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Abstract

This paper proposes a focused information criterion (FIC) for variable selection
in partially linear models. Our criterion is designed to select an optimal model for
estimating a focus parameter, which is a parameter of interest. We estimate the
model by the series method and jointly select the variables in the linear part and
the series length in the nonparametric part. A Monte Carlo simulation shows that
the proposed FIC successfully selects the model that has a relatively small mean
squared error of the estimator for the focus parameter.
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1 Introduction

The partially linear model (PLM) is one of the most popular semiparametric models

in econometrics and statistics. It retains the nice interpretability of linear models and

flexibility of nonparametric models while avoiding the curse of dimensionality. The first

application of the PLM was reported by Engle et al. (1986), who investigated a rela-

tionship between electricity sales and temperature. Since then, many estimation and

inference methods have been advocated by Chen (1988), Robinson (1988), Speckman

(1988), Donald and Newey (1994), Liang et al. (1999), and Zhang et al. (2011). Härdle

et al. (2013) included many recent applications of the PLM in their study.

This paper proposes a new model selection criterion for a PLM that is estimated

by the series estimator of Donald and Newey (1994). We develop a criterion for jointly

selecting variables in the linear part and the series length in the nonparametric part. We

introduce the local misspecification framework of Claeskens and Hjort (2003) and derive

a focused information criterion (FIC) that allows us to select an optimal model depending

on a specific parameter of interest.

FIC has attracted increasing attention in recent model selection literature. In regres-

sion, standard selection criteria, such as the Akaike information criterion (AIC; Akaike,

1973), the Bayesian information criterion (BIC; Schwarz, 1978), and Mallows Cp (Mal-

lows, 1973), are designed to select a model with a good fit or a good prediction prop-

erty. However, rather than being interested in finding a model with a good fit, applied

researchers in econometrics often focus on identifying a model that estimates a few pa-

rameters with specific economic implications. FIC is designed to select an optimal model

for estimating the specific parameter of interest, which is called the focus parameter. Our

goal is to select the model that attains the smallest mean squared error (MSE) of the

estimator for the focus parameter. The FIC is derived as an approximately unbiased

estimator for the MSE.

Our setup is different from that of existing FIC in that our full model is misspeci-

fied. In the FIC framework, there is a full (largest) model that nests the other candidate

submodels. It is assumed that the full model is correctly specified and that the other

submodels are misspecified (underspecified). Although misspecification can be avoided

by using the full model, the variance of the estimator can be large when the full model

contains too many parameters to estimate. FIC evaluates the trade-off between misspec-

ification bias and estimation variance. In contrast to the standard setup, our candidate

models, including the full model, are misspecified because of the nature of the series esti-

mator. Because a finite-dimensional series is only an approximation of the true unknown

function, all candidate models are intrinsically misspecified. Therefore, we construct an

FIC for the pseudo-true parameter values rather than for the true parameter values. The

pseudo-true values are defined as the linear projection coefficients of the full model. Our
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simulation result shows that our FIC works well even when the performance is evaluated

at the true parameter values.

Our FIC is similar to that of Claeskens and Hjort (2003), who proposed an FIC for

linear regression models with a finite number of regressors. However, they considered

their full model to be the true model, whereas we consider our full model to be an ap-

proximation of the true model. Liu (2013) investigated the properties of model averaging

estimators under a setting similar to that of Claeskens and Hjort (2003).

Other related studies include those by Ding et al. (2011) and Zhang and Liang (2011).

Ding et al. (2011) proposed a variable selection method for the PLM on the basis of

lasso. Their setting is similar to ours, but they did not address the problem of finding an

optimal model for estimating the focus parameter. Zhang and Liang (2011) considered

the generalized additive PLM and proposed an FIC for variable selection in the linear part

of the model. Their FIC is not applicable to determining the series length, whereas our

FIC can simultaneously determine the variables in the linear part and the series length.

The remainder of the paper is organized as follows. Section 2 introduces the model

and describes our local misspecification framework. Section 3 derives the FIC. Section 4

presents the result of a Monte Carlo study. Section 5 presents our conclusions.

2 Model

We consider the PLM

yi = x′
iβ + g(zi) + ui, E[ui|xi, zi] = 0, i = 1, . . . , n, (1)

where yi is a scalar dependent variable and xi is a finite-dimensional vector of regressors.

For simplicity of notation, we assume that zi is a scalar. The functional form of g(z) is

unknown. Heteroskedasticity of unknown form is allowed.

The vector β and the function g(z) are estimated jointly by the series estimator of

Donald and Newey (1994). The series estimator approximates g(z) by a linear combi-

nation of a J × 1 vector of basis functions: pJ(z) = (p1(z), . . . , pJ(z))
′. The series can

be a power series, piecewise local polynomial spline, Fourier series, among others. For a

power series, the vector of basis functions is pJ(z) = (1, z, z2, . . . , zJ−1)′. The estimator

is obtained by regressing yi on xi and pJ(zi).

We first consider variable selection in the linear part of (1). Suppose that xi is divided

into p × 1 and q × 1 subvectors: xi = (x′
1,i, x

′
2,i)

′. Also, β is divided as β = (β′
1, β

′
2)

′ so

that it is conformable with xi. The vector x1,i is the set of regressors that must be

included in the model. For instance, x1,i may be a regressor whose partial effect on yi

is of particular concern. In contrast, some or all elements of x2,i may be excluded from

the model. Thus, x2,i may be a vector of control variables. The full model includes all
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regressors xi = (x′
1,i, x

′
2,i)

′, while the reduced (smallest) model includes only x1,i. There

are up to 2q possible combinations of regressors in the linear part.

Let µ = µ(β) be our focus parameter, where µ(·) is a known function. The focus

parameter may merely be an element of β. Note that the focus parameter can depend on

β2, the coefficients of possibly excluded regressors. If elements of x2,i are excluded from

the model, then the estimates of the corresponding coefficients are defined to be zero.

If g(z) is known, then an FIC can be constructed in a way similar to that of Claeskens

and Hjort (2003) (see Section 4.2). The full model, which is the true model, is defined as

yi = x′
1,iβ1 + x′

2,iδβ/
√
n+ g(zi) + ui, E[ui|xi, zi] = 0 (2)

for some δβ ̸= 0. Note that the model depends on the sample size n. Because (2) is the

true model, a model is misspecified if some elements of x2,i are removed from the model.

However, the misspecification is local in the sense that the model is within the O(1/
√
n)

neighborhood of the true model. The reason for introducing the local misspecification

framework is to consider the trade-off between the bias and the variance of the estimator

for µ. If the true β2 is a fixed vector, then the bias due to misspecification asymptotically

dominates the variance of the estimator. That means that the full model is always the

best model in terms of the asymptotic MSE. Under the local misspecification framework,

the squared bias and the variance are both of the order O(1/n).

When g(z) is unknown, we need to determine the series length to approximate g(z).

Let pJ(z) = (pL(z)′, pK(z)′)′, where pL(z) and pK(z) are L× 1 and K × 1 vectors of basis

functions, respectively. The vector pL(z) consists of basis functions that are definitely

used to approximate g(z), whereas some elements of pK(z) may not be used. In the case

of a power series, for instance, pL(z) includes low-order power terms. The full model

includes all basis functions, while the reduced model includes only pL(zi). Then we

consider the following full model:

yi = x′
1,iβ

∗
1 + x′

2,iδ
∗
β/
√
n+ pL(zi)

′γ∗
1 + pK(zi)

′δ∗γ/
√
n+ u∗

i , (3)

where u∗
i is orthogonal to xi and pJ(zi). Thus, (3) represents the linear projection of yi

on (x′
i, p

J(zi)
′)′. That the coefficient of pK(zi) is O(1/

√
n) describes the situation that

g(z) is sufficiently smooth and roughly approximated by pL(zi).

Note that β∗
1 ̸= β1 and δ∗β ̸= δβ in general. In contrast to (2), our full model (3) is

misspecified in the sense that E[u∗
i |xi, zi] ̸= 0, though it is valid as the linear projection.

Thus, our setup is different from that of a standard FIC, which assumes that the full

model is the true model. We consider β∗ = (β∗
1
′, δ∗β

′/
√
n)′ as the pseudo-true value that

approximates the true parameter β = (β′
1, δ

′
β/
√
n)′. The closeness of the approximation

depends on the series length in the full model and the smoothness of g(z) and E[xi|zi = z].

In the following section, we view µ∗ = µ(β∗) as an approximation of the true focus

parameter µ = µ(β) and we construct the FIC for µ∗. We simply assume that the
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difference between µ∗ and µ is negligible. We do this by choosing sufficiently large J .

This is partly due to the limitation of the series estimator. Unlike the kernel estimator,

the bias of the series estimator is not obtained in the closed form. Only the order of the

bias can be obtained, even if g(z) is a known function.

It also makes sense to consider µ∗ as the true focus parameter given that (2) is also an

approximation that is introduced for mathematical convenience. In that case, our FIC is

in spirit similar to the Takeuchi information criterion (Takeuchi, 1976).

3 Focused Information Criterion

Here, we derive the asymptotic distribution of the estimator and develop our FIC. We

prepare some notations to describe candidate submodels. Let x2j,i and pKj (zi) be the j-th

elements of x2,i and pK(zi), respectively. Let Sq and SK be subsets of {1, . . . , q} and

{1, . . . , K}. Also, let qS and KS denote the numbers of elements in Sq and SK . We index

a candidate model by a set S = {Sq, SK}. The model S contains x2j,i and pKl (zi) as

regressors if j ∈ Sq and l ∈ SK . The reduced and full models are the cases of S = {∅, ∅}
and S = {{1, . . . , q}, {1, . . . , K}}, respectively. Usually, the elements of pK(zi) have a

natural ordering. In that case, the number of models is at most 2q × (K + 1).

Let x2S,i be the qS×1 vector that contains x2j,i, such that j ∈ Sq. Similarly, let pKS (zi)

be the KS × 1 vector that contains pKl (zi), such that l ∈ SK . Then the model S is

yi = x′
1,iβ1,S + x′

2S,iβ2,S + pL(zi)
′γ1,S + pKS (zi)

′γ2,S + eSi

≡ x′
S,iβS + p′S,iγS + eSi.

The estimator of βS is

β̂S = (X ′
S(I −QS)XS)

−1
X ′

S(I −QS)Y,

where Y = (y1, . . . , yn)
′,XS = (xS,1, . . . , xS,n)

′, PS = (pS,1, . . . , pS,n)
′, andQS = PS(P

′
SPS)

−1P ′
S.

Let xSC ,i and pSC ,i be the vectors of excluded regressors from model S. Denote the

residuals from the linear projection of xS,i, xSC ,i and pSC ,i on pS,i, by x̃S,i, x̃SC ,i and p̃SC ,i,

respectively. Let ΦS = E(x̃S,ix̃
′
S,i), ΨS = E(u∗2

i x̃S,ix̃
′
S,i), andBS = (E(x̃S,ix̃

′
SC ,i) E(x̃S,ip̃

′
SC ,i)).

We partition δ∗β as δ∗β = (δ∗
′

β,S, δ
∗′
β,SC )

′, where δ∗β,S and δ∗β,SC are the coefficient vectors

of x2S,i and xSC ,i in the full model. Similarly, we write δ∗γ = (δ∗
′

γ,S, δ
∗′
γ,SC )

′ and define

δ∗S = (δ∗
′

β,S, δ
∗′
γ,S)

′ and δ∗SC = (δ∗
′

β,SC , δ
∗′
γ,SC )

′.

We assume that a standard regularity condition for the OLS estimator is satisfied.

Then we have the following asymptotic results.

Lemma 1. Suppose that {(yi, xi, zi)}ni=1 are i.i.d. from (3). Then we have

√
n

(
β̂1,S − β∗

1

β̂2,S

)
d→ N

((
0p
δ∗β,S

)
+ Φ−1

S BSδ
∗
SC ,Φ

−1
S ΨSΦ

−1
S

)
as n → ∞.
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The proof is straightforward and so is omitted.

Note that J , the number of series terms in the full model, is fixed in our theory

because we wish to find the optimal series length depending on the focus parameter.

A standard asymptotic theory requires that J → ∞ at a certain rate so that the bias

due to nonparametric estimation is asymptotically negligible. This asymptotics does not

suggest the determination of the number of series terms in practice. For instance, Zhang

and Liang (2011) employed this asymptotics; therefore, their FIC is not applicable to the

selection of the series terms. In contrast, we assume that our full model is sufficiently

large so that the bias is rather small. Thus, we can capture the effect of using different

series terms on the distribution of β̂S.

Let µ̂S = µ(β̂S, 0q−qS) be the estimator of µ∗ based on model S. Note that the

coefficients of xSC ,i are zero in model S. We define

AS =

(
E(x̃S,ix̃

′
SC ,i) E(x̃S,ip̃

′
SC ,i)

−Iq−qS 0q−qS×K−KS

)
.

Lemma 1 and the delta method imply the following theorem.

Theorem 1. Suppose that µ(β) is differentiable with respect to β. Then we have

√
n(µ̂S − µ∗)

d→
(
∂µ

∂β

)′

ASδ
∗
SC +

(
∂µ

∂βS

)′

N
(
0p+qS ,Φ

−1
S ΨSΦ

−1
S

)
,

where the derivatives ∂µ/∂β and ∂µ/∂βS are evaluated at (β∗
1 , 0q).

Again, the proof is omitted because it is straightforward.

By Theorem 1, the MSE of the limiting distribution of
√
n(µ̂S − µ∗) is

mse(S) =

(
∂µ

∂β

)′

ASδ
∗
SCδ

∗′
SCA

′
S

(
∂µ

∂β

)
+

(
∂µ

∂βS

)′

Φ−1
S ΨSΦ

−1
S

(
∂µ

∂βS

)
. (4)

Owing to the local misspecification framework, the squared bias and the variance have

the same order. In general, a large model implies a small first term and a large second

term. The ranking of MSEs among different models is determined by the magnitude of

the local parameters δ∗ ≡ (δ∗β
′, δ∗γ

′)′. If δ∗/
√
n is sufficiently small, it would be better to

set it at zero than to estimate it. Thus, the reduced model performs better than the full

model, even though the reduced model is misspecified. Our FIC is obtained by replacing

each component of (4) with its estimate.

We now discuss an estimation method for δ∗. Because of the nature of the local

misspecification, we cannot consistently estimate δ∗. Let (β̂′
2, γ̂

′
2)

′ be the estimator of the

coefficients of wi ≡ (x′
2,i, p

K(zi)
′)′ in the full model. Also, let w̃i be the residual of the

linear projection of wi on (x′
1,i, p

L(zi)
′)′. We have the following result, which is similar to

Lemma 1:

D̂ ≡
√
n

(
β̂2

γ̂2

)
d→ D = N(δ∗,Γ−1ΩΓ−1),
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where Γ = E(w̃iw̃
′
i) and Ω = E(u∗2

i w̃iw̃
′
i). Because the mean of DD′ is δ∗δ∗′ + Γ−1ΩΓ−1,

we use δ̂∗δ∗′ = D̂D̂′ − Γ̂−1Ω̂Γ̂−1 to estimate δ∗δ∗′, where Γ̂ and Ω̂ are sample analogs

of Γ and Ω. The error term u∗
i can be replaced with the OLS residual from the full

model. Note that u∗
i is heteroskedastic even if ui is homoskedastic because u∗

i involves

the approximation error. Thus, we need to use a heteroskedasticity-robust method to

estimate the variance.

The matrices ΦS, ΨS, and AS are consistently estimated by their sample analogs.

Therefore, the FIC of model S is defined as

FIC(S) =

(
∂̂µ

∂β

)′

ÂS δ̂SCδ′
SC Â

′
S

(
∂̂µ

∂β

)
+

(
∂̂µ

∂βS

)′

Φ̂−1
S Ψ̂SΦ̂

−1
S

(
∂̂µ

∂βS

)
. (5)

The estimator for δSCδ′SC is the corresponding component of δ̂∗δ∗′. The derivatives are

evaluated at (β̂1, 0).

So far, we have considered the case in which the focus parameter depends only on β∗.

It is also possible that the focus parameter depends on γ∗ = (γ∗
1
′, δ∗γ

′/
√
n)′. We briefly

discuss an FIC for estimating the nonparametric part of the model. For some fixed value

z̃ ∈ R, we define the focus parameter as µ(γ∗) = pJ(z̃)′γ∗ = pL(z̃)′γ∗
1 + pK(z̃)′δ∗γ/

√
n,

which is estimated by pS(z̃)
′γ̂S. Again, µ(γ

∗) is an approximation of the true parameter

of interest, g(z̃). The derivation of the FIC is almost the same as that of µ(β∗). The FIC

is obtained by reversing the roles of xi and pJ(zi) in (5).

4 Monte Carlo study

We investigate the performance of the FIC by means of a simple Monte Carlo study. We

compare three model selection criteria: (i) FIC, (ii) AIC, and (iii) BIC. The true data

generating process (DGP) is given by

yi = x′
1,iβ1 + x′

2,iδβ/
√
n+ g(zi) + ui,

where β1 = (β1,1, β1,2)
′ = (1, 1)′ and δβ = (δβ,1, . . . , δβ,4)

′. Each element of x1,i is inde-

pendently generated from a standard normal distribution. The regressor zi is uniformly

distributed with support [−2, 2]. The regressor x2j,i is generated by x2j,i = 0.33zi+ ϵij for

j = 1, . . . , 4, where ϵij ∼ N(0, 2.25), so that some of the regressors in the linear part are

correlated with zi. The error term ui is generated from a standard normal distribution

and is independent of all regressors. We set g(z) = sin(1.5z)/(1.5− sin(1.5z)). This func-

tion is sufficiently smooth, so it can be well approximated by the low-order polynomial

function of z.

We estimate g(z) by using power series. We use pL(z) = (1, z, . . . , z4)′ and pK(z) =

(z5, z6, . . . , z11)′. To simplify the description of candidate models, we consider nested
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models for the variable selection in the linear part. Thus, the number of candidate

models is 5× 8 = 40 in total.

We consider the following two DGPs: (1) δβ,j = 1.5 and (2) δβ,j = 10(0.5j) for

j = 1, . . . , 4. The local parameter δβ,j is constant for all j in the former case, whereas

it declines as j increases in the latter case. The focus parameter is µ(β) =
∑2

j=1 β1,j +∑4
j=1 δβ,j/

√
n.

To evaluate the performance of the selection criteria, we calculate the mean of the

root MSE (RMSE) of each post-selection estimator based on the 5, 000 repetitions for

three sample sizes: n = 50, 100, and 200. Note that the RMSEs are evaluated at the

true focus parameter. We also report the RMSEs based on the reduced, middle, and full

models, where the middle model is defined by S = {{1, 2}, {1, 2, 3, 4}}.
The result is summarized in Table 1. For DGP (1), we can see that the FIC outper-

forms other procedures for all sample sizes. The FIC successfully selects the model that

has a lower MSE than the other candidate models. This result suggests that although

our FIC is constructed for the approximate focus parameter, it works well even for the

true focus parameter. For DGP (2), we also see that the FIC dominates other selection

criteria. An important observation in DGP (2) is that the middle model is better than

the full model. Thus, the full model is not always the best model. Also, the FIC-selected

model performs better than the full model. Although the AIC and BIC tend to select

relatively small models, the FIC can select proper models.

Next, we investigate the performance of the FIC for estimating the nonparametric

component. The focus parameter is g(1). Table 2 summarizes the result. For DGP (1),

the performance of the BIC is slightly better than that of the other criteria for small

sample sizes. The FIC achieves a lower MSE than the others for n = 200. A similar

result is also obtained for DGP (2). This result confirms that our FIC can also be a

useful tool for estimating the nonparametric part of the PLM.

Table 1: RMSE for µ(β)

DGP (1) DGP (2)
n 50 100 200 50 100 200

Full 0.626 0.387 0.259 0.620 0.392 0.260
Middle 0.633 0.422 0.292 0.469 0.311 0.216
Reduced 0.894 0.630 0.441 0.722 0.502 0.358
AIC 0.710 0.487 0.335 0.585 0.394 0.272
BIC 0.808 0.586 0.418 0.613 0.438 0.319
FIC 0.643 0.421 0.286 0.585 0.375 0.253
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Table 2: RMSE for g(1)

DGP (1) DGP (2)
n 50 100 200 50 100 200

Full 0.564 0.344 0.230 0.562 0.346 0.235
Middle 0.454 0.286 0.199 0.447 0.299 0.218
Reduced 0.344 0.286 0.288 0.370 0.319 0.312
AIC 0.523 0.365 0.261 0.506 0.361 0.268
BIC 0.440 0.327 0.287 0.451 0.361 0.318
FIC 0.514 0.331 0.240 0.518 0.340 0.245

5 Conclusion

In this paper, we propose an FIC for series estimation in the PLM. We approximate the

true regression function with a linear projection of a finite-dimensional model, and derive

the FIC that allows us to jointly select the variables in the linear part and the series

length in the nonparametric part. This study is the first attempt to select the smoothing

parameter by using the local misspecification framework in semiparametric models.

The simulation results are encouraging. Although our FIC is constructed for the ap-

proximate focus parameters, it works reasonably well even for the true focus parameters.

Our FIC is a useful alternative tool for variable selection in the PLM.
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