern. This discrepancy suggests that preferences in the 

loss domain may differ between humans and AI. When we compare the selection rates for Option 1 in 

Questions 1 and 2, the generative AI results are 91.1% and 11.0%, indicating stronger loss aversion. For 

humans, the rates are 88.4% and 57.7%, reflecting relatively weaker loss aversion compared to the AI. 

Lastly, we examine how the temperature setting affects the response tendencies of the AI. For Question 

1, selection rates for Option 1 remained high across different temperatures (91.1% (1.0), 88.9% (0.5), 

and 89.8% (0.0)), confirming risk aversion in the gain domain. However, for Question 2, selection rates 

for Option 1 decrease as the temperatures decrease (11.0% (1.0), 3.0% (0.5), and 0.0% (0.0)), suggesting 

a stronger risk-seeking tendency at lower temperatures. Notably, at temperature = 0.0, only one 

respondent (persona is "female, age: 53, income: JPY 3 million") selects Option 1. As this response 

deviates significantly from the broader trend, the data is excluded from subsequent analyses. 

 

4.2. Analysis Based on Marginal Effects 

Tables 5 and 6 present the estimated marginal effects and average predicted probabilities derived from 

the logit model using datasets from both humans and generative AI across different temperature settings. 

The marginal effects indicate how the likelihood of Yi = 1 changes with a one-unit increase in each 

explanatory variable. The average predicted probabilities are calculated by applying the estimated logit 

model to each sample to obtain the probability of choosing Option 1 and then averaging those 

probabilities. These values align with the selection rates presented in Table 4, confirming that the logit 

model accurately predicts actual choice tendencies. 

 

<Table 5: Logit Model Estimation: Humans vs. Pre-trained AI (Gain, 3 Attributes)> 

<Table 6: Logit Model Estimation Humans vs. Pre-trained AI (Loss, 3 Attributes)> 
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We examine the estimation results for humans. For Question 1, all attributes show statistically 

significant marginal effects at the 1% level. Specifically, being female increases the probability of 

choosing Option 1 by 4.1%. A 10-year age increase raises the probability by 1.5%, whereas a JPY 1 

million increase in household income reduces the probability by 0.5%. For Question 2, statistically 

significant marginal effects are found only for age and income, but not for gender. Specifically, a 10-

year age increase raises the probability of choosing Option 1 by 2.1% and a JPY 1 million increase in 

income decreases the probability by 0.8%. 

 Subsequently, we analyze the generative AI results at a temperature of 1.0. In this setting, statistically 

significant marginal effects at the 1% level are observed for all three attributes for both questions. For 

Question 1, being female increases the probability by 3.3%, a 10-year age increase raises the probability 

by 5.7%, whereas a JPY 1 million increase in income decreases the probability by 2.7%. For Question 

2, being female increases the probability by 2.8%, a 10-year age increase raises the probability by 2.3%, 

whereas a JPY 1 million increase in income decreases the probability by 0.6%. 

We then compare the marginal effects of humans and AI at a temperature of 1.0. Using the delta method, 

we calculate the standard errors for the marginal effects and conduct statistical tests to determine the 

differences between the two groups. For Question 1, the z-values for the differences in marginal effects 

between humans and AI for gender, age, and income are 0.70, -9.90, and 15.56, respectively. The 

difference in gender is not statistically significant at the 5% level. In contrast, significant differences 

are observed in terms of age and income. For Question 2, the z-values for the differences in marginal 

effects for gender, age, and income are -2.04, -0.31, and -0.71, respectively. Unlike in the gain domain, 

only gender shows a statistically significant difference, while age and income do not show any 

significant differences. These results suggest that while partial differences in marginal effects between 

humans and AI are observed, no consistent or statistically significant differences are found. 

Finally, we examine how changes in the temperature setting affect the marginal effects of AI. In all 

temperature conditions, statistically significant marginal effects at the 1% level are observed for all 

attributes for both questions. For Question 1, the marginal effect of age is consistently larger for AI than 

for humans and increases with lower temperatures (0.057 (temp=1.0), 0.073 (temp=0.5), and 0.120 

(temp=0.0)) compared with the result for humans (0.015). For income, while the negative marginal 

effects of AI are larger than those of humans (-0.005), a consistent trend is not found across the different 

temperature settings (-0.027 (temp = 1.0), -0.033 (temp = 0.5), and -0.031 (temp = 0.0)). For gender, no 

consistent trend is observed for temperature (Human: 0.041; AI: 0.033 (temp = 1.0), 0.026 (temp = 0.5), 

and 0.086 (temp = 0.0)). For Question 2, no clear temperature-dependent trend is found in the marginal 

effect of age (Human: 0.021; AI: 0.023 (temp = 1.0), 0.008 (temp = 0.5)). For income, AI shows slightly 

stronger negative marginal effects than the human result (-0.008); however, no consistent trend across 

temperature settings is found as well (both temps: -0.006). For gender, no variation is observed across 



15 
 

temperature settings (both temps: 0.028). 

 

4.3. Graphical Analysis of Choice Probabilities 

Figures 2 and 3 illustrate the choice probabilities for each attribute in Questions 1 and 2, respectively. 

Figure 2 shows that under “Gender,” the other two attributes are fixed at their average values (age = 

44.9 years, income = JPY 5.93 million). The choice probabilities are plotted for the gender dummy 

variable with values of 0 (male) and 1 (female). Additionally, in “Gender,” we observe that the 95% 

confidence intervals overlap at both points. This indicates no significant difference in choice 

probabilities between the web-based survey results and AI responses, or among the different 

temperature conditions. 

 

<Figure 2: Choice Probabilities: Humans vs. Pre-trained AI (Gain, 3 Attributes)> 

<Figure 3: Choice Probabilities: Humans vs. Pre-trained AI (Loss, 3 Attributes)> 

 

Meanwhile, in “Age” and “Income,” the slope of the black line representing the human web-based 

survey results is relatively gentle, whereas the lines for the generative AI are steeper. This suggests that 

AI emphasizes changes in the choice probability more strongly in response to age or income. However, 

the confidence intervals overlap around the mean values in these graphs, indicating that the differences 

between humans and AI are relatively small near the average. Figure 3 illustrates a clear difference in 

the y-intercept across all three attributes. The y-intercepts for human web-based survey results lie 

around 0.5–0.6, whereas those for the AI results are clustered around 0–0.1. This indicates notable 

differences in choice probabilities at lower age and income levels. However, the slopes of the lines do 

not differ significantly between humans and AI, suggesting that incremental changes in the choice 

probability with increasing age or other attributes are similar. 

 In addition, by comparing the scale of the y-coordinates in both figures, we can assess the tendency 

toward loss aversion. In Figure 2, under “Age,” the AI’s choice probability at age 20 (with temperature 

= 1.0) is around 0.7. In contrast, in Figure 3, under “Age,” the choice probability under the same 

condition is only about 0.05. This sharp contrast reflects the previously observed strong tendency 

towards loss aversion in generative AI. Moreover, the figures illustrate that while humans show 

relatively weaker loss aversion, AI displays this behavior more prominently. 

 

4.4. Analysis of Prediction Accuracy 

Table 7 shows the prediction accuracy between the predicted choice probabilities from each model and 

the actual binary choices. “Predicted value” is defined as a binary classification based on the expected 

probability P�(Yi = 1| 𝐗𝐗). If the predicted probability is 0.5 or greater, the respondent is classified as 

choosing Option 1; otherwise, they are classified as choosing Option 2. Based on this classification, we 
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calculate the match rate between the model’s prediction and the actual observed response to assess the 

model’s fit. In this context, “prediction accuracy” refers to the proportion of cases in which the predicted 

outcomes from the model match the actual observed outcomes. Specifically, “prediction accuracy” is 

the sum of the proportions of cases in which both the predicted and observed outcomes are Option 1 

(i.e., (1,1)) and those in which both are Option 2 (i.e., (2,2)). In the human web-based survey results, 

the prediction accuracy for Question 1 is 88.40%. However, for Question 2, the prediction accuracy 

decreases to 57.59%. In comparison, the prediction accuracy based on the responses generated by the 

AI ranges from 88.98% to 96.96%, indicating a higher overall level of consistency compared with the 

web-based survey. 

 

<Table 7: Logit Model Prediction Accuracy: Humans vs. Pre-trained AI> 

 

5. Fine-Tuning 

 

This study also aims to replicate human behavioral biases within generative AI by training it on real 

human response data and to evaluate the proximity between humans and AI before and after training. 

Thus, we employ fine-tuning as the training method for the generative AI. Fine-tuning refers to the 

retraining of a pre-trained model, originally trained on large-scale data, on a new dataset to specialize 

in a specific task or domain (Devlin et al., 2019). In the case of OpenAI’s GPT model, fine-tuning is 

performed by preparing a dataset in the JSONL format, uploading it to the OpenAI API system, and 

initiating the training process. 

We use the predicted probabilities estimated by the logit model for each respondent as the training 

data. These probabilities represent P�(Yi = 1| 𝐗𝐗) , which is the likelihood of choosing Option 1 

calculated from the estimated model for each individual. After completing the fine-tuning process, we 

submit the same questions to the fine-tuned model as we have for the human participants and the pre-

trained AI. We estimate the predicted probability using a logit model to clarify the differences in 

behavioral tendencies among the three groups. 

 Figure 4 shows an excerpt from the JSONL format dataset used for fine-tuning. In fine-tuning with 

GPT, each training sample must consist of a sequence of 10 or more dialogues using three roles: 

"system", "user", and "assistant". The “system” defines the instructions the model should follow. The 

“user” provides the input or question to the model. The “assistant” provides the model’s expected 

response. In our dataset, we input virtual personal attributes (personas) under "system", questions about 

the respondent’s predicted choice probabilities under "user", and the value of the predicted probabilities 

under "assistant". 

 In the fine-tuning, determining the training methods and parameter settings in advance is necessary. 

For the training methods, we consider two possible approaches: a probability-based method, which 
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directly inputs the value of the predicted probability as reported by the human respondent, and a 

frequency-based method, which involves inputting question-and-answer data that reflects the frequency 

of human choices. For the parameters, we consider epoch and learning rate multiplier (LR). Epoch is 

the number of training iterations. The higher the value, the more the model learns; the risk of overfitting 

increases. LR is used to adjust the learning speed. A higher value leads to faster and more efficient 

learning and easier convergence; however, it also increases the risk of overfitting. We conduct 

preliminary fine-tuning using a sample of 100 respondents to select the appropriate learning method 

and parameter settings. Then, we instruct the fine-tuned model to generate responses to the two 

questions and evaluate them using logit analysis. With OpenAI’s default settings (epoch = 3, LR = 2), 

nearly all samples selected Option 1 in Question 1, resulting in an output that may reflect overfitting. 

This result indicates overfitting. Therefore, we conduct multiple trials with lower epoch and LR values. 

After comparing the results, we adopt the probability-based method as our training approach, setting 

the parameters to epoch = 1 and LR = 0.2. 

 

<Figure 4: Dataset for Fine-tuning> 

 

Figure 5 shows the Python script used to train the GPT-4o-2024-08-06 model. Lines 1–3 of the script, 

“import ...”, read JSONL files and communicate with the OpenAI API. Line 9 specifies the path to the 

JSONL file containing analysis targets. Lines 12–18 read the JSONL training file and prepare it for 

uploading to the model. Lines 21–31 initiate the fine-tuning of GPT-4o-2024-08-06 with epoch=1 and 

LR=0.2. Lines 33–36 instruct the output of the progress status during fine-tuning.13 

 

<Figure 5: Python Script for Fine-tuning> 

 

We apply the same procedure as the one for the pretrained AI (Section 3.3) to the fine-tuned generative 

AI. Specifically, we reproduce 4,838 personas on the generative AI, each with the same attributes as 

those in the web-based survey results and obtained responses to two-choice questions. The resulting 

responses are analyzed using the logit model to examine the tendencies in risk preferences and loss 

aversion. 

 

6. Comparison of Biases Among Humans, Pre-Tuned AI, and Fine-Tuned AI 

 

We compare the logit model estimation results by persona based on individual attributes, examining the 

 
13 In fine-tuning, OpenAI system randomly shuffles the examples repeatedly, so the order of examples 
should not make a difference. Namely, each sample contributes independently to the learning. 
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outcomes for humans, pretrained AI, and fine-tuned AI. All generative AI responses are obtained using 

the default temperature setting of 1.0. 

 

6.1. Overview of Choice Patterns 

Table 8 presents the choice results for each question obtained from human respondents and the pre- and 

post-trained generative AI. For Question 1, respondents choosing Option 1 (96.1%) significantly exceed 

those who choose Option 2 (3.9%). This suggests a strong tendency toward risk aversion in the gain 

domain. Conversely, for Question 2, more respondents select Option 2 (59.6%) over Option 1 (40.4%). 

This indicates a tendency toward risk-seeking in the loss domain; this tendency is weaker than the risk 

aversion observed in the gain domain. 

 

<Table 8: Choice Results: Humans, Pre-trained AI, and Fine-tuned AI> 

 

Next, we compare the results of humans, pre-trained AI, and fine-tuned AI. For Question 1, the fine-

tuned AI’s selection rate (96.1%) is higher than that of the pre-trained AI (91.1%), which has a higher 

rate than the human average (88.4%). This suggests overfitting in the form of excessive risk aversion 

in the gain domain. Similarly, for Question 2, the fine-tuned AI's average selection rate (40.4%) is closer 

to that of humans (57.7%), indicating that it appropriately learns human tendencies toward risk-seeking 

in the loss domain. Comparing the selection rates for Option 1 between Questions 1 and 2, the fine-

tuned AI rates for Questions 1 and 2 (96.1% and 40.4%, respectively) are higher than those of the pre-

trained AI (91.1% and 11.0%, respectively), indicating that the fine-tuned AI has a weaker loss aversion 

and a pattern similar to that of humans (88.4% and 57.7%, respectively). 

 

6.2. Analysis Based on Marginal Effects 

Tables 9 and 10 present the estimated marginal effects and average predicted probabilities derived from 

the logit model using datasets from the human web-based survey and the pre- and post-trained 

generative AI. The average predicted probabilities align with the selection rates presented in Table 8, 

confirming that the logit model accurately predicts actual choice tendencies. 

 

<Table 9: Logit Model Estimation: Humans, Pre-trained AI, and Fine-tuned AI (Gain, 3 Attributes)> 

<Table 10: Logit Model Estimation: Humans, Pre-trained AI, and Fine-tuned AI (Loss, 3 Attributes)> 

 

First, Question 1 confirms statistically significant marginal effects at the 1% level for all three 

attributes. Specifically, being female increases the probability of choosing Option 1 by 1.9%. A 10-year 

age increase raises the probability by 3.0%, and a JPY 1 million increase in income decreases the 

probability by 1.4%. By contrast, statistically significant marginal effects are observed only for gender 
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and age in Question 2. Specifically, being female increases the probability of choosing Option 1 by 

26.4%, and a 10-year age increase raises the probability by 13.3%. For Question 2, large marginal 

effects are observed for both gender and age. This indicates that the impacts of gender and age on risk-

seeking behavior in the loss domain become stronger through training. 

 Next, we compare the responses of humans and those of fine-tuned AI. Using the delta method, we 

calculate standard errors for the marginal effects and conduct statistical tests to determine the 

differences between them. For Question 1, the z-values for the differences in the marginal effects for 

gender, age, and income are 2.14, -4.16, and 6.36, respectively; all are statistically significant. For 

Question 2, the z-values for the differences for gender, age, and income are -15.2, -17.5, and -1.77. 

Statistically significant differences at the 5% level are found only for gender and age. 

 

6.3. Graphical Analysis of Choice Probabilities 

Figures 6 and 7 illustrate the choice probabilities for each attribute for Questions 1 and 2, respectively. 

In Figure 6, in "Gender," the 95% confidence intervals for humans’ and pre-trained AI’s lines overlap 

at both points, indicating no significant difference in the choice probabilities. However, fine-tuned AI’s 

line is positioned above both, suggesting a stronger risk aversion through training. 

 

<Figure 6: Choice Probabilities: Humans, Pre-trained AI, and Fine-tuned AI (Gain, 3 attributes)> 

<Figure 7: Choice Probabilities: Humans, Pre-trained AI, and Fine-tuned AI (Loss, 3 attributes)> 

 

In "Age" and "Income," the slope of the fine-tuned AI's line becomes more moderate through training, 

approaching that of humans. Nevertheless, near the average values, the fine-tuned AI lies above the 

95% confidence intervals for both humans and the pre-trained AI, again indicating a heightened risk 

aversion. 

Figure 7 shows a different trend. In "Gender" and "Age," the fine-tuned AI reflects high positive 

marginal effects with steep slopes. Thus, when the persona is male or young, its line gets closer to that 

of the pre-trained AI, whereas for female or older personas, it aligns more closely with human responses. 

Around the average values, the y-coordinates of the fine-tuned AI fall between those of humans and the 

pre-trained AI, indicating that it has effectively learned humanlike risk seeking in the loss domain. In 

"Income," no major slope differences are found among the three lines, but apparent differences in y-

intercepts are observed. The fine-tuned AI's line is positioned between the other two and closer to the 

human line. In addition, by comparing the scale of the y-coordinates in both figures, we can assess the 

tendency toward loss aversion. Notably, we show that training reduces the asymmetric response pattern 

in gain and loss domains, leading to behavior more consistent with human-like loss aversion. 

 

6.4. Analysis of Prediction Accuracy 
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Table 11 shows the prediction accuracy of the choice probabilities for each model. For Question 1, the 

fine-tuned AI's prediction accuracy is high (96.57%), surpassing that of both humans (88.40%) and the 

pre-trained AI (92.08%). This indicates that the fine-tuned AI accurately replicates human decision 

tendencies in the gain domain. In contrast, for Question 2, the prediction accuracy of the fine-tuned AI 

(69.93%) is higher than that of humans (57.59%) but lower than that of the pre-trained AI (88.98%). 

This suggests limitations in the ability of fine-tuned AI to replicate human behavior in the loss domain. 

 

<Table 11: Logit Model Prediction Accuracy: Humans, Pre-trained AI, and Fine-tuned AI> 

 

6.5. Comparative Analysis of Choice Probabilities Using the Wasserstein Distance 

For the quantitative evaluation of the proximity of decision tendencies between humans and generative 

AI before and after training, we utilize the Wasserstein distance of order 2, a metric for measuring the 

distances between probability distributions. The Wasserstein distance of order 2 is defined based on 

optimal transport theory and reflects the minimum cost required to move mass between two 

distributions. Specifically, using the squared Euclidean distance as the cost function, it is formalized as 

follows (Ambrosio et al., 2008): 

 

W2(μ1,μ2) ≔ min�∫ d(x1, x2)2dμ(x1, x2) 
𝐗𝐗2 : μ ∈ 𝒯𝒯(μ1, μ2)�. 

 

Here, μ1 and μ2 are arbitrary probability distributions over a probability space, 𝒯𝒯(μ1, μ2) denotes 

the set of joint probability distributions with μ1 and μ2 as their marginal distributions, and d(x1, x2) 

represents the Euclidean distance between two points x1 and x2. The right-hand side of the equation 

represents the minimum transportation cost among all transport plans from the distribution μ1 to μ2, 

with the cost function defined as d(x1, x2)2 . Using this distance metric enables a quantitative 

assessment of the difference between the choice distributions of pre- and post-trained generative AI and 

those of humans in terms of the distance between their respective choice probability distributions.  

Table 12 shows the Wasserstein distances of order 2 between the choice probability distributions of 

humans and those of the pre-trained and fine-tuned AIs. In calculating the Wasserstein distance, we used 

the distributions of predicted probabilities estimated by the logit model for humans, as well as for the 

pre-trained and fine-tuned AI.  

 

<Table 12: Wasserstein Distance of Order 2 between Three Groups> 

 

For Question 1, the distances between humans and the pre-trained AI, between humans and the fine-

tuned AI, and between the pre-trained AI and fine-tuned AI are 0.135, 0.123, and 0.081, respectively. 

This indicates that the human-AI distance is reduced by approximately 8.9% (0.012 units). Moreover, 
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the fine-tuned AI is 52% (=0.123/0.081-1) closer to the pre-trained AI than to humans. For Question 2, 

the distances between humans and the pretrained AI, between humans and the fine-tuned AI, and 

between the pretrained AI and fine-tuned AI are 0.467, 0.263, and 0.353, respectively. This indicates 

that training reduces the distance between humans and AI by 0.204 (approximately 43.7%). Additionally, 

the fine-tuned AI is 34% (=1-0.263/0.353) closer to humans than the pre-trained AI. Using the combined 

data from Questions 1 and 2 (N=9,676), the distances between humans and the pre-trained AI, between 

humans and the fine-tuned AI, and between the pre-trained AI and the fine-tuned AI are 0.343, 0.198, 

and 0.253, respectively. This shows that training reduces the human-AI distance by 42.3% (=1-

0.198/0.313), and that the fine-tuned AI is 28% (=1-0.198/0.253) closer to humans than the pre-trained 

AI. In summary, training brings the behavior of the generative AI closer to human decision-making 

tendencies, particularly in the loss domain, suggesting that the learning process effectively influences 

the AI's bias structure and enhances its humanlike judgment characteristics. 

 

7. Discussions 

 
7.1. Bias Patterns in Humans and Pre-Trained AI 

Based on the analysis presented in Section 4, GPT-4o exhibits a risk-averse preference pattern in the 

gain domain, closely resembling that of human respondents. The AI demonstrates a high level of 

consistency in replicating human decision-making behavior. In particular, for Question 1, the selection 

rate for Option 1 is approximately 90% for both humans and AI, suggesting that the behavior aligns 

with the predictions of prospect theory. Meanwhile, a comparison of the marginal effects by individual 

attributes reveals no substantial differences between humans and AI in terms of gender. However, for 

age and income, the absolute values of the marginal effects are consistently larger for the AI, indicating 

stronger sensitivity to these attributes. Furthermore, the AI exhibits risk-averse behavior in the loss 

domain, with a more pronounced asymmetry in preference than humans. 

 Generative AI tends to replicate the association between demographic attributes and preferences in its 

training data with excessive precision, suggesting a form of “overfitting to bias.” Rather than reflecting 

the variability and inconsistency inherent in human decisions, the model selects contextually plausible 

responses, which reinforces stereotypical patterns linked to individual characteristics. When the 

temperature parameter is set to 0.0, the magnitude of the estimated coefficients increases significantly 

compared to other settings. The suppression of the output randomness eliminates the uncertainty and 

ambiguity often observed in human judgment, resulting in more mechanical and normative output 

patterns. These tendencies suggest that the model’s responses heavily rely on the context and attribute 

conditions. This reliance creates a fundamental divergence from human behavior, particularly in how 

AI reproduces biased structures. 

 Meanwhile, generative AI exhibits a significantly greater degree of loss aversion than humans. In the 
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web-based survey targeting human respondents, 57.7% choose Option 1 in Question 2, indicating a 

moderate tendency toward risk aversion. This rate exceeds the 36% reported by Tversky and Kahneman 

(1988), suggesting a general inclination to avoid losses. However, generative AI selects Option 1 in 

only 11.0% and 3.0% of cases under temperature settings of 1.0 and 0.5, respectively, demonstrating a 

more pronounced aversion to loss. When the temperature is set to 0.0, all but one sample chooses Option 

2. 

 Moreover, the generative AI reveals a similar pattern of loss aversion. When comparing the selection 

rates for Option 1 in Questions 1 and 2, Tversky and Kahneman (1988) report rates of 72% and 36%, 

respectively. In contrast, the rates in our web-based survey are 88% and 58%, respectively. In contrast, 

the generative AI shows a more polarized pattern, with approximately 90% of the responses for 

Question 1 and 10% for Question 2. This suggests a stronger aversion to losses than observed among 

human respondents. Furthermore, the comparison of prediction accuracy highlights this discrepancy 

(Table 5): 98.04% of the human responses aligned with predicted choice 1. At the same time, the AI 

consistently produces predicted choice two across all samples. These results indicate a clear divergence 

between humans and AI in terms of risk preference and loss aversion. 

 In addition to GPT-4o, we present the same set of questions to the following LLMs: GPT-3.5 by 

OpenAI, Gemini 2.0 Flash by Google, and DeepSeek-R1 by DeepSeek. The results reveal differences 

in response patterns across the models. GPT-3.5 demonstrates a limited understanding of risk 

preferences, whereas Gemini 2.0 Flash’s answers frequently fail to capture the intended meaning of the 

questions accurately. In contrast, DeepSeek-R1 accurately reflects existing findings on risk preferences 

and loss aversion, producing responses similar to those of GPT-4o. These results suggest that the 

upgrade from GPT-3.5 to GPT-4o improves alignment with behavioral economic principles, particularly 

regarding risk- and loss-related choices. Gemini appears only to have limited sensitivity to such features, 

whereas DeepSeek’s level of behavioral consistency might be comparable to that of GPT-4o. 

 

7.2. Bias Patterns in Fine-Tuned AI 

The study’s results indicate that GPT-4o overfits the human tendency toward risk aversion in the gain 

domain. For Question 1, the proportions of respondents selecting Option 1 are 88%, 91%, and 96% for 

humans, the pre-trained AI, and the fine-tuned AI, respectively. These results reflect the risk-averse 

preferences predicted by prospect theory; however, fine-tuning may intensify this bias. This pattern 

supports the earlier claim that the model overfits cognitive biases. When comparing the marginal effects 

by demographic attributes, the gender gap between humans and AI widens after fine-tuning. However, 

the gaps related to age and income narrow. Nonetheless, statistically significant differences remain 

between humans and the fine-tuned AI for all three attributes. Using the second-order Wasserstein 

distance as a metric, we find that fine-tuning reduces the distance between the human and AI choice 

distributions by nearly 10%, suggesting that the AI’s decision pattern moves closer to that of humans. 
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 In the loss domain, fine-tuning reduces the extreme risk seeking of AI and brings its behavior closer 

to that of humans. Before training, the pretrained model selects Option 1 in Question 2 at a rate of only 

11.0%, indicating a strong preference for risk proneness. After fine-tuning, this rate increases to 40.4%, 

exceeding the 36% reported by Tversky and Kahneman (1988) and approaching the 57.7% observed in 

our web-based survey. The second-order Wasserstein distance between the AI and human responses 

also decreases by more than 40%, suggesting that learning progresses more effectively in the loss 

domain than in the gain domain. Furthermore, classification accuracy improves after training. The 

model no longer assigns all samples to Prediction 2. Instead, more than 65% of the samples receive 

Prediction 1. This shift indicates a substantial alignment with human behavior. However, a comparison 

of the marginal effects by attribute reveals a different pattern. It shows that fine-tuning increases the 

gap between humans and AI. In particular, the fine-tuned model yields large marginal effects for gender 

(0.264) and age (0.133), suggesting potential overfitting in the model's response to demographic 

information. 

 Additionally, fine-tuning reduces the AI’s degree of loss aversion, bringing it closer to human behavior. 

Comparing the choice rates for Option 1 in Questions 1 and 2, the pre-trained model shows a 90% vs. 

10% split. After training, the pattern shifts to 96% vs. 40%. By comparison, Tversky and Kahneman 

(1988) report a 72% vs. 36% split, whereas the human respondents in this study show an 88% vs. 58% 

split. These results indicate that fine-tuning weakens the AI’s excessive loss aversion and aligns its 

behavior more closely with human responses. 

 

8. Conclusions 

 

This study examines the decision-making tendencies of humans and generative AI in terms of risk 

preferences and loss aversion. It focuses on the impact of persona settings, defined by attribute 

information, on AI responses. Furthermore, we examine whether generative AI can replicate human 

behavioral patterns by incorporating human decision data and evaluate the extent to which training 

improves the alignment between AI and human tendencies. 

 The results show that in the gain domain, both humans and the pre-trained AI exhibit risk-averse 

preferences. In contrast, in the loss domain, AI has a markedly stronger risk-seeking tendency than 

humans. Furthermore, the influence of individual attributes such as age and income is more pronounced 

in the AI responses, suggesting that the model tends to amplify preference-related biases. Meanwhile, 

our results reveal that training moves the AI’s choice patterns closer to the mild loss aversion observed 

in humans. In particular, training in the loss domain significantly reduces the gap between human and 

AI responses, indicating that the overall learning process performed reasonably well. That is, in the loss 

domain, AI exaggerates the influence of individual attributes. However, in the gain domain, AI shows 

signs of overfitting to risk aversion. These patterns suggest possible improvements in training 
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approaches. 

 Despite the study’s implications, it has limitations that can be addressed in future research. First, future 

research should develop more effective fine-tuning methods to replicate human preferences more 

closely. Second, future research should introduce mechanisms that mitigate the tendency of AI to 

overemphasize the biases associated with individual attributes. While this study focuses on risk 

preference and loss aversion as an example of cognitive bias, future research should apply the same 

framework to other biases, including time preference and present bias. 
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Table 1: Prior Studies on Decision-Making and Cognitive Biases: Generative AI vs. Humans 

Study ID Authors Targeted Bias / Experimental 
Task AI Model Population / Sample Size Average Reproducibility Conditional Reproducibility Human Feedback Evaluation Metric 

Economic Decision-Making and Behavioral Biases 

1 Akata et al. (2025) 
Economic experiments 
(Prisoner’s Dilemma, Battle 
of the Sexes) 

GPT-3, 3.5, 4 
LLM only, using varied payoff 
matrices across 10 rounds each (1,224 
trials total) 

N/A (LLM-only results). The model 
performs well in the Prisoner’s 
Dilemma but shows lower 
performance in the Battle of the 
Sexes. 

N/A N/A N/A 

2 Guo (2023) 
Economic experiments 
(Ultimatum Game, Prisoner’s 
Dilemma) 

GPT-4 (gpt4-1106-
preview） 

LLM only (compared with prior 
studies): Assigned selfish and 
fairness-oriented personas (UG: 400 
trials, PD: 300 trials) 

Similar to findings in prior studies N/A Prompt adjustment 
only N/A 

3 Horton (2023) 

Economic experiments 
(Social Preferences: Charness 
and Rabin, 2002; Fairness: 
Kahneman et al., 1986; Status 
Quo Bias: Samuelson and 
Zeckhauser, 1988; Minimum 
Wage: Horton, 2023) 

GPT-3 (including 
davinci-003 and 
others) 

Reproduction of results from prior 
studies High similarity with existing results N/A RLHF applied. N/A 

4 Tsuchihashi (2023) Economic experiment 
(bidding behavior in auctions) GPT-3.5 

LLM Only (compared with prior 
research): 40 rounds each of FPA and 
SPA 

Similar trend to prior research in FPA: 
Overbidding in FPA, slightly more 
accurate bidding in SPA 

N/A Prompt adjustment 
only N/A 

5 Brookins and 
DeBacker (2024) 

Economic experiments 
(Dictator Game, Prisoner’s 
Dilemma) 

GPT-3.5-turbo 
LLM Only (compared with prior 
studies): Dictator Game: 500 rounds, 
Prisoner’s Dilemma: 1,100 rounds 

LLMs tend to give fairer and more 
cooperative responses than humans. 

Evaluated based on risk, 
temptation, and efficiency. 
Similar tendencies were 
observed only in the efficiency 
metric. 

Prompt adjustment 
only N/A 

6 Kitadai et al. (2024) Economic experiment 
(Ultimatum Game) 

GPT-3.5 (gpt-3.5-
turbo-0613), GPT-4 
(gpt-4-1106-
preview) 

LLM only: 
For each configuration (prompt type, 
temperature value, and GPT model 
version), 1000 agents are generated. 

Proposer: Adjusting temperature 
partially replicates human data; GPT 
improvements move results closer to 
the theoretical predictions. 
Responder: Results approach theory 
but do not fully match experimental 
data. 

N/A N/A N/A 

7 Jia et al. (2024) 
Economic experiments (loss 
aversion, probability 
weighting, risk preference) 

ChatGPT-4.0-
Turbo, Claude-3-
Opus, Gemini-1.0-
pro 

LLM Only (compared with prior 
studies) 

Somewhat similar tendencies to 
human choices 

Bias varies by attributes (e.g., 
gender); no direct comparison 
with human responses. 

Prompt adjustment 
only N/A 

8 Lorè and Heydari 
(2024) 

Economic experiments 
(strategic behavior in two-
player games) 

GPT-3.5, GPT-4, 
LLaMa-2 

LLM Only: 4 Games × 5 Contexts × 3 
Models × 300 Trials 

N/A (LLM results only) 
GPT-4 shows structure-dependent 
behavior; GPT-3.5 shows context-
dependent behavior 

N/A Prompt adjustment 
only N/A 

9 Mei et al. (2024) 
Economic experiments 
(altruism, fairness, trust, 
cooperation) 

GPT-3.5-Turbo, 
GPT-4 

Compared with public data from 
approximately 90,000 human 
decisions, LLM data: 6 games × 30 
rounds. 

ChatGPT-4 produces results similar 
to those of humans. N/A Prompt adjustment 

only N/A 

10 Qiu et al. (2024) Insurance plan selection GPT-4-turbo Western insurance data up to 2006 
(5,998 cases) 

At the aggregate level, the model 
exhibits choice patterns similar to 
those of humans; however, it performs 
poorly at the individual level. 

Psychological parameters 
estimated from LLM responses, 
such as loss aversion and the 
probability weighting 
coefficient, tend to have smaller 

N/A F1score 
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values compared to those 
reported in previous human 
studies. 

11 Ross et al. (2024) 

Economic experiments 
(inequity aversion, loss 
aversion, and time 
discounting) 

GPT-3.5, GPT-4, 
Claude 2, and Nine 
Other LLMs 

LLM Only (compared with prior 
studies) 

Behavioral differences from Humans: 
Inequity aversion: LLMs exhibit 
intense guilt toward others but weak 
envy.  
Loss aversion: they respond rationally 
to gains but show irrational tendencies 
toward losses.  
Temporal discounting: they display a 
more substantial present bias than 
humans. 

N/A Prompt adjustment 
only N/A 

12 Xie et al. (2024) 
Economic experiments 
(altruism, fairness, risk, 
cooperation) 

GPT-4o, LLaMa3, 
Claude 3, and others 

LLMs only (compared with prior 
studies): 6 games × 5 models × 50 
trials 

The distribution of LLM responses 
showed patterns similar to those of 
humans. The models tended to make 
fair choices and exhibited high rates 
of cooperation. 

N/A Prompt adjustment 
only 

Wasserstein 
distance 

13 Chen et al. (2025) 18 types of cognitive biases GPT-3.5-turbo, 
GPT-4 

LLM only (binary classification of 
presence/absence of bias) 

Many biases are replicated. GPT-3.5 
tends to avoid losses but prefers risk 
in gains. GPT-4 exhibits consistent 
risk aversion across various framing 
contexts. 

N/A N/A N/A 

14 
Macmillan-Scott 
and Musolesi 
(2024) 

12 cognitive tasks 
GPT-3.5, GPT-4, 
Claude2, Bard, 
LLaMA 

LLM Only (compared with prior 
studies) 

GPT-3.5 exhibits the highest 
proportion of humanlike biases.  
GPT-4 shows the most humanlike 
response patterns overall. 

N/A N/A N/A 

Reproducibility of Survey Data 

15 Santurkar et al. 
(2023) Public opinion survey data GPT models, AI21 

Labs models 
United States (ATP public opinion 
surveys, 2017–2021) 

The opinions generated by language 
models exhibit significant 
discrepancies compared to those of 
the general U.S. population. They 
tend to exhibit a specific political bias, 
leaning toward liberal viewpoints. 

N/A RLHF applied. Wasserstein 
distance 

16 Park et al. (2024) 

Personality assessments and 
behavioral experiments (15 
types of economic and 
psychological experiments) 

Agent architectures 
utilizing LLMs Simulation of 1,052 AI agents 

Reproduced participants' responses 
two weeks later with high accuracy 
(approximately 85%). 

Evaluated under conditions 
based on age, race, and political 
ideology. 
Showed a consistent tendency 
to reduce bias across tasks. 

Prompt adjustment 
only N/A 

17 
Dominguez-
Olmedo et al. 
(2025) 

Reproduction of survey data 
(order and label bias) 

GPT-2 to GPT-4, 
LLaMA, and 43 
other models 

25 questions from the 2019 American 
Community Survey (ACS) Overall, the accuracy is low. N/A RLHF applied. KL divergence 

Cognitive and Psychological Biases 

18 Aher et al. (2023) 

Turing experiments 
(Ultimatum Game, Garden 
Path Sentences, Milgram 
Shock Experiment, and 
Wisdom of Crowds) 

GPT-3.5, GPT-4, 
and 8 other models 

LLMs only (compared with previous 
studies): 1,000 virtual subjects per 
task, several thousand responses in 
total. 

Models from LM-5 onward show a 
higher level of resemblance to human 
responses. 
However, instances of hyper-
accuracy bias are observed, 
particularly in the wisdom of crowds 
task. 

N/A RLHF applied. N/A 

19 Binz and Schulz 
(2023) 

Psychological experiments 
(decision-making ability, 
information search ability, 

GPT-3 (Davinci) 

LLMs only (compared with prior 
studies): repeated testing with 
thousands of questions (13,000 
responses). 

Some responses, including incorrect 
answer patterns, exhibit 
characteristics similar to those of 
humans. 

N/A Prompt adjustment 
only N/A 
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deliberative capacity, and 
causal reasoning ability) 

20 Hagendorff et al. 
(2023) 

Psychological experiments 
(CRT, semantic illusion) GPT-1 to GPT-4 

Humans: 455 participants;  
LLMs: 50 trials per task across 10 
model types 

Up to GPT-3, responses tend to be 
intuitive; 
GPT-4 has a higher accuracy than 
humans, achieving a correct response 
rate of 96%. 

N/A Prompt adjustment 
only N/A 

Political Attitudes and Voting Behavior 

21 Argyle et al. (2023) Political attitudes and voting 
behavior GPT-3 

ANES:  
1,304 individuals  
+ 2,873 individuals 

A strong correlation (greater than 0.9) 
is observed in voting behavior. 

Reproducibility is low in 
specific categories, such as 
independents. 

Prompt adjustment 
only 

Cramér’s V, 
Tetrachoric 
Correlation 

22 Bisbee et al. (2024) 
Comparison of ANES data 
using political persona 
settings 

ChatGPT 3.5 Turbo, 
ChatGPT 4.0, 
Falcon-40B 

United States (ANES 2016 and 2020) 
LLM responses closely resemble 
human responses but exhibit less 
variability. 

When examined by political 
attributes, human and LLM 
responses show similar overall 
tendencies despite differing 
variability. However, when 
conditioned on individual 
attributes, human and LLM 
responses tend to diverge in 
their patterns. 

RLHF applied. N/A 

23 Motoki et al. (2024) Political bias GPT-3.5 

LLM only: 100 responses under 
Democratic/Republican persona 
prompts and 100 responses without 
persona prompts 

No comparison with humans. 
Default responses tend to align with 
Democratic positions. 
The political stance changes 
depending on the specified persona. 

N/A Prompt adjustment 
only N/A 

Other Studies 

24 Brand et al. (2023) Willingness to pay (WTP) for 
multiple products 

GPT-3.5-turbo-
0125 

LLM only (compared with prior 
studies) 

The average WTP patterns are well 
replicated. 
However, for new products, 
consistency with human responses 
tends to decline. 

For specific product categories, 
the model exhibits patterns 
similar to those of humans. 

Fine-tuning applied. N/A 

25 Bybee (2023) 
Economic expectations 
forecast (based on WSJ 
articles) 

GPT-3.5 United States (300 WSJ articles from 
1984 to 2021) 

High correlation with existing surveys 
such as SPF, AAII, and CFO. N/A N/A N/A 

26 Lee et al. (2024) Beliefs about global warming GPT-3.5-turbo-16k, 
GPT-4 

U.S. national surveys (2017: 1,304 
respondents; 2021: 1,006 
respondents) 

Beliefs about global warming are 
highly replicable (85%), while 
replication rates for beliefs about its 
causes and associated concerns are 
lower (51% and 48%, respectively). 

The opinions of Black 
respondents tend to be 
underrepresented. 

Prompt adjustment 
only 

F1 score, Cramér’s 
V 

27 Li et al. (2024) Brand recognition and 
perceived similarity. GPT-4, GPT-Neo Evaluations of 21 automobile brands 

by 530 participants. High accuracy rate (87.2%). 
Consistent patterns across age 
groups and demographic 
attributes. 

Prompt adjustment 
only 

Triplet matching 
rate 

28 Xiong et al. (2024) Emotion and belief formation 
(in the tourism domain). GPT-3.5-turbo 

LLM only (compared with prior 
research): 16 scenarios × 100 
iterations. 

The responses generated by the LLM 
exhibit trends similar to those 
observed in human responses. 

N/A Prompt adjustment 
only N/A 
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Table 2: Descriptive Statistics 

Individual Attributes Mean 

Female dummy 0.507 
[0.500] 

Age (10 years) 4.49 
[1.33] 

Annual income 
(JPY 1 million) 

5.93 
[3.10] 

Obs. 4,838 
Notes： The values in parentheses in the table indicate standard deviations. 
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Figure 1: Python Script for AI Question Presentation and Response Collection 

Notes: The generative AI is assigned the role of "Your attributes are gender: {row['gender']}, age: 
{row['age']} years, annual income: JPY {row['income']}million." and a question is asked. This 
diagram illustrates an excerpt of the key elements of the script used. The actual questions are asked in 
Japanese. In addition, after fine-tuning in Section 5, "gpt-4o" on line 40 is replaced with the name of 
the fine-tuned model.  

1   import time 
2   import pandas as pd 
3   import openai 
4   import os 
5   import re 
6 
7   openai.api_key = os.getenv("OPENAI_API_KEY") 
8 
9   file_path = r"C:***¥***.csv" 
10  df = pd.read_csv(file_path) 
11   
12  def extract_reason_and_answer(response_text): 
13    match_reason = re.search(r"reason[:：]¥s*(.*)", response_text) 
14    match_answer = re.search(r"(answer[:：]¥s*[12])", response_text) 
15 
16    if not match_reason: 
17      lines = response_text.split("¥n") 
18      reason = lines[0].strip() if lines else "unknown" 
19    else: 
20      reason = match_reason.group(1).strip() 
21 
22    answer = match_answer.group(1).strip() 
23 
24    return reason, answer 
25 
26  def generate_reason_and_answer(row): 
27    question = f"""The following question is asked to someone with the following gender: 

{row['gender']}, age: {row['age']}years and annual income: {row['income']}million yen. 
28    Imagine you receive an additional 50,000 yen on top of your current wealth, and are 

asked to choose between the following options. Which do you choose? 
29    Option 1: Lose 10,000 yen with certainty 
30    Option 2: A 50% chance of losing 20,000 yen, and a 50% chance of losing nothing 
31    Please write your answer in the following exact format: 
32    - Reason: [Reason for your choice] 
33    - Answer: [Output only 1 or 2] 
34    """ 
35 
36    for attempt in range(3): 
37 
38        time.sleep(1) 
39        response = openai.chat.completions.create( 
40          model="gpt-4o", 
41          messages=[ 
42            {"role": "system", "content": f"Your attributes are gender: 

{row['gender']}, age: {row['age']}years, annual income: {row['income']}million yen."}, 
43            {"role": "user", "content": question} 
44          ], 
45          max_tokens=180, 
46          temperature=1.0 
47        ) 
48 
49        full_response = response.choices[0].message.content.strip() 
50        print(f"✅ API Response for row {row.name}: {full_response}") 
51 
52        reason, answer = extract_reason_and_answer(full_response) 
53        return pd.Series([reason, answer]) 
54 
55  df[["Reason", "Answer"]] = df.apply(generate_reason_and_answer, axis=1) 
56 
57  output_file_path = r"C:***¥***.csv" 
58  df.to_csv(output_file_path, index=False) 
59 
60  print(f"✅ Generated the reasons and answers and saved them in a new file: 

{output_file_path}") 
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Table 3: Example of Responses Using OpenAI API 
Gender Age Income Reason Answer 

Male 26 400 Given my current income and age, I feel more secure in 
receiving a guaranteed gain than taking a risk. 

Receiving the guaranteed JPY 10,000 gives me peace 
of mind. 

Answer: 1 

Female 39 850 By receiving the guaranteed JPY 10,000, I can increase 
my funds safely and steadily without any risk. 

Answer: 1 

Male 38 400 Choosing the guaranteed JPY 10,000 is a less risky 
option, and with a limited income, I prefer stable and 

secure gains. 

Answer: 1 

Male 22 850 Considering my current income and age, I am willing 
to take some risks and make decisions based on 

expected value. Since the expected value of Option 2 is 
JPY 10,000, I choose to take the risk. 

Answer: 2 

Male 61 400 Receiving JPY 10,000 for sure allows me to earn some 
extra income while avoiding risk, which is reassuring. 

Answer: 1 

Female 41 850 I value stability, so I prefer an option with a guaranteed 
return. I chose the option to receive the guaranteed JPY 

10,000 because it involves no risk. 

Answer: 1 

Male 47 300 Given my current income, it feels safer and more 
beneficial to increase my money in a guaranteed way. 

I want to prioritize a stable income, so I chose the 
option that ensures a monthly income of JPY 10,000. 

Answer: 1 

Male 38 850 Considering my current income and financial situation, 
I prefer to increase my earnings without taking major 
risks. Receiving the guaranteed JPY 10,000 helps me 

maintain financial stability in my life. 

Answer: 1 

Male 55 300 Since my income is limited, I want the immediate 
sense of security that comes from receiving the 

guaranteed JPY 10,000. Avoiding risk and making a 
safe choice feels more appropriate for me. 

Answer: 1 

Notes: Table 3 shows excerpts of responses obtained through the procedure described in Section 3.3 
(for Question 1, with the setting temperature = 1.0). In practice, the results are presented in CSV format. 
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Table 4: Choice Results: Humans vs. Pre-trained AI 

Question 1 
Gain 

AI 
temperature 0.0 

AI 
temperature 0.5 

AI 
temperature 1.0 Human 

Mean 0.898 0.889 0.911 0.884 

Std. Dev. 0.302 0.314 0.285 0.320 

Obs. 4,838 4,838 4,838 4,838 

 

Question 2 
Loss 

AI 
temperature 0.0 

AI 
temperature 0.5 

AI 
temperature 1.0 Human 

Mean 0.000 0.030 0.110 0.577 

Std. Dev. 0.014 0.172 0.313 0.494 

Obs. 4,838 4,838 4,838 4,838 

Notes： All instances of "AI" in the table refer to the "pre-trained AI." 
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Table 5: Logit Model Estimation: Humans vs. Pre-trained AI (Gain, 3 Attributes) 

Question 1 
Gain 

AI 
temperature 

0.0 

AI 
temperature 

0.5 

AI 
temperature 

1.0 
Human 

Marginal 
Effects 

Female dummy 0.086*** 
(0.006) 

0.026*** 
(0.007) 

0.033*** 
(0.007) 

0.041*** 
(0.009) 

Age 
(10 years) 

0.120*** 
(0.004) 

0.073*** 
(0.003) 

0.057*** 
(0.003) 

0.015*** 
(0.003) 

Annual income 
(1 million yen) 

-0.031*** 
(0.001) 

-0.033*** 
(0.001) 

-0.027*** 
(0.001) 

-0.005*** 
(0.001) 

obs. 4,838 4,838 4,838 4,838 

McFadden 𝐑𝐑𝟐𝟐 0.6355 0.3932 0.3472 0.0140 

Predicted Probability 0.898 
(0.004) 

0.889 
(0.005) 

0.911 
(0.004) 

0.884 
(0.005) 

Notes: Rows 2-4 show the marginal effects of each attribute based on the logit model. The numbers in 
parentheses indicate standard errors. " *** " denotes statistical significance at the 1% level. Row 7 
presents the average predicted probabilities based on the estimates from the logit model. Here, all 
instances of "AI" in the table refer to “pre-trained AI."  
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Table 6: Logit Model Estimation Humans vs. Pre-trained AI (Loss, 3 Attributes) 

Question 2 
Loss 

AI 
temperature 

0.0 

AI 
temperature 

0.5 

AI 
temperature 

1.0 
Human 

Marginal 
Effects 

Female dummy - 0.028*** 
(0.006) 

0.028*** 
(0.009) 

-0.006 
(0.014) 

Age 
(10 years) - 0.008*** 

(0.002) 
0.023*** 

(0.004) 
0.021*** 
(0.005) 

Annual income 
(1 million yen) - -0.006*** 

(0.001) 
-0.006*** 
(0.002) 

-0.008*** 
(0.002) 

obs. 4,838 4,838 4,838 4,838 

McFadden 𝐑𝐑𝟐𝟐 - 0.0644 0.0204 0.0038 

Predicted Probability - 0.030*** 
(0.002) 

0.110*** 
(0.004) 

0.577*** 
(0.007) 

Notes: Rows 2-4 show the marginal effects of each attribute based on the logit model. The numbers in 
parentheses indicate standard errors. " *** " denotes statistical significance at the 1% level. Row 7 
presents the average predicted probabilities based on the estimates from the logit model. Here, all 
instances of "AI" in the table refer to “pre-trained AI."  
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Figure 2: Choice Probabilities: Humans vs. Pre-trained AI (Gain, 3 Attributes) 

Notes: AI_10 refers to the responses generated by the pre-trained AI when queried with a temperature 
setting of 1.0. The same applies to AI_05 and AI_00. The vertical bars at each point in the figure 
represent 95% confidence intervals. 
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Figure 3: Choice Probabilities: Humans vs. Pre-trained AI (Loss, 3 Attributes) 

Notes: AI_10 refers to the responses from the pre-trained AI when queried with a temperature setting 
of 1.0. The same applies to AI_05 and AI_00. The vertical bars at each point in the figure represent 95% 
confidence intervals.   
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Table 7: Logit Model Prediction Accuracy: Humans vs. Pre-trained AI 

Question 1 
Gain 

AI 
temperature 0.0 

AI 
temperature 0.5 

AI 
temperature 1.0 Human 

Predicted value, 
Observed value 

    

(2, 2) 6.39% 
(n=309) 

4.24% 
(n=205) 

2.34% 
(n=113) 

0% 
(n=0) 

(2, 1) 1.53% 
(n=74) 

2.00% 
(n=97) 

1.34% 
(n=65) 

0% 
(n=0) 

(1, 2) 3.78% 
(n=183) 

6.84% 
(n=331) 

6.57% 
(n=318) 

11.60% 
(n=561) 

(1,1) 88.30% 
(n=4,272) 

86.92% 
(n=4,205) 

89.75% 
(n=4,342) 

88.40% 
(n=4,277) 

Prediction Accuracy 94.69% 91.15% 92.08% 88.40% 
 

Question 2 
Loss 

AI 
temperature 0.0 

AI 
temperature 

0.5 

AI 
temperature 1.0 Human 

Predicted value, 
Observed value 

    

(2, 2) - 96.96% 
(n=4,691) 

88.98% 
(n=4,305) 

0.93% 
(n=45) 

(2, 1) - 3.04% 
(n=147) 

11.02% 
(n=533) 

1.03% 
(n=50) 

(1, 2) - 0% 
(n=0) 

0% 
(n=0) 

41.38% 
(n=2,002) 

(1,1) - 0% 
(n=0) 

0% 
(n=0) 

56.66% 
(n=2,741) 

Prediction Accuracy - 96.96% 88.98% 57.59% 

Notes： All instances of "AI" in the table refer to the "pre-trained AI." 
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Figure 4: Dataset for fine-tuning 

Notes: An excerpt from the JSONL file used for fine-tuning. The model is trained based on the choice 
probabilities for each question. To proceed with the work while verifying that fine-tuning is being 
appropriately performed, we create JSONL files containing selection probabilities for every 500 
samples and sequentially load them into the model.  

{"messages": [{"role": "system", "content": "You are a 36-year-old man with an annual income of 3 

million yen."}, {"role": "user", "content": "Question: Imagine you receive an additional 50,000 yen 

on top of your current wealth, and are asked to choose between the following options. Which do you 

choose? Option 1: Lose 10,000 yen with certainty Option 2: A 50% chance of losing 20,000 yen, and 

a 50% chance of losing nothing. What is the probability of choosing option 1?"}, {"role": "assistant", 

"content": "0.58"}]} 

{"messages": [{"role": "system", "content": " You are a 57-year-old woman with an annual income of 

3 million yen."}, {"role": "user", "content": " Question: Imagine you receive an additional 50,000 yen 

on top of your current wealth, and are asked to choose between the following options. Which do you 

choose? Option 1: Lose 10,000 yen with certainty Option 2: A 50% chance of losing 20,000 yen, and 

a 50% chance of losing nothing. What is the probability of choosing option 1?"}, {"role": "assistant", 

"content": "0.62"}]} 

{"messages": [{"role": "system", "content": " You are a 40-year-old woman with an annual income of 

8.5 million yen."}, {"role": "user", "content": " Question: Imagine you receive an additional 50,000 

yen on top of your current wealth, and are asked to choose between the following options. Which do 

you choose? Option 1: Lose 10,000 yen with certainty Option 2: A 50% chance of losing 20,000 yen, 

and a 50% chance of losing nothing. What is the probability of choosing option 1?"}, {"role": 

"assistant", "content": "0.54"}]} 

{"messages": [{"role": "system", "content": " You are a 36-year-old man with an annual income of 3 

million yen."}, {"role": "user", "content": " Question: Imagine you receive an additional 50,000 yen 

on top of your current wealth, and are asked to choose between the following options. Which do you 

choose? Option 1: Lose 10,000 yen with certainty Option 2: A 50% chance of losing 20,000 yen, and 

a 50% chance of losing nothing. What is the probability of choosing option 1?"}, {"role": "assistant", 

"content": "0.87"}]} 

{"messages": [{"role": "system", "content": " You are a 57-year-old woman with an annual income of 

3 million yen."}, {"role": "user", "content": " Question: Imagine you receive an additional 50,000 yen 

on top of your current wealth, and are asked to choose between the following options. Which do you 

choose? Option 1: Lose 10,000 yen with certainty Option 2: A 50% chance of losing 20,000 yen, and 

a 50% chance of losing nothing. What is the probability of choosing option 1?"}, {"role": "assistant", 

"content": "0.93"}]} 



41 
 

 
Figure 5: Python Script for Fine-tuning 

Notes: Fine-tuning is conducted by loading the dataset shown in Figure 5 into the GPT-4o model with 
the settings epoch = 1 and learning rate (LR) = 0.2. 
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Table 8: Choice Results: Humans, Pre-trained AI, and Fine-tuned AI 

Question 1 
Gain 

Pre-trained AI 
temperature 1.0 

Fine-tuned AI 
temperature 1.0 Human 

Mean 0.911 0.961 0.884 

Std. Dev. 0.285 0.193 0.320 

Obs. 4,838 4,838 4,838 

 

Question 2 
Loss 

Pre-trained AI 
temperature 1.0 

Fine-tuned AI 
temperature 1.0 Human 

Mean 0.110 0.404 0.577 

Std. Dev. 0.313 0.491 0.494 

Obs. 4,838 4,838 4,838 
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Table 9: Logit Model Estimation: Humans, Pre-trained AI, and Fine-tuned AI (Gain, 3 

Attributes) 

Question 1 
Gain 

Pre-trained AI 
temperature 1.0 

Fine-tuned AI 
temperature 1.0 Human 

Marginal 
Effects 

Female dummy 0.033*** 
(0.007) 

0.019*** 
(0.005) 

0.041*** 
(0.009) 

Age 
(10 years) 

0.057*** 
(0.003) 

0.030*** 
(0.002) 

0.015*** 
(0.003) 

Annual income 
(1 million yen) 

-0.027*** 
(0.001) 

-0.014*** 
(0.001) 

-0.005*** 
(0.001) 

obs. 4,838 4,838 4,838 

McFadden 𝐑𝐑𝟐𝟐 0.3472 0.4500 0.0140 

Predicted Probability 0.911 
(0.004) 

0.961 
(0.003) 

0.884 
(0.005) 

Notes: Rows 2-4 show the marginal effects of each attribute based on the logit model. The numbers in 
parentheses indicate standard errors. " *** " denotes statistical significance at the 1% level. Row 7 
presents the average predicted probabilities based on the estimates from the logit model. 
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Table 10: Logit Model Estimation: Humans, Pre-trained AI, and Fine-tuned AI (Loss, 

3 Attributes) 

Question 2 
Loss 

Pre-trained AI 
temperature 1.0 

Fine-tuned AI 
temperature 1.0 Human 

Marginal 
Effects 

Female dummy 0.028*** 
(0.009) 

0.264*** 
(0.011) 

-0.006 
(0.014) 

Age 
(10 years) 

0.023*** 
(0.004) 

0.133*** 
(0.004) 

0.021*** 
(0.005) 

Annual income 
(1 million yen) 

-0.006*** 
(0.002) 

-0.003 
(0.002) 

-0.008*** 
(0.002) 

obs. 4,838 4,838 4,838 

McFadden 𝐑𝐑𝟐𝟐 0.0204 0.1804 0.0038 

Predicted Probability 0.110 
(0.004) 

0.404 
(0.007) 

0.577 
(0.007) 

Notes: Rows 2 to 4 show the marginal effects of each attribute based on the logit model. The numbers 
in parentheses indicate standard errors. " *** " denotes statistical significance at the 1% level. Row 7 
presents the average predicted probabilities based on the estimates from the logit model.  
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Figure 6: Choice Probabilities: Humans, Pre-trained AI, and Fine-tuned AI (Gain, 3 

Attributes) 
Notes: AI_10 and AI_FT_10 refer to the responses from the pre-trained AI and the fine-tuned AI, 
respectively, when asked with a temperature setting of 1.0. The vertical bars at each point in the figure 
represent 95% confidence intervals.  
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Figure 7: Choice Probabilities: Humans, Pre-trained AI, and Fine-tuned AI (Loss, 3 

Attributes) 
Notes: AI_10 and AI_FT_10 refer to the responses from the pre-trained AI and the fine-tuned AI, 
respectively, when asked with a temperature setting of 1.0. The vertical bars at each point in the figure 
represent 95% confidence intervals.  
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Table 11: Logit Model Prediction Accuracy: Humans, Pre-trained AI, and Fine-tuned 

AI 

Question 1 
Gain 

Pre-trained AI 
temperature 1.0 

Fine-tuned AI 
temperature 1.0 Human 

Predicted value, 
Observed value 

   

(2, 2) 2.34% 
(n=113) 

1.24% 
(n=60) 

0% 
(n=0) 

(2, 1) 1.34% 
(n=65) 

0.78% 
(n=38) 

0% 
(n=0) 

(1, 2) 6.57% 
(n=318) 

2.65% 
(n=128) 

11.60% 
(n=561) 

(1,1) 89.75% 
(n=4,342) 

95.33% 
(n=4,612) 

88.40% 
(n=4,277) 

Prediction Accuracy 92.08% 96.57% 88.40% 
 

Question 2 
Loss 

Pre-trained AI 
temperature 1.0 

Fine-tuned AI 
temperature 1.0 Human 

Predicted value, 
Observed value 

   

(2, 2) 88.98% 
(n=4,305) 

47.66% 
(n=2,306) 

0.93% 
(n=45) 

(2, 1) 11.02% 
(n=533) 

18.13% 
(n=877) 

1.03% 
(n=50) 

(1, 2) 0% 
(n=0) 

11.95% 
(n=578) 

41.38% 
(n=2,002) 

(1,1) 0% 
(n=0) 

22.26% 
(n=1,077) 

56.66% 
(n=2,741) 

Prediction Accuracy 88.98% 69.93% 57.59% 
Notes: The percentage values are rounded to the third decimal place; therefore, the sum of the values in 
cells (2,2) and (1,1) does not necessarily match the prediction accuracy. 
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Table 12: Wasserstein Distance of Order 2 between Three Groups 

 Between Human and 
Pre-trained AI 

Between Human and 
Fine-tuned AI 

Between Pre-trained AI 
and Fine-tuned AI 

Gain (N=4,838) 0.135 0.123 0.081 

Loss (N=4,838) 0.467 0.263 0.353 

Total (N=9,676) 0.343 0.198 0.253 

Notes: All values in the table for AI are based on the responses under the default setting of temperature 
= 1.0. 


