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1. Introduction 
 
  Awareness of global environmental problems and the requirements for renewable energy 
utilization are increasing. In light of the March 11 earthquake and the Fukushima nuclear 
crisis, a radical reconsideration of Japanese energy policy is now being discussed. Given 
these circumstances, the development of a smart grid in electricity systems has raised hopes 
of meeting goals for climate change, energy competition, and the safety of systems and 
technology. This leads to many economic questions related to incentive policies for 
operators to implement such technology (Clastres, 2011). 
  Smart grids can be classified into two systems: the upstream power supply system and 
the downstream power demand system. This paper deals with the latter, specifically 
concerning residential demand for smart equipment to make up smart homes. In particular, 
we investigate the future diffusion of advanced or smart meters (SM) that measure electric 
consumption hourly, photovoltaic (PV) generators that are installed on residential rooftops, 
clean-fuel electric vehicles (EV), and hybrid electric vehicles (HEV). The implementation 
of these technologies in Japan is imminent, and policy is needed to prepare for smart home 
diffusion. This paper will conduct a conjoint analysis of the future diffusion of SM, PV, EV, 
and HEV using the results of an online survey administered in March 2011. 
  The SM is an advanced electrical meter that records electric consumption in intervals of 
an hour or less and relays information to the utility company for monitoring and billing. In 
European countries and the USA, where power supply systems can be unstable and 
electricity shortages are experienced, governments have been aggressive in introducing SM 
infrastructures. However, in Japan, where the power supply used to be secure and stable, 
there had been no need to control demand by deploying an hourly metering SM. However, 
after the March 11 earthquake disaster, power shortages became a matter of concern, 
particularly at peak times in summer and winter; thus, the early deployment of SM 
infrastructure is now necessary. With advanced metering infrastructure, a local distribution 
company (LDC) can implement innovative service options, from resource adequacy 
requirements to greenhouse gas emissions reduction, in the following three ways: (1) 
two-way communication between the LDC and its customers, (2) hourly metering for 
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time-varying dynamic pricing and demand management by the LDC and its customers, and 
(3) real-time billing information for the LDC’s customers (Woo et al., 2008; Duke et al., 
2005). 
  The residential PV system is a method of generating electrical power by converting solar 
radiation into electricity via semiconductors. Residential rooftop PV systems may emerge 
as a major new market once module prices fall below the critical level. The Japanese 
government introduced a net metering system in order to boost residential PV deployment. 
Despite the large potential markets, inefficient energy pricing discourages prospective PV 
consumers, while environmental externalities and market failures make it difficult for 
manufacturers and homebuilders to obtain the benefits of their investment (Keirstead, 
2007). 
 An EV uses one or more electric motors for propulsion, while an HEV combines an 
internal combustion engine and electric motors. A plug-in hybrid electric vehicle (hereafter, 
PHEV) uses batteries that can be recharged via an external electric power source. When an 
EV or PHEV is connected at home, it serves as a home battery for charging and discharging, 
if necessary, and seasonal or daily fluctuations of renewable energy are mitigated. 
  As the full-scale deployment of smart equipment has not yet been realized, empirical 
revealed preference data have not been sufficiently accumulated. Therefore, we adopt a 
stated preference (SP) data method (or conjoint analysis). SP data are hypothetical, and take 
into account certain types of market constraints useful for forecasting changes in consumer 
behaviors, although these may be affected by the degree of contextual realism of 
respondents. 
  The key study for our purpose is Banfi et al. (2008), which first evaluated consumers’ 
willingness to pay for energy-saving upgrades to residential buildings, including air 
renewal systems and the insulation of windows and facades. The researchers found that 
respondents valued the benefits of the energy-saving attributes. However, to the best of our 
knowledge, no conjoint analysis of SM and PV diffusion has been conducted. 
  On the other hand, many studies have conducted conjoint analysis of clean-fuel vehicles. 
Bunch (1993) conducted a conjoint analysis to determine how demand for clean-fuel 
vehicles and their fuels varied as a function of the attributes that distinguished these 



 4 

vehicles from conventional gasoline vehicles; clean-fuel vehicles encompassed both 
electric and unspecified liquid and gaseous fuel vehicles. Recently, Karplus (2010) found 
that vehicle cost could be a significant barrier to PHEV entry unless fairly aggressive goals 
for reducing battery costs were met. If a low-cost PHEV was available, its adoption had the 
potential to reduce greenhouse gas emissions and refined oil demand. Other past studies 
that studied clean-fuel or electric vehicles are summarized in Table 1 (cf. Hidrue et al. 
2011). 
 

<Table 1> 
 
  In this paper, the online conjoint survey was administered in March 2011 (just before the 
earthquake disaster) to 649 households that planned to purchase or remodel a house within 
five years and 694 households that did not plan to do so. We first estimated the SP data by 
using a mixed logit model allowing for individual heterogeneity, then investigated 
willingness to pay (WTP) for attributes of SM, PV, EV, and HEV. 
  This paper contributes to the existing literature in three ways. First, we study SM and PV 
diffusion, which has not been fully analyzed but which is now indispensable for smart 
homes. Second, we clarify the differences from previous studies of EV diffusion in that we 
mainly focus on the advantages of PHEV. Third, in addition to the diffusion analysis, we 
examine the reduction of greenhouse gas emissions and the interdependencies among 
multiple types of smart home equipment. 
  We now summarize the main conclusions to be obtained in this paper. First, a decrease in 
price level is most effective for the future diffusion of smart equipment such as SM, PV, 
EV, and PHEV. On the other hand, greenhouse gas emission reduction effects vary among 
them, with PV being the most effective. Second, accompanying the diffusion of smart 
equipment, it is expected that greenhouse gas emissions will be substantially reduced. 
Assuming the present circumstances, the expected reductions are 4% per household for SM, 
7% per household for PV, and 17% per car for PHEV. Taking into account innovations, 
further reduction of greenhouse gas emissions will be achieved. Third, the purchase of one 
form of smart equipment is associated with other smart equipment purchases; in particular, 
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the diffusion of PV is promoted the most in this manner. 
  This paper is organized as follows. Section 2 explains the online survey method of 
conjoint analysis and the experimental design. Section 3 describes the mixed logit model 
used for estimation. Section 4 discusses the current utilization and future deployment of 
smart equipment. Section 5 displays the estimation results and measures the WTP values of 
the attributes. Section 6 extends the analysis to various aspects: the expected diffusion, the 
reduction rate of greenhouse gas emissions, and the interdependencies among smart 
equipment diffusions. Section 7 presents concluding remarks. 
 

2. Survey and design 
 
  This section explains the survey method of conjoint analysis and the experimental design. 
The survey was conducted online with monitors who were registered with a consumer 
investigative company. When conducting the sampling, we considered geographical 
characteristics, gender, and age to represent an average Japanese population. 
  Data sampling was performed in two stages. In the first stage, we randomly drew 8,997 
households from the monitors in February 2011 and asked basic demographic questions 
and whether they planned to purchase or remodel a house within five years. The purpose of 
this question was to classify the respondents according to interest, as the smart equipment 
demand is supposed to be closely related to house purchases. A total of 1,630 households 
(18.1%) planned to purchase or remodel a house within five years, while 7,357 households 
(81.9%) did not have such a plan. 
  In the second stage, in March 2011, we surveyed a random sample of 649 households 
(39.8%) from the 1,630 high-interest households. At the same time, we surveyed a random 
sample of 694 households (9.4%) from the 7,357 low-interest households. We conducted 
three kinds of conjoint analysis of SM, PV, and EV/HEV for the 649 high-interest 
households and 694 low-interest households after asking questions about their current and 
the future usages. The respondents received a small remuneration for completing the 
questionnaire. 
  All surveys ended on March 10, 2011, and thus our data are free from the influences of 
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the earthquake of March 11. After the earthquake, confronted with the Fukushima nuclear 
crisis and power shortages, Japanese attitudes toward energy and environmental policy 
changed drastically. In this sense, we collected ordinary Japanese preferences before the 
crisis, and the conclusions obtained may apply to other countries without a special concern. 
  Next, we explain conjoint analysis. Conjoint analysis considers the attributes of a service 
or product. If an excessive number of attributes and levels are included, respondents find it 
difficult to answer the questions. On the other hand, if too few are included, the description 
of alternatives becomes inadequate. Since the number of attributes becomes unwieldy if we 
consider all possible combinations, we adopted an orthogonal planning method to avoid 
this problem (see Louviere et al., 2000, Ch. 4, for details). We thus obtained an appropriate 
number of questions for which the levels of the attributes varied stochastically and asked 
the respondents these questions. 
  First, we explain the setup of the SM conjoint analysis. Advanced metering infrastructure 
measures residential or business electricity consumption on a real-time basis and makes it 
possible to set dynamic pricing depending on peak and off-peak times. Here, we include the 
visualization of electricity consumption and the remote control of the air conditioner in the 
advanced-metering or home energy management system (HEMS) service. When a peak 
time demand is cut or shifted by introducing SM, greenhouse gas emissions are expected to 
be reduced. As such, after conducting several pretests, we determined the alternatives, 
attributes, and levels as follows: 
 

Attribute levels of SM conjoint analysis 
(1) Monthly usage charge 

Levels: free, US$2, US$4, US$6 per month 
(2) Visualization of electricity consumption 

Levels: none, WEB display, plus private monitor display, plus energy-saving 
advice 

(3) Off-peak discount (compared with standard electricity charge) 
Levels: none, 10%, 30%, 50%  

(4) Peak surcharge (compared with standard electricity charge) 
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Levels: none, double, four times, six times 
(5) Remote control of air conditioner during a power shortage 

Levels: none, automatic control at 82°F, temporary restriction, usage interception 
(6) Reduction in greenhouse gas emissions (per household) 

Levels: none, 10%, 30%, 50%  
 
  Figure 1(a) displays an example of the SM conjoint questionnaire. There are three 
alternatives: Alternatives 1 and 2 denote different SM deployments and Alternative 3 is no 
SM deployment. All respondents were asked the same eight questions. 
 

<Figure 1> 
 
  Second, we explain the setup of the PV conjoint analysis. Owners of residential rooftop 
PVs decrease electricity bills by cutting electricity consumption and sometimes gain a 
profit by selling electricity to an LDC. Currently, the average initial cost to install a PV 
system is around US$20,000 in Japan, and a reduction in price is necessary for extensive 
diffusion. PV is a renewable energy source that is expected to reduce greenhouse gas 
emissions. As such, after conducting several pretests, we determined the alternatives, 
attributes, and levels as follows: 
 

Attribute levels of PV conjoint analysis 
(1) Initial cost of introducing a PV system 

Levels: US$10,000, US$15,000, US$20,000, US$25,000 
(2) Annual reduction in fuel and lighting charges 

Levels: 50%, 60%, 70%, 80%  
(3) Reduction in greenhouse gas emissions (per household) 

Levels: 30%, 40%, 50%, 60%  
(4) Free inspection and maintenance period 

Levels: none, 5 years, 10 years, 20 years 
(5) Stylishly designed PV panel 
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Levels: none, additional 
 
  Figure 1(b) displays an example of the PV conjoint questionnaire. There are three 
alternatives: Alternatives 1 and 2 denote different PV deployments and Alternative 3 is no 
PV deployment. All respondents were asked the same eight questions. 
  Third, we explain the setup of the EV/HEV conjoint analysis. Driving a fuel-efficient 
EV or HEV can eliminate the cost of gasoline or other fuel, and pollution is much lower 
compared with gasoline vehicles. On the other hand, the price is relatively high compared 
to standard gasoline vehicles (at present, an additional US$5,000–10,000 for EV and a 
further US$2,000–3,000 for HEV), the driving range on a full battery is still very limited 
(100–150 km per charge for EV), and it can take time to find a charging station (up to 30 
min). Plug-in is now optional for HEV, and PHEV can serve as a home battery for charging 
or discharging if necessary. As such, after conducting several pretests, we determined the 
alternatives, attributes, and levels as follows: 
 

Attribute levels of EV conjoint analysis 
(1) EV Premium (relative to the same class gasoline vehicle) 

Levels: none, US$3,000, US$5,000, US$10,000 
(2) Annual reduction in fuel cost necessary for the same distance covered (relative to 

the same class gasoline vehicle) 
Levels: 60%, 70%, 80%, 90%  

(3) Driving range on a full battery (km) 
Levels: 100 km, 200 km, 300 km, 400 km 

(4) Reduction in greenhouse gas emissions (relative to the same class gasoline vehicle) 
Levels: 70%, 80%, 90%, 100%  

(5) Time to find a charging station (min.) 
Levels: up to 10 min., up to 30 min. 

 
Attribute levels of HEV conjoint analysis 

(1) HEV Premium (relative to the same class gasoline vehicle) 
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Levels: none, US$1,000, US$3,000, US$5,000 
(2) Annual reduction in fuel cost necessary for the same the distance covered (relative 

to the same class gasoline vehicle) 
Levels: 20%, 40%, 60%, 80%  

(3) Driving range before refueling (km) 
Levels: 700 km, 1,000 km, 1,500 km, 2,000 km 

(4) Reduction in greenhouse gas emissions (relative to the same class gasoline vehicle) 
Levels: 40%, 50%, 60%, 70%  

(5) Home plug-in 
Levels: none, additional 

 
  Figure 1(c) displays an example of the EV/HEV conjoint questionnaire. There are three 
alternatives, where Alternative 1 denotes EV, Alternative 2 denotes HEV, and Alternative 3 
is gasoline vehicle purchases. There are sixteen questions in total and they are divided into 
two versions. All respondents are asked either version (consisting of eight questions) at 
random. 
 

3. Model specification 
 

  This section describes the estimation model. Conditional logit (CL) models, which 

assume independent and identical distribution (IID) of random terms, have been widely 

used in past studies. However, independence from the irrelevant alternatives (IIA) property 

derived from the IID assumption of the CL model is too strict to allow flexible substitution 

patterns. A nested logit (NL) model partitions the choice set and allows alternatives to have 

common unobserved components compared with non-nested alternatives by partially 

relaxing strong IID assumptions. However, the NL model is not suited for our analysis 

because it cannot deal with the distribution of parameters at the individual level (Ben-Akiva 

et al., 2001). Consequently, the best model for this study is a mixed logit (ML) model, 

which accommodates differences in the variance of random components (unobserved 
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heterogeneity). This model is flexible enough to overcome the limitations of CL models by 

allowing for random taste variation, unrestricted substitution patterns, and the correlation of 

random terms over time (McFadden and Train, 2000). 

  Assuming that parameter nβ  is distributed with density function ( )nf β (Train 2003, 

Louviere et al., 2000), the ML specification allows for repeated choices by each sampled 

decision maker in such a way that the coefficients vary by person but are constant over each 

person’s choice situation. The logit probability of decision maker n choosing alternative i in 

choice situation t is expressed as  

11
( ) [exp( ( )) / exp( ( ))]

T J
nit n nit n njt njt
L V Vβ β β

==
= ∑∏ , (1) 

which is the product of normal logit formulas, given parameter nβ , the observable portion 

of utility function nitV , and alternatives j=1, …, J in choice situations t=1, …, T. Therefore, 

ML choice probability is a weighted average of logit probability ( )nit nL β  evaluated at 

parameter nβ  with density function ( )nf β , which can be written as 

( ) ( )nit nit n n nP L f dβ β β= ∫ .  (2) 

  Accordingly, we can demonstrate variety in the parameters at the individual level using 

the maximum simulated likelihood (MSL) method for estimation with a set of 100 Halton 

draws1. Furthermore, since each respondent completes eight questions in the conjoint 

analysis, the data form a panel, and we can apply a standard random effect estimation. 

  In the linear-in-parameter form, the utility function can be written as 

' 'nit nit n nit nitU x zγ β ε= + + ,  (3) 
                                                
1Louviere et al. (2000, p. 201) suggested that 100 replications are normally sufficient for a 
typical problem involving five alternatives, 1,000 observations, and up to 10 attributes (also 
see Revelt and Train, 1998). The adoption of the Halton sequence draw is an important 
issue (Halton, 1960). Bhat (2001) found that 100 Halton sequence draws are more efficient 
than 1,000 random draws for simulating an ML model. 
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where nitx  and nitz  denote observable variables, γ  denotes a fixed parameter vector, 

nβ  denotes a random parameter vector, and nitε  denotes an independently and identically 

distributed extreme value (IIDEV) term. 

  Because ML choice probability is not expressed in closed form, simulations must be 

performed for the ML model estimation. Let θ  denote the mean and (co-)variance of 

parameter density function ( | )nf β θ . ML choice probability is approximated through the 

simulation method (see Train, 2003 p. 148 for details). We can also calculate the estimator 

of the conditional mean of random parameter s conditional on individual specific choice 

profile ny  (see Revelt and Train, 1998 for details), given as 

  
h(β | yn ) = [P( yn |β ) f (β )] / P( yn |β ) f (β )dβ∫ .  (4) 

  From Eq. (4)   h(β | yn ) , the conditional choice probabilities   P̂nit (βn )  can be calculated 
individually: 

  
P̂nit (βn ) = exp(Vnit (h(β | yn )) / exp(Vnjt (h(β | yn )))

j=1

J∑ . (5) 

  After conducting three kinds of conjoint analysis, we expect that a person who has a 
higher preference for energy conservation is more likely to implement various types of 
smart equipment, including SM, PV, EV, and HEV. As such, this conjunction leads to a 
positive interdependency among those choice probabilities. Letting the number of conjoint 
analysis be m = 1,2,3 , given that the conditional choice probability   P̂nit

M=m  is influenced 
by the other conditional choice probabilities   P̂nit

M≠m , the random utility function for 
choosing m can be written as 

  Unit
m = γ 'xnit + βn ' znit +γ n ' P̂nit

M≠m(βn )+ εnit .  (6) 
At this point, parameter  γ n  indicates interdependencies among the smart equipment 

implementations. We will analyze these interdependencies with the utility function shown 
in Eq. (6) in Section 6. 
 

4.  Data description 
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  This section discusses the data used for the estimation. Table 2 carries the demographic 
characteristics of the respondent households; the highly interested households that plan to 
purchase or remodel a house are shown in the left column, households with little interest 
are in the center, and the weighted average is shown in the right column. We presently 
comment on the remarkable difference between the high-interest and the low-interest 
households. 
 

<Table 2> 
 
  No remarkable differences are observed between households with high interest and those 
with little interest in respect to residence information such as owned/rented and 
detached/apartment. There is also little difference among individual characteristics and 
annual electricity expenses. On the other hand, those who are married, employed, and have 
more household income appear more often in the highly interested group. These 
observations are all intuitive. 
 
4.1 Utilization of smart meter 
 
  Table 3(a) shows the SM utilization. We comment on the remarkable differences that are 
observed between the highly interested and the little interested households. 
 

<Table 3> 
 
  The overall SM utilization rate is only 1% at present, and the degree of recognition is 
higher for the highly interested. The future utilization rate is only a few percent and is 
higher for highly interested households. If various values are added to advanced metering 
or HEMS, the future utilization will increase. 
  At this point, we asked the respondents to rate how much they emphasized added value, 
using a five-point scale (from very important to not important at all). The values in Table 
3(a) show the sum of the ratio replying “very important” to those replying “quite 
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important.” 
  The value of a WEB display is around 45% for the weighted average, and is 10% higher 
for the highly interested group. The value of a private monitor display is around 45%, and 
is 10% higher for the highly interested. The value of energy-saving advice device, an 
on-peak surcharge, and an off-peak surcharge is around 50% for each, and is, respectively, 
15%, 10%, and 10% higher for the highly interested. The values of automatic air 

conditioner control at 82 
F and of temporary restriction remain only 25%, while that of 

usage interception remains 20%, and each value is 10% higher for the highly interested. In 
addition, the value of a reduction in greenhouse gas emissions is around 40%, and it is 15% 
higher for the highly interested. 
  Finally, when we asked the respondent households how much they wanted to pay 
monthly for overall service, 40% stated that they wanted to pay nothing, while some were 
willing to pay US$3 per month. The ratio of fee-payers is 10% higher for the highly 
interested, and some of them actually replied that they would be willing to pay around 
US$5. 
 
4.2 Utilization of residential photovoltaic generation 
 
  Table 3(b) shows the PV utilization. The overall PV utilization rate is only a few percent 
at present, and the degree of recognition is higher for the highly interested. The future 
utilization rate moves up to 10% for the weighted average, and is higher for the highly 
interested. If such varying values are added to the PV, the future utilization will increase. 
  The values in Table 3(b) show the sum of the ratio of those replying “very important” to 
those replying “quite important.” The average value of reduction in fuel and lighting 
charges is around 70% on average, and is 10% higher for the highly interested. The value 
of selling surplus electricity is also around 70%, and is 5% higher for the highly interested. 
The value of reduction in greenhouse gas emissions is around 50%, and is 15% higher for 
the highly interested. Furthermore, 70% of respondents attach importance to free inspection 
and maintenance periods, while 45% deem a stylishly designed PV panel as important. 
  Finally, when we asked the respondent households how much they wanted to pay for 
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deploying a residential PV system, 25% replied that they would like to pay nothing, while 
some were willing to pay US$10,000. The ratio of fee-payers is 10% higher for the highly 
interested, and some of them replied that they would be willing to pay around US$15,000. 
 
4.3 Utilization of electric and hybrid electric vehicles 
 
  Table 3(c) shows the EV/HEV utilization. The overall EV utilization rate is less than 1% 
at present, and the degree of recognition is higher for the highly interested. The future 
utilization rate rises to 10%, and is higher for the highly interested. On the other hand, the 
overall HEV utilization rate is around several percent at present, and the degree of 
recognition is higher for the highly interested. The future utilization rate increases to a few 
tens of percent, and is much higher for the highly interested. 
  The average values in Table 3(c) show the sum of the ratio of those replying “very 
important” to those replying “quite important.” The value of annual reduction in fuel cost is 
around 75% on average, and is 10% higher for the highly interested. The value of driving 
range on a single recharge or refueling is around 70%, and is 10% higher for the highly 
interested. The value of reduction in greenhouse gas emissions is around 50%, and is 10% 
higher for the highly interested. Furthermore, 65% of the respondents attach importance to 
a home plug-in option. 
 

5.  Estimation results and analysis 
 
  This section displays and discusses in order the estimation results of SM, PV, and 
EV/HEV for both the highly interested households and those with little interest. The 
number of observations is 5,192 (649 respondents × 8 questions) for the former and 5,552 
(694 respondents × 8 questions) for the latter. 
 
5.1 Estimation results for a smart meter 
 
  Table 4(a) shows the estimation results of the SM conjoint analysis, where the left 
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column displays results for the highly interested and the right column those for the little 
interested. The McFadden R2 values are 0.2167 for the former and 0.3148 for the latter, 
both of which are sufficiently high for a discrete choice model. We assume that, except for 
a monthly usage charge, which is set as a numeraire, the parameters are distributed 
normally, and the mean and standard deviation values are reported. (Note that *** denotes 
1% significance; **, 5% significance; and *, 10% significance.) 
 

<Table 4(a)> 
 
  First, for the highly interested, the statistically significant estimates (mean) are for 
monthly usage charge (-), private monitor display (+), energy-saving advice (+), off-peak 

discount (+), peak surcharge (-), automatic control at 82 
F (-), and reduction in greenhouse 

gas emissions (+). Note that the symbols in the parentheses are the signs for each estimate. 
The statistically significant estimates (standard deviation) are WEB display, private 
monitor display, off-peak discount, peak surcharge, usage interception, and reduction in 
greenhouse gas emissions. 
  Next, for those with little interest, the statistically significant estimates (mean) are 
monthly usage charge (-), private monitor display (+), energy-saving advice (+), off-peak 

discount (+), peak surcharge (-), automatic control at 82 
F (-), and usage interception (-). 

The statistically significant estimates (standard deviation) are WEB display, private 
monitor display, off-peak discount, peak surcharge, and reduction in greenhouse gas 
emissions. 
  It follows from the foregoing that the results for the highly interested and those with little 
interest are similar overall; however, the highly interested have a statistically significant 
preference for a reduction in greenhouse gas emissions, while the groups with little interest 
do not. 
  The WTP values are derived from subtracting the parameter of the attribute divided by 
the numeraire. The WTP values are summarized in Figure 2(a) for the statistically 
significant attributes. The WTP values are almost the same for the two groups. Note that 
the average values are close to those for the group with little interest, since the ratio for this 
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group accounts for around 80%. 
 

<Figure 2> 
 
  At this point, the average WTP values show the positively evaluated items to be a private 
monitor display (US$0.7/month), energy-saving advice (US$1.1/month), off-peak discount 
(10%) (US$0.2/month), and reduction in greenhouse gas emissions (10%) (US$0.1/month). 
On the other hand, items negatively evaluated are peak surcharge (double) 

(US$-0.6/month), automatic control at 82 
 F (US$-0.4/month), and usage interception 

(US$-0.5/month). 
 
5.2 Estimation results of photovoltaic generation 
 
  Table 4(b) lists the estimation results of the PV conjoint analysis. The McFadden R2 
values are 0.4214 for the highly interested and 0.5305 for those with little interest, both of 
which are very high for a discrete choice model.  
  First, for the highly interested, the statistically significant estimates (mean) are initial 
cost (-), annual reduction in fuel and lighting charges (+), reduction in greenhouse gas 
emissions (+), and free inspection and maintenance period (+). The statistically significant 
estimates (standard deviation) are an annual reduction in fuel and lighting charges, 
reduction in greenhouse gas emissions, and free inspection and maintenance period. 
  Next, for the group with little interest, the statistically significant estimates (mean) are 
initial cost (-), annual reduction in fuel and lighting charges (+), reduction in greenhouse 
gas emissions (+), free inspection and maintenance period (+), and stylishly designed PV 
panel (+). The statistically significant estimates (standard deviation) are an annual 
reduction in fuel and lighting charges, reduction in greenhouse gas emissions, and free 
inspection and maintenance period. 
  The WTP values are summarized in Figure 2(b) for the statistically significant attributes. 
The two groups show significantly different WTP values. The highly interested group is 
willing to pay an additional US$1,500 for the initial cost of deploying a PV, and the group 
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with little interest an additional US$600 to take advantage of a 10% reduction in fuel and 
lighting charges. That is to say, the highly interested group is relatively sensitive to a 
reduction in fuel and lighting charges, while the latter group is relatively sensitive to a 
reduction in initial costs. Note that it is this latter group alone that is willing to pay 
US$1,000 for a stylishly designed PV panel. 
  Average WTP values in the all households show the positively evaluated items to be an 
annual reduction in fuel and lighting charges (10%) (US$750), a reduction in greenhouse 
gas emissions (10%) (US$1,400), free inspection and maintenance period (10 years) 
(US$300), and a stylishly designed PV panel (US$800). 
 
5.3 Estimation results of electric/hybrid vehicle 
 
  Table 4(c) lists the estimation results of the EV/HEV conjoint analysis. The McFadden 
R2 values are 0.3107 for the highly interested and 0.3625 for those with little interest, both 
of which are sufficiently high for a discrete choice model.  
  First, for the highly interested, the statistically significant estimates (mean) are premium 
(-) for an EV/HEV, annual reduction in fuel costs (+), and driving range on a full battery 
(+) for an EV, as well as annual reduction in fuel costs (+), driving range upon refueling (+), 
and home plug-in (+) for an HEV. The statistically significant estimates (standard 
deviation) include all parameters for both EV and HEV. 
  Next, for those with little interest, the statistically significant estimates (mean) are 
premium (-) for an EV/HEV, annual reduction in fuel costs (+),driving range on a full 
battery (+), and reduction in greenhouse gas emissions (-) for an EV; as well as annual 
reduction in fuel costs (+), driving range upon refueling (+), and home plug-in (+) for an 
HEV. The statistically significant estimates (standard deviation) include all parameters for 
both an EV and HEV, except for a home plug-in for an HEV2. 

                                                
2 It is counterintuitive that a reduction in greenhouse gas emissions for an EV has a 
negative sign. One reason for this may be that an EV is a cleaner fuel type vehicle than an 
HEV, but few respondents chose an EV as an alternative. Consequently, the reduction in 
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  Figures 2(c) and 2(d) summarize the WTP values for the statistically significant 
attributes. Average WTP values indicate that the items positively evaluated are annual 
reduction in fuel costs (10%) (US$240) and driving range on a full battery (100 km) 
(US$200) for an EV3, as well as annual reduction in fuel costs (10%) (US$150), driving 
range upon refueling (100 km) (US$90), and home plug-in (US$770) for an HEV. 
 

6.  Discussions and implications 
 
  This section discusses the elements of smart-equipment deployment. We begin by 
calculating the diffusion rates for four different scenarios, and then calculate the reductions 
in greenhouse gas emissions on the basis of the diffusion rates. We finally investigate the 
interdependencies of smart-equipment deployments. 
 
6.1 Analysis of diffusion rates 
 
  We assume two levels for two key attributes (price and greenhouse gas emission 
reductions) and then calculate the diffusion rates for an SM, PV, EV, and HEV. 
  We first suppose existing standard prices and estimated reductions of greenhouse gas 
emissions, which were calculated from the available data, to be the default values (see the 
APPENDIX for details). 
 

Estimated reduction rates of greenhouse gas emissions: 
 Visualization with a smart meter: minus 1.1% per household 
 Peak surcharge (triple): minus 3.7% per household 
 PV deployment: minus 38.2% per household 
 EV deployment: minus 83.5% per car 

                                                                                                                                               
greenhouse gas emissions of an EV is not associated with a gain in utility. 
3 We do not enter into a detailed discussion regarding the unexpected result of emission 
reduction. See Note 2. 
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 HEV deployment: minus 52.4% per car 
 PHEV deployment: minus 64.8% per car 

 
  In the following analysis, which is based on a discussion with experts, we also determine 
the targeted ranges of price and emission reductions for a 5-year period. 
 

6.1.1 Diffusion rates of a smart meter 
 
  We determine the attribute levels for calculating the SM diffusion rates as follows: 
 

 Monthly usage charge: nothing or US$3 
 Visualization and energy-saving advice 
 Off-peak discount: 50% discount 
 Peak surcharge: triple 

 Automatic air conditioner control at 82 
F  

 Reduction in greenhouse gas emissions: 10% or 30% 
 
  We calculated the SM diffusion rates for the highly interested group, those with little 
interest, and the weighted average of the two groups. The results are listed in Table 5(a). 
Scenario 1 denotes a combination of [monthly usage charge, reduction in greenhouse gas 
emissions] = [US$3, 10%]; Scenario 2, [US$0, 10%]; Scenario 3, [US$3, 30%]; and 
Scenario 4, [US$0, 30%]. Therefore, for consumers, Scenario 1 is the worst and Scenario 4 
is the best.  
  In Scenario 1, the diffusion rates are 61.4% for the highly interested, 36.0% for those 
with little interest, and 40.6% for the average between the two. On the other hand, in 
Scenario 4, the diffusion rates are 87.8% for the highly interested, 73.4% for the little 
interested, and 76.0% for the average. Note again that the average figure is closer to that for 
the group with little interest, as this group accounts for around 80% of the respondents. 
  Furthermore, comparisons of Scenarios 1 and 2, and Scenarios 3 and 4 reveal the 
differences to be more than 30% for the average. These become much larger for those with 
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little interest, as the latter are so sensitive to price that they are willing to introduce smart 
meters for free. On the other hand, few differences are observed when comparing Scenarios 
1 and 3, and Scenarios 2 and 4. This is because the highly interested have a very small, 
though statistically significant, preference for a reduction in greenhouse gas emissions, 
while the group with little interest does not have a statistically significant preference. In 
short, the free charge policy is very effective, but the incentive of a decrease in greenhouse 
gas emissions is less effective for the spreading of a smart meter infrastructure. 
 

<Table 5> 
 

6.1.2 Diffusion rates of residential photovoltaic generation 
 
  We determine the attribute levels for calculating the PV diffusion rates as follows: 
 

 Initial cost: US$15,000 or US$20,000 
 Annual reduction in fuel and lighting charges: 60% 
 Reduction in greenhouse gas emissions: 40% or 60% 
 Free inspection and maintenance period: 10 years 
 Stylishly designed PV panel 

 
  The PV diffusion rates are listed in Table 5(b). Scenario 1 denotes a combination of 
[initial cost, reduction in greenhouse gas emissions] = [US$20,000, 40%]; Scenario 2, 
[US$15,000, 40%]; Scenario 3, [US$20,000, 60%]; and Scenario 4, [US$15,000, 60%].  
  In Scenario 1, the diffusion rates are 48.2% for the highly interested, 9.8% for those little 
interested, and 16.8% for the average between them. On the other hand, in Scenario 4, the 
diffusion rates are 86.6% for the highly interested, 52.8% for the group with little interest, 
and 58.9% for the average. As expected, the gaps between the two groups are very large. 
  Furthermore, comparisons of Scenarios 1 and 2, and Scenarios 3 and 4 reveal the average 
differences between the two groups to be around 20 to 30%. This means that the current 
initial cost is around US$20,000, but this must be decreased to US$15,000 to encourage 
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further PV diffusion. On the other hand, comparisons of Scenarios 1, and 3 and Scenarios 2 
and 4 highlight gaps of 10 to 20%. We, therefore, see that a reduction in greenhouse gas 
emissions works as a strong motivation for PV deployment, which is very unlike the case 
of a smart meter. The reason the effects of emission reduction incentives vary depending on 
appliances is ambiguous. One possible answer is that consumers care about the process of 
reducing greenhouse gas emissions, but the process of reducing emissions by means of a 
PV is more explicit than that of an SM. Accordingly, a reduction in greenhouse gas 
emissions is effective in PV deployment. 
  The effects of emission reduction incentives on diffusion rates might depend on the 
consumer “literacy” regarding smart equipment. Note that PVs for households have been 
sold in Japan for more than a decade. The initial cost of introducing a PV into a household 
is considerable (up to $20,000). Thus, PV manufacturers and sellers in Japan have been 
making every effort to advertise several appealing aspects of PV, specifically its powerful 
ability to reduce greenhouse gas emissions, in addition to its helping reduce annual fuel and 
lighting charges. As a result, Japanese consumers have become increasingly aware of the 
ability of PV to reduce greenhouse gas emissions. In contrast, SM and PHEV have not even 
been sold in Japan as yet. The effects of emission reduction incentives on diffusion rates 
may increase if there is an increase in consumer “literacy” regarding types of smart 
equipment, such as PHEV, after these are introduced into the market in the near future. 
 

6.1.3 Diffusion rates of electric and plug-in hybrid electric vehicles 
 
  We determine the attribute levels for calculating the EV/PHEV diffusion rates as 
follows: 
 

EV 
 EV premium: US$5,000 or US$10,000 
 Annual reduction in fuel cost: 80% 
 Driving range on a full battery: 200 km 

 Reduction in greenhouse gas emissions: 80% or 100％ 
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 Time to find a charging station: within 10 min. 
 
PHEV 
 HEV premium: US$2,500 or US$5,000 
 Annual reduction in fuel costs: 60% 
 Driving range on a full battery: 1,500 km 

 Reduction in greenhouse gas emissions: 60% or 80％ 
 Home plug-in 

 
  Tables 5(c) and (d) list the EV and PHEV diffusion rates, respectively. For an EV, 
Scenario 1 denotes a combination of [EV premium, reduction in greenhouse gas emission] 
= [US$10,000, 80%]; Scenario 2, [US$5,000, 80%]; Scenario 3, [US$10,000, 100%]; and 
Scenario 4, [US$5,000, 100%]. On the other hand, for PHEV, Scenario 1 denotes a 
combination of [PHEV premium, reduction in greenhouse gas emission] = [US$5,000, 
60%]; Scenario 2, [US$2,500, 60%]; Scenario 3, [US$5,000, 80%]; and Scenario 4, 
[US$2,500, 80%]. 
  In Scenario 1, the EV diffusion rates are 1.0% for the highly interested, 0.2% for those 
with little interest, and 0.3% for the average between the two groups; the PHEV diffusion 
rates are 61.1% for the highly interested, 21.5% for those with little interest, and 28.7% for 
the average. On the other hand, in Scenario 4, the EV diffusion rates are 5.1% for the 
highly interested, 1.6% for those with little interest, and 2.2% for the average; while the 
PHEV diffusion rates are 81.4% for the highly interested, 51.4% for the little interested, 
and 56.8% for the average. It is important to note that the gaps between the EV and the 
PHEV diffusion rates are extremely large. One possible reason for the significantly low 
rates of EV’s diffusion might be its limited driving range. The EV’s driving range on a full 
battery is currently much lower than the driving range of a standard gasoline engine car, 
whereas the EV premium is quite high. Technological innovations that decrease production 
costs and enable a much longer driving range would enhance the future diffusion of EVs. 
  Furthermore, comparisons of Scenarios 1 and 2, and Scenarios 3 and 4 show that even if 
the EV premium decreases from US$10,000 to US$5,000, the EV diffusion rates do not 
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drastically increase. On the other hand, if the PHEV premium decreases from US$5,000 to 
US$2,500, the PHEV diffusion rates double. We might say that a premium approaching 
less than US$5,000 is necessary for the full-scale deployment of electric vehicles 
(especially PHEV). 
  On the other hand, as with the diffusion of smart meters, a reduction in greenhouse gas 
emissions does not have an influence on EV deployment, even though we may expect a 
large reduction in greenhouse gas emissions by driving EVs. Since the clean efficiency of a 
PHEV now compares favorably with that of an EV, however, the difference in the emission 
reduction is neither distinct nor critical for the respondents. There has, as yet, been no 
full-scale sale of EV and PHEV. As discussed before, the effects of emission reduction 
incentives on diffusion rates could increase if there is an increase in consumer “literacy” 
regarding those vehicles in the near future. 
 
6.2 Analysis of reduction in greenhouse gas emission  
 
  Here, we analyze the social reductions in greenhouse gas emissions that are calculated 
from the diffusion rates discussed in Section 6.1. The social reductions are derived as 
follows. 
 
 The highly interested reduction rate of greenhouse gas emission = highly interested 

diffusion rate ×  estimated reduction rates 
 The little interested reduction rate of greenhouse gas emission = little interested 

diffusion rate ×  estimated reduction rates 
 The expected social reduction rate of greenhouse gas emission = 0.181 ×  highly 

interested reduction rate + 0.819 ×  little interested reduction rate 
 
  Table 6 lists the expected social reduction rates of greenhouse gas emissions for smart 
equipment. The definitions of the scenarios shown were given in the previous section. 
 

<Table 6> 
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  First, for the SM social reduction rate (per household), the values resulting from Scenario 
1 (the worst) are 6.1% for the highly interested, 3.6% for those with little interest, and 4.1% 
for the average between the two groups. On the other hand, the values resulting from 
Scenario 4 (the best) are 26.3% for the highly interested, 22.0% for the little interested, and 
22.8% for the average. 
  Second, for the PV social reduction rate (per household), the values resulting from 
Scenario 1 are 19.3% for the highly interested, 3.9% for those with little interest, and 6.7% 
for the average. On the other hand, the values resulting from Scenario 4 are 52.0% for the 
highly interested, 31.7% for the little interested, and 35.4% for the average. 
  Third, for the EV social reduction rate (per car), the values resulting from Scenario 1 are 
0.8% for the highly interested, 0.2% for the little interested, and 0.3% for the average. On 
the other hand, the values resulting from Scenario 4 are 4.1% for the highly interested, 
1.3% for the little interested, and 1.8% for the average. 
  Fourth, for the PHEV social reduction rate (per car), the values resulting from Scenario 1 
are 36.7% for the highly interested, 12.9% for the little interested, and 17.2% for the 
average. On the other hand, the values resulting from Scenario 4 are 65.1% for the highly 
interested, 41.1% for the little interested, and 45.5% for the average. 
  To summarize, by the diffusion of smart equipment, a social reduction in greenhouse gas 
emissions is extensively advanced. Assuming the present standard scenario, the reductions 
are estimated to be 4% for SM, 7% for PV, and 17% for PHEV. If we add some 
innovations to the equipment, larger reductions would be expected. 
  The social reductions in greenhouse gas emissions depend on the balance of the diffusion 
rate of smart equipment and the individual reduction rate of greenhouse gas emissions. SM 
has a much lower individual reduction rate of greenhouse gas emissions than PV, whereas 
the diffusion rate of SM is higher than that of PV. Consequently, the difference between 
SM and PV in terms of the social reductions is not so large. The EV’s social reductions are 
significantly small because its diffusion rate is extremely low. In contrast, PHEV’s 
diffusion rate and individual reduction rate of greenhouse gas emissions are somewhat 
balanced, which results in a relatively great amount of social reductions for PHEV. 
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6.3 Analysis of interdependencies among smart equipment diffusion 
 
  We have thus far analyzed three different conjoint studies separately. However, there are 
interdependencies among consumer preferences for smart equipment used in a smart home. 
For example, a consumer who is interested in a PHEV is likely to receive a time-of-use 
electricity price by using an SM, whereas a household that installs a residential PV may 
consider a PHEV as a convenient home battery.  
  We try to ascertain these interdependencies by inserting other choice probabilities 
depicted in Eq. (6) into the estimation equation of certain smart equipment as explanatory 
variables. Table 7 lists the main estimation results (selectively, the choice probability 
parameters) for those with high and little interest, respectively. The estimates are 
transformed into elasticities, which indicate how much a percentage increase in a choice 
probability increases another choice probability. Note that the values in the parentheses are 
t values: *** denotes 1% significant; **, 5% significant; and *, 10% significant. We 
adopted an orthogonal planning method in establishing the questionnaire, and therefore, the 
correlation is eliminated among explanatory variables. Thus, the introduction of expected 
choice probabilities has almost no influence on the estimates of the conjoint attributes, and 
we have verified that the estimation results remain very robust.  
 

<Table 7> 
 
  First, for the SM estimation results (choice probability elasticities), the statistically 
significant items are PV (0.319**) and PHEV (0.863***) for the highly interested, and 
PHEV (0.892***) for the little interested. We can therefore see that PHEVs will be a 
driving force for the choice of an SM. Note, however, that here we show not causality but 
correlation. Several interpretations are allowed. For example, with PHEV diffusion, the 
economic value of introducing an SM increases; or, only households that have already 
installed an SM are willing to purchase a PHEV. 
  Next, for the PV estimation results, the statistically significant items are SM (1.748***); 
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EV (0.773***); and PHEV (0.933***) for the highly interested, and SM (1.162***), EV 
(0.395***), and PHEV (1.352***) for those with little interest. All smart equipment 
influences PV adoption, and the effects of SM and PHEV are sometimes elastic. These 
results may reflect the fact that early adopters who deploy residential PV systems have high 
environmental consciousness. PV is also considered a hopeful renewable energy source and 
explicitly contributes to the reduction in greenhouse gas emissions.  
  Finally, for the EV estimation results, the statistically significant items are SM 
(0.365***) and PV (0.698***) for the highly interested, and SM (0.378***) and PV 
(0.491***) for the group with little interest. On the other hand, for the PHEV estimation 
results, the statistically significant items are SM (0.251***) and PV (0.286***) for those 
with high interest, and SM (0.162***) and PV (0.273***) for those with little interest. We 
see that the preferences for an EV/PHEV are associated with the other smart equipment 
deployments. This is partially because an EV/PHEV serves as a home battery, which 
alleviates the problem of an unstable power supply associated with a renewable energy 
source. 
  To summarize, the choice behaviors for smart equipment are not independent and they 
reinforce the purchases of other smart equipment. Therefore, an incentive policy that 
induces consumers to purchase smart equipment simultaneously should be considered. 
 

7.  Concluding remarks 
 
  This paper conducted three kinds of conjoint analysis studies using a mixed logit model 
on the basis of an online survey carried out in March of 2011. First, we examined the WTP 
values for the attributes of smart equipment. Furthermore, we investigated the diffusion 
rates, the reduction in greenhouse gas emissions, and interdependencies among the smart 
equipment deployments. We obtained the following conclusions. First, a decrease in price 
is the most effective promotion for smart equipment deployments. On the other hand, the 
effects varied across the different types of equipment for the reduction in greenhouse gas 
emissions, although it was highest for PV deployment. The effects of emission reduction 
incentives may also depend on the consumer “literacy” regarding smart equipment. Second, 
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with smart equipment diffusion, greenhouse gas emissions would be reduced in society. 
According to the standard scenario, the reduction rates were 4% for SM, 7% for PV, and 
17% for PHEV. Innovation will enlarge these reductions in the future. Third, 
interdependencies among the different types of smart equipment deployments were 
observed, and PV deployment is particularly associated with all other equipment 
deployments. As a final remark, we acknowledge that all of these results are based on a 
data analysis of stated preference, which must be reconfirmed using a revealed preference 
data analysis in the future. The results of such an analysis remain an important question for 
the future. 
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Appendix 
 

In Japan, an average household emits 3216kg of CO2 annually by consuming electricity 

(4500kWh) and gas (600m3) (Central Research Institute of Electric Power Industry: 

CRIEPI, Ministry of Internal Affairs and Communications: MIC). The CO2 emission rates 

of the electric power companies when generating power are 0.44kg-CO2/kWh in the 

daytime, 0.39kg-CO2/kWh in the nighttime, and 0.42kg-CO2/kWh on average (CRIEPI, 

Minister of Economy, Trade and Industry: METI, Ministry of Environment: MOE).  

 

 Visualization with a smart meter 

Introduction of a smart meter and private monitor display reportedly reduced the 

electricity use of an average household by 1.8% (New Energy and Industrial Technology 

Development Organization: NEDO, Mitsubishi Research Institute: MRI). This corresponds 

to an annual reduction in electricity usage by 81kWh and in CO2 emissions by 34kg-CO2 

per household, when applying the average CO2 emission rate. Thus, the reduction rate of 

CO2 is 1.1％ (34/3216kg-CO2) per household. 

 
 Peak surcharge  

Faruqui et al. (2010) reported that the price elasticity of electricity demand ranges from 

0.073 to 0.13 by surveying the existing demand response (DR) programs in U.S. We here 

assume that the price elasticity of electricity demand is 0.1. When the electricity tariff 

during the peak period is tripled, a household will reduce its electricity usage by 270kWh 

per year (in relation to the annual electricity usage in the peak period defined in the TOU 

tariff, i.e., 1350kWh; METI). This amounts to an annual reduction in CO2 emissions of 

119kg-CO2, when applying the CO2 emission rate in the daytime. Thus, the reduction rate 

of CO2 is 3.7％ (119/3216kg-CO2) per household. 

 
 PV deployment 

The power output of home solar PV is 3kW on average, which generates 3000kWh of 

electricity annually (National Institute of Advanced Industrial Science and Technology:  
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AIST). This leads to an annual reduction in CO2 emissions by 1230kg-CO2, when applying 

the CO2 emission rate in the daytime (CO2 emissions caused in the process of producing 

PV panels is deducted, i.e., 0.44kg-CO2/kWh − 0.03kg-CO2/kWh). Thus, the reduction 

rate of CO2 is 38.2％ (1230/3216kg-CO2) per household. 

 

In Japan, the average annual travel distance of a gasoline engine car is 9188km (Ministry 

of Land, Infrastructure, Transport, and Tourism: MLIT). The annual CO2 emissions 

amount to 2345kg-CO2 per car, based on the fuel efficiency of 9.1km/L and CO2 emission 

rate of 2.32 kg-CO2/L (MLIT). 

 
 EV deployment 

The electric efficiency of EV is estimated to be 10.0km/kWh (METI). Based on this 

estimate, the annual reduction in CO2 emissions is 1959kg-CO2 per car. Thus, the 

reduction rate of CO2 is 83.5％ (1959/2345kg-CO2) per car. 

 
 HEV deployment 

The fuel efficiency of HEV is 19.1km/L (Toyota and Honda). Based on this estimate, the 

annual reduction in CO2 emissions is 1228kg-CO2 per car. Thus, the reduction rate of CO2 

is 52.4％ (1228/2345kg-CO2) per car. 

 
 PHEV deployment 

The PHEV is estimated to run with gasoline for 60% and with electric power for 40% of 

the travel distance (METI). Based on this estimate, the annual reduction in CO2 emissions 

is 1520kg-CO2 per car. Thus, the reduction rate of CO2 is 64.8％ (1520/2345kg-CO2) per 

car. 
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Table 1: Summary of past clean fuel or electric vehicle conjoint studies (cf. Hidrue et al. 2011) 

Study Econometric model Number of choice sets,
attributes, and levels

List of attributes used

Beggs et al. (1981) Ranked logit 16, 8, NA price, fuel cost, range, top speed, number of seats, warranty,
acceleration, air consitioning

Calfee (1985) Disaggregate MNL 30, 5, NA price, opeating cost, range, top speed, number of seats
Bunch et al. (1993) MNL and Nested logit 5, 7, 4 price, fuel cost, range, acceleration, fuel availability, emission

reduction, dedicated versus multi-fuel capability
Segal (1995) First choice model NA, 7, 2-3 price, fuel cost, range, fuel type, refueling duration, refueling

location, refueling time of day
Brownstone and Train
(1999);
Brownstone et al. (2000)

MNL and Mixed logit; Joint
SP/RP Mixed logit

2, 13, 4 (*)
Price, range, home refueling time, home refueling cost,
service station refueling cost, fuel availability, acceleration,
top speed, emission reduction, vehicle size, body type,
luggage space

Ewing and Sarigollu ( 2000) MNL 9,7,3 price, fuel cost, repair and maintenance cost, commuting
time, acceleration, range, charging time

Dagsvike et al. (2002) Ranked logit 15, 4, NA price, fuel cost, range, top speed
Potoglou and Kanaroglou
(2007)

Nested logit 8, 7, 4 price, fuel cost, maintenance cost, fuel availability,
acceleration, incentives, emission reduction

Ahn et al. (2008) multiple discrete-continuous
extreme value  (MDCEV
model)

4, 6, 2-5 fuel type, body type, maintenance cost, engine displacement,
fuel efficiency, fuel price

Banfi (2008) Binominal logit with
individual fixed effects

NA, 4, 2-5 price, window, façade , ventilation

Mau et al. (2008) MNL 18, 6, 3 price, fuel cost, subsidy, range, fuel availability, warranty
Axsen et al. (2009) MNL; Joint SP/RP MNL 18, 5, 3 price, subsidy, horsepower, fuel efficiency, fuel price
Hidrue et al. (2011) Latent class 2, 6, 4 price, range, charge time, acceleration, emission reduction,

fuel cost
NA, not available.
(*) The two papers used the same data/study. Hence the list  in the attribute column and the number of choice sets, atributes and levels columun are
the same for both.  
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Figure 1: Example of conjoint questionnaire 
(a) SM’s conjoint 
 

AA11 AAlltt  11 AAlltt  22 AAlltt  33
OOffff--ppeeaakk  ddiissccoouunntt  00%%  ddiissccoouunntt 3300%%  ddiissccoouunntt

VViissuuaalliizzaattiioonn  ooff  eelleeccttrriicciittyy  ccoonnssuummppttiioonn AAddvviissee  ooppttiioonn MMoonniittoorr  ooppttiioonn
RReedduuccttiioonn  iinn  ggrreeeennhhoouussee  ggaass  eemmiissssiioonnss 00%%  rreedduuccttiioonn 3300％％  rreedduuccttiioonn

MMoonntthhllyy  uussaaggee  cchhaarrggee $$22  pplluuss $$66  pplluuss  //  mmoonntthh
PPeeaakk  ssuurrcchhaarrggee 44  ttiimmeess  pplluuss 22ttiimmeess  pplluuss

TTeemmppeerraattuurree  rreemmoottee--ccoonnttrrooll nnootthhiinngg 8822FF
↓↓ ↓↓ ↓↓

CChhoooossee  oonnee

NNoo  uussee
ooff  SSmmaarrttmmeetteerr
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(b) PV’s conjoint 
 

11 AAlltt  11 AAlltt  22 AAlltt  33
IInniittiiaall  ccoosstt $$1155,,000000 $$1100,,000000

AAnnnnuuaall  rreedduuccttiioonn  iinn  ffuueell  aanndd  lliigghhttiinngg  cchhaarrggeess 8800%%  rreedduuccttiioonn 6600%%  rreedduuccttiioonn
SSttyylliisshhllyy  ddeessiiggnneedd  PPVV  ppaanneell nnoorrmmaall eexxcceelllleenntt

FFrreeee  iinnssppeeccttiioonn  aanndd  mmaaiinntteennaannccee  ppeerriioodd 2200  yyeeaarrss 55  yyeeaarrss
RReedduuccttiioonn  iinn  ggrreeeennhhoouussee  ggaass  eemmiissssiioonnss 6600%%  rreedduuccttiioonn 4400%%  rreedduuccttiioonn

↓↓ ↓↓ ↓↓
CChhoooossee  oonnee

NNoo  uussee
ooff  PPVV
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(c) EV/HEV’s conjoint 
 

AAlltt  11 AAlltt  22
EEVV HHEEVV

EEVV//HHEEVV  PPrreemmiiuumm  $$55,,000000  pplluuss $$11,,000000  pplluuss
AAnnnnuuaall  rreedduuccttiioonn  iinn  ffuueell  ccoosstt 9900%% 6600%%

DDrriivviinngg  rraannggee  oonn  aa  ffuullll  bbaatttteerryy 110000kkmm 11550000kkmm
TTiimmee  ttoo  ffiinndd  aa  cchhaarrggiinngg  ssttaattiioonn 3300  mmiinniittuueess ----

HHoommee  pplluugg--iinn  ooppttiioonn ---- PPlluuggiinn  ooppttiioonn
RReedduuccttiioonn  iinn  ggrreeeennhhoouussee  ggaass  eemmiissssiioonnss 8800%%  rreedduuccttiioonn 7700%%  rreedduuccttiioonn

↓↓ ↓↓ ↓↓
CChhoooossee  oonnee

AA11 AAlltt  33

NNoo  uussee
ooff  eeccoo  ccaarr
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Table 2: Demographic characteristics 
High interest Low interest Weighted average

Owned house 65.9% 68.3% 67.8%
Detached house 51.8% 56.0% 55.2%
Gender (Male) 59.5% 50.7% 52.3%

Age 43.8 43.8 43.8
Married 77.7% 67.4% 69.3%

Fulltime employed 63.1% 50.5% 52.8%
Electric Expences US$1,154 US$1,164 US$1,162

Annual household income US$71,050 US$55,760 US$58,528  
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Table 3: Utilization 
(a) SM’s utilization 

High interest Low interest Weighted average
Service recognition 12.0% 4.9% 6.2%
Current utilization 1.4% 0.9% 1.0%
Future utilization 3.4% 1.9% 2.2%

Importance attached for
WEB display 56.3% 43.1% 45.5%

Private monitor display 55.6% 42.0% 44.5%
Energy-saving advice 58.6% 44.8% 47.3%

On-peak surcharge 61.0% 50.0% 52.0%
Off-peak discount 61.2% 51.9% 53.6%

Automatic control at F 33.1% 22.6% 24.5%
Temporary restriction 32.6% 20.7% 22.9%

Usage interception 30.7% 17.8% 20.1%
Reduction in greenhouse gas emission 53.9% 38.3% 41.1%

Average monthly WTP US$1.8 US$1.3 US$1.4  



 39 

(b) PV’s utilization 

High interest Low interest Weighted average
Service recognition 54.1% 41.9% 44.1%
Current utilization 2.8% 4.0% 3.8%
Future utilization 19.4% 6.6% 8.9%

Importance attached for
Reduction in fuel and lighting charges 80.0% 71.0% 72.6%

Selling surplus electricity 77.1% 72.0% 72.9%
Reduction in greenhouse gas emission 61.5% 48.3% 50.7%

Free inspection and maintenance period 74.9% 68.4% 69.6%
Stylishly designed PV panel 53.0% 42.8% 44.6%

Average initial cost WTP US$7,703 US$5,395 US$5,813  
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(c) EV/HEV’s utilization 

High interest Low interest Weighted average
EV Service recognition 61.1% 51.9% 53.6%
EV Current utilization 0.5% 1.0% 0.9%
EV Future utilization 13.7% 4.8% 6.4%

HEV Service recognition 66.1% 53.8% 56.0%
HEV Current utilization 6.5% 3.7% 4.2%
HEV Future utilization 32.7% 15.7% 18.8%
Importance attached for

Annual reduction in fuel cost 82.1% 73.8% 75.3%
Driving range on a recharge or refuel 78.5% 71.2% 72.5%

Reduction in greenhouse gas emission 61.1% 49.0% 51.2%
Time to find a charging station 74.9% 68.4% 69.6%

Home plug-in option 72.5% 63.0% 64.7%
Average EV premium US$2,191 US$1,639 US$1,739  
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Table 4: estimation results 
(a) SM’s estimation results 

High interest Low interest
No. observations 5192 5552
Log likelihood -4468.1 -4179.6
McFadden R2 0.2167 0.3148

Coeff. Std. Err. Coeff. Std. Err.
Fixed parameters
Monthly usage charge -0.0046 0.0002 *** -0.0055 0.0002 ***
Alt 3 constant -1.1021 0.1039 *** -0.5727 0.1086 ***
Random parameters (mean)
WEB display 0.0104 0.0863 0.1192 0.1038
Private monitor display 0.3824 0.1118 *** 0.3392 0.1167 ***
Energy-saving advice 0.3568 0.0960 *** 0.6253 0.1037 ***
Off-peak discount 0.1448 0.0234 *** 0.0983 0.0310 ***
Peak surcharge -0.2892 0.0255 *** -0.3614 0.0300 ***
Automatic control -0.2275 0.0726 *** -0.1774 0.0846 **
Temporary restriction 0.1018 0.0964 0.0708 0.1028
Usage interception -0.0811 0.0916 -0.3353 0.1070 ***
Reduction in emissions 0.0065 0.0021 *** -0.0035 0.0028
Random parameters (standard deviation)
WEB display 0.5400 0.1748 *** 0.6971 0.1814 ***
Private monitor display 1.1720 0.1287 *** 1.0365 0.1460 ***
Energy-saving advice 0.2924 0.3222 0.2633 0.1891
Off-peak discount 0.3991 0.0247 *** 0.5415 0.0307 ***
Peak surcharge 0.4153 0.0297 *** 0.4379 0.0314 ***
Automatic control 0.0287 0.2740 0.1502 0.2032
Temporary restriction 0.0142 0.2222 0.1730 0.1876
Usage interception 0.3067 0.1445 ** 0.2621 0.2381
Reduction in emissions 0.0367 0.0024 *** 0.0535 0.0032 ***  
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(b) PV’s estimation results 

High interest Low interest
No. observations 5192 5552
Log likelihood -3300.3 -2863.7
McFadden R2 0.4214 0.5305

Coeff. Std. Err. Coeff. Std. Err.
Fixed parameters
Initial cost -0.0250 0.0008 *** -0.0299 0.0011 ***
Alt 3 constant -0.1058 0.3532 0.7715 0.3976 *
Random parameters (mean)
Annual reduction in charges 0.3697 0.0485 *** 0.1756 0.0579 ***
Reduction in emissions 0.0343 0.0043 *** 0.0414 0.0049 ***
Free inspection 0.0660 0.0056 *** 0.0846 0.0072 ***
Stylishly designed -0.1336 0.0977 0.2884 0.1088 ***
Random parameters (standard deviation)
Annual reduction in charges 0.6618 0.0342 *** 0.8443 0.0444 ***
Reduction in emissions 0.0306 0.0043 *** 0.0221 0.0047 ***
Free inspection 0.0784 0.0062 *** 0.0950 0.0081 ***
Stylishly designed 0.1714 0.1820 0.3160 0.2052  
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(c) EV/HEV’s estimation results 
High interest Low interest

No. observations 5192 5552
Log likelihood -3931.6 -3888.4
McFadden R2 0.3107 0.3625

Coeff. Std. Err. Coeff. Std. Err.
Fixed parameters
EV/HEV Premium -0.0502 0.0020 *** -0.0587 0.0021 ***
Alt 1 constant -0.3338 0.5467 0.6176 0.5495
Alt 2 constant 0.3912 0.2518 0.1538 0.2578
Random parameters (mean)
EV
Annual reduction in fuel cost 0.1180 0.0586 ** 0.1394 0.0593 **
Driving range 0.0009 0.0005 * 0.0012 0.0006 **
Reduction in emissions 0.0072 0.0058 -0.0250 0.0066 ***
Time to find a charging station 0.0042 0.0061 0.0054 0.0062
HEV
Annual reduction in fuel cost 0.1400 0.0299 *** 0.0954 0.0303 ***
Driving range 0.0006 0.0001 *** 0.0005 0.0001 ***
Reduction in emissions 0.0035 0.0041 -0.0042 0.0045
Home plug-in 0.6597 0.1011 *** 0.4137 0.0949 ***
Random parameters (standard deviation)
EV
Annual reduction in fuel cost 0.5033 0.0290 *** 0.1760 0.0237 ***
Driving range 0.0026 0.0008 *** 0.0037 0.0006 ***
Reduction in emissions 0.0222 0.0018 *** 0.0469 0.0020 ***
Time to find a charging station 0.0491 0.0063 *** 0.0253 0.0065 ***
HEV
Annual reduction in fuel cost 0.5167 0.0301 *** 0.4805 0.0413 ***
Driving range 0.0009 0.0001 *** 0.0005 0.0002 ***
Reduction in emissions 0.0222 0.0018 *** 0.0469 0.0020 ***
Home plug-in 0.8612 0.1594 *** 0.0532 0.2012  
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Figure 2: WTP values 
(a) SM’s WTP values 

WEB display 
Private 
monitor 
display 

Energy-
saving 
advice 

Off-peak 
discount 
(10%) 

Peak 
surcharge 
(double) 

Automatic 
control (82F) 

Temporary 
restriction 

Usage 
interception 

Reduction in 
emissions 

High interest 0.8  0.8  0.3  -0.6  -0.5  0.4  
Low interest 0.6  1.1  0.2  -0.7  -0.3  -0.6  
Average 0.7  1.1  0.2  -0.6  -0.4  -0.5  0.1  
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(b) PV’s WTP values 

Annual reduction in 
charges (10%) 

Reduction in emissions 
(10%) Free inspection (10 years) Stylishly designed 

High interest 1481.8  1375.6  264.4  
Low interest 587.3  1385.6  282.9  964.6  
Average 749.2 1383.8 279.6 790.0 
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(c) EV’s WTP values 

Annual reduction in 
fuel cost Driving range Reduction in emissions Time to find a charging 

station 
High interest 234.9  181.2  
Low interest 237.6  199.5  -425.7  
Average 237.2 196.2 -348.7 
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(d) HEV’s WTP values 

Annual reduction in 
fuel cost (10%) 

Driving range 
(100km) 

Reduction in 
emissions (10%) Home plug-in 

High interest 280.0  117.0  1310.0  
Low interest 125.1  89.7  646.7  
Average 153.1 94.6 766.8 
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Table 5: diffusion rates 
(a) SM’s diffusion rates 
 

Smart meters Household emissions = – 10% Household emissions = – 30% 

Monthly charge = $ 3 

High interest = 61.4% 

Low interest = 36.0% 

Average = 40.6% 

High interest = 64.4% 

Low interest = 34.4% 

Average = 39.8% 

Monthly charge = Free 

High interest = 86.4% 

Low interest = 74.8% 

Average = 76.9% 

High interest = 87.8% 

Low interest = 73.4% 

Average = 76.0% 

 
(b) PV’s diffusion rates 
 

Photovoltaic generation Household emissions = – 40% Household emissions = – 60% 

Initial cost = $20,000 

High interest = 48.2% 

Low interest = 9.8% 

Average = 16.8% 

High interest = 64.8% 

Low interest = 20.0% 

Average = 28.1% 

Initial cost = $15,000 

High interest = 76.4% 

Low interest = 32.8% 

Average = 40.7% 

High interest = 86.6% 

Low interest = 52.8% 

Average = 58.9% 
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(c) EV’s diffusion rates 
 

Electric vehicles Vehicle emissions = – 80% Vehicle emissions = – 100% 

EV premium = $10,000 

High interest = 1.0% 

Low interest = 0.2% 

Average = 0.3% 

High interest = 1.1% 

Low interest = 0.1% 

Average = 0.3% 

EV premium = $5,000 

High interest = 4.7% 

Low interest = 2.3% 

Average = 2.7% 

High interest = 5.1% 

Low interest = 1.6% 

Average = 2.2% 

 
(d) PHEV’s diffusion rates 

Plugin hybrid vehicles Vehicle emissions = – 60% Vehicle emissions = – 80% 

PHEV premium = $5,000 
High interest = 61.1% 

Low interest = 21.5% 

Average = 28.7% 

High interest = 62.6% 

Low interest = 20.1% 

Average = 27.8% 

PHEV premium = $2,500 
High interest = 80.9% 

Low interest = 52.6% 

Average = 57.7% 

High interest = 81.4% 

Low interest = 51.4% 

Average = 56.8% 
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Table 6: Social reduction in greenhouse gas emissions 
(a) SM’s reduction in greenhouse gas emissions 
 

Smart meters Household emissions = – 10% Household emissions = – 30% 

Monthly charge = $ 3 

High interest = –6.1% 

Low interest = –3.6% 

Average = – 4.1% 

High interest = –19.3% 

Low interest = –10.3% 

Average = – 11.9% 

Monthly charge = Free 

High interest = –8.6% 

Low interest = –7.5% 

Average = – 7.7% 

High interest = –26.3% 

Low interest = –22.0% 

Average = – 22.8% 

 
(b) PV’s reduction in greenhouse gas emissions 
 

Photovoltaic generation Household emissions = – 40% Household emissions = – 60% 

Initial cost = $20,000 

High interest = –19.3% 

Low interest = –3.9% 

Average = – 6.7% 

High interest = –38.9% 

Low interest = –12.0% 

Average = – 16.9% 

Initial cost = $15,000 

High interest = –30.6% 

Low interest = –13.1% 

Average = – 16.3% 

High interest = –52.0% 

Low interest = –31.7% 

Average = – 35.4% 
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(c) EV’s reduction in greenhouse gas emissions 
 

Electric vehicles Vehicle emissions = – 80% Vehicle emissions = – 100% 

EV Premium = $10,000 

High interest = –0.8% 

Low interest = –0.2% 

Average = – 0.3% 

High interest = –0.9% 

Low interest = –0.1% 

Average = – 0.2% 

EV Premium = $5,000 

High interest = –3.8% 

Low interest = –1.8% 

Average = – 2.2% 

High interest = –4.1% 

Low interest = –1.3% 

Average = – 1.8% 

 
(d) PHEV’s reduction in greenhouse gas emissions 

Plugin hybrid vehicles Vehicle emissions = – 60% Vehicle emissions = – 80% 

PHEV premium = $5,000 

High interest = –36.7% 

Low interest = –12.9% 

Average = – 17.2% 

High interest = –50.1% 

Low interest = –16.7% 

Average = – 22.2% 

PHEV premium = $2,500 

High interest = –48.5% 

Low interest = –31.6% 

Average = – 34.6% 

High interest = –65.1% 

Low interest = –41.1% 

Average = – 45.5% 
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Table 7: Interdependencies among smart equipment diffusions  

(a) SM's choice probability elasticities 

Highly interested households
elasticities t values

PV 0.319 2.2522 **
EV -0.107 -1.3543
PHEV 0.863 3.7826 ***
Litlle interested households

elasticities t values
PV 0.080 1.4883
EV 0.041 -0.2861
PHEV 0.892 3.6169 ***  

 
(b) PV’s choice probability elasticities 

Highly interested households
elasticities t values

SM 1.748 11.5991 ***
EV 0.773 5.9504 ***
PHEV 0.933 4.4484 ***
Litlle interested households

elasticities t values
SM 1.162 10.6225 ***
EV 0.395 5.0009 ***
PHEV 1.352 8.6511 ***



 53 

(c) EV’s choice probability elasticities 

Highly interested households
elasticities t values

SM 0.365 4.3335 ***
PV 0.698 10.0913 ***
Litlle interested households

elasticities t values
SM 0.378 8.2064 ***
PV 0.491 11.2661 ***  

 
(d) PHEV’s choice probability elasticities 

Highly interested households
elasticities t values

SM 0.251 6.1403 ***
PV 0.286 8.9201 ***
Litlle interested households

elasticities t values
SM 0.162 5.6447 ***
PV 0.273 11.1428 ***  




