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Abstract

This paper develops a simple model of public bads where players

have heterogeneous beliefs about the consequence of their collec-

tive action. Properties of equilibrium and its relation to beliefs

and preference are examined, followed by a detailed investigation

of the impacts of new information. Our analysis sheds light on

an important trade-off associated with information policies in the

presence of belief heterogeneity and ambiguity. In particular, we

show that newly available information can unambiguously worsen

the free-riding problem even when it better reflects the correct risk

than the players’ beliefs. Adding information noise will never mit-

igate the public-bad nature of the problem if players are equally

confident about their beliefs. When the beliefs are highly hetero-

geneous, however, a certain amount of information noise can be

Pareto-improving, for which the degrees of risk and ambiguity

aversion play asymmetric roles.

Keywords: externality; uncertainty; heterogeneous beliefs; information

JEL classification: C72; D80; D81; Q54; H23

∗We would like to thank seminar participants at Kobe, Kyoto, Oslo, and Tilburg
for helpful comments and suggestions. Financial support of JSPS for this research is
gratefully acknowledged.

†Japan Society for the Promotion of Science. School of Social Sciences, Waseda
University. 1-6-1 Nishiwaseda, Shinjuku, Tokyo 169-8050, Japan.

1



1 Introduction

In this paper, we develop a simple model of public bads where play-
ers have heterogeneous beliefs about the consequence of their collective
action. In our model, players can reduce the negative impact of public
bad at a private cost. While the private cost is certain, the damage from
public bad is subject to deep uncertainty. Uncertainty exists not only in
the sense that the damage has a probability distribution, but also in the
sense that the distribution itself is unknown. In other words, players
face ambiguity in terms of what would happen in the absence of action
against public bad. The difficulty in estimating the true distribution
of damage leads to disagreements among players about the risk of no
action. Such heterogeneous beliefs result in uncoordinated actions of
players, which might be a source of extra inefficiency. Availability of
public information and the partial resolution of ambiguity that follows
could then mitigate the inefficiency by facilitating the convergence of
beliefs.

Our model encompasses various problems of public-bad nature. Per-
haps the most relevant application would be the global environmental
problems such as climate change. Although the last decades saw a con-
siderable progress in the scientific basis of climate change (IPCC, 2007),
the state-of-the-art knowledge has yet to provide a clear picture about
the possible consequences of increasing carbon concentration in the at-
mosphere. For instance, an important metric called climate sensitivity,
which measures the change in temperature due to a doubling of car-
bon concentration, is known to be inherently uncertain (Roe and Baker,
2007). While a number of scientific studies have estimated the possible
values of this important parameter, the proposed risks are not neces-
sarily in agreement with each other (Meinshausen et al., 2009). This on
one hand implies that addressing climate change involves a decision
making under ambiguity.

On the other hand, the lack of clear-cut consensus among scientists
allows people to have different beliefs. It is left to subjective interpreta-
tion of individuals how credible each of the proposed risk estimates is.
Some people could be optimistic about the impacts of climate change,
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Figure 1: Percentage of respondents who consider climate change as a
threat (Pelham, 2009).

arguing that climate system is not as sensitive to human-induced carbon
emission as predicted by some scientific studies. Others could be rather
pessimistic, believing that catastrophic scenarios would be more likely
than expected by optimistic risk estimates. In fact, according to a sur-
vey conducted in 127 countries, people’s perception of climate change
significantly varies across countries (Pelham, 2009). More than 90% of
the respondents in Japan, for example, believe that climate change is
caused by human activities. In the United States, on the other hand,
less than one of two people think that the problem is human-induced.
In France, 75% of people perceive the climate change as a serious threat
whereas the percentage sharply drops down to 21% in China. Figure 1
illustrates the diversity of climate-related risk perception.

The discrepancy in beliefs in turn creates an obstacle to collective
risk prevention. Since the cause and consequence of public bads stretch
across different players, actions of independent players should be coor-
dinated if the problem is to be efficiently addressed. Facing the threat
of climate change, however, individual countries react in quite differ-
ent ways. Countries in the European Union, for instance, are relatively
more willing to curb carbon dioxide emission. In the United States,
on the other hand, the value of emission abatement is less appreciated.
Some of the developing countries, such as China and India, are even
more reluctant to engage in mitigation activities. These uncoordinated
actions at least partly reflect the heterogeneity in their beliefs since the
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expected benefit of carbon mitigation is affected by the subjective be-
liefs. Heterogeneity in beliefs therefore adds inefficiency of a different
kind on top of the externality associated with public bads.

A question of interest then is whether new information can miti-
gate the inefficiency by encouraging an update of subjective beliefs of
players. In the context of climate change, continuous efforts have been
made to resolve the ambiguity in climate science and, as a result, new
findings about the true risk of climate change become available from
time to time. These occasional findings, once taken into players’ be-
liefs, could have a significant influence on the formation of domestic
and international climate policy, as exemplified by the series of influ-
ential reports of Intergovernmental Panel on Climate Change (IPCC).
The impact of new information is of course dependent upon a number
of factors. It depends on how the risk is initially perceived by players
and what kind of information becomes newly available. Players’ pref-
erence with respect to risk and ambiguity also plays a role. With our
framework, these issues can be investigated in a tractable way.

We do not explicitly model how the subjective and possibly incor-
rect beliefs emerge under ambiguity. A mounting evidence, however,
identified a set of psychological biases that distort people’s beliefs in
various economic situations. The experimental evidence summarized
by DellaVigna (2009), for instance, suggests that people have systemat-
ically incorrect beliefs and most people underestimate the probability
of negative events. More recently, Hommes (2012) reported persistent
emergence of irrational and heterogeneous beliefs in laboratory experi-
ments. Despite the existing evidence and its potentially important im-
plications, the role of heterogeneous beliefs have only been investigated
in a limited number of economic models1. In particular, consideration
of strategic incentive is largely absent in the analysis of heterogeneous
beliefs.

Following the seminal work of Samuelson (1954), a myriad of pa-
pers have studied the issue of strategic incentive associated with public

1There is a literature that studies the implications of heterogeneous beliefs in a fi-
nancial market (Harrison and Kreps, 1978; Varian, 1985; Detemple and Murthy, 1994).
The role of heterogeneous beliefs have also been investigated in the presence of ambi-
guity (Condie, 2008).
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goods and public bads. While the implication of uncertainty to public
good provision is not straightforward in general, the existence of un-
certainty is known to affect the free-riding incentive of players under
certain circumstances (Gradstein et al., 1992, 1993). Sandler et al. (1987),
for instance, showed that the players’ voluntary contribution to public
good would increase in the presence of uncertainty if the utility function
has a certain property regarding its third derivative. In relation to ambi-
guity, Eichberger and Kelsey (2002) examined the effect of ambiguity in
symmetric games with positive externalities and found that ambiguity
will increase or decrease the equilibrium strategy, depending on the na-
ture of strategic interaction. More recently, Bramoullé and Treich (2009)
examined the effect of uncertainty on pollution emissions and welfare
in a strategic context. They found that emissions are always lower un-
der uncertainty, reflecting risk-reducing considerations. In this strand
of literature, however, the possibility of heterogeneous beliefs has not
been taken into account.

Our analysis also complements the growing literature on the value
of public information. Based on a model of beauty contest, Morris and
Shin (2002) showed that disseminating public information sometimes
decreases social welfare when players receive a private signal in addi-
tion to publicly observable information. Since this pioneering work, the
welfare implications of public information have been vigorously exam-
ined by Angeletos and Pavan (2004), Cornand and Heinemann (2008),
and James and Lawler (2011), among others. Since our model does
not involve private information, the analysis of the present paper is
not directly comparable to these studies. Unlike the existing studies,
however, we clarify how heterogeneous priors are translated into the
equilibrium behavior and identify in what condition the value of pub-
lic information becomes negative under ambiguity. In this regard, our
paper is related to the recent contribution of Koufopoulos and Kozhan
(2014), who present an example where an increase in ambiguity leads
to a strict Pareto improvement in insurance markets.

The structure of the paper is as follows. Section 2 is devoted to the
description of the general framework. Based on a fairly general frame-
work, Section 3 examines general characteristics of the equilibrium. Sec-
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tion 4 demonstrates how the framework presented in this paper can be
used to investigate problems of interest such as the value of informa-
tion. To this end, we focus on a particular class of models where risk
and beliefs are both represented by normal distributions. This class
of models, together with exponential specification of utility function,
allows us to solve the equilibrium in a closed form.

We then show that the arrival of new information can worsen the
free-riding problem both in terms of the amount of public bads and
the level of individual welfare. This happens even if the newly avail-
able information better reflects the correct risk of public bads than the
players’ beliefs. We also consider the situation where an authoritative
scientific community can add some information noise before the news
(i.e., scientific findings) become available to players. It is shown that
adding information noise will never mitigate the public-bad nature of
the problem if the heterogeneity only exists in the mean of priors. When
the beliefs are highly heterogeneous, however, a certain amount of in-
formation noise can be Pareto-improving. Section 5 concludes.

2 Model

This section explains the structure of the model and introduces its basic
assumptions. To fix the context, we interpret the model as representing
a global environmental problem such as climate change.

2.1 Basic game

Our stylized economy consists of n ≥ 2 identical players. They interact
with each other only through a negative production externality. Let
yi ∈ R+ be the amount of output produced by player i and e(yi) ∈ R+

be the level of pollution associated with output yi. For simplicity, we
abstract the production process and assume that the output ȳ > 0 is
exogenously given and identical across players. Accordingly, we take
the baseline level ē := e(ȳ) of pollution as given.

The amount of pollution is reduced by abatement ai ∈ R+, which is
chosen independently by each player. The abatement effort requires a
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cost C(ai) at a local level. The cost function satisfies C′ := ∂C/∂ai > 0,
C′′ := ∂2C/∂a2

i > 0, and C(0) = 0. The net emission E at the aggregate
level is then given by E = ∑n

i=1(ē − ai) = nē − A, where A := ∑n
i=1 ai.

The aggregate net emission determines the damage D(E; β) from pollu-
tion, for which we assume D′ := ∂D/∂E > 0 and D′′ := ∂2D/∂E2 ≥ 0.
Notice that D is influenced by parameter β. This parameter is meant
to be a proxy of climate sensitivity. The damage D(E; β) and marginal
damage D′(E; β) of pollution are both increasing in β. The damage
and the abatement cost are subtracted from output ȳ, the remainder of
which is consumed by players. Consumption xi of player i is therefore
determined by

xi = ȳ − D(E; β)− C(ai). (2.1)

We assume ȳ is sufficiently large so that xi > 0 and E > 0 at equilibrium.
To ensure an interior solution, it is also assumed that D′(nē; β) > C′(0)
and n−1C′(ē) > D′(0; β). When there is no uncertainty, the utility of
player i is then determined by u(xi) for some strictly increasing and
strictly concave function u : R+ → R.

2.2 Uncertainty and decision making

The true value of β is unknown. Let B ⊂ R be the set of all possible
values of β and ∆(B) be the set of all probability density functions de-
fined over B. If the density function of β is known to be f ∈ ∆(B), the
expected utility of player i is given by

E[u(xi)] =
∫

B
u(ȳ − D(E; β)− C(ai)) f (β)dβ. (2.2)

As we mentioned in the introduction, however, the value of β is uncer-
tain not only in the sense that the parameter has a probability distribu-
tion, but also in the sense that the distribution itself is not known. To
be more specific, we restrict ourselves to a particular case of ambiguity
where the value of β has been estimated by several scientific studies
and a variety of possible distributions of β have been proposed. Let
Θ ⊂ R be the set of all such studies. We denote by f (·|θ) ∈ ∆(B) the
probability density function proposed by a particular scientific study
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θ ∈ Θ.
To players, there is no a priori information available. Then players

subjectively form beliefs about the relative credibility of each of the
possible distributions. Denote by gi ∈ ∆(Θ) the subjective prior of
player i defined over the set Θ of all proposed distributions. Notice
that we here diverts from the standard assumption of common prior
and allow for the possibility of priors being heterogeneous. Moreover,
we assume that the profile {gi}n

i=1 ∈ ×n
i=1∆(Θ) of subjective priors is

common knowledge. In other words, players are assumed to agree to
disagree on the reliability of each scientific study. The heterogeneity
does not come from asymmetric information but rather from intrinsic
differences in how to view the world. Otherwise the priors would be
necessarily identical due to the combination of the common knowledge
assumption and the rationality of players.

In the absence of additional information, players choose their abate-
ment level based on their own belief, given the knowledge of the set
{ f (·|θ)}θ∈Θ of distributions and the profile {gi}n

i=1 of subjective priors.
To formalize this process, we follow Klibanoff et al. (2005) and assume
that players’ decision utility Vi under ambiguity is given by

Vi :=
∫

Θ
ϕ (E [ui|θ]) gi(θ)dθ with E [ui|θ] :=

∫
B

u(xi) f (β|θ)dβ, (2.3)

where ϕ : R → R is a strictly increasing and concave function. With
this representation, players’ attitudes towards risk and ambiguity can
be separately incorporated. Just as in the case of standard expected
utility model, the strength of risk aversion is measured by the concavity
of function u. Similarly, the strength of ambiguity aversion is measured
by the concavity of function ϕ.

2.3 Information structure

The true value of parameter β is inherently unknown and continues to
be so in the foreseeable future, as in the case of climate sensitivity. We
assume, on the other hand, that there is the ‘correct’ risk assessment of
β. In other words, there is the unique scientific study θ∗ ∈ Θ such that
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the corresponding risk estimate f (·|θ∗) correctly captures the inherent
risk of β. Although it is unknown which scientific study provides the
correct risk estimate, new information about index θ∗ becomes avail-
able upon occasional scientific discoveries. Such new information is
modeled as a signal µ∗ ∈ Θ, the value of which realizes according to

µ∗ = θ∗ + η, where η ∼ N(0, σ2
∗). (2.4)

The variance σ2
∗ ≥ 0 represents the uncertainty remaining in the state-

of-the-art scientific knowledge in pinning down the index θ∗.
Suppose, for the moment, that the signal-generating process (2.4)

is entirely known to players. Once the signal µ∗ is observed, play-
ers can update their belief based on the Bayes’ rule. The posterior
gi(·|µ∗) ∈ ∆(Θ) is then given by gi(θ|µ∗) ∝ L(µ∗|θ)gi(θ), where L is
the likelihood function of normal distribution with mean µ∗ and vari-
ance σ2

∗ . Notice that the posterior gi(·|µ∗) is irrational in the sense that
it is influenced by the purely subjective priors even after the objectively
reliable information becomes available. This reflects the behavioral evi-
dence that players have systematically biased beliefs (DellaVigna, 2009).

2.4 Equilibrium and welfare

Since both the priors and posteriors are common knowledge, the model
is essentially a game with complete information. Thus, the standard
Nash equilibrium is sufficient as the solution concept. To be more pre-
cise, we define equilibrium by the action profile a := (ai)

n
i=1 such that

ai ∈ argmax
ai

Vi(ai, a−i) given a−i := (aj)j ̸=i (2.5)

for all i. The objective function Vi is defined as in (2.3), whose depen-
dence on the action profile is now made explicit. The prior gi is replaced
by the posterior gi(·|µ∗) when the signal µ∗ is received by players. To
distinguish the equilibriua before and after the information becomes
available, we denote by ã := (ãi)

n
i=1 the equilibrium action profile cor-

responding to signal µ∗.
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Since the correct risk of β is represented by f (·|θ∗), the players’ wel-
fare (as opposed to decision utility) is given by

Wc
i (a) := ϕ(E [ui|θ∗]) with E [ui|θ∗] :=

∫
B

u(xi) f (β|θ∗)dβ. (2.6)

The index θ∗, however, is not known. The only reliable information
about θ∗ is the realized value of µ∗. We thus evaluate the players’ wel-
fare based on the objectively-determined expected value of Wi, namely,

Wi(a) := E[Wc
i (a)|µ∗] =

∫
Θ

ϕ (E [ui|θ]) g∗(θ)dθ, (2.7)

where g∗ ∈ ∆(Θ) is the density of θ∗ conditional on µ∗. Notice that g∗
is the density function of normal distribution whose mean and variance
are given by µ∗ and σ2

∗ , respectively. We call g∗ the rational belief in the
sense that it purely represents the objective information about the value
of θ∗. Also worth noting is that the welfare function is identical across
players. Since the cost function is strictly convex, efficiency then re-
quires that the abatement level be the same for all players. Concavity of
u and ϕ then implies that there exists the unique level of efficient aggre-
gate abatement, which we denote by A∗. The existence and uniqueness
of such A∗ is discussed in Appendix B.1. The efficient level of individ-
ual abatement is given by a∗ = A∗/n.

3 General characteristics of equilibrium

Let us first focus on the case where the new information is not available
to players yet. At equilibrium, the first-order condition implies

C′(ai) =
∫

B
D′(E; β) fi(β)dβ. (3.1)

Here fi is the density function defined by

fi(β) :=
∫

Θ
f̂i(β|θ)ĝi(θ)dθ, (3.2)
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where

f̂i(β|θ) ∝ u′(xi) f (β|θ), ĝi(θ) ∝ ϕ′(E[u(xi)|θ])E[u′(xi)|θ]gi(θ). (3.3)

Notice first that the left-hand side of (3.1) is the marginal abatement
cost. The right-hand side is a weighted average of the marginal abate-
ment benefit. If the players’ preference is neutral both in terms of risk
and ambiguity, the density fi in (3.2) coincides with the pure subjective
risk f c

i :=
∫

Θ f (β|θ)gi(θ)dθ. In this case, (3.1) simply means that players
choose their abatement effort so that the marginal abatement cost and
the purely subjective expected marginal benefit are equalized.

When players are not risk or ambiguity neutral, however, the ex-
pected marginal benefit on the right-hand side of (3.1) is ‘distorted’. It
is distorted in the sense that the expectation is taken not based on the
pure subjective risk f c

i , but instead based on some other density fi. The
density fi reflects players’ subjective risk assessment, just like the pure
subjective risk f c

i . But it is adjusted according to their preference about
risk and ambiguity as is seen in (3.3). This suggests that in order to char-
acterize the equilibrium, we should clarify how beliefs and preferences
are translated into the adjusted subjective risk fi.

To further characterize the equilibrium, we impose a certain struc-
ture to the set of scientific risk estimates.

Assumption 1. The family { f (·|θ)}θ∈Θ of probability density functions
has the strict monotone-likelihood-ratio property. Namely,

f (β′|θ′) f (β|θ)− f (β′|θ) f (β|θ′) > 0 ∀β′ > β, ∀θ′ > θ. (3.4)

To interpret this assumption, notice that under Assumption 1, θ′ > θ

implies that f (·|θ′) strictly dominates f (·|θ) in the sense of first-degree
stochastic dominance. In particular, since D(E; β) is strictly increasing
in β,

∫
B D(E; β) f (β|θ′)dβ >

∫
B D(E; β) f (β|θ)dβ for any E. In other

words, scientific study θ′ is unambiguously more pessimistic than θ in
terms of the expected damage from pollution. What is required by
Assumption 1 is thus that the set of available scientific risk estimates
can be ranked from the most optimistic to the most pessimistic one.
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With this interpretation in mind, we can then characterize a belief
as being more optimistic when it puts relatively heavier weights to the
scientific studies with smaller index numbers. Our first proposition
shows that optimistic subjective beliefs are, quite intuitively, translated
into weaker willingness to abate pollution.

Proposition 1. If
gi(θ)gj(θ

′)− gi(θ
′)gj(θ) > 0 (3.5)

for all θ′ > θ, then f j strictly first-degree stochastically dominates fi and
therefore, player i abates less than player j ̸= i at equilibrium.

Proof. See Appendix A.1.

If condition (3.5) is satisfied, the expected damage and the expected
marginal damage of pollution for a given level of abatement effort are
smaller for player i than for player j. In other words, player i is unam-
biguously more optimistic than player j. We should mention that this
is a sufficient condition, but not a necessary condition for one player
to be less willing to abate pollution than the other. In fact, once the
functional forms are specified, the relationship between the equilibrium
abatement effort and beliefs can be characterized based on a much less
restrictive condition.

Since there exists the production externality in the economy, the
equilibrium abatement effort is likely to be insufficient relative to the
efficient level A∗. This might not be the case, of course, when some
or all of the players have highly pessimistic priors. Such an unrealis-
tic case, however, is not of interest. To exclude such cases, we restrict
our analysis to the set of ‘realistic’ beliefs. To be formal, denote by
G(g∗) ⊂ ×n

i=1∆(Θ) the collection of all belief profiles such that the cor-
responding equilibrium outcome is insufficient.

Proposition 2. The collection G(g∗) is nonempty for any g∗ ∈ ∆(Θ). In
particular, if gi = g∗ for all i, then the equilibrium abatement corresponding
to this belief profile is insufficient in the sense that A < A∗.

Proof. See Appendix A.2.
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Proposition 2 shows that even if every player has the rational belief, the
equilibrium outcome is insufficient (and thus inefficient). This is due to
the existence of externality. As a result, G(g∗) is always nonempty and
hence it makes sense to restrict our attention only to the belief profiles
in G(g∗).

Proposition 2 indicates that inefficiency arises at equilibrium as long
as the profile of beliefs is contained in a neighborhood of g∗. In par-
ticular, when the risk of pollution-induced damage is underestimated
relative to the rational belief, the outcome is even less efficient than in
the case of the rational belief being shared by every player. Consider,
for instance, a hypothetical scenario where all players have an identical
belief represented by some g ∈ ∆(Θ). Combining Propositions 1 and 2
yields the following result.

Proposition 3. If
g(θ)g∗(θ′)− g(θ′)g∗(θ) > 0 (3.6)

for all θ′ > θ, then the equilibrium outcome is Pareto dominated by the case
where every player has the correct belief as their prior.

Proof. See Appendix A.3.

In light of Proposition 1, condition (3.6) means that players underesti-
mate the risk in the sense that their homogeneous belief g puts heavier
weights to relatively optimistic risk estimates than the rational belief g∗
does. In such a case, the equilibrium abatement effort will be far from
sufficient and the players end up with a lower-than-possible level of
welfare.

When beliefs are heterogeneous, on the other hand, inefficiency of
a different kind arises in addition to the existence of externality and
the underestimation of risk. As Proposition 1 indicates, heterogeneity
in beliefs is likely to be translated into heterogeneity in behaviors at
equilibrium. Such uncoordinated behaviors, combined with the con-
vexity of cost function, lead to inefficient abatement efforts at the ag-
gregate level. To see this, let (ai)

n
i=1 be the equilibrium abatement

such that aj ̸= ai for some j ̸= i. Then the Jensen’s inequality shows
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n−1 ∑n
i=1 C(ai)− C(A/n) =: ∆C > 0 and for each i

xi = ȳ − D(E; β)− C(ai) < ȳ − D(E; β)− C(A/n) + ∆xi (3.7)

for any realization of β, where ∆xi := C(A/n) − C(ai) + ∆C. Notice
that (∆xi)

n
i=1 is a feasible reallocation scheme because ∑n

i=1 ∆xi = 0.
Hence, by choosing the average abatement level A/n instead of ai and
reallocating consumption according to (∆xi)

n
i=1, players will be all better

off.
Assuming that the equilibrium abatement is insufficient, the ques-

tion of importance is whether new scientific discoveries can facilitate
the players’ abatement efforts. The observations above suggest that the
new information could play a positive role in reducing the existing in-
efficiency. In particular, when the risk is underestimated and/or there
is a discrepancy in priors, a public signal containing some information
of the correct risk estimate would have a desirable consequence by en-
couraging the update of otherwise optimistic priors and expediting the
convergence of heterogeneous beliefs.

As we will see in the next section, however, the story is not that
simple. Even if the risk of pollution-induced damage is underestimated
by players and there exists heterogeneity in their priors, there can be
a case where new information unambiguously worsens the situation.
This is in large part due to the fact that once new information becomes
available, the situation becomes less ambiguous, which in turn weakens
the incentive of risk/ambiguity-averse players to abate pollution. What
plays a key role here is therefore the preference for risk and ambiguity
aversion.

To understand how the players’ preference is translated into their
equilibrium behavior, let us first focus on f̂i in (3.3). Recall that f (·|θ)
is the objective probability density proposed by a particular scientific
study θ. The expression (3.3) indicates that this objective risk estimate
is not directly used in evaluating the expected marginal benefit. Before
being applied to the final evaluation of expected damage, it is ‘reinter-
preted’ by players as f̂i(·|θ) based on their risk preference. The follow-
ing lemma clarifies how f̂i and f are related with each other.
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Lemma 1. For each θ ∈ Θ, f̂i(·|θ) strictly dominates f (·|θ) in the sense of
first-degree stochastic dominance if and only if u is strictly concave.

Proof. See Appendix A.4.

Lemma 1 states that in choosing their abatement efforts, risk avert-
ers reinterpret the scientific risk estimates in a pessimistic way. The
reinterpretation is pessimistic in the sense that

∫
D(E; β) f̂i(β|θ)dβ >∫

D(E; β) f (β|θ)dβ, namely, the expected damage is conceived as larger
than it is originally meant to be for each θ. The converse is true for
players with a risk-loving preference.

Similarly, the expression ĝi in (3.3) indicates that when players ag-
gregate the set of reinterpreted risks { f̂i(·|θ)}θ∈Θ, they do not directly
use their own belief gi, but rather use their preference-adjusted belief ĝi.
In other words, they ‘update’ their belief gi into ĝi in accordance with
their risk and ambiguity attitude. How this update is done is clarified
by the following lemma.

Lemma 2. If u and ϕ are concave and at least one of the concavities is strict,
ĝi strictly dominates gi in the sense of first-degree stochastic dominance.

Proof. See Appendix A.5.

If ĝi first-degree stochastically dominates gi, it roughly means that the
former gives larger weights to relatively more pessimistic risk estimates
than the latter does. Hence, what is indicated by Lemma 2 is that players
behave as if they were more pessimistic than they actually are when
their preference is risk or ambiguity averse.

Combining these lemmas yields the following proposition.

Proposition 4. Suppose u is strictly concave and ϕ is concave. Then the
preference-adjusted subjective risk fi strictly first-degree-stochastically domi-
nates the pure subjective risk f c

i . As a result, the aggregate abatement at equi-
librium is greater than in the case of risk- and ambiguity-neutral preference.

Proof. See Appendix A.6.

Moreover, as the next proposition shows, the players’ preference for
stronger ambiguity aversion is translated into a greater abatement in-
centive.
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Proposition 5. The more ambiguity averse players are, the larger the aggregate
abatement is at equilibrium.

Proof. See Appendix A.7.

What is suggested by Propositions 4 and 5 is that risk- and ambiguity-
averse players have an extra incentive to engage in pollution abatement
as long as the situation is ambiguous. Then reducing the existing am-
biguity in any way weakens the players’ abatement incentive. If pub-
lication of new scientific information significantly reduces the existing
ambiguity, the weakening of abatement incentive that follows will at
least partially offset the positive effects of the scientific discovery. When
the degree of ambiguity aversion is sufficiently large, this side effect
of public information might even outweigh all of its positive impacts
combined. As a consequence, the society could end up with lower wel-
fare than in the absence of new scientific information. Then when and
in what condition does such a paradoxical consequence follow from
newly available information? Clarifying these conditions would have
profound policy implications and it is to this task that we turn in the
next section.

4 Value of information

In this section, we demonstrates how the framework presented in this
paper can be used to investigate problems of interest such as the value
of information. To this end, we focus on a class of models where risk
and beliefs are both represented by normal distributions. This class
of models, together with exponential specification of utility functions,
allows us to solve the equilibrium in a closed form.

4.1 Specifications

We henceforth specify the functional forms of u and ϕ as

u(x) := −1
α

e−αx and ϕ(u) := − 1
1 + ξ

(−u)1+ξ (4.1)
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for some α > 0 and ξ > −1. Notice that α is the index of constant ab-
solute risk aversion and ξ corresponds to the index of constant relative
ambiguity aversion. Also, for analytical tractability, we assume that the
damage and cost functions are of the forms

D(E; β) := βδE and C(ai) :=
ν

2
a2

i (4.2)

for some constants δ, ν > 0.
Furthermore, we focus our attention to the case where the proposed

risks and the players’ priors are both well represented by normal distri-
butions. To be more precise, f (·|θ) is the density of normal distribution
N(θ, σ2

u) for some σ2
u > 0. Note that this satisfies Assumption 1. With

this specification, θ can be regarded as the point estimate of β provided
by scientific study θ. The variance σ2

u reflects an inevitable inaccuracy
associated with the estimation procedure commonly used in the scien-
tific literature. We also assume that prior gi is represented by the density
of normal distribution N(µi, σ2

i ) for some µi > 0 and σ2
i > 0. The mean

µi ∈ Θ can be interpreted as the index of the most reliable scientific
study for player i. The variance σ2

i captures the lack of confidence in
the player i’s prior or the degree of ambiguity for the player. A profile
of priors is represented by Γ := {µi, σ2

i }n
i=1.

A bit tedious computation then yields

Vi(a) = −α−(1+ξ)

1 + ξ
e−α(1+ξ)vi(a), vi(a) := ȳ − δµiE − δ2

2
γiE2 − ν

2
a2

i ,

(4.3)
where γi := α

[
σ2

u + (1 + ξ)σ2
i
]
. The derivation is given in Appendix B.3.

Note γi summarizes the players’ attitude towards uncertainty (σ2
u) and

ambiguity (σ2
i ), the latter of which is magnified by the index of ambi-

guity aversion ξ. Also notice that Vi is a monotone transformation of
vi.

Then the first-order condition boils down to

∂Vi(a)
∂ai

= 0 ⇐⇒ ∂vi(a)
∂ai

= 0 ⇐⇒ ai = ρµi + Eρδγi, (4.4)
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where ρ := δ/ν > 0. This implies

A =
n−1

n−1 + ρδγ̄
nρµ̄ +

ρδγ̄

n−1 + ρδγ̄
nē, E =

ē − ρµ̄

n−1 + ρδγ̄
, (4.5)

where µ̄ := n−1 ∑i µi and γ̄ := n−1 ∑i γi. The equilibrium level of
abatement is therefore

ai = ρµi +
ē − ρµ̄

n−1 + ρδγ̄
ρδγi. (4.6)

The right-hand side of (4.6) is an increasing function of µi. Hence, just as
expected from Proposition 1, the more pessimistic players are, the more
stringent their abatement effort would be. Also, as predicted by Propo-
sitions 4 and 5, the right-hand side of (4.6) is an increasing function of
α, ξ, and σ2

i . Players become more willing to abate pollution in the pres-
ence of risk and ambiguity and a relatively less confident player bears a
relatively large share of the global effort to reduce pollution. Put differ-
ently, greater confidence about subjective beliefs, which is captured by
smaller σ2

i , would result in less stringent abatement policies.
A similar computation yields

Wi(a) = −α−(1+ξ)

1 + ξ
e−α(1+ξ)wi(a), wi(a) := ȳ − δµ∗E − δ2

2
γ∗E2 − ν

2
a2

i ,

(4.7)
where γ∗ := α

[
σ2

u + (1 + ξ)σ2
∗
]
. Hence, the efficient level A∗ of aggre-

gate abatement is uniquely determined by

A∗ =
n−2

n−2 + ρδγ∗
n2ρµ∗ +

ρδγ∗
n−2 + ρδγ∗

nē (4.8)

and the corresponding individual abatement effort is a∗ = A∗/n. A
brief inspection reveals that A < A∗ even if µi = µ∗ and σ2

i = σ2
∗ for all

i. Without any restriction on the set of possible priors, however, every
outcome, including the efficient one, can be supported as an equilib-
rium. In what follows, we restrict our analysis to a set of reasonable
priors. In particular, let us assume that the risk of climate change is
underestimated in the sense that µi < µ∗ and σ2

i < nσ2
∗ for all i. This
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ensures that the equilibrium abatement level satisfies A < A∗. In this
case, publishing new scientific finding apparently makes sense.

4.2 Impact of new information

The question of particular interest is whether the new information µ∗

mitigates or amplifies the free-riding problem. More importantly, what
is the welfare implication of the new information? The observation in
the preceding section suggests that there might be a case where new
information harms the society. We say that the value of information is
negative if every player is worse off after the information is obtained
by players. Similarly, we say that the value of information is positive if
every player is better off under the updated beliefs. Below we clarify a
condition in which the value of information is unambiguously negative.

Before presenting the result, we note that once the signal µ∗ is ob-
served, the players’ posterior gi(·|µ∗) is given by a normal distribution
whose mean µ̃i and variance σ̃2

i are given by

µ̃i =
σ2
∗

σ2
∗ + σ2

i
µi +

σ2
i

σ2
∗ + σ2

i
µ∗ and σ̃2

i =
σ2
∗

σ2
∗ + σ2

i
σ2

i , (4.9)

respectively. These expressions already indicate that the new informa-
tion has three distinct effects. First, the mean of the posterior gets closer
to the mean of the rational belief in the sense that |µ̃i − µ∗| < |µi − µ∗|.
This rationalization effect helps improve efficiency because the risk is un-
derestimated in the priors. The second and closely related effect is the
convergence effect. Since the beliefs are updated based on the common
public information, the posteriors are less heterogeneous than the pri-
ors. For instance, in the extreme case where the precision 1/σ2

∗ of the
new information is infinite, the players’ posteriors completely coincide
with each other. This achieves a welfare gain by eliminating the inef-
ficiency associated with uncoordinated actions. The last effect, which
we call the confidence effect, works in the opposite direction. Having ob-
tained the additional information, players become more confident about
their beliefs. In fact, (4.9) shows that σ̃2

i ≤ min{σ2
i , σ2

∗} for all i, which
results in the players’ weaker willingness to abate pollution.

19



The value of information is determined by these three effects, which
in turn depend on the priors and preference of players. Let Ã := ∑n

i=1 ãi

be the equilibrium aggregate abatement after the information µ∗ be-
comes available and W̃i be the corresponding welfare of player i. The
following proposition gives a sufficient condition in which the confi-
dence effect outweighs the rationalization and convergence effects com-
bined.

Proposition 6. For each (α, ξ), there exist ∆µ > 0 and ∆σ2 > 0 such that

(i) if ∑i |µ∗ − µi| < ∆µ, then Ã < A, and

(ii) if furthermore ∑i |σ2
∗ − σ2

i | < ∆σ2, then W̃i < Wi for all i.

Moreover, ∆µ is increasing in α and ξ.

Proof. See Appendix A.8.

Proposition 6 first shows that if the underestimation of the risk in
the priors is not very significant, the total abatement will decline as a
result of new information. Even if the underestimation is significant, the
abatement will decline when players are highly risk- and/or ambiguity-
averse. Moreover, if the heterogeneity in priors is not very significant in
the sense that σ2

i is close to σ2
∗ for all i, the equilibrium outcome under

new information is strictly Pareto dominated by the original outcome.
This can be the case even if the risk is underestimated in the priors.

These results have a profound implication to information policy un-
der ambiguity and heterogeneous beliefs. Suppose, for instance, there
is an authoritative community of scientists whose role is to make the
recent scientific findings accessible to the general public. A real-world
example of such a community is IPCC in the context of climate change.
The science behind climate change is so complex that it is not easy to
convey the precise message of the recent findings to those who are not
familiar with the scientific literature. This implies that if new scientific
findings are to be well understood by the general public, they need to be
summarized and endorsed by a credible scientific authority. This is why
IPCC publishes assessment reports about the risk of climate change and
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update the information on a regular basis. Interpreted in line with our
model, the information contained in the assessment report is signal µ∗.

One important implication of our results is that regularly publish-
ing assessment reports with minor updates might do more harm than
good. Once an assessment report is published, the updated mean of the
players’ beliefs become closer to that of rational belief, which is likely
to increase the willingness to abate pollution when the risk is initially
underestimated. Also, since heterogeneity in beliefs always causes in-
efficiency, facilitating belief convergence by publishing the information
seems to be a good idea. The first assessment report will most likely
work as desired because in many cases the risk is significantly underes-
timated or the risk is even unknown by general public when the public-
bad problem first emerges. The second assessment report might work
as well if there remains a wide gap between the correct risk and peo-
ple’s beliefs. At some point, however, as the gap becomes narrower,
publishing new assessment report will eventually end up with weaker
abatement incentive. This is especially the case when players are highly
ambiguity averse. Moreover, as the beliefs become less heterogeneous,
the resulting outcome can be in fact Pareto dominated by the status quo.
Therefore, instead of routinely summarizing the recent developments
in scientific literature, the assessment reports should be published only
when significantly novel findings are available relative to the already
well-publicized knowledge.

4.3 Pareto-improving ambiguity

To further investigate the consequence of new information, let us mod-
ify the information structure and now suppose that after signal µ∗ ma-
terializes, some information noise can be credibly added to the signal
before it becomes available to players. In other words, while the signal-
generating process (2.4) itself is known to players, the variance σ2

∗ is
unknown. The authoritative scientific community can then at least par-
tially manipulate the variance of the signal. This could be done by
choosing unclear phrases or ambiguous wording in their assessment
report. Accordingly, instead of µ∗, players receive noisy signal µε

∗ such
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that
µε
∗ = µ∗ + ε, ε ∼ N(0, σ2

ε ). (4.10)

The variance σ2
ε ≥ 0 captures the strength of information noise.

Given the possibility of information being manipulated, the most
satisfactory model needs to incorporate the strategic interaction be-
tween players and the scientific community. For simplicity, however,
we assume that players are naive in the sense that they do not consider
the possibility of noise being added to the signal. A simple algebra then
tells us that the posterior gi(·|µε

∗) is represented by N(µ̃i, σ̃2
i ), where

µ̃i =
σ2

i
σ2
∗ + σ2

ε + σ2
i

µ∗ +
σ2
∗ + σ2

ε

σ2
∗ + σ2

ε + σ2
i

µi, σ̃2
i =

σ2
∗ + σ2

ε

σ2
∗ + σ2

ε + σ2
i

σ2
i . (4.11)

The information noise affects players’ behavior in two respects. On one
hand, the precision of newly available information is underestimated
by players. Information noise hence allows optimistic individuals to
remain optimistic than they should be. On the other hand, it provides
ambiguity averters with an additional incentive to abate pollution by
making the situation more ambiguous. This can be seen in (4.11), where
the variance of the posterior is larger than in the absence of information
noise.

Notice that the analysis of the preceding section can be nested as a
special case of this information structure. When σ2

ε = 0, the informa-
tion structure boils down to the one in the preceding section. At the
opposite extreme is the infinite amount of information noise, σ2

ε = ∞,
which corresponds to the case where the information is not published
in the first place. We are interested in whether adding a positive and fi-
nite amount of information noise can be Pareto-improving. To be more
precise, we say that Pareto-improving ambiguity is possible if there exists
σ2

ε ∈ (0, ∞) such that

W̃i > W̃i
∣∣
σ2

ε =0 > W̃i
∣∣
σ2

ε =∞ (4.12)

for all i. The second inequality requires that the value of information
be positive. Publishing new information without any noise then makes
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players better off. When Pareto-improving ambiguity is possible, it is
even better to add a certain amount of information noise upon the pub-
lication of the information.

4.3.1 Heterogeneity only in µi

To see the impact of information noise on the equilibrium, observe that

∂ãi

∂σ2
ε
= ρ

∂µ̃i

∂σ2
ε
+ (nē − Ã)δρ

∂γ̃i

∂σ2
ε
− δργ̃i

∂Ã
∂σ2

ε
. (4.13)

The first and second terms on the right-hand side of (4.13) represent the
direct impacts of information noise. Since ∂µ̃i/∂σ2

ε is positive, the first
term represents the fact that noisy signals weaken the rationalization
effect of the new information. On the other hand, ∂γ̃i/∂σ2

ε in the second
term is negative, reflecting the fact that the confidence effect is also
weakened. What is captured by the third term is the free-riding or the
strategic substitution effect. The larger the value of δργ̃i > 0 is, the
stronger the substitution effect among the players’ abatement will be.
The impact on the total abatement is

∂Ã
∂σ2

ε
=

(
1 + δρ ∑

i
γ̃i

)−1{
ρ ∑

i

∂µ̃i

∂σ2
ε
+ (nē − Ã)δρ ∑

i

∂γ̃i

∂σ2
ε

}
. (4.14)

Notice that this impact would be smaller when the strategic substitution
effect, δρ ∑i γ̃i, is larger. The welfare implication of information noise
can be seen in

∂w̃i

∂σ2
ε
= δ

{
µ∗ + Ẽδγ∗

} ∂Ã
∂σ2

ε
− δ

{
µ̃i + Ẽδγ̃i

} ∂ãi

∂σ2
ε

. (4.15)

This expression suggests that if adding information noise is to be Pareto-
improving, it must increase Ã to a sufficiently large extent relative to the
corresponding changes of ãi. This would be difficult when the strategic
substitution effect is significantly large.

To examine the possibility of Pareto-improving ambiguity, let us first
consider the case where heterogeneity only exists in the means of priors.
In this case, we have the following clear-cut result.
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Proposition 7. If there is no heterogeneity in {σ2
i }n

i=1, then Pareto-improving
ambiguity is impossible.

Proof. See Appendix A.9

Proposition 7 states that as long as players are equally confident
about their priors, adding information noise to the public signal would
never be a good idea. To see the reason for this result, notice that since
the equilibrium abatement in the absence of new information is insuf-
ficient, information noise is Pareto-improving only if ∂Ã/∂σ2

ε > 0. On
the other hand, the value of information is positive only if Ã > A. This
suggests that Pareto-improving ambiguity is possible only when both
∂Ã/∂σ2

ε > 0 and Ã > A hold for some σ2
ε ≥ 0. When there is no het-

erogeneity in σ2
i , however, Appendix A.9 shows that for any σ2

ε ≥ 0,
∂Ã/∂σ2

ε > 0 is equivalent to Ã < A. This means that the impact of
information noise on the total abatement is monotonic. In other words,
information noise can improve welfare only if the value of information
is negative. Yet if the value of information is negative, the informa-
tion should not be published in the first place. Therefore, if there is
no heterogeneity in the players’ confidence, new information should be
publicized as clearly as possible whenever the value of information is
positive.

4.3.2 Heterogeneity both in µi and σ2
i

When the priors are highly heterogeneous in the sense that not only the
means, but also the variances are different across players, there does
exit a case in which Pareto-improving ambiguity is possible. Before
providing the main proposition, we present a couple of preliminary
results.

Proposition 8. If

µ∗ − µ̄

σ̄2 >
ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ) >
1
n ∑

i

µ∗ − µi

σ2
i

, (4.16)
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Figure 2: Non-monotonic relationship between equilibrium total abate-
ment and information noise. (n = 20, ē = 40, δ = 0.0005, ν = 0.0020,
σ2

u = 1.0, α = 1.5, ξ = 2.1) Numerical specification of priors is provided
in Figure 3.

there then exists s̄ > 0 such that for any σ2
∗ < s̄,

∂Ã
∂σ2

ε

∣∣∣∣
σ2

ε =0
> 0 and Ã

∣∣
σ2

ε =0 > A. (4.17)

Proof. See Appendix A.10.

Proposition 8 shows that unlike the case with homogeneous confi-
dence, the impact of information noise on the total abatement can be
non-monotonic as long as the true precision of new information is suffi-
ciently high. A sufficient condition for such a non-monotonicity is given
by (4.16). Notice that the inequalities (4.16) never hold when there is no
heterogeneity in σ2

i because in that case the very left- and right-hand
sides of the inequalities coincide. Observe (4.17) shows that the total
abatement increases for a small amount of information noise and de-
creases for a large amount of information noise. A numerical example
of this non-monotonic relationship is provided in Figure 2.

Proposition 8 is only meaningful if there exists a reasonable set of
parameter values that satisfy (4.16). The purpose of the following two
propositions is to clarify a necessary and sufficient condition for the
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existence of such parameters. As it turns out, the parametric condition
implied by (4.16) is not as restrictive as it might appear.

Proposition 9. For a given profile Γ of priors, define RΓ ⊂ R2 by

RΓ := {(α, ξ) ∈ (0, ∞)× (−1, ∞) | (4.16) holds}. (4.18)

RΓ is nonempty if and only if Γ satisfies

µ∗ − µ̄

σ̄2 >
1
n ∑

i

µ∗ − µi

σ2
i

. (4.19)

Proof. See Appendix A.11

Proposition 10. For any µ∗ > 0, there exists a prior profile such that (a)
µ∗ > µi > 0 for all i, (b) σ2

i > 0 for all i, and (c) (4.19) is satisfied.

Proof. See Appendix B.4.

Proposition 9 shows that there always exists a pair (α, ξ) which is con-
sistent with (4.16) if and only if the inequality (4.19) is satisfied. Propo-
sition 10 then shows that there always exists a profile Γ of priors which
satisfies (4.19) as well as a reasonable set of requirements.

Condition (4.19) is crucial for the non-monotonic relationship be-
tween the aggregate information and information noise. What is shown
by the next proposition is that if (4.19) is to be satisfied, there must exist
heterogeneity both in µi and σ2

i .

Proposition 11. If prior profile Γ satisfies (4.19), then it must be the case that
µi ̸= µj for some i, j, σ2

i ̸= σ2
j for some i, j, and

n

∑
i=1

{
1 − µ∗ − µi

µ∗ − µ̄

}
1
σ2

i
> 0. (4.20)

Proof. See Appendix B.5.

The inequality (4.20) means that σ2
i must be large if µ∗− µi is large. This

requires that relatively more optimistic players must be relatively less
confident while relatively more pessimistic players must be relatively
more confident.
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Figure 3: An illustration of heterogeneous priors (n = 20)

The profile of priors depicted in Figure 3, for instance, satisfies (4.19).
In this example, there are two groups of players. The first group consists
of those who have beliefs with larger µi and smaller σ2

i . One could
label those players as being confident pessimists. The other group, on
the other hand, consists of players whose beliefs have smaller µi and
larger σ2

i . They could be referred to as less confident optimists. For this
numerical example of Γ, the corresponding set RΓ of (α, ξ) is illustrated
in Figure 4. It is worth noting here that set RΓ occupies a non-negligible
part of the α-ξ plane and hence the non-monotonic relationship between
the total abatement and information noise identified in Proposition 8 is
not an exceptional case. Also clear from the figure is that such a non-
monotonic relationship emerges only when the degrees of risk- and
ambiguity-aversion are not simultaneously large. If players are highly
risk- and ambiguity-averse, then the existence of ambiguity provides
a strong incentive to pollution mitigation. In such a case, information
noise, which adds extra ambiguity, always works in favor of increasing
total abatement. As a result, the equilibrium total abatement would be
a monotonically increasing function of information noise.

We now turn to the main result of this section.

Proposition 12. Suppose the number n of players is sufficiently large and the
prior profile Γ satisfies (4.19) so that RΓ is nonempty. There exists a nonempty
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Figure 4: An illustration of sets RΓ and R′
Γ in the α-ξ plane. Numerical

specification is the same as in Figures 2 and 3.

open subset R′
Γ ⊂ RΓ and for each pair (α, ξ) ∈ R′

Γ, there exists s̄ > 0 such
that for any σ2

∗ < s̄, Pareto-improving ambiguity is possible.

Proof. See Appendix A.12.

We note that even if the total abatement is increased by adding some
information noise, it does not necessarily imply every player is better
off. A larger total abatement can be achieved by extra ambiguity at the
expense of welfare of some highly ambiguity-averse players. What is
shown by Proposition 12 is that as long as the prior profile Γ satisfies
(4.19), there are cases in which players are in fact all better off due to
a small amount of information noise. Figure 5 provides a numerical
example of such cases. Notice that in this example, W̃i|σ2

ε =0 > W̃i|σ2
ε =∞

for all i. This means that the value of information is positive in the
absence of information noise. When σ2

∗ is sufficiently small, however,
there is a positive and finite level σ2

ε ∈ (0, ∞) of information noise such
that W̃i > W̃i|σ2

ε =0 > W̃i|σ2
ε =∞ for all i.

We should emphasize that the roles played by the degrees of risk-
and ambiguity- aversion are not symmetric here. For Pareto-improving
ambiguity to be possible, the degree of ambiguity aversion can be ar-
bitrarily large while the degree of risk aversion has an upper bound as
illustrated in Figure 4. The next corollary formalizes this point.
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Figure 5: Welfare implication of information noise with α = 1.5 and
ξ = 2.1. Numerical specification is the same as in Figures 2 and 3.

Corollary 1. The set of ξ included in R′
Γ is not bounded above while the set of

α included in R′
Γ is bounded above.

Proof. See Appendix A.13.

Higher degrees of risk- and ambiguity aversion both amplify the
strategic substitution effect through the corresponding increase of δρ ∑i γ̃i

in (4.14). As is seen in (4.14) and (4.15), intensification of the strategic
substitution effect in turn makes it difficult for information noise to be
Pareto-improving. Since γ̃i = α

[
σ2

u + (1 + ξ)σ̃2
i
]
, however, the influence

of ambiguity aversion diminishes when σ̃2
i is small. In other words,

preference about ambiguity only matters when there remains a suffi-
ciently large ambiguity. This is why an arbitrarily larger degree of am-
biguity aversion is consistent with Pareto-improving information noise
as long as the remaining ambiguity is very small. On the other hand,
the influence of risk aversion remains even if σ̃2

i = 0. Accordingly, when
the degree of risk aversion is sufficiently large, the strategic substitution
effect dominates, making Pareto-improving ambiguity impossible. This
asymmetry comes form our assumption of σ2

u > 0, which means the
risk of β remains even after the ambiguity is all resolved.
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5 Conclusions

This paper developed a model of public bads where players have hetero-
geneous beliefs about the consequence of their collective action. Based
on a simple analysis of the model, we shed light on an important trade-
off associated with information policies. In the presence of belief het-
erogeneity and ambiguity, the value information depends on the ra-
tionalization effect, the convergence effect, and the confidence effect.
Depending on the players’ preference about risk and ambiguity and on
the players’ subjective beliefs, one effect dominates the other.

Among the most interesting implications is that regularly publishing
new information with minor updates might do more harm than good,
especially if the players are highly ambiguity averse. Instead, the new
information should be published only when significantly novel findings
are available. Moreover, as long as players are equally confident about
their beliefs, adding noise to the public information would never be a
good idea. When the players’ beliefs are highly heterogeneous, on the
other hand, Pareto improvement can be achieved by choosing unclear
phrases or ambiguous wording in the published information.

There are several directions of future research that appear fruitful.
First, it would be of interest to investigate the implications of heteroge-
neous beliefs and ambiguity to the possible cooperation among players.
This line of analysis will be straightforward given the simplicity and
the tractability of our model. Another interesting direction would be
the consideration of strategic interaction between the players and the
policy maker. While the additional layer of strategic interplay might
compromise the tractability of the model, such an extension will surely
be realistic and would provide economically useful insights.
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A Proofs

A.1 Proof of Proposition 1

Since the cost functions are identical among players, it suffices to show
that the expected marginal abatement benefit is larger for player j than
i when both players choose the same level of abatement. Fix arbitrary
levels of total and individual abatement as A and a = ai = aj, respec-
tively. Then clearly xi = xj and thus f̂i(·|θ) = f̂ j(·|θ) for all θ ∈ Θ. To see
the relationship between ĝi and ĝj, consider a special case of Lemma 5
in Appendix B.2 where Z = Θ, ψ1 := gj, ψ0 := gi, and specify the den-
sity h by h(θ) ∝ ϕ′(E[u|θ])E[u′|θ]. Then ψ1(θ

′)ψ0(θ) − ψ1(θ)ψ0(θ
′) =

gj(θ
′)gi(θ) − gi(θ)gi(θ

′) > 0 for any θ′ > θ. Lemma 5 shows that ĝj

strictly first-degree stochastically dominates ĝi. Hence, for any β ∈ B,

∫
β′≤β

fi(β′)dβ′ =
∫

θ∈Θ

[∫
β′≤β

f̂ j(β′|θ)dβ′
]

ĝi(θ)dθ (A.1)

<
∫

θ∈Θ

[∫
β′≤β

f̂ j(β′|θ)dβ′
]

ĝj(θ)dθ =
∫

β′≤β
f j(β′)dβ′,

where the first equality follows from f̂i = f̂ j and the strict inequality fol-
lows from the stochastic dominance of ĝj against ĝi. This shows that f j

strictly first-degree stochastically dominates fi. Therefore, we conclude∫
B D′(E; β) f j(β)dβ >

∫
B D′(E; β) fi(β)dβ, which proves our claim.

A.2 Proof of Proposition 2

For each A ≥ 0, define the expected marginal benefit, EMB(A), by

EMB(A) :=
∫

B
D′(nē − A; β) fA(β)dβ, (A.2)

where fA(β) :=
∫

Θ f̂A(β|θ)ĝA(θ)dθ, f̂A(β|θ) ∝ u′(xA) f (β|θ), ĝA(θ) ∝
ϕ′(E[u(xA)|θ])E[u′(xA)|θ]g∗(θ), and xA := ȳ − D(nē − A; β)− C(A/n).
Since A∗ is the efficient level of aggregate abatement, it must be the case
that 1

n C′(A∗/n) = EMB(A∗). On the other hand, the equilibrium level
A of aggregate abatement is determined by C′(A/n) = EMB(A). Since
C′ is increasing, this implies A < A∗.
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A.3 Proof of Proposition 3

A similar argument as in Proposition 1 shows that that the equilibrium
total abatement is smaller than in the case of rational belief being shared
by all players. Since the abatement level is insufficient even in the latter
case and since Wi is a strictly concave function of total abatement, the
result immediately follows.

A.4 Proof of Lemma 1

Notice that Lemma 1 is a special case of Lemma 5 in in Appendix B.2
where Z = B, h = f , ψ0(β) := 1, and ψ1(β) := u′(ȳ − D(E; β) −
C(ai)). By statement (b) in Lemma 5, u′(ȳ − D(E; β′)− C(ai)) > u′(ȳ −
D(E; β) − C(ai)) for all β′ > β, meaning u′ is strictly increasing in β.
Observe

∂

∂β
u′(ȳ − D(E; β)− C(ai)) = −u′′(xi)

∂D(E; β)

∂β
, (A.3)

which is strictly positive if and only if u is strictly concave. Hence, by
Lemma 5, f̂i(·|θ) ∝ u′(xi) f (·|θ) strictly first-degree stochastically domi-
nates f (·|θ) if and only if u is strictly concave.

A.5 Proof of Lemma 2

Consider a special case of Lemma 5 in Appendix B.2 where Z = Θ,
h = gi, ψ0(θ) := 1, and ψ1(θ) := ϕ′(E[u|θ])E[u′|θ]. By Lemma 5, ĝi ∝
ϕ′(E[u|θ])E[u′|θ]gi strictly first-order stochastically dominates gi if and
only if ϕ′(E[u|θ])E[u′|θ] is strictly increasing in θ.

It then suffices to show that ϕ′(E[u|θ])E[u′|θ] is strictly increasing
in θ when u and v are both concave and at least one of the concav-
ities is strict. First notice that under Assumption 1, E[u|θ] is strictly
decreasing in θ because u is strictly decreasing in β. This means that
ϕ′(E[u|θ]) is (strictly) increasing in θ if ϕ is (strictly) concave. Similarly,
E[u′|θ] is (strictly) increasing in θ if u is (strictly) concave. Therefore,
ϕ′(E[u|θ])E[u′|θ] is strictly increasing in θ if ϕ and u are both concave
and at least one of them is strictly concave.
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A.6 Proof of Proposition 4

Notice that Assumption 1 implies that for each β ∈ B,
∫

β′≤β f (β′|θ)dβ′

is strictly decreasing in θ. Hence for any β ∈ B,∫
β′≤β

fi(β′)dβ′ =
∫

θ∈Θ

∫
β′≤β

f̂i(β′|θ)dβ′ ĝi(θ)dθ (A.4)

<
∫

θ∈Θ

∫
β′≤β

f (β′|θ)dβ′ ĝi(θ)dθ (A.5)

<
∫

θ∈Θ

∫
β′≤β

f (β′|θ)dβ′gi(θ)dθ =
∫

β′≤β
f c
i (β′)dβ′,

where the first and second inequalities follow from Lemma 1 and Lemma 2,
respectively. Therefore, fi strictly first-degree stochastically dominates
f c
i . Since D′(E; β) is strictly increasing in β, this means for each level

A of aggregate abatement, the subjective expected marginal benefit is
strictly larger under fi than under f c

i for all i. Then the claim of the
proposition follows from the first-order condition (3.1).

A.7 Proof of Proposition 5

Suppose players become more ambiguity averse and their ambiguity
attitude is represented by ϕM instead of ϕ. This means there exists an
increasing and strictly concave function M : R → R such that ϕM(u) =
M(ϕ(u)). Let ĝM

i (·) and ĝi(·) be the preference-adjusted prior of players
with ϕM and ϕ, respectively. Then for any θ′ > θ

ĝM
i (θ)

ĝM
i (θ′)

=
M′(ϕ(E[u(xi)|θ]))
M′(ϕ(E[u(xi)|θ′]))

ϕ′(E[u(xi)|θ])E[u′(xi)|θ]gi(θ)

ϕ′(E[u(xi)|θ′])E[u′(xi)|θ′]gi(θ′)
(A.6)

<
ϕ′(E[u(xi)|θ])E[u′(xi)|θ]gi(θ)

ϕ′(E[u(xi)|θ′])E[u′(xi)|θ′]gi(θ′)
=

ĝi(θ)

ĝi(θ′)
, (A.7)

which means that relatively pessimistic study θ′ obtains a larger weight
when individuals become more ambiguity averse. In particular, ĝM

i
strictly first-order stochastically dominates ĝi. Then the statement of
the proposition follows from the same argument as in Proposition 4.
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A.8 Proof of Proposition 6

Observe

Ã − A =
n−1ρ

n−1 + ρδγ̃

n

∑
i=1

σ2
i

σ2
∗ + σ2

i

{
(µ∗ − µi)−

ē − ρµ̄

n−1 + ρδγ̄
δα(1 + ξ)σ2

i

}
.

Notice that the right-hand side is continuous and strictly increasing in
(µ∗ − µi) for each i. Since the entire term is strictly negative when µ∗ −
µi = 0 for all i, the first assertion of the proposition follows. Observe
that the second term in the brace is increasing in α and ξ, which shows
that ∆µ is larger for larger values of α and ξ.

To prove the second assertion, notice

w̃i − wi

ν2−1 = (A − Ã)(ai + ãi)

[
ai − ãi

A − Ã
− µ∗ + µ∗ + (nē − A)δγ∗ + (nē − Ã)δγ∗

µi + µ̃i + (nē − A)δγi + (nē − Ã)δγ̃i

]
.

Since µ∗ > µ̃i > µi and γ∗ > γ̃i, the second term in the square bracket
is greater than one when γi = γ∗, which is implied by σ2

i = σ2
∗ . If µi is

close to µ∗, the result (i) shows A > Ã. If furthermore σ2
i is sufficiently

close to σ2
∗ , then ãi is close to Ã/n and thus ai > ãi for all i. This in turn

implies A − Ã > ai − ãi > 0 for all i. Therefore, the first term in the
square bracket is strictly smaller than one, which completes the proof.

A.9 Proof of Proposition 7

Notice first

w̃i − wi =
δ

2

{
µ∗ +

ē − ρµ̃

n−1 + δργ̃
δγ∗ + µ∗ +

ē − ρµ̄

n−1 + δργ̄
δγ∗

}
(Ã − A)

− δ

2

{
µ̃i +

ē − ρµ̃

n−1 + δργ̃
δγ̃i + µi +

ē − ρµ̄

n−1 + δργ̄
δγi

}
(ãi − ai),

(A.8)

where

Ã − A =
n−1

n−1 + δργ̃ ∑
i

σ2
i

σ2
∗ + σ2

ε + σ2
i

ρ

{
(µ∗ − µi)−

ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)σ2

i

}
,

(A.9)
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and

ãi − ai =
σ2

i
σ2
∗ + σ2

ε + σ2
i

ρ

{
(µ∗ − µi)−

ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)σ2

i

}
− n−1δργ̃i

n−1 + δργ̃ ∑
j

σ2
j

σ2
∗ + σ2

ε + σ2
j

ρ

{
(µ∗ − µj)−

ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)σ2

j

}
.

(A.10)

We prove the proposition by combining the following two lemmas.

Lemma 3. For a given level of σ2
ε ≥ 0,

1. if ∂w̃i/∂σ2
ε > 0 for all i, then it must be the case that ∂Ã/∂σ2

ε > 0;

2. if w̃i > wi for all i, then it must be the case that Ã > A.

Proof. Suppose, by way of contradiction, ∂w̃i/∂σ2
ε > 0 for all i and

∂Ã/∂σ2
ε ≤ 0. Then (4.15) implies ∂ãi/∂σ2

ε < 0 for all i and ∂Ã/∂σ2
ε =

∑i ∂ãi/∂σ2
ε < 0. Hence ∂w̃i/∂σ2

ε > 0 and (4.15) imply

µ∗ +
ē−ρµ̃

n−1+δργ̃
δγ∗

µ̃i +
ē−ρµ̃

n−1+δργ̃
δγ̃i

<
∂ãi/∂σ2

ε

∂Ã/∂σ2
ε

< 1. (A.11)

But this is impossible because µ∗ > µ̃i and σ2
∗ > σ̃2

i for all i.
To see the latter part of the proposition suppose, by way of contra-

diction, w̃i > wi for all i and Ã ≤ A. Then (A.8) implies ãi < ai for all i
and Ã < A. Then it follows from w̃i > wi and (A.8) that for each i

µ∗ +
ē−ρµ̃

n−1+δργ̃
δγ∗ + µ∗ +

ē−ρµ̄

n−1+δργ̄
δγ∗

µ̃i +
ē−ρµ̃

n−1+δργ̃
δγ̃i + µi +

ē−ρµ̄

n−1+δργ̄
δγi

<
ãi − ai

Ã − A
< 1,

which is impossible since µ∗ > µ̃i, σ2
∗ > σ̃2

i for all i and A < A∗.

Lemma 4. Suppose σ2
i = σ̄2 > 0 for all i. For a given level of σ2

ε ≥ 0,
∂Ã/∂σ2

ε > 0 if and only if Ã < A.

Proof. Since σ2
i = σ̄2 > 0 for all i, combining (4.14) and (A.9) yields

Ã − A = −
(

1 +
ρδα(1 + ξ)

n−1 + δργ̃

[
σ̄2

σ2
∗ + σ2

ε + σ̄2

]
σ̄2
)−1

(σ2
∗ + σ2

ε + σ̄2)
∂Ã
∂σ2

ε
,
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from which the result follows.

Proof of the proposition is immediate from these two lemmas.

A.10 Proof of Proposition 8

We note limσ2∗ ,σ2
ε →0 µ̃i = µ∗, limσ2∗ ,σ2

ε →0 σ̃2
i = 0, limσ2∗ ,σ2

ε →0 γ̃i = ασ2
u, and

lim
σ2∗ ,σ2

ε →0

∂µ̃i

∂σ2
ε
= −µ∗ − µi

σ2
i

, lim
σ2∗ ,σ2

ε →0

∂γ̃i

∂σ2
ε
= α(1 + ξ). (A.12)

Also notice limσ2∗ ,σ2
ε →0 δργ̃i = δρασ2

u, meaning that the strength of strate-
gic substitution effect becomes independent of ξ when σ2

∗ , σ2
ε are close

to zero. Hence,

lim
σ2∗ ,σ2

ε →0

∂Ã
∂σ2

ε
=

ρ

n−1 + δρασ2
u

{
ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ)− 1
n ∑

i

µ∗ − µi

σ2
i

}
,

(A.13)

lim
σ2∗ ,σ2

ε →0

∂ãi

∂σ2
ε
=

1
n

lim
σ2∗ ,σ2

ε →0

∂Ã
∂σ2

ε
+ ρ

(
1
n ∑

j

µ∗ − µj

σ2
j

− µ∗ − µi

σ2
i

)
, (A.14)

lim
σ2∗ ,σ2

ε →0
Ã − A =

ρ

n−1 + δρασ2
u

{
µ∗ − µ̄

σ̄2 − ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)

}
σ̄2,

(A.15)

lim
σ2∗ ,σ2

ε →0
ãi − ai = ρ

{
µ∗ − µi

σ2
i

− ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)

}
σ2

i

− ρ
δρασ2

u
n−1 + δρασ2

u

{
µ∗ − µ̄

σ̄2 − ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ)

}
σ̄2.

(A.16)

Observe that (A.13) implies

lim
σ2∗ ,σ2

ε →0

∂Ã
∂σ2

ε
> 0 ⇐⇒ ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ) >
1
n ∑

i

µ∗ − µi

σ2
i

. (A.17)
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On the other hand, (A.15) implies

lim
σ2∗ ,σ2

ε →0
Ã > A ⇐⇒ µ∗ − µ̄

σ̄2 >
ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ) (A.18)

⇐⇒ µ∗ − µ̄

σ̄2 >
ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ). (A.19)

By (A.17) and (A.19), limσ2∗ ,σ2
ε →0 Ã > A and limσ2∗ ,σ2

ε →0 ∂Ã/∂σ2
ε > 0 if

and only if (4.16) is satisfied. Hence, if (4.16) is satisfied, there exists
s̄ > 0 such that limσ2

ε →0 Ã > A and limσ2
ε →0 ∂Ã/∂σ2

ε > 0 for any σ2
∗ < s̄,

which completes the proof.

A.11 Proof of Proposition 9

Define for each α ∈ R++

ξ(α) :=
(

µ∗ − µ̄

σ̄2

)
n−1 + δρασ2

u
δα(ē − ρµ∗)

− 1 > −1, (A.20)

ξ(α) :=

(
1
n ∑

i

µ∗ − µi

σ2
i

)
n−1 + δρασ2

u
δα(ē − ρµ∗)

− 1 > −1 (A.21)

so that R = ∪α∈R++
({α}× (ξ(α), ξ(α))). Since ξ(α) < ξ(α) if and only if

(4.19) is satisfied, the set R is nonempty if and only if (4.19) is satisfied.

A.12 Proof of Proposition 12

Suppose (4.19) is satisfied. Note that

lim
σ2∗ ,σ2

ε →0

∂w̃i

∂σ2
ε
= δ

{
µ∗ +

ē − ρµ∗
n−1 + δρασ2

u
δασ2

u

}(
lim

σ2∗ ,σ2
ε →0

∂Ã
∂σ2

ε
− lim

σ2∗ ,σ2
ε →0

∂ãi

∂σ2
ε

)
,

(A.22)
which with (A.13) and (A.14) implies

lim
σ2∗ ,σ2

ε →0

∂w̃i

∂σ2
ε
> 0 ⇐⇒ lim

σ2∗ ,σ2
ε →0

∂Ã
∂σ2

ε
> lim

σ2∗ ,σ2
ε →0

∂ãi

∂σ2
ε

⇐⇒ µ∗ − µi

σ2
i

> m(α, ξ),

(A.23)
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where

m(α, ξ) :=
(

1 + δρασ2
u

n−1 + δρασ2
u

)
1
n ∑

i

µ∗ − µi

σ2
i

+

(
1 − 1 + δρασ2

u
n−1 + δρασ2

u

)
ē − ρµ∗

n−1 + δρασ2
u

δα(1 + ξ). (A.24)

On the other hand, limσ2∗ ,σ2
ε →0 w̃i − wi > 0 if and only if

µ∗ +
ē−ρµ∗

n−1+δρασ2
u
δασ2

u + µ∗ +
ē−ρµ̄

n−1+δργ̄
δασ2

u

µ∗ +
ē−ρµ∗

n−1+δρασ2
u
δασ2

u + µi +
ē−ρµ̄

n−1+δργ̄
δγi

>
limσ2∗ ,σ2

ε →0 ãi − ai

limσ2∗ ,σ2
ε →0 Ã − A

. (A.25)

Notice that the left-hand side of (A.25) is greater than 1 if and only if

ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ) <

µ∗ − µi

σ2
i

. (A.26)

If (A.26) does not hold, then the right-hand side of (A.25) is negative
and (A.25) is satisfied. If (A.26) does hold, (A.25) is satisfied if the right-
hand side of (A.25) is less than or equal to 1, which is equivalent to

µ∗ − µi

σ2
i

≤ mi(α, ξ) =:

(
1 + δρασ2

u
n−1 + δρασ2

u

σ̄2

σ2
i

)
µ∗ − µ̄

σ̄2

+

(
1 − 1 + δρασ2

u
n−1 + δρασ2

u

σ̄2

σ2
i

)
ē − ρµ̄

n−1 + δργ̄
δα(1 + ξ).

(A.27)

Note (A.27) is a sufficient condition for (A.25). By combining (A.23) and
(A.27), we conclude that limσ2∗ ,σ2

ε →0 w̃i > wi and limσ2∗ ,σ2
ε →0 ∂w̃i/∂σ2

ε > 0
if (α, ξ) ∈ R and

m(α, ξ) <
µ∗ − µi

σ2
i

≤ mi(α, ξ). (A.28)

We shall prove the set R′′ := {(α, ξ) ∈ R | (A.28) holds for all i} is nonempty.
For each α ∈ R++, define ξ̂(α) := 2−1[ξ(α) + ξ(α)] ∈ (ξ(α), ξ(α)) so

that (α, ξ̂(α)) ∈ R for all α ∈ R++. Notice

lim
α→0

m(α, ξ̂(α)) <
µ∗ − µi

σ2
i

< lim
α→0

mi(α, ξ̂(α)) (A.29)
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for all i if n is sufficiently large. Therefore, there must exist α > 0 such
that (α, ξ̂(α)) ∈ Int(R′′) for all α < α. Since (α, ξ̂(α)) is an interior
point of R′′ for each α < α, there exists a neighborhood O(α) such that
(α, ξ̂(α)) ∈ O(α) ⊂ R′′ for each α < α. Then R′ :=

∪
α<α O(α) ⊂ R′′ ⊂ R

is a nonempty open subset of R such that for each (α, ξ) ∈ R′,

lim
σ2∗ ,σ2

ε →0
w̃i > wi and lim

σ2∗ ,σ2
ε →0

∂w̃i

∂σ2
ε
> 0, (A.30)

which completes the proof.

A.13 Proof of Corollary 1

The proof of Proposition 12 shows that there exists α > 0 such that
(α, ξ̂(α)) ∈ R′ for all α < α. Since limα→0 ξ̂(α) = ∞, this implies that the
set of ξ included in R′ is not bounded above.

On the other hand, let (αk, ξk)k∈N be an arbitrary sequence in R such
that limk→∞ αk = ∞. Since limk→∞ m(αk, ξk) = n−1 ∑i(µ∗ − µi)/σ2

i ,
(A.23) implies (αk, ξk) /∈ R′ for sufficiently large k. Therefore, the set
of α included in R′ is bounded above.
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B Supplements (for online publication)

B.1 Existence and uniqueness of A∗

Observe

dWi(A/n)
dA

=
∫

Θ

(
ϕ′(E[u(x)|θ])E

[
u′(x)

{
D′(E; β)− 1

n
C′(A/n)

} ∣∣∣∣θ] )g∗(θ)dθ.

(B.1)

Since limA→0{D′(E; β)− 1
n C′(A/n)} > 0 and limA→nē{D′(E; β)− 1

n C′(A/n)} <

0 for each β ∈ B, there exists A∗ ∈ (0, nē) such that dWi(A∗/n)/dA = 0.
Also notice

d2Wi(A/n)
dA2 =

∫
Θ

(
ϕ′′(E[u(x)|θ])

{
E
[

u′(x)
{

D′(E; β)− 1
n

C′(A/n)
} ∣∣∣∣θ]}2

+ ϕ′(E[u(x)|θ])E
[

u′′(x)
{

D′(E; β)− 1
n

C′(A/n)
}2

− u′(x)
{

D′′(E; β) +
1
n2 C′′(A/n)

} ∣∣∣∣θ])g∗(θ)dθ,

(B.2)

which is strictly negative because

ϕ′′(E[u(x)|θ])
ϕ′(E[u(x)|θ])

{
E
[

u′(x)
{

D′(E; β)− 1
n

C′(A/n)
} ∣∣∣∣θ]}2

< E
[

u′(x)
(

D′′(E; β) +
1
n2 C′′(A/n)− u′′(x)

u′(x)

{
D′(E; β)− 1

n
C′(A/n)

}2)]
(B.3)

for each θ ∈ Θ. The left-hand side is less than or equal to zero while
the right-hand side is strictly positive. Hence, Wi(A/n) as a function of
A is strictly concave, which implies A∗ must be unique.

B.2 Lemma for propositions

To prove the propositions in the main text, it is useful to sumarize the
following results as a lemma. The proof of the lemma is reminiscent of
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the classical result of Milgrom (1981).

Lemma 5. Let Z ⊂ R. For any pair ψk : Z → R++, k ∈ {0, 1} of functions,
the following are equivalent:

(a) For any probability density h with support Z̄ ⊂ Z,∫
s≤z

ĥ1(s)ds <
∫

s≤z
ĥ0(s)ds ∀z < sup Z̄, (B.4)

where ĥk(z) ∝ ψk(z)h(z) for k = 0, 1.

(b) For any z ∈ Z,

ψ1(z′)ψ0(z)− ψ1(z)ψ0(z′) > 0 ∀z′ > z. (B.5)

Proof. Suppose (a) is true. Fix z ∈ Z. For each z′ > z, consider a density
function h with support Z̄ = {z, z′} such that h(z) = h(z′) = 1/2. Then
(a) implies

ψ1(z)
ψ1(z) + ψ1(z′)

<
ψ0(z)

ψ0(z) + ψ0(z′)
(B.6)

and hence ψ1(z′)ψ0(z)− ψ1(z)ψ0(z′) > 0 for all z′ > z.
Conversely, suppose (b) is true. Choose an arbitrary density function

h with support Z̄ ⊂ Z. If Z̄ is a singleton, the claim of (a) is vacuously
true. Assume that Z̄ contains more than two elements. Then choose
z∗ ∈ Z̄ such that z∗ < sup Z̄. Then (b) implies

ψ1(z′)h(z′)
ψ1(z)

>
ψ0(z′)h(z′)

ψ0(z)
(B.7)

if z′ > z∗ ≥ z. Hence,

1
ψ1(z)

∫
z′>z∗

ψ1(z′)h(z′)dz′ >
1

ψ0(z)

∫
z′>z∗

ψ0(z′)h(z′)dz′, (B.8)

or equivalently,

ĥ1(z)∫
z′>z∗ ĥ1(z′)dz′

=
ψ1(z)∫

z′>z∗ ψ1(z′)h(z′)dz′
<

ψ0(z)∫
z′>z∗ ψ0(z′)h(z′)dz′

=
ĥ0(z)∫

z′>z∗ ĥ0(z′)dz′
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for all z ≤ z∗. It follows that∫
z≤z∗ ĥ1(z)dz

1 −
∫

z≤z∗ ĥ1(z)dz
=

∫
z≤z∗ ĥ1(z)dz∫

z′>z∗ ĥ1(z′)dz′
<

∫
z≤z∗ ĥ0(z)dz∫

z′>z∗ ĥ0(z′)dz′
=

∫
z≤z∗ ĥ0(z)dz

1 −
∫

z≤z∗ ĥ0(z)dz
,

which in turn implies∫
z≤z∗

ĥ1(z)dz <
∫

z≤z∗
ĥ0(z)dz. (B.9)

Since z∗ < sup Z̄ is arbitrarily chosen, (a) follows.

B.3 Derivation of equation 4.3

Notice first that since f (·|θ) is normal,

E [u(xi)|θ] = −1
α

∫
B

e−α(ȳ−βδE−C(ai)) f (β|θ)dβ (B.10)

= −1
α

e−α(ȳ−C(ai))eαδEθ+ 1
2 α2δ2E2σ2

u , (B.11)

and thus

ϕ(E [u(xi)|θ]) = − 1
1 + ξ

(−E [u(xi)|θ])1+ξ (B.12)

= −α−(1+ξ)

1 + ξ
e−α(1+ξ)(ȳ−C(ai)− 1

2 ασ2
uδ2E2)eα(1+ξ)δEθ. (B.13)

Normality of gi then implies

Vi(a) = −α−(1+ξ)

1 + ξ
e−α(1+ξ)(ȳ−C(ai)− 1

2 ασ2
uδ2E2)

∫
Θ

eα(1+ξ)δEθgi(θ)dθ (B.14)

= −α−(1+ξ)

1 + ξ
e−α(1+ξ)(ȳ−C(ai)− 1

2 ασ2
uδ2E2)eα(1+ξ)δEµi+

1
2 α2(1+ξ)2δ2E2σ2

i

(B.15)

= −α−(1+ξ)

1 + ξ
e−α(1+ξ)vi(a), (B.16)

where

vi(a) := ȳ − δµiE − δ2

2
γiE2 − ν

2
a2

i (B.17)
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and γi := α
[
σ2

u + (1 + ξ)σ2
i
]
. A similar computation yields

Wi(a) = −α−(1+ξ)

1 + ξ
e−α(1+ξ)wi(a), (B.18)

where

wi(a) := ȳ − δµ∗E − δ2

2
γ∗E2 − ν

2
a2

i (B.19)

and γ∗ := α
[
σ2

u + (1 + ξ)σ2
∗
]
.

B.4 Proof of Proposition 10

Choose υ1 such that

0 < υ1 <
1
n

µ∗ (B.20)

and put {µi}n
i=1 by

µi := µ∗ − i · υ1 ∀i ∈ {1, 2, . . . , n}, (B.21)

Then {µi}n
i=1 satisfies (a). Also, put

σ2
i := (i + υ2)υ1 ∀i ∈ {1, 2, . . . , n}, (B.22)

for some υ2 > 0. Clearly, {σ2
i }n

i=1 satisfies (b).
Observe then

µ∗ − µ̄ =
1
n

n

∑
i=1

(µ∗ − µi) =
υ1

n

n

∑
i=1

i (B.23)

σ̄2 =
1
n

n

∑
i=1

σ2
i =

υ1

n

n

∑
i=1

(i + υ2) =
υ1

n

n

∑
i=1

i + υ1υ2 (B.24)

µ∗ − µi

σ2
i

=
i

i + υ2
(B.25)

Hence
µ∗ − µ̄

σ̄2 =
1
n ∑n

i=1 i
1
n ∑n

i=1 i + υ2
(B.26)
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and
1
n

n

∑
i=1

µ∗ − µi

σ2
i

=
1
n

n

∑
i=1

i
i + υ2

. (B.27)

We note

lim
υ2→0

µ∗ − µ̄

σ̄2 = 1, lim
υ2→0

1
n

n

∑
i=1

µ∗ − µi

σ2
i

= 1, (B.28)

and
∂

∂υ2

{
µ∗ − µ̄

σ̄2

} ∣∣∣∣
υ2=0

= −
(

1
n

n

∑
i=1

i

)−1

(B.29)

∂

∂υ2

{
1
n

n

∑
i=1

µ∗ − µi

σ2
i

} ∣∣∣∣
υ2=0

= − 1
n

n

∑
i=1

1
i
. (B.30)

Since the Harmonic mean is always smaller than the Arithmetic mean,

(
1
n

n

∑
i=1

1
i

)−1

<
1
n

n

∑
i=1

i (B.31)

or equivalently,

− 1
n

n

∑
i=1

1
i
< −

(
1
n

n

∑
i=1

i

)−1

. (B.32)

Thus

lim
υ2→0

{
µ∗ − µ̄

σ̄2 − 1
n

n

∑
i=1

µ∗ − µi

σ2
i

}
= 0 (B.33)

and
∂

∂υ2

{
µ∗ − µ̄

σ̄2 − 1
n

n

∑
i=1

µ∗ − µi

σ2
i

} ∣∣∣∣
υ2=0

> 0. (B.34)

This means that there exists ῡ2 > 0 such that for any υ2 ∈ (0, ῡ2)

µ∗ − µ̄

σ̄2 − 1
n

n

∑
i=1

µ∗ − µi

σ2
i

> 0, (B.35)

which completes the proof.

46



B.5 Proof of Proposition 11

The result that heterogeneity is required both in µi and σ2
i is immediate

from contradiction argument. To see the last part of the proposition,
notice (4.19) is equivalent to

(
1
n

n

∑
i=1

µ∗ − µi

µ∗ − µ̄

1
σ2

i

)−1

>
1
n

n

∑
i=1

σ2
i . (B.36)

On the other hand, since the Harmonic mean is always smaller than the
Arithmetic mean,

1
n

n

∑
i=1

σ2
i ≥

(
1
n

n

∑
i=1

1
σ2

i

)−1

, (B.37)

where the inequality must be strict because σ2
i ̸= σ2

j . Therefore, we have

(
1
n

n

∑
i=1

µ∗ − µi

µ∗ − µ̄

1
σ2

i

)−1

>

(
1
n

n

∑
i=1

1
σ2

i

)−1

, (B.38)

or equivalently
1
n

n

∑
i=1

1
σ2

i
>

1
n

n

∑
i=1

µ∗ − µi

µ∗ − µ̄

1
σ2

i
(B.39)

from which the result follows.
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