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Abstract

Unexpected shocks to the electricity supply can influence people’s decision to invest in
renewable energy, particularly when these technologies serve as substitutes for backup
power. This study investigates the impact of a large-scale power outage on subsequent pho-
tovoltaic (PV) installations and examines how households and firms evaluate the expected
benefit of PV systems as an emergency power source. Using a doubly-robust difference-in-
differences design, we exploit the 2018 Hokkaido Eastern Iburi Earthquake in Japan as a
natural experiment to estimate the effect of the subsequent blackout on municipality-level
PV installations. Our results show that the blackout significantly increased commercial PV
installations but had no effect on residential installations. In particular, commercial PV ca-
pacity rose by 3.900 kW per 1,000 people per half-year following the blackout. Additional
analysis suggests that the intermittent nature of solar power may limit the reliability of
residential PV systems during emergencies, especially under adverse weather conditions.
These findings highlight the need to address intermittency to enhance the role of PV systems
as a resilient infrastructure.
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1 Introduction

Frequent natural disasters and climate-related shocks highlight the vulnerability of elec-

tricity systems. When outages occur, people experience firsthand the consequences of energy

insecurity, which can alter their preferences for self-sufficient energy sources such as photo-

voltaic (PV) systems (Zanocco et al., 2021). These systems enable households and firms to

generate their own electricity and can function as a form of self-insurance against blackouts.

However, whether such experiences translate into the greater adoption of PV systems remains

an open empirical question.

This study investigates how a large-scale blackout influences subsequent PV installation

behavior. We focus on the 2018 Hokkaido Eastern Iburi Earthquake in Japan, which triggered

a region-wide blackout on PV installations. The Iburi event—the first large-scale blackout in

Japan—was caused by cascading failures in the power grid following the earthquake. This event

has three main features that make it suitable for our analysis. First, it provides exogenous vari-

ation in blackout exposure, as both Hokkaido and the neighboring Tohoku region experienced

seismic shaking from the unexpected earthquake but only Hokkaido suffered a complete power

outage. Second, the blackout was sufficiently extensive to plausibly influence post-outage be-

havior, forcing three million residents in Hokkaido to live without electricity for up to 64 hours.

Third, unlike power outages caused by hurricanes and typhoons, those triggered by earthquakes

are not necessarily accompanied by bad weather, allowing PV systems to operate and thus

demonstrate their resilience. These unique features make the Iburi blackout a compelling case

to examine how direct exposure to a major outage influences perceptions of energy resilience.

We employ a doubly-robust difference-in-differences (DID) estimator to identify the impact

of the blackout on municipality-level PV installations. Using Tohoku as a comparison allows us

to isolate the effect of the blackout from that of the earthquake (e.g., PV installations related to

housing or infrastructure reconstruction). The doubly-robust DID approach combines regression

adjustment and inverse probability weighting, improving both efficiency and robustness to model

misspecification when pre-treatment covariates differ across regions.

Our analysis reveals a clear contrast between the residential and commercial sectors: while

residential PV installations did not increase after the blackout, commercial installations rose

significantly. Specifically, for commercial PV systems, an additional 3.900 kW of PV capacity—

equivalent to a 53.5% increase relative to the control group average—was installed per 1,000
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people per half-year in Hokkaido following the blackout. These findings imply that differences in

the perceived severity of damage and system performance between sectors influenced residents’

responses to the event. The additional analysis of complementary energy systems shows that

households increase PV installations supported by supplementary technologies such as batteries

and electric vehicles, which help mitigate the intermittency of solar power. Heightened concern

over intermittency may therefore explain why residential PV installations did not increase after

the blackout.

To identify the underlying mechanisms, we examine three possible channels through which

the disaster may have influenced PV system decisions by altering the perceived benefits of

such installations: (1) the subjective probability of a blackout occurring, (2) the perceived

severity of blackout damage, and (3) the expected performance of PV systems during an outage.

Analyzing these channels in the context of the Hokkaido blackout allows us to understand how

the residential and commercial sectors responded differently to the event.

Among the three channels, the damage and performance channels yield consistent re-

sults across both residential and commercial PV systems. Municipalities that were likely to

experience greater economic losses from the blackout saw more PV installations afterward.

Conversely, municipalities that faced unfavorable weather during the blackout subsequently ex-

hibited fewer PV installations, suggesting that poor system performance under cloudy conditions

discouraged adoption.

To the best of our knowledge, this is one of the few studies to examine how a large-scale

blackout influences subsequent PV installations. It provides evidence on how individuals and

firms evaluate the resilience of PV systems to outages and offers economic insights. Our

findings suggest that commercial PV installations can function as a form of self-insurance

against electricity supply disruptions, reflecting adaptive behavior in response to a large-scale

disaster. In other words, the results highlight voluntary private efforts to enhance energy

security, as opposed to resilience measures driven by public regulation.

This study makes several contributions. First, it enriches the literature on the determinants

of renewable power technology adoption. While numerous studies have examined the effects of

financial incentives such as subsidies and tax credits on PV adoption (Hughes and Podolefsky,

2015; Crago and Chernyakhovskiy, 2017; Johnston, 2019; Feger et al., 2022; De Groote and

Verboven, 2019; Aldy et al., 2023), relatively few have investigated non-monetary drivers.

Moreover, psychological factors and peer effects have been identified as important influences
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on PV adoption (Bollinger and Gillingham, 2012; Graziano and Gillingham, 2015). Our

study complements this strand of the literature by highlighting resilience to power outages—an

underexplored determinant—and by leveraging a disaster-induced outage as an exogenous shock.

This approach allows us to assess whether exposure to a large-scale blackout leads individuals

and firms to recognize the self-generation value of PV systems, emphasizing resilience as a

secondary incentive alongside financial benefits.1

Second, this study contributes to the literature linking disaster experiences with adaptive

behavior. Research shows that exposure to natural disasters affects housing prices and insurance

take-up, as individuals update their beliefs about future risks (MacDonald et al., 1987; Bin

and Landry, 2013; Gallagher, 2014; Gibson and Mullins, 2020; Wolf and Takeuchi, 2022). By

contrast, we focus on how blackout experiences influence subsequent PV installation decisions as

a form of adaptation to mitigate electricity loss. Our analysis differs from the analyses of studies

on mandatory resilience investments such as the hurricane-resistant infrastructure examined by

Brannlund et al. (2023) by focusing on voluntary private investment at the municipality level.

Third, we advance the literature examining the mechanisms behind behavioral change.

For example, Xie et al. (2023) show that air pollution disclosure affects individuals’ mental

health both directly and through behavioral adjustments, such as reducing their participation in

outdoor activities. Similarly, Liao (2020) identifies the psychological mechanisms (projection

bias and salience) driving the cancellation of PV installations after extreme weather events. Our

contribution lies in uncovering the mechanisms linking blackout experiences to PV adoption.

Specifically, we find that an increased perceived probability of outages promotes residential PV

installations as well as that the recognition of blackout damage and solar intermittency influence

both residential and commercial installations.

Our research is also closely related to that of Brown and Muehlenbachs (2024), who estimate

households’ willingness to pay for electricity reliability by examining solar battery adoption

in areas affected by wildfire prevention outages. However, our study differs in three key

respects. First, while their maximum outage exposure was 768,000 people, our setting involves

a jurisdiction-wide blackout that left approximately three million residents without electricity,

providing a substantially stronger treatment shock. Second, we analyze both the residential and

the commercial sectors, with the latter accounting for a significant proportion of solar capacity.
1See, for example, Borenstein (2017) and Kiso et al. (2022) on electricity bill reductions; Liao (2020) on the

weather-induced cancellation of PV installations; and Delmas et al. (2017) and Lyu (2023) on the complementarities
between PV systems and electric vehicles.
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The commercial sector also faces greater potential economic losses from blackouts due to profit

reductions and disruptions to production and supply chains. Third, we explicitly explore the

mechanisms connecting outages and solar adoption, developing a behavioral framework that

explains how individuals and firms update the expected benefits of PV systems in response to

disaster-induced disruptions.

The remainder of this paper is organized as follows. Section 2 introduces the background

of this study. Section 3 describes the data and methodology. Section 4 presents the empirical

results. Section 5 examines the mechanisms through a channel analysis. Section 6 concludes.

2 Background

2.1 The Iburi Earthquake

The Hokkaido Eastern Iburi Earthquake struck northeastern Japan on September 6, 2018,

with a magnitude of 6.7, causing injuries and damage to infrastructure.2 The epicenter was

located in the central-eastern part of Hokkaido and the tremors were felt not only in Hokkaido

but also in Tohoku.3 In addition to direct damage, the earthquake triggered a large-scale

blackout that caused significant secondary impacts. The blackout occurred due to the emergency

shutdown of a major thermal power station, which was triggered by shaking and the resulting

imbalance in power supply frequency. Consequently, the entire jurisdiction of the Hokkaido

Electric Power Company experienced a power outage, affecting approximately three million

households for up to 64 hours.4 While 64 hours may not seem extremely long, the severity of a

blackout is determined not only by its duration but also by its disruption to daily life. Electricity

is essential for virtually every aspect of modern life and even a single day without power can

cause substantial inconvenience. The Iburi case—as the first jurisdiction-wide blackout in the

history of Japan’s power system—drew considerable attention to the stability of the country’s

electricity supply. While the Great East Japan Earthquake in 2011 also threatened a jurisdiction-

wide blackout in TEPCO’s service area, a full-scale blackout was prevented by planned rotating

power outages and power saving campaigns.
2Source: Hokkaido Prefecture. https://www.pref.hokkaido.lg.jp/sm/ktk/300906jisin/top.html.
3Source: Japan Meteorological Agency. https://www.jma.go.jp/jma/kishou/books/saigaiji/

saigaiji_201901.pdf.
4Source: Ministry of Internal Affairs and Communications. https://www.soumu.go.jp/main_content/

000585075.pdf.
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2.2 Blackouts and PV Installations

Although the entire Hokkaido region lost its electricity supply during the blackout, privately

owned PV systems allowed some households and firms to continue accessing electricity. Reports

highlight that one major advantage of PV installations, observed globally, is their resilience

during power outages.5 During a power outage, PV systems automatically shut down; however,

they can operate as an emergency power sources if switched to stand-alone mode.

According to Kotani and Nakano (2023), 74.8% of PV homeowners used their systems

during the Iburi blackout. Among those who did not, 38% reported that they did not know

how to activate stand-alone mode. This indicates that many PV owners were unaware of their

systems’ potential as an emergency power source. We are therefore interested in whether

potential PV adopters—some of whom may not fully understand the resilience benefits of PV

systems—became more aware of their importance after experiencing the blackout. The same

study also notes that bad weather limited power generation for some users, underscoring the

intermittency challenge of PV systems during emergencies.

Zanocco et al. (2021) examine the related case of public safety power shutoffs in California

caused by wildfire risks. Their survey shows that individuals with greater outage experience

express stronger intentions to adopt solar power, suggesting that extreme events can drive

technology adoption. Moreover, about one-third of existing solar or storage system owners

considered additional investments, reflecting the recognition that PV systems combined with

storage can provide more reliable backup power.

Although power outages impose costs on both the residential and the commercial sectors, the

damage is generally larger for the latter for several reasons. First, households mainly experience

inconvenience such as non-functioning appliances, the loss of communication, and disrupted

transportation, whereas commercial users face operational shutdowns and profit losses. Based

on a survey, Ariu and Goto (2007) estimate the average losses per hour of outage at JPY 1,706

(about USD 12 as of January 2006) for households and JPY 220,000 (about USD 1,570) for

commercial users with low-voltage contracts (below 50 kW). Second, electricity usage pat-

terns differ across sectors: commercial demand peaks during the day—coinciding with PV

generation—allowing direct on-site consumption and increasing the system’s economic ap-
5Source: Japan Photovoltaic Energy Association (https://www.jpea.gr.jp/house/merit/), Ministry of

the Environment (https://www.env.go.jp/earth/report/sankou1%20saiene_2019.pdf) and the web-
site of KANTAR in Australia (https://www.theenergycharter.com.au/wp-content/uploads/2021/10/
QHES-2020-Report.pdf).
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peal. Third, although households can use PV systems in stand-alone mode during emergencies,

power is typically supplied through a single outlet connected to the power conditioner, limiting

appliance use. This constraint may have become evident during the blackout, discouraging

further residential adoption. By contrast, commercial users often install PV systems as part of

business continuity planning for disaster preparedness, with circuits preconditioned to automat-

ically draw power from PV systems during outages.6 Even when direct operational benefits are

limited, resilience-oriented investment with business continuity planning frameworks may sig-

nal effective risk management to stakeholders. These institutional and operational differences

suggest that blackout exposure likely stimulated PV adoption more strongly among commercial

than among residential users.

3 Methodology and Data

3.1 Methodology

We apply a doubly-robust DID approach to examine the impact of the blackout on PV

installations. The study period spans March 2016 to March 2022, divided into pre- and post-

blackout subperiods. The treatment group consists of all municipalities in Hokkaido, which

experienced both the earthquake and the ensuing blackout, whereas the control group consists

of all municipalities in the Tohoku region (Figure 1).7 As shown in Figure 2, residents in

the control group experienced seismic shaking of similar intensity to Hokkaido—except in

areas near the epicenter—but did not experience the blackout. This comparison enables us

to isolate the effect of the blackout on PV installations, abstracting from the direct impacts

of the earthquake. For example, seismic activity could damage existing PV systems, thereby

influencing subsequent installation behavior. Although information on damage to smaller PV

systems (below 50kW) is unavailable, incidents involving larger systems must be reported to

the authorities in Japan. Among the 757 PV systems exceeding 50 kW in Hokkaido, only three

accidents were reported during the earthquake.8

We decompose the original doubly-robust DID estimator and conduct a subsample analysis.
6Source: https://socialsolution.omron.com/jp/ja/products_service/energy/doc/cat/

kand-060a.pdf?utm_source=chatgpt.com.
7We exclude 11 municipalities in Fukushima Prefecture designated as evacuation zones as of March 2016

following the 2011 nuclear accident.
8Source: https://www.meti.go.jp/shingikai/sankoshin/hoan_shohi/denryoku_anzen/

newenergy_hatsuden_wg/pdf/014_01_00.pdf?utm_source=chatgpt.com.
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Figure 1: Map of Japan

Note: The treatment group, Hokkaido, is in black, while the control group, the Tohoku region, is in gray.
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Figure 2: Seismic intensity

Source: https://www.adep.or.jp/kanren/Eq_data/180906.html
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The original estimator relies on the conditional parallel trend assumption for identification,

meaning that, in the absence of the treatment, outcomes would evolve in parallel between the

treatment and control groups, conditional on several pre-treatment covariates. As noted by

Meyer (1995) and Abadie (2005), simply including pre-treatment covariates in a two-way fixed

effects model may introduce bias when estimating the treatment effect. To address this, we

adopt the doubly-robust DID estimator introduced by Sant’Anna and Zhao (2020) and Callaway

and Sant’Anna (2021). This approach combines outcome regression and inverse probability

weighting, ensuring a consistent estimate even if either the outcome regression model or the

propensity score is misspecified.

Our outcome of interest is the total capacity of newly installed PV systems in a municipality,

measured on a half-year basis. The average treatment effect on the treated (ATT) at half-year 𝑡

is specified as follows:

𝐴𝑇𝑇 (𝑔, 𝑡) = E
[(

𝐷𝑔

E[𝐷𝑔]
−

𝑃𝑔 (𝑋)𝐶
1−𝑃𝑔 (𝑋)

E[ 𝑃𝑔 (𝑋)𝐶
1−𝑃𝑔 (𝑋) ]

) (
𝑌𝑡 − 𝑌𝑔−1 − 𝑚𝑔,𝑡 (𝑋)

)]
, (1)

where 𝐷𝑔 is a dummy variable indicating treatment at time 𝑔. The propensity score, 𝑃𝑔 (𝑋), and

the change in the conditional outcome of the never-treated group, 𝑚𝑔,𝑡 (𝑋) = E[𝑌𝑡 −𝑌𝑔−1 |𝑋,𝐶 =

1] (𝐶 = 1 denotes the never-treated group), are estimated using logit and linear regression

models, respectively. The outcome linear regression model, E[𝑌𝑡 − 𝑌𝑔−1 |𝑋] = 𝛼0 + 𝛼1𝑋 ,

includes the pre-treatment covariates as independent variables.

Since our treatment (i.e., the blackout) occurs only once at time 𝑔, there is no variation

in the ATTs across treatment cohorts. However, the estimator can still capture the temporal

heterogeneity in ATTs, allowing us to track the evolution of the treatment effect over time. This

feature enables the estimation of multiple one-period ATTs and the construction of an event

study plot.

We can estimate the one-period ATT at time 𝑡 using a sample analog:
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�𝐴𝑇𝑇 (𝑔, 𝑡) = 1
𝑁

𝑁∑︁
𝑖=1

[(
𝐷𝑖,𝑔

1
𝑁

∑𝑁
𝑗=1𝐷 𝑗 ,𝑔

−
𝑃̂𝑖,𝑔 (𝑋)𝐶𝑖

1−𝑃̂𝑖,𝑔 (𝑋)

1
𝑁

∑𝑁
𝑗=1

𝑃̂ 𝑗 ,𝑔 (𝑋)𝐶 𝑗

1−𝑃̂ 𝑗 ,𝑔 (𝑋)

) (
𝑌𝑖,𝑡 − 𝑌𝑖,𝑔−1 − 𝑚̂𝑖,𝑔,𝑡 (𝑋)

)]
. (2)

We first estimate the propensity score function, 𝑃𝑖,𝑔 (𝑋), and the outcome regression model,

𝑚𝑔,𝑡 (𝑋), with the treatment and control groups, respectively. These functions are then used

as predicted values in Eq. (2). The predicted propensity score, 𝑃̂𝑖,𝑔 (𝑋), serves as a weight to

construct the average outcome change for the control group. The ATT over the entire treated

period (from 𝑔 to 𝑇) can be estimated as follows:

�𝐴𝑇𝑇 (𝑔) = 1
𝑇 − 𝑔

1
𝑁

𝑇∑︁
𝑡=𝑔

𝑁∑︁
𝑖=1

[(
𝐷𝑖,𝑔

1
𝑁

∑𝑁
𝑗=1𝐷 𝑗 ,𝑔

−
𝑃̂𝑖,𝑔 (𝑋)𝐶𝑖

1−𝑃̂𝑖,𝑔 (𝑋)

1
𝑁

∑𝑁
𝑗=1

𝑃̂𝑗,𝑔 (𝑋)𝐶 𝑗

1−𝑃̂𝑗,𝑔 (𝑋)

) (
𝑌𝑖,𝑡 − 𝑌𝑖,𝑔−1 − 𝑚̂𝑖,𝑔,𝑡 (𝑋)

)]
. (3)

Eq. (3) allows us to estimate the overall post-treatment ATT.

However, we need to address an issue that arises when conducting subsample analysis using

the doubly-robust DID estimator. As mentioned above, we predict the propensity score for

each municipality in the control group and calculate the average outcome change for the group,

weighted by the propensity score, as shown in Eq. (3). When using a subsample, the resulting

propensity score function differs from that in the baseline estimation because the subsample

excludes certain treated municipalities. Consequently, each control unit has a different predicted

propensity score, leading to different weights when constructing the average outcome change

for the control group. This makes results from different subsamples not directly comparable, as

the comparisons (i.e., the control group’s weighted outcome changes) vary.

To resolve this issue, for each municipality 𝑖, we compute the weighted average outcome

change over the entire treated period (from 𝑔 to 𝑇), 𝛿𝑖 (𝑔), as follows:
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𝛿𝑖 (𝑔) =
1

𝑇 − 𝑔

𝑇∑︁
𝑡=𝑔

[(
𝐷𝑖,𝑔

1
𝑁

∑𝑁
𝑗=1𝐷 𝑗 ,𝑔

−
𝑃̂𝑖,𝑔 (𝑋)𝐶𝑖

1−𝑃̂𝑖,𝑔 (𝑋)

1
𝑁

∑𝑁
𝑗=1

𝑃̂ 𝑗 ,𝑔 (𝑋)𝐶 𝑗

1−𝑃̂ 𝑗 ,𝑔 (𝑋)

) (
𝑌𝑖,𝑡 − 𝑌𝑖,𝑔−1 − 𝑚̂𝑖,𝑔,𝑡 (𝑋)

)]
. (4)

𝛿𝑖 (𝑔) is a component of Eq. (3). Here, the propensity score is the same as in the baseline

estimation because we use all the treated units to estimate it. We then obtain the ATT for each

subsample by averaging 𝛿𝑖 (𝑔) across the selected municipalities. Specifically, for a subsample

of 𝑁𝑠𝑢𝑏 treated municipalities, the subsample ATT is given by

�𝐴𝑇𝑇𝑠𝑢𝑏 (𝑔) =
1

𝑁𝑠𝑢𝑏 + 𝑁𝑐

1
𝑇 − 𝑔

𝑁𝑠𝑢𝑏+𝑁𝑐∑︁
𝑖=1

𝑇∑︁
𝑡=𝑔

[(
𝐷𝑖,𝑔

1
𝑁

∑𝑁
𝑗=1𝐷 𝑗,𝑔

−

𝑃̂𝑖,𝑔 (𝑋)𝐶𝑖

1−𝑃̂𝑖,𝑔 (𝑋)

1
𝑁

∑𝑁
𝑗=1

𝑃̂𝑗,𝑔 (𝑋)𝐶 𝑗

1−𝑃̂𝑗,𝑔 (𝑋)

) (
𝑌𝑖,𝑡 − 𝑌𝑖,𝑔−1 − 𝑚̂𝑖,𝑔,𝑡 (𝑋)

)]
, (5)

where 𝑁𝑐 is the number of municipalities in the control group. This modification allows us

to calculate the subsample ATT without changing the predicted propensity scores from the

baseline estimation. Therefore, the comparison of the subsample and baseline ATTs is valid

because the control group’s weighted outcome changes are constructed consistently.

To estimate the propensity scores and outcome regressions in the control group, we include

the following pre-treatment covariates (𝑋). First, we add long-term climate conditions that

may affect PV productivity such as the average temperature, annual precipitation, and annual

sunshine duration. These variables are averaged over 2005–2015. Second, we include non-

weather covariates that may influence PV installation decisions such as population density,

average income, age, and the proportion of single-person households. Finally, we use the

pre-treatment outcome—the newly installed PV capacity in the last half-year of 2015—as an

additional covariate.

3.2 Data

We construct a municipality-level panel dataset combining information on PV installations,

weather conditions, and demographic characteristics for March 2016 to March 2022. The data

on PV installations are drawn from the feed-in-tariff program administered by Japan’s Agency
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of Natural Resources and Energy, which records all registered PV systems nationwide. Because

the dataset comprises the entire population of feed-in-tariff program-registered PV systems, it

covers all installations during our study period.

Although the data are reported quarterly, we aggregate them to the half-year level to smooth

seasonal fluctuations. In particular, installations typically surge in the second quarter following

announcements of annual subsidy programs—an effect that could otherwise confound our

estimation. Our main outcome variable is the newly installed PV capacity per 1,000 residents

per half-year, defined as the change in total installed capacity between consecutive periods. The

post-treatment period begins in October 2018, immediately following the September blackout.

We analyze residential and commercial PV systems separately. Residential systems are

defined as those below 10 kW, while commercial systems range from 10 to 50 kW and are

typically installed on the rooftops of farm buildings, offices, and small factories. To focus

on privately operated systems that primarily serve on-site electricity demand, we exclude

installations exceeding 50 kW, which are generally owned by utilities or large companies.

Observations categorized as “municipality unknown” are also excluded from the analysis.

The weather data are obtained from 1,316 monitoring stations operated by the Japan Me-

teorological Agency. Each municipality is matched to the nearest station using geographic

coordinates from the Ministry of Land, Infrastructure, Transport and Tourism, from which we

calculate the average temperature, annual precipitation, and sunshine duration for 2005–2015.

The demographic and socioeconomic covariates are derived from the 2015 Population

Census and the Statistical Observations of Municipalities. We include population, population

density, taxable income, average age, and the proportion of single-person households as pre-

treatment covariates. Population is also used to normalize installation capacity on a per capita

basis.

Table 1 reports the summary statistics. While residential PV capacity is higher in the

control group, commercial PV capacity is greater in the treatment group. Several pre-treatment

characteristics also differ significantly between the regions, reinforcing the need to control for

these covariates in our doubly-robust DID estimation.

Finally, we assess potential concerns about the validity of the control group. Hokkaido

receives less sunlight than Tohoku but Figure 3 shows that the installation trends in both regions

are similar, suggesting the comparison is appropriate. We also address potential peer effects:

although the awareness of people in neighboring regions about the blackout may have influenced

13



their behavior, Figure 5 shows a clear surge in Google searches for “PV systems” in Hokkaido

only, not in Tohoku (except in Fukushima). Figure 4 further shows no geographic gradient in

installation changes across Tohoku. As a robustness check, we exclude Fukushima Prefecture

from the sample, confirming that these peer effects do not materially affect our results.
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Figure 3: Average newly installed PV capacity (kW)

(a) Residential PV systems (b) Commercial PV systems

Note: The figures show the average capacity of newly installed PV systems over our sample period. We exclude
11 municipalities in Fukushima Prefecture designated as evacuation zones as of March 2016 following the 2011

nuclear accident.

Figure 4: Average change in newly installed PV capacity before and after the blackout (kW)

(a) Residential PV systems (b) Commercial PV systems
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Figure 5: Google searches using “PV systems”

(a) Hokkaido

(b) Aomori (c) Iwate (d) Miyagi

(e) Akita (f) Yamagata (g) Fukushima

Note: The number of searches is normalized by the maximum number of searches.
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4 Results

4.1 Main Results

Table A1 reports the estimation results for the propensity score model. For both the residen-

tial and the commercial sectors, annual total sunshine duration is not statistically significant. In

addition, population density and the pre-treatment outcome are not significant for the residential

and commercial sectors, respectively. As discussed in Section 4.3, our results are generally

robust to alternative specifications of the covariates used in the model.

Table 2 presents the main results. Columns (1) and (2) report the estimated impact of

the blackout on residential and commercial PV capacity, respectively. Although the ATT

for residential PV installations is negative, it is not statistically significant, indicating that

the blackout had no discernible effect on residential PV adoption. By contrast, the ATT

estimates for commercial PV installations are positive and statistically significant, suggesting a

substantial increase in capacity following the blackout. As shown in Column (2), commercial PV

capacity rose by 3.900 kW per 1,000 people per half-year—equivalent to 53.5% of the average

capacity installed in the control group. Overall, the post-blackout patterns differ sharply across

sectors: residential adoption remained unchanged, whereas commercial installations expanded,

consistent with our expectations outlined in Section 2.2.

Figure 6 presents the event study estimates for residential and commercial PV systems.

None of the pre-treatment ATT estimates are statistically significant for either sector, consistent

with the p-values of the pre-trend tests in Table 2. This supports the validity of the parallel trend

assumption. For the residential sector, the post-treatment ATT estimates remain not significant

and close to zero, except for the first post-treatment period. By contrast, for commercial PV

systems, most post-treatment ATTs are positive, although only a few reach statistical signifi-

cance. The fading pattern over time may reflect a diminishing awareness of the disaster-related

risks. Evidence from studies on flood events shows that housing prices and insurance uptake

often revert to pre-disaster levels within five to ten years (Atreya et al., 2013; Bin and Landry,

2013; Beltrán et al., 2019). Similarly, the effect of power outages on PV adoption may also

decline as memories of the blackout fade, unless reinforced by subsequent experiences or policy

interventions.

To examine whether the observed effects are driven by changes in the number of installations

18



or in system size, we re-estimate the model using two alternative dependent variables.9 Table

3 reports the results using the number of new installations and average capacity per new

installation. For the commercial sector, the results are similar to the main findings when the

number of new installations is used as the dependent variable. Moreover, the coefficient is

comparable to the control mean, indicating that the increase in commercial PV capacity is

primarily due to a higher number of installations. By contrast, the coefficient of commercial

PV capacity becomes not significant when average capacity per new installation is used. These

findings suggest that the main results are driven by changes in the total number of installations

rather than in average capacity per new installation.

Table 2: Effect of the blackout on the total capacity of newly installed PV systems

(1) (2)
Residential Commercial

ATT -0.113 3.900∗∗
(0.316) (1.699)

Control mean 2.891 7.284
Observations 395 395
P-value of pre-trend test 0.916 0.271

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across all the municipalities. Bootstrap standard errors
are reported in parentheses. The pre-trend test is conducted under the null hypothesis that all the pre-treatment

ATT estimates are equal to zero.
* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01

Figure 6: Event study plots

(a) Residential (b) Commercial

Note: The reference period for calculating the ATTs at time 𝑡 is set to 𝑡 − 1 for the pre-treatment periods
(including 𝑡 = 0) and to 𝑡 = 0 (time of treatment) for the post-treatment periods.

9While it is tempting to interpret the analysis as capturing both the intensive and the extensive margins, such an
interpretation should be made with caution. Because the data are aggregated at the municipality level, we cannot
exactly identify whether the observed changes stem from capacity expansion at existing PV sites or from new
installations.
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Table 3: Effect of the blackout on the total number and the average capacity of newly installed
PV systems

Number of systems Average PV capacity
(1) (2) (3) (4)

Residential Commercial Residential Commercial
ATT 0.00629 0.0957∗∗ -0.458 0.0985

(0.0482) (0.0376) (0.384) (3.137)
Control mean 0.537 0.184 4.835 24.25
Observations 395 395 395 395
P-value of pre-trend test 0.858 0.149 0.184 0.253

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across all the municipalities. Bootstrap standard errors
are reported in parentheses. The pre-trend test is conducted under the null hypothesis that all the pre-treatment

ATT estimates are equal to zero.
* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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4.2 Impact on PV Installations with Supplementary Power Systems

The main results show that the blackout had no statistically significant effect on residential

PV installations, whereas commercial PV installations increased significantly. As discussed in

Section 2.2, this difference likely reflects the intermittency of PV systems, whose generation is

concentrated during daylight hours and drops to zero at night. Because residential electricity

demand is typically higher during nighttime, PV systems are less attractive for households than

for the commercial sector.

To examine this mechanism more closely, we conduct an additional analysis focusing on

residential PV systems. Specifically, we test the hypothesis that households become more

aware of the intermittency of PV systems following the blackout. The database used in this

study also identifies residential PV installations combined with supplementary power storage

systems such as residential fuel cells, batteries, and electric vehicles. Residential fuel cells,

which typically generate electricity from liquefied natural gas and store the produced power,

are unaffected by intermittency and can therefore serve as reliable backup sources during

power outages. If households recognized the limitations of PV systems during the blackout,

they may have been more inclined to install PV systems together with fuel cells. Batteries

and electric vehicles, which store electricity generated by PV systems, could also mitigate

intermittency. Consequently, the proportion of PV installations with these storage systems

should have increased if households sought to address the intermittency problem.

To test this hypothesis, we replace the dependent variable with the proportion of PV instal-

lations equipped with supplementary systems relative to total PV installations.10 As shown in

Table 4, the proportion of PV installations with storage systems increased by 0.710 percentage

points after the blackout. The estimated ATT is statistically significant and its magnitude is

comparable to the mean of the control group. These results suggest that households exposed

to the blackout subsequently increased PV installations with supplementary energy systems

to mitigate the intermittency of standard PV systems. In short, households appear to have

recognized the intermittency of PV systems during the blackout, leading to a relative increase

in PV-plus-storage installations.

These findings are consistent with those of Brown and Muehlenbachs (2024), who also

report a statistically significant increase in residential storage capacity following outage events.
10Information on standalone storage systems is unavailable. Co-installation data are reported because the

feed-in-tariff rates differ for PV installations with storage systems.
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Their results further indicate that solar-only adoption is only weakly related to outages, whereas

the adoption of solar-plus-storage systems rises markedly after such events. Although the

two studies differ in the size and frequency of outage shocks, both suggest that the residential

adoption of solar installations with storage systems responds more strongly to outage experiences

than solar-only installations.

Table 4: Effect of the blackout on PV installations with supplementary systems

(1)
Share of PV installations with supplementary system

ATT 0.00710∗∗∗
(0.00212)

Control mean 0.0193
Controls Yes
Observations 391

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across all the municipalities. Bootstrap standard errors
are reported in parentheses.

* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01

4.3 Robustness Check

We investigate the robustness of our analysis to ensure that results are not driven by factors

other than the blackout.11 The estimation results may be biased upward if they are affected by

PV installations associated with the reconstruction of housings and buildings. To address this,

we exclude municipalities with seismic intensity of level three or higher, which simultaneously

removes 20 municipalities that experienced housing damage (houses destroyed or half destroyed)

due to the earthquake.12 Columns (3) and (4) in Table 5 show that the estimated ATTs remain

consistent in both direction and magnitude with baseline results, allowing us to reject the

hypothesis that the direct effect of the earthquake drives the observed impacts. Next, we address

the concern that Fukushima Prefecture in the Tohoku region may have been influenced by a

peer effect from the blackout, as it exhibited a noticeable spike in Google search activity during

the blackout month, albeit smaller spike than that in Hokkaido. By including Fukushima in

the control group could therefore bias the estimated treatment effect toward zero. Columns

(5) and (6) present results excluding Fukushima from the control group. As expected, the
11Figures A1 and A2 show the event study plots of these analyses.
12Source: Hokkaido Prefecture. https://www.pref.hokkaido.lg.jp/sm/ktk/300906jisin/top.html.
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point estimates become slightly larger but remain generally consistent with the baseline results,

confirming the robustness of our findings.

We also examine whether local government subsidy programs influenced the results. To

do so, we exclude municipalities that introduced or abolished PV subsidy programs during the

study period and re-estimate the ATT. Columns (7) and (8) present results that are comparable

to the main analysis, indicating that changes in subsidy policies had minimal impact. 13

We further check the robustness of our main results using various sets of control variables.

As shown in Tables A2 and A3 in the Appendix, the estimated ATTs for both residential and

commercial PV systems are largely consistent with those in Table 2, except for the models that

omit the average temperature from the set of covariates. Without the average temperature, we

observe a significant and positive effect of blackout exposure on residential PV installation,

while the ATT of commercial PV systems turns statistically insignificant. However, those

are changed when the variable is included, suggesting that regional average temperature is a

confounding factor that must be accounted for to identify the net impact of blackout.

Table 5: Robustness check

Full sample Seismic intensity below 3 Excluding Fukushima No subsidy changes
(1) (2) (3) (4) (5) (6) (7) (8)

Residential Commercial Residential Commercial Residential Commercial Residential Commercial
ATT -0.113 3.900∗∗ -0.214 3.736∗ -0.0392 4.066∗∗ -0.240 3.251∗

(0.303) (1.676) (0.410) (2.104) (0.295) (1.890) (0.337) (1.676)
Control mean 2.891 7.284 2.891 7.284 2.891 7.284 2.891 7.284
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 395 395 271 271 347 347 333 386

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across the municipalities in each subsample. The control
group remains unchanged, consisting of 216 municipalities. Bootstrap standard errors are reported in parentheses.

* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01

4.4 Heterogeneity in the Blackout Effects

We further explore the heterogeneity in the blackout effects.14 First, we consider the

timing of recovery from the blackout. According to the report by the Hokkaido Electric Power

Company, approximately half of the municipalities had recovered from the blackout by 3 a.m.
13We further test whether the blackout affected retail electricity prices, which could in turn influence PV adoption.

A simple DID regression of monthly retail prices on the treatment indicator shows no statistically significant change
attributable to the blackout. We also examine potential differences in housing age across treatment and control
groups, as construction year may be related to investment cost. The distributions of housing age are similar across
the two groups, suggesting no systematic bias.

14Figures A3 and A4 display the event study plots for these analyses.
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on September 7 (24 hours after the event).15 Analysis of these early-recovery municipalities

(Columns (3) and (4)) shows a lower likelihood of PV installations compared with late-recovery

municipalities, suggesting that the longer people live without power, the more they recognize

the value of emergency power sources.

Second, given that solar power generation depends on the climate, the blackout’s impact

is likely greater in municipalities with conditions favorable for solar power generation. We

divide Hokkaido’s municipalities by location to capture this heterogeneity. The northern area,

with heavier snowfall, is less suitable for generating solar power. Column (6) in Table 6 shows

that the ATT for commercial PV systems is not significant and smaller in the northern area

than in other regions, indicating that municipalities with less favorable climates for producing

solar energy experienced no significant post-blackout increase in PV installations. Limiting the

sample to municipalities with above-average sunshine duration (Columns (7) and (8)) yields

larger installations for both residential and commercial PV systems relative to the baseline,

although the differences are not statistically significant (Table A6). Longer sunshine duration

likely increases expected solar productivity, supporting greater PV adoption.

Table 6: Heterogeneous impacts of the blackout

Full sample Early recovery Northern area Long sunshine duration
(1) (2) (3) (4) (5) (6) (7) (8)

Residential Commercial Residential Commercial Residential Commercial Residential Commercial
ATT -0.113 3.900∗∗ -0.137 2.936 -0.109 2.244 -0.0750 5.408∗∗

(0.303) (1.676) (0.345) (1.892) (0.371) (1.947) (0.390) (2.220)
Control mean 2.891 7.284 2.891 7.284 2.891 7.284 2.891 7.284
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 395 395 312 312 258 258 298 298

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across the municipalities in each subsample. Bootstrap
standard errors are reported in parentheses. The control group remains unchanged, consisting of 216

municipalities. Tables A4 to A6 compare the ATTs across the two subsamples.
* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01

15Source: Hokkaido Electric Power Company. https://www.hepco.co.jp/info/2018/1229720_1753.
html.
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5 Channel Analysis

5.1 Expected Benefit of PV Systems as Self-insurance

To examine the channels through which the blackout affected subsequent PV installations,

we first decompose the expected benefit of PV systems as a form of self-insurance against power

outages into three components:

E[𝐵] = 𝑃(𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡) ∗ 𝐷𝑎𝑚𝑎𝑔𝑒 ∗ (𝜆 ∗ 1[𝑔𝑜𝑜𝑑𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 1]), (6)

where 𝑃(𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡) denotes the probability of a blackout occurring, 𝐷𝑎𝑚𝑎𝑔𝑒 represents the

total damage caused by a blackout, and 𝜆 is the proportion of that damage that could be avoided

by installing a PV system (0 < 𝜆 < 1). We assume that PV systems are effective only under

favorable weather conditions, as they cannot generate electricity during a blackout when weather

conditions are unfavorable. Accordingly, the indicator 1[𝑔𝑜𝑜𝑑𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 1] is included in the

equation. Economic agents are more likely to install PV systems when the expected benefit,

E[𝐵], is larger. In the following sections, we examine which components in Eq. (6) drive the

extent to which the blackout influenced subsequent PV installations. Following studies such

as Rouhi Rad et al. (2021) and Sekhri and Hossain (2023), we investigate the mechanisms

through a channel analysis that compares the ATTs across the subsamples, as doubly-robust

DID estimators are unsuitable for incorporating interaction terms.

5.2 Probability Channel

We first examine the probability channel. The blackout may have influenced subsequent

PV installations by updating people’s subjective probability of a blackout occurring. Previous

studies such as Kieu and Senanayake (2023) show that experiencing events like floods and storms

often raises people’s perceived likelihood of similar future events, suggesting that blackout

experiences could similarly shift perceived risk. To investigate this channel, we use a subsample

that excludes municipalities that experienced either of the the outages caused by typhoons in

August 2016, two years before the Iburi Earthquake.16 We assume that municipalities that had

already experienced either of these earlier outages had updated their perceived probability of a
16Source: Hokkaido Electric Power Company. https://www.hepco.co.jp/info/2023/2023.html.
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blackout occurring, suggesting that the Iburi Earthquake would have a smaller marginal effect

on their perception than in municipalities without any such experience. Columns (3) and (4) in

Table 7 show the results for municipalities without any experience of outages.17

As shown in Table A7, although the difference in the ATTs between the two subsamples

is not statistically significant, the point estimates differ substantially. The negative effect

of the blackout on residential PV systems disappears and turns to positive in municipalities

without prior outage experience, although the estimate is not statistically significant. In other

words, residents in municipalities without outage experience appear more likely to update their

perceived probability of a blackout occurring and install additional PV systems compared with

those in municipalities that had already experienced outages.

Regarding commercial PV installations, however, the results in Table 7 indicate that munic-

ipalities with a prior outage experience increased their subsequent PV installations to a greater

extent, suggesting an upward revision of their subjective probability of a blackout occurring.

One possible explanation for this unexpected finding is that the recurrence of blackouts influ-

ences those subjective probabilities. Municipalities that had already experienced an outage may

have learned from these repeated events and come to expect future blackouts, thereby altering

their behavior.

5.3 Damage Channel

We next examine the damage channel. As expressed in Eq. (6), greater damage from a

blackout increases the expected benefit of installing PV systems as a precaution against similar

future losses. To test this mechanism, we define municipalities with greater damage differently

for the residential and commercial sectors.

For the residential sector, we use the municipal average number of household members

to construct the subsamples. Larger households are likely to consume more electricity and

therefore experience greater inconvenience or loss during outages. Municipalities with above-

average household members are thus classified as high-damage areas. For the commercial

sector, we proxy potential economic losses using the average annual profit of firms in each

municipality, obtained from the 2021 Economic Census for Business Activity.18

17Figures A5 and A6 present the event study plots of the channel analyses for residential and commercial PV
systems, respectively.

18Source: 2021 Economic Census for Business Activity. https://www.stat.go.jp/data/e-census/
2021/index.htm.
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Columns (5) and (6) of Table 7 report the estimation results. For the residential sector

(Column (5)), municipalities with greater residential damage—proxied by a larger household

size—experienced a smaller and not statistically significant decline in subsequent PV installa-

tions compared with other areas. This pattern implies that municipalities with greater potential

damage are more inclined to install PV systems to reduce the risk of future power outage-related

losses.

For the commercial sector (Column (6)), municipalities with higher average firm prof-

its exhibit a larger ATT, indicating that commercial areas with potentially greater economic

damage increased their post-blackout PV installations more than other areas. This finding sup-

ports the hypothesis that the blackout-induced awareness of potential business losses motivated

commercial entities to invest in PV systems to mitigate risk.

5.4 Performance Channel

Lastly, we examine the performance channel. As noted above, a key disadvantage of PV

systems is their intermittency under unfavorable weather conditions. To test whether this

factor influenced the post-blackout adoption of PV systems, we exploit the variation in weather

conditions during the daytime of the blackout days (September 6 and 7). Specifically, we

use a subsample of municipalities that recorded zero precipitation on both days—hereafter

termed good weather municipalities—based on data from the Japan Meteorological Agency.

Furthermore, to isolate the effect of intermittency, we exclude municipalities that had already

recovered from the blackout by 3 a.m. on September 7, as residents there were unlikely to

experience prolonged electricity loss.19

Columns (7) and (8) in Table 7 present the estimation results. For residential PV systems, the

ATT in Column (7) suggests that the decline in installations was less pronounced in good weather

municipalities, although the coefficient is not statistically significant. For commercial PV

systems, the estimated ATT is larger than that in the baseline results, implying that good weather

during the blackout substantially increased subsequent PV installations in those municipalities.

Although Table A9 shows that the differences in the ATTs between good and bad weather

municipalities are not statistically significant, the point estimates are statistically significant in

both sectors. Specifically, municipalities with favorable weather conditions experienced greater

PV installations in both the residential and the commercial sectors. These results suggest that
19Source: Hokkaido Electric Power Company. https://www.hepco.co.jp/info/2018/1229720_1753.

html.
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the perceived effectiveness—represented by 𝜆 in Eq. (6)—was revised upward in these areas

in which PV systems could function during the blackout. Therefore, the decrease (increase)

in residential (commercial) PV installations was smaller (larger) than that in municipalities

that faced poor weather. Conversely, in bad weather municipalities in which PV systems

failed to operate during the blackout, households and firms likely revised their expected benefit

downward, recognizing the limitations of PV generation under unfavorable weather conditions.

This finding is consistent with the increase in the installation of supplementary power systems,

as analyzed in the previous section.

Table 7: Channel analyses

Full sample No outage experience Greater damage Good weather
(1) (2) (3) (4) (5) (6) (7) (8)

Residential Commercial Residential Commercial Residential Commercial Residential Commercial
ATT -0.113 3.900∗∗ 0.0377 3.185∗ -0.0685 5.076∗∗∗ -0.0758 5.380∗∗∗

(0.288) (1.708) (0.336) (1.852) (0.369) (1.927) (0.369) (2.032)
Control mean 2.891 7.284 2.891 7.284 2.891 7.284 2.891 7.284
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 395 395 300 300 305 305 275 275

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across the subsample municipalities. Bootstrap standard
errors are reported in parentheses. The control group remains the same throughout, consisting of 216

municipalities. Tables A7 to A9 compare the ATTs across the subsamples.
* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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6 Conclusion

This study examines the role of PV systems as a form of self-insurance against blackouts,

enabling system owners to generate electricity even during power outages. We investigate

whether the 2018 blackout in Japan influenced subsequent PV installation decisions. Using a

doubly-robust DID approach, we estimate the impact of the blackout on both residential and

commercial PV installations. Our results show no significant effect in the residential sector,

whereas commercial installations increased following the blackout. Our additional analysis of

PV installations with supplementary power systems shows that households increase installations

of supplementary energy systems that mitigate the intermittency of PV systems. This finding

suggests that the increase in concern about the intermittency of PV systems may explain why

households did not increase residential PV installations after the blackout.

To understand the underlying mechanisms, we analyze three channels: probability, damage,

and performance. We find that the damage and performance channels are particularly important.

Municipalities that would have had greater damage from the blackout have larger subsequent

PV installations. Moreover, municipalities facing intermittent generation were less likely to

install PV systems, which helps explain the absence of an increase in residential installations.

Overall, the blackout influenced PV adoption by highlighting the limited performance of PV

systems during outages.

A limitation of this study is that we cannot distinguish whether the observed increase was

driven by first-time PV adopters or existing owners expanding capacity. If first-time installations

dominate, the effect may be driven by information dissemination or neighborhood peer effects; if

additional installations dominate, the effect reflects actual blackout experiences. Differentiating

these motivations would provide a deeper understanding of PV adoption behavior.

Nevertheless, our findings offer two important implications for renewable energy policy.

First, the results suggest that the role of PV systems as a form of self-insurance against power

outages remains underrecognized. The observed increase in commercial PV installations after

the large-scale blackout implies that many people only became aware of this benefit when they

personally experienced system disruptions. Second, the results highlight the importance of

intermittency in shaping PV installation decisions. Intermittency affects not only the reliability

of PV systems during blackouts but also their daily generation potential, as electricity demand

during periods of poor weather must be met by other, often carbon-intensive, power sources.
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Addressing this challenge is crucial for designing electricity networks that integrate large-scale

PV capacity while ensuring both reliability and resilience.
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Appendix

Table A1: Propensity score estimation

(1) (2)
Residential Commercial

Hokkaido
Pre-treatment New PV capacity (under 10kW) -0.267∗∗∗

(0.0791)

Pre-treatment New PV capacity (10-50kW) -0.0440
(0.0361)

Average temperature (degree Celcius) -2.418∗∗∗ -2.278∗∗∗
(0.378) (0.310)

Annual total precipitation (mm) -0.00436∗∗∗ -0.00337∗∗∗
(0.00153) (0.00120)

Annual total suntime (h) 0.00426 0.00170
(0.00303) (0.00247)

Population density (sq. km) -0.000213
(0.000625)

Average age of the citizen 0.399∗∗ 0.461∗∗∗
(0.161) (0.129)

Taxable income per 1000 people (million JPY) 0.00783∗ 0.0102∗∗∗
(0.00417) (0.00252)

The share of single household 18.93∗∗∗
(6.296)

Observations 395 395
Note: * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table A2: Robustness checks for residential PV systems

Residential PV capacity (kW)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline
ATT -0.113 2.506∗∗∗ -0.145 -0.0240 -0.189 -0.191 -0.240 -0.190 -0.0798

(0.301) (0.918) (0.313) (0.319) (0.301) (0.292) (0.262) (0.274) (0.330)
Average temperature Yes No Yes Yes Yes Yes Yes Yes Yes
Precipitation Yes Yes No Yes Yes Yes Yes Yes Yes
Suntime Yes Yes Yes No Yes Yes Yes Yes Yes
Population density Yes Yes Yes Yes No Yes Yes Yes Yes
Average age Yes Yes Yes Yes Yes No Yes Yes Yes
Income Yes Yes Yes Yes Yes Yes No Yes Yes
Share of single household Yes Yes Yes Yes Yes Yes Yes No Yes
Pre-treatment outcome Yes Yes Yes Yes Yes Yes Yes Yes No
Observations 395 395 395 395 395 395 395 395 395
P-value of pretrend test 0.916 0.035 0.864 0.845 0.771 0.845 0.830 0.862 0.893

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across all the municipalities. Bootstrap standard errors
are in parentheses. The pre-trend test is based on the null hypothesis that all the pre-treatment ATTs are equal to 0.

* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01

Table A3: Robustness checks for commercial PV systems

Commercial PV capacity (kW)
(1) (2) (3) (4) (5) (6) (7)

Baseline
ATT 3.900∗∗ 0.344 4.970∗∗∗ 4.247∗∗ 6.362∗∗∗ 3.232∗ 4.239∗∗

(1.535) (3.051) (1.504) (1.697) (1.595) (1.655) (1.692)
Average temperature Yes No Yes Yes Yes Yes Yes
Precipitation Yes Yes No Yes Yes Yes Yes
Suntime Yes Yes Yes No Yes Yes Yes
Population density Yes Yes Yes Yes No Yes Yes
Income 395 395 395 395 395 395 395
Pre-treatment outcome 0.271 0.546 0.0604 0.249 0.0427 0.459 0.0975
Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across all the municipalities. Bootstrap standard errors

are in parentheses. The pre-trend test is based on the null hypothesis that all the pre-treatment ATTs are equal to 0.
* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table A4: Heterogeneous impacts of the blackout (early recovery)

(1) (2) (3)
Early recovery Late recovery Difference

[(1) − (2)]

Panel A: Residential PV systems

ATT -0.137 -0.0956 -0.0418
(0.345) (0.337)

Observations 312 299 .

Panel B: Commercial PV systems

ATT 2.936 4.824∗∗ -1.887
(1.892) (2.012)

Controls Yes Yes .
Observations 312 299 .

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across the subsample municipalities. Bootstrap standard
errors are in parentheses. The control group is always the same, consisting of 216 municipalities.

* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01

Table A5: Heterogeneous impacts of the blackout (northern area)

(1) (2) (3)
Northern area Other area Difference

[(1) − (2)]

Panel A: Residential PV systems

ATT -0.109 -0.123 0.0145
(0.371) (0.342)

Observations 258 353 .

Panel B: Commercial PV systems

ATT 2.244 5.041∗∗∗ -2.797
(1.947) (1.809)

Controls Yes Yes .
Observations 258 353 .

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across the subsample municipalities. Bootstrap standard
errors are in parentheses. The control group is always the same, consisting of 216 municipalities.

* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table A6: Heterogeneous impacts of the blackout (sunshine duration)

(1) (2) (3)
Long sunshine duration Short sunshine duration Difference

[(1) − (2)]

Panel A: Residential PV systems

ATT -0.0750 -0.157 0.0818
(0.390) (0.328)

Observations 298 313 .

Panel B: Commercial PV systems

ATT 5.408∗∗ 2.386 3.021
(2.220) (1.777)

Controls Yes Yes .
Observations 298 313 .

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across the subsample municipalities. Bootstrap standard
errors are in parentheses. The control group is always the same, consisting of 216 municipalities.

* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table A7: Channel analysis (outage experience)

(1) (2) (3)
With outage experience No outage experience Difference

[(1) − (2)]

Panel A: Residential PV systems

ATT -0.266 0.0377 -0.304
(0.371) (0.336)

Observations 311 300 .

Panel B: Commercial PV systems

ATT 4.511∗∗ 3.185∗ 1.326
(2.059) (1.852)

Controls Yes Yes .
Observations 311 300 .

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across the subsample municipalities. Bootstrap standard
errors are in parentheses. The control group is always the same, consisting of 216 municipalities.

* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table A8: Channel analysis (degree of damage)

(1) (2) (3)
Greater damage Smaller damage Difference

[(1) − (2)]

Panel A: Residential PV systems

ATT -0.0685 -0.165 0.0968
(0.369) (0.334)

Observations 305 306 .

Panel B: Commercial PV systems

ATT 5.076∗∗∗ 2.648 2.428
(1.927) (1.921)

Controls Yes Yes .
Observations 305 306 .

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across the subsample municipalities. Bootstrap standard
errors are in parentheses. The control group is always the same, consisting of 216 municipalities.

* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01

Table A9: Channel analysis (weather on the blackout day)

(1) (2) (3)
Good weather Bad weather Difference

[(1) − (2)]

Panel A: Residential PV systems

ATT -0.0758 -0.143 0.0677
(0.369) (0.406)

Observations 275 240 .

Panel B: Commercial PV systems

ATT 5.380∗∗∗ 3.253 2.127
(2.032) (2.199)

Controls Yes Yes .
Observations 275 240 .

Note: We obtain the ATTs by averaging 𝛿𝑖 (𝑔) in Eq. (4) across the subsample municipalities. Bootstrap standard
errors are in parentheses. The control group is always the same, consisting of 216 municipalities.

* 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Figure A1: Event study plot of residential PV systems (robustness check)

(a) Full sample (b) Seismic intensity below 3

(c) Excluding Fukushima (d) No subsidy changes

Figure A2: Event study plot of commercial PV systems (robustness check)

(a) Full sample (b) Seismic intensity below 3

(c) Excluding Fukushima (d) No subsidy changes
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Figure A3: Event study plot of residential PV systems (heterogeneity impacts)

(a) Full sample (b) Early recovery

(c) Northern area (d) Long sunshine duration

Figure A4: Event study plot of commercial PV systems (heterogeneity impacts)

(a) Full sample (b) Early recovery

(c) Northern area (d) Long sunshine duration
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Figure A5: Event study plot of residential PV systems (channel analysis)

(a) Full sample (b) No outage experience

(c) Greater damage (d) Good weather

Figure A6: Event study plot of commercial PV systems (channel analysis)

(a) Full sample (b) No outage experience

(c) Greater damage (d) Good weather
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