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Abstract 
We analyze the distributions of paper-paper and paper-patent citations and estimate the 
relationship between them, based on a sample of 4,763 published papers for which the 
corresponding authors were among the top 100 researchers in the life and medical 
sciences in Japan. We find that paper-paper citations peak at an average of 4 years after 
the publication of a paper, while the corresponding lag for paper-patent citations is 6 years. 
Although there is a time lag before papers can be put to practical use, this lag has 
shortened in recent years. Moreover, the quality of a paper is important for being cited by 
a patent, and a paper’s quality increases the number of paper-patent citations. In addition, 
we show that an inverse U-shaped relationship exists between the amount of research 
grant funding and research quality, and we can derive the efficient amount of research 
grant funding that maximizes research quality. We find that the relationship between 
research quality and the total number of papers written by the researcher(s) is U-shaped, 
and we derive the number of papers that minimizes research quality. 
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1. Introduction 
 

Academic knowledge is important for promoting R&D and technological 
development in industry. Mansfield (1991) surveys the percentage of firms’ new products 
and processes commercialized during 1975–1985 that could not have been developed in 
the absence of recent academic research. He indicates that about 11 percent of major 
American firms’ new products and about 9 percent of their new processes could not have 
been developed in the absence of recent academic research. Zucker and Durby (2001) 
focus on technological transfer, and find that collaborations between particular university 
star scientists and firms have a large positive impact on firms’ research productivity. They 
use the number of U.S. patents as indicators of firms’ innovative output, while their 
explanatory variable is the number of star scientists’ papers in the Japanese biotechnology 
field. Their results reveal that collaborations increase the average firm’s biotech patents 
by 34 percent, products in development by 27 percent, and products on the market by 8 
percent. The above studies suggest that universities’ academic knowledge is useful for 
R&D in industry. 

Moreover, according to Sanberg et al. (2014), research universities are expected to 
play a central role in the knowledge-centered economy by the technology transfer. They 
also point out that universities should expand their criteria to treat patents, licensing, and 
commercialization activity by faculty as an important consideration for merit, tenure, and 
career advancement, along with publishing, teaching, and service. However, 
measurement of science-technology transfer is one of the most difficult challenges 
(Tijssen et al. 2000). Although there are many previous studies about the relationship 
between academic research and industrial technology, the features characterizing this 
relationship have not been clarified completely.  

Therefore, non-patent references (NPRs), that is, the documents other than the patent 
in the patent application, are used as indices to analyze the relationship between academic 
research and industrial technology, which is called science linkage. NPRs measure the 
strength of the relationship between science and technology, or science intensity (Meyer 
2000; Tijssen et al. 2000). According to Tijssen et al. (2000), NPRs represent explicit 
connections between scientific research and technological innovations and as a 
consequence can reasonably describe the features of science-technology linkages. 
However, it is the important background knowledge playing an important indirect link 
rather than a direct link (Meyer 2000). Anderson et al. (1996) find strong linkages 
between human genetic technology and basic science research, and Narin et al. (1997) 
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show that 73% of the papers cited by patents were authored at public science institutions. 
They use the NPRs cited on the front page of U.S. patents. Moreover, MacMillian et al. 
(2000) indicate that the biotechnology industry depends on public science much more 
heavily than other industries. 

These previous studies show that knowledge from the academia played a key role in 
patent development, which proxies for industrial technology. How about the academic 
standing of the papers cited by the patents? In other words, do papers that are heavily 
cited by industry also have a strong impact in academia? The pioneering studies that 
examine this question include Tijssen et al. (2000). They analyze the correlation between 
the number of citations to papers (paper-paper citations) and the number of citations to 
patents (paper-patent citations) by using 2,241 Dutch research papers that were cited by 
at least one USPTO patent during 1993–1996. They find a correlation of 0.16 (p=0.01). 
While this is low, papers that are highly cited by patents also tend to be cited by research 
papers. Hicks et al. (2000) examine 1993–1995 U.S. papers cited in 1997 U.S. patents. 
They categorize 6,595 papers in terms of their paper-paper citations, grouping them into 
the top 1%, top 2–10%, and the top 11–50%. They show that papers in the top 1 % are 
also most cited by patents. Although these are pioneering studies, they are restricted to 
correlation analysis. In addition, they target only papers that have at least one paper-patent 
citation, and examine a short time period. Moreover, all the above studies use the 
backward citation approach that extracts NPRs from patents. 

Furthermore, the time lag in citations has been treated as a separate issue in the previous 
literature. Recent studies of the time lag in paper-paper citations have employed two 
approaches, the synchronous approach and the diachronous approach. The former uses 
the time lag between selected papers and the publication dates of the references that they 
cite (backward citation), while the latter uses the time lag between paper publication dates 
and the dates when these papers are cited (forward citation) (Bouabid and Lariviére 2013). 
The diachronous approach is the appropriate method to characterize citation processes, 
and measures of citation impact should be based on this approach (Glänzel 2004). 
According to Bouabid and Lariviére (2013), the total citation counts of papers published 
in Japan in 1995 and 2000 peaked 3 years after publication. Finardi (2014) finds that 
citations to papers in chemistry peaked 2 years after publication.   

As for the time lag of paper-patent citations, Mansfield (1991) finds that the mean time 
lag between academic research findings and the commercial introduction of the product 
or process is about 7 years. Van Vianen et al. (1990) find that a 4-year lag was most 
common for chemistry patents. Verbeek et al. (2002) indicate that the time lag was 3 years 
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on average, based on USPTO patents during 1992–1996. Lo (2010) finds an average 
citation age of 9.8 years in genetic engineering technology, while Finardi (2011) finds 
that a time lag of around 3–4 years is most common in the nanosciences and 
nanotechnology fields.  

In this paper, we extract the number of paper-paper and paper-patent citations, focusing 
on the top 100 researchers1 in the Japanese life and medical sciences fields. This is the 
first such attempt using the forward citation approach. We construct data on how many 
times papers published during 1996–2009 were cited by papers and patents during 1996–
2012. Since we cover papers that are not cited by patents, we can analyze the relationship 
between journal papers and patents more accurately. In addition, the effect of science on 
technological development is clarified by using the number of papers written by each 
researcher, and the relevant grant amounts. Although previous studies have shown that 
papers with many citations tend to be more heavily cited by patents, the relationship 
between papers and patents was not analyzed in sufficient depth. Estimating the 
relationship between papers and patents, using both the number of papers and the amounts 
of grant funding, is useful to reveal the relationship between science and technology. 
Furthermore, our approach is distinctive in that we use the forward citation approach. 
None of the papers cited above have examined paper-paper citations and paper-patent 
citations at the same time, though they have analyzed them separately. 

This paper is organized as follows. Section 2 describes the hypotheses, while Section 3 
provides details regarding data. Section 4 contains descriptive statistics. Section 5 
presents methods and estimation results regarding the citation distribution, while Section 
6 presents methods and estimation results regarding paper-patent citations. Section 7 
concludes. 
 

2. Hypotheses 
 

This section provides a description of our hypotheses. We explore the following three 
hypotheses. 
 
H1: The lag of paper-paper citations is shorter than the lag of paper-patent citations. 
 

We clarify the peak lag of paper-paper citations (peak in academia) and paper-patent 

1  Although Zucker and Darby (2001) define star scientists as authors who discover nucleotide 
sequences, we defined top scientists as authors with many total citation counts (see section 3). 
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citations (peak in industry), showing citation distributions that indicate the time necessary 
for published papers to impact papers versus patents. We then analyze the differences in 
the shapes of the two distributions. According to the literature (Bouabid and Lariviére 
2013, Finardi 2014), citations to papers published in 1995 and 2000 peak after 3 years, 
and the lag was 2 years in the chemistry field. On the other hand, the peak lag for paper-
patent citations is 3 to 10 years. Therefore, we expected that the lag for paper-patent 
citations to exceed that for paper-paper citations. 
 
H2: The higher the quality of a paper, the more it is cited by patents. 
 

We analyze the relationship between paper-paper citations and paper-patent citations. 
As previously shown by Tijssen et al. (2000) and Hicks et al. (2000), these two types of 
citations are correlated. Therefore, considering papers with many paper-paper citations to 
be of high academic quality, we verify whether high-quality and high-impact papers are 
more heavily cited by patents. 
 
H3: There is a tradeoff between the quality and quantity of papers, and there exists an 

optimal amount of research grant funding that maximizes the quality of papers.  
 

Rassenfosse (2013) shows the tradeoff between quality2 (measured by family sizes) 
and quantity of patents in firms. Similarly, we verify whether there is a tradeoff between 
papers’ quality and the number of papers written by their authors. We also verify whether 
some particular level of research funding maximizes paper quality. 

Although we use patents to analyze the relationship between scientific papers and 
technology, patents do not cover all of the technological effects. We assume that “patents 
can be used as a proxy of the codification of technological knowledge” and “also assume 
that citations in patents are always pertaining to the content of the patent” (Finardi 2011). 
 

3. Data 
 

In this section, we describe our data. We extract paper-paper citations and paper-patent 
citations from journal articles. The extraction strategy is as follows. Our publication data 
are for researchers in the life sciences and medical sciences who had been selected for the 

2 Citation is the one of the most commonly used indices of patent quality. Rassenfosse (2013) uses 
family size because of a selection bias in his survey, as it includes many countries.  
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21st Century Centers of Excellence (COE) program established in 2002 by the Japan 
Society for the Promotion of Science. The aim of this program was to cultivate a 
competitive academic environment among Japanese universities by providing targeted 
support for the creation of world-class research and education bases.   

First, we used the Scopus database to document each researcher’s number of papers 
and citations. As Scopus assigns author IDs, we could perform full name searches and 
searches based on the researchers’ institutions. Since this process could lead to accidental 
omissions, we contacted each researcher via e-mail and confirmed the list of their 
publications to the extent possible. We targeted 1,232 researchers who have at least one 
paper. Next, we extracted the 100 researchers with the most citations to papers published 
between 1996 and 2009. Therefore, among the excellent Japanese researchers, we 
concentrate on the ones with the most citations. 

These top 100 researchers published a total of 20,661 papers as journal articles during 
the past 13 years. However, we only target 4,763 papers, for which these researchers were 
listed as corresponding authors. Corresponding authors have the responsibility of 
understanding and explaining the content of the paper. Wren et al. (2007), who conduct a 
survey about authorship credit for medical school, categorize credit as “initial 
conception”, “work performed,” and “supervision.” They show that the last author as the 
corresponding author deserved most credit for supervision and initial conception. 
Therefore, this analysis essentially targets papers for which the chosen researchers were 
the principal investigators and supervisors.   

The data on these 4,763 papers’ paper-paper citations and paper-patent citations have 
been extracted using Scopus’s “citedby” function (with a focus on citing papers and 
patents during a 16-year period (1996–2012). For our data on patents, we used the 
Espacenet Patent search offered by the European Patent Office. Espacenet offers free 
access to more than 80 million patent documents worldwide, covering the time period 
from 1,836 to the present. Data on paper-patent citations were extracted from all parts of 
the patent text (full text), not only from the references. We refer to the publication date of 
the patent as the citing year. 

In addition, we use the KAKEN database for data on research grants 
(http://kaken.nii.ac.jp/). KAKEN is the database of Grants-in-Aid for Scientific Research. 
These grants are awarded through a peer review process, in order to promote creative and 
pioneering research across a wide spectrum of scientific fields. In this study, we use only 
research studies headed by our chosen researchers, and we include only direct expenses 
during 1996–2009. 
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4. Descriptive statistics 
 

This section is about the descriptive statistics of our data. 
 
4.1. Overview of the number of citations 
 

Of the 4,763 papers that we target, 134 papers (2.8%) do not have any paper-paper 
citations, while 2,922 papers (61.4%) do not have any paper-patent citations. The 
threshold number of paper-paper citations for the 25th percentile in the distribution of 
these citations is 10, while the corresponding number is 0 for paper-patent citations. The 
median number of paper-paper citations is 23, while that for paper-patent citations is 0. 
The number of paper-paper citations marking the 75th percentile of the distribution is 55, 
while the corresponding number for paper-patent citations is 2. In addition, the numbers 
of paper-paper and paper-patent citations marking the 90th percentile are 118 and 7, 
respectively. Therefore, the distribution of citation is biased to the left, and only a small 
portion of papers has a very strong impact. 

Table 1 contains descriptive statistics. The average number of paper-paper citations is 
55, while the average number of paper-patent citations is 4. The average total amount of 
research grant funding is $5.5 million (the median is $3.1 million), given $1=¥100. The 
average total number of papers authored by the selected researchers during the last 13 
years is 236 (the median is 213). The average numbers of paper-paper and paper-patent 
citations by researcher are 2,594 and 168, respectively. The average number of papers for 
which the selected researchers were listed as corresponding authors is 48. 

 
<Table 1 here> 

 
As highlighted earlier, our analysis uses the forward citation approach based on citing 

papers and patents. This approach has never been used in previous science linkage studies. 
As long as all papers and all patents are used, the backward citation approach and the 
forward citation approach differ in extracting NPRs. Only 38.7% of the papers in this 
analysis are cited by patents. Therefore, if only these papers are considered while 
analyzing the relationship between paper-paper citations and paper-patent citations, the 
selection bias of extraction becomes important. If the relationship is analyzed based on 
our method, this selection bias problem can be avoided.  
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4.2. The top 10 most cited papers 
 

We show the top 10 most cited papers (Table 2). Shinya Yamanaka’s paper published 
in 2006 in Cell has the highest number of paper-paper citations (2,670). The same author’s 
paper published in 2007 in Cell has the maximum number of paper-patent citations (414). 
Many of the journals are top journals such as Cell, Nature, and Science. Moreover, the 
same researcher appears several times in the ranking list of the leading researchers in this 
field. Most researchers list stem cell biology, immunology, and diabetes as their 
disciplines. All 10 of the papers with the highest paper-paper citations are also cited by 
patents. This suggests that papers of high academic quality and impact have an effect on 
patents. 

 
<Table 2 here> 

 

5. Distribution of citations 
 

We describe the methods of analysis of citation distributions, and our estimation 
results. 
 
5.1 Methods of analysis 
 
 First, we calculate the distribution of the time lag between papers published during 
1996–2009 and the papers citing them that were published during 1996–2012. The lag is 
0 when a paper is cited in the same year in which it is published. We use average citation 
counts, calculated as follows. Let a  and b  represent the year of publication and the 
year of citation respectively, with a b≤ . The lag is l b a= − , and l  takes values from 

0 to 16. Then, let  be the number of citations of a paper that was published 

in year a  and cited by a paper published in year b , and let aARTICLES  be the number 

of papers published in year a . In addition, let  be the average citation 

counts per paper published in year a  and cited in year b with lag l .  can 
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be written as follows:  

 
 (1) 

The graph of citation distribution is plotted as  versus l . 

Next, we test for differences in the expected value of peak lag between paper-paper 
citations and paper-patent citations. If there is more than one peak, it is counted separately. 
Since the lag  is a discrete random variable, let  denote its probability 
distribution. The expected value of the lag at which citations peak is calculated as follows:  

  (2)

  
In addition, we test for the equality of the peak lag between paper-paper citations and 

paper-patent citations. We tested whether the citation distribution of peak lags is normally 
distributed, using the Kolmogorov-Smirnov test. This test rejects the null hypothesis of a 
normal distribution at the 1% level. Therefore, we test the difference between paper-paper 
citations and paper-patent citations at the median using the nonparametric Wilcoxon rank-
sum test. Furthermore, we estimate the probability that the lag for paper-patent citations 
is longer than that for paper-paper citations. 
 
5.2 Estimation results 
 

First, we show the citation distribution profile that shows the lag from publication to 
citation (Figure 1). As for paper-paper citations, we find that the average citation count is 
high from two to five years after publication. The number of average citations peaks three 
years after publication, at 6.57 counts, and gradually declines thereafter. In particular, 
since there is an immediate sharp increase at the two-year mark, it is understood that 
papers impact academia at once. On the other hand, the average paper-patent citation lag 
is larger—five to ten years—with citations peaking five years after publication, at 0.47 
counts. Patents cite papers for a longer time than other papers do. It is suggested that the 
lapse of time is necessary to put papers to practical use. 

 
<Figure 1 here> 
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  Turning now to the expected value of lags, we show the results on expected value and 
the Wilcoxon rank-sum test based on the 4,629 papers that have at least one paper-paper 
citation and the 1,841 papers with at least one paper-patent citation (Table 3). The 
expected peak lag for paper-paper citations and paper-patent citations is 4.31 and 6 years, 
respectively, while the medians are 4 and 5 years, respectively. The Wilcoxon rank-sum 
test rejects the null hypothesis of equality of the medians at the 1% level. Thus, the peak 
lag for paper-patent citations is longer than that for paper-paper citations. Furthermore, 
the probability that paper-patent citations have a longer lag than paper-paper citations is 
0.664. This suggests that being cited by a patent requires more time than being cited by a 
paper. 

 
<Table 3 here> 

 
In addition, to verify the difference of lags within paper publication years, we analyze 

four delimited periods (96–98, 99–01, 02–04, and 05–07). We find that the median lag 
for paper-paper citations lag is consistent at four years excluding the period 05–07; 
however, the median lag for paper-patent citations lag has shortened in recent years (from 
seven years to six, then five, and then three years). Moreover, since the Wilcoxon rank-
sum test rejects the null hypothesis of equality between the lags of paper-paper and paper-
patent citations at the 1% level, excluding the period 05–07, the lag for paper-patent 
citations is longer than that for paper-paper citations. The probability that paper-patent 
citations have a longer lag is 0.714, 0.637, and 0.595, for 96–98, 99–01, and 02–04, 
respectively. Therefore, although the speed of impact on academia does not differ by year 
of publication, the time taken to produce an impact on technology has fallen in recent 
years. An approach to open innovation and industry-university cooperation are thought to 
underlie this result3. 
 

6. Paper-patent citations 
 

In this section, we describe the method of the Tobit model with instrumental variables, 
and present the estimation results.  
 

3 Since recently published papers have only had the opportunity to be cited for a few years, it is 
necessary to note that citations to these papers may not have peaked yet. However, because the median 
lag for paper-patent citations is five years, there is a high possibility that papers published during 05–
07 have experienced their peak. 

10 
 

                                                        



6.1 Methods of analysis 
 

To analyze the impact of the paper-paper citations on the paper-patent citations, we use 
the paper-patent citations as the dependent variable and the paper-paper citations as 
explanatory variables in our estimation. The Tobit model is used because paper-patent 
citations have a non-negative value. Since there is a possibility of endogeneity in that 
paper-paper citations might be correlated with the error term, we use instrumental 
variables that are correlated with paper-paper citations, but not with the error term. 
Therefore, we used the total amount of research grant and the total number of papers of 
each researcher as instrumental variables. As for the relation between instrumental 
variables and paper-paper citations, there is a possibility that researchers who secure a lot 
of grant funding may have high research ability, and can therefore publish high quality 
papers. In addition, because of focusing only on volume, the papers might be low quality. 
Then, we use these instrumental variables to analyze the optimal amount of grant funding 
for high quality publications, while also looking at the relationship between the number 
of papers and research quality. The estimation is performed using Newey’s (1987) two-
step efficient estimator. The estimation model is below. 

Let i  and p represent researcher and paper, respectively.  

 ip ip ip

ip i ip

y x u
x z v

β

π

= +

= +
  (3) 

 
* *

*

   if    0
0      if    0

ip ip
ip

ip

y y
y

y
 >=  ≤

  

In equation (3), ipy denotes paper-patent citations for paper p by researcher i ( *
ipy  is the 

corresponding latent variable), while ipx  denotes paper-paper citations for paper p by 

researcher i. iz  denotes instrumental variables, and we use the total amount of grant 

funding and the total number of papers authored by the selected researchers. In view of 
the non-linear relationship between instrumental variables and paper-paper citations, we 
use a model with a quadratic term in instrumental variables (Model 1). Moreover, 
considering the non-linear relationship between paper-paper citations and paper-patent 
citations, we use a quadratic term in paper-paper citations as an endogenous variable 
(Model 2). 
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6.2 Estimation results 
 

Our estimation results are shown in Table 4. The null hypothesis of exogeneity of the 
instrumented variable is rejected at a statistically significant level (p=0.005), while the 
overidentification test that checks the correlation between the error term and instrumental 
variables does not reject the null hypothesis of no correlation (p=0.980). Therefore, the 
adequacy of the estimation model is verified.  

 
<Table 4 here> 

 
Let us now show the two-step estimation results. Model 1 uses only a linear term in 

paper-paper citations as an explanatory variable. The estimated coefficient is 0.154, which 
is statistically significant at the 1% level. Model 2 uses both a linear term and a quadratic 
term in paper-paper citations as explanatory variables. Although the linear term has an 
estimated coefficient of 0.168, which is statistically significant at the 1% level, the 
estimated coefficient for the quadratic term is -0.0000162, and is not statistically 
significant.  

We thus focus on Model 1 below. The point of the results is that paper-paper citations 
have a positive and significant relationship with paper-patent citations, and it is found that 
papers of high academic quality are more heavily cited by patents. The marginal effect 
evaluated at the median is 0.036 4 . Therefore, the number of paper-patent citations 
increases by 0.036 when the number of paper-paper citations increases by one. 

Turning now to the relationship between instrumental variables and paper-paper 
citations, since the coefficient on the linear term in the total amount of grants for each 
researcher is significant and positive, while that on the corresponding quadratic term is 
significant and negative, there is an inverse U-shaped relationship. On the other hand, 
since the coefficient on the linear term in the total number of papers is significant and 
negative, while that on the corresponding quadratic term is significant and positive, we 
have a U-shaped relationship. We calculate the amount of research grant that maximizes 
paper quality, and the number of papers that minimize paper quality, using the following 
function based on the results of the first-step estimation:  

4 Since only the linear prediction of marginal effects is available for two-step estimation, the marginal 
effect is estimated through the maximum likelihood estimator. Since the coefficient on the quadratic 
term of paper-paper citations is not statistically significant, we calculate the marginal effect using 
Model 1. 
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   (4) 

In equation (4), x  denotes paper-paper citations, 1z  the total amount of grant funding, 

and 2z  the total number of papers. 

We find that the quality of papers is highest when the research grant is $1.9 million per 
year ($24.7 million for 13 years). The quality declines gradually above this level of 
funding. On the other hand, when the number of papers is less than 25.2 papers per year 
(327.0 papers for 13 years), an increase in the number of papers lowers quality, while 
quality becomes higher when the number of papers exceeds this threshold. The saddle 
point that is calculated using the amount of research grant and the number of papers is 

1 2( , )z z = (246,851.4, 327.0), and the citation count is 68.0 at this point. 
Thus, we find that there exists an efficient amount of research grant funding that 

maximizes paper quality. There is a tradeoff between paper quality and quantity up to 25 
papers per year. As for grants, it is found that it is difficult to manage grants that exceed 
about $2 million per year. Our results suggest that the papers that are tapped to the 
maximum in industry also have a very strong impact on academia. 
 

7. Conclusion 
 

In this paper, we investigate the shapes of the distributions of paper-paper citations and 
paper-patent citations, using 4,763 papers published between 1996 and 2009, for which 
the corresponding authors were among the top 100 Japanese researchers in the life and 
medical sciences fields. Furthermore, we analyze the relationship between paper-paper 
citations and paper-patent citations, incorporating the amount of research grant and the 
number of papers of each researcher into the framework. As a result, we confirm the 
following hypotheses.  
 
 H1: The expected value of the paper-paper citations lag (four years) is shorter than the 
corresponding value for paper-patent citations (six years), and the lag of paper-patent 
citations has fallen in recent years.  
 

H2: Papers of high academic quality are more heavily cited by patents, and the number 
of paper-patent citations increases by 0.036 when the number of paper-paper citations 
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increases by one. 
 

H3: Since we find a U-shaped relationship between the quality and quantity of papers, 
there is a tradeoff up to a certain number of papers. Moreover, since there is an inverse 
U-shaped relationship between the quality of papers and the amount of grant funding, an 
efficient amount of grant funding maximizes research quality.  
 
  However, the above-mentioned conclusions regarding the amount of grant funding and 
the number of papers are obtained from analyzing papers for which the top Japanese 
researchers in the medical and life sciences fields are the principal investigators or 
supervisors. Therefore, it is necessary to note that these results do not necessarily apply 
to other fields, or to all researchers in Japan. In particular, the efficient grant size may 
vary across fields and laboratory environments, and therefore the level that we find does 
not necessarily maximize research quality for all researchers in all fields of the life 
sciences or the medical sciences.  
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Figure 1: Distribution of citations 
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Table 1: Descriptive statistics 

  
Number of 

 observations 
Mean 

Standard  

deviation 
Median Min Max 

Number of paper-paper citations by paper 4,763 55 121 23 0 2,670 

Number of paper-patent citations by paper 4,763 4 16 0 0 414 

Total amount of research grant of each 

researcher ($100) 
4,763 55,052 74,646 31,440 0 512,270 

Total number of papers authored by each 

researcher  
4,763 236 123 213 31 733 

Number of paper-paper citations by 

researcher 
100 2,594 2,896 2,064 4 20,536 

Number of paper-patent citations by 

researcher 
100 168 279 76 0 1,594 

Number of corresponding author papers by 

researcher 
100 48 41 37 1 210 
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Table 2: The top 10 papers ranked by paper-paper and paper-patent citations 
Ran

k 

Name, Journal, Number of paper-paper citations (paper-patent 

citations), Major 
Name, Journal, Number of paper-patent citations (paper-paper 

citations), Major 

1 Shinya Yamanaka, Cell (2006), 2670 (377), Stem cell biology Shinya Yamanaka, Cell (2007), 414 (2217), Stem cell biology 

2 Shimon Sakaguchi, Science (2003), 2371 (86), Immunology Shinya Yamanaka, Cell (2006), 377 (2670), Stem cell biology 

3 Shizuo Akira, Nature (2000), 2218 (322), Immunology Takashi Kadowaki, Diabetes (1998), 350 (130), Diabetes 

4 Shinya Yamanaka, Cell (2007), 2217 (414), Stem cell biology Keiichi Hiramatsu, Lancet (2001), 347 (722), Microbiology 

5 Shigekazu Nagata, Nature (1998), 1618 (115), Integrated Biology Shizuo Akira, Nature (2000), 322 (2218), Immunology 

6 
Shizuo Akira, Journal of Immunology (1999), 1511 (104), 

Immunology 
Hajime Nawada, Nature (1996), 193 (966), Immunology 

7 Shizuo Akira, Immunity (1999), 1488 (93), Immunology Shinya Yamanaka, Nature (2007), 169 (916), Stem cell biology 

8 Shimizu Nobuyoshi, Nature (1998), 1353 (100), Molecular biology Shizuo Akira, Nature Immunology (2002), 169 (690), Immunology 

9 Hidenori Ichijo, Science (1997), 1012 (61), Cell signaling Hajime Nawada, Nature (1998), 144 (611), Immunology 

10 Yoshihide Tsujimoto, Nature (1999), 998 (54), Molecular biology 
Tasuku Honjo, Journal of Experimental Medicine (2000), 142 (568), 

Diabetes 
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Table 3: Expected value of lag and the results of the Wilcoxon rank-sum test 

Papers cited at least once 
Paper 

(all) 

Patent 

(all) 

Paper 

(96-98) 

Patent 

(96-98) 

Paper 

(99-01) 

Patent 

(99-01) 

Paper 

(02-04) 

Patent 

(02-04) 

Paper 

(05-07) 

Patent 

(05-07) 

Number of papers 4629 1841 1002 502 1131 580 1071 451 951 247 

Expected value of lag 4.31 6 4.98 7.55 4.90 6.26 4.40 5.22 3.56 3.62 

Standard deviation 2.92 3.22 3.65 3.59 3.25 2.98 2.51 2.48 1.71 1.71 

Median 4 5 4 7 4 6 4 5 3.5 3 

Wilcoxon rank-sum test (p 

value) 
0.000 0.000 0.000 0.000 0.656 

Probability that the lag for 

patents is longer than the lag 

for papers 

0.664 0.714 0.637 0.595 0.508 
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Table 4: Estimation results 
Dependent variable: Number of paper-patent citations Model 1 Model 2 

Number of paper-paper citations 0.154*** (0.0141) 0.168*** (0.0601) 

Quadratic term of the above  -0.0000162 (0.0000717) 
Intercept -17.89*** (0.897) -18.37*** (2.061) 

Instrumental variables for the linear term    

Total amount of research grants for each researcher 0.000392***(0.0000609) 0.000392*** (0.0000609) 

Quadratic term of the above -7.94e-10***(1.42e-10) -7.94e-10*** (1.42e-10) 

Total number of papers of each researcher -0.565***(0.0475) -0.565*** (0.0475) 

Quadratic term of the above 0.000864***(0.0000729) 0.000864*** (0.0000729) 

Intercept 112.0***(7.518) 112.0*** (7.518) 

Instrumental variables for the quadratic term   

Total amount of research grants for each researcher  0.217** (0.0959) 

Quadratic term of the above  -5.68e-07** (0.000000223) 

Total number of papers of each researcher  -509.8*** (74.88) 

Quadratic term of the above  0.814*** (0.115) 

Intercept  73217.9*** (11844.7) 

Overidentification test. H0: E (zu) =0. 0.980 0.975 

Wald test of exogeneity of instrumented variable. H0: 

No endogeneity. 
0.005 0.020 

Standard errors in parentheses, * p<0.1, ** p<0.05, *** p<0.01 
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