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Abstract

This paper provides a general framework with which a dynamic problem with
potential regime shifts can be analyzed in a strategic environment as well as from
social planner’s perspective. A typical situation described by such a game is the
joint exploitation of a common-property resource such as lakes, forests, marine
fish populations, and at a larger scale the global climate system. By applying the
framework to a simple dynamic common-property resource problem, we show that
when the risk is endogenous, potential of regime shifts can facilitate precautionary
management of common-property resources even in a strategic environment. It is
also shown that there exists a resource-depletion trap in which a regime shift, once
it happens, triggers a reversal of resource accumulation dynamics, possibly leading
to a collapse of resource base.

Keywords: Regime shift, Markov-perfect Nash equilibrium, common-property resource,
tragedy of the commons

JEL classification: C72, C73, Q20

1 Introduction

In this paper, we study a non-cooperative dynamic game in which a system character-
izing the game shifts from one regime to another at unpredictable timings. A typical
situation described by such a game is the joint exploitation of a common-property re-
source such as lakes, forests, marine fish populations, and at a larger scale the global
climate system. These resources have complex dynamic systems which are known to
undergo sudden drastic changes of underlying regimes (Scheffer et al., 2001; Scheffer
and Carpenter, 2003; Folke et al., 2004). Shallow lakes, for instance, tend to at some
point suddenly lose transparency and vegetation due to a heavy use of fertilizers on
surrounding land and increased inflow of waste water from human settlements and
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industries (Scheffer et al., 1993). A potential collapse of the West Antarctic Ice sheet
or a change in the global ocean circulation caused by anthropogenic climate change
are expected to be abrupt (Oppenheimer, 1998; Broecker, 1997). Aside from common-
property resource problems, dynamic systems with potential regime shifts can also be
found in financial markets (Cass and Shell, 1983; Guo et al., 2005).

The existing literature which studies potential regime shifts in dynamic systems has
focused on optimal management of the systems. Cropper (1976) considers a regime
shift in the form of catastrophic plunge of utility level triggered by pollution. Reed
(1988) determines the socially optimal harvesting policy for a fishery subject to ran-
dom catastrophic collapse. In a more general setting, Clarke and Reed (1994) considers
the impact of a pollution stock-dependent risk of catastrophic environmental collapse
on the optimal management of resource, which was later extended by Tsur and Zemel
(1996). In these studies, catastrophic damage or collapse of resource stock are com-
monly used as a formulation of regime shifts. In a more recent paper, Polasky et al.
(2011) considers changed system dynamics as a general type of regime shifts and shows
that the optimal management with potential regime shifts can be precautionary. In this
strand of literature, however, strategic aspects inherent in the management of common-
property resources are not fully taken into account.

There exists a vast literature on non-cooperative dynamic games. A seminal paper
by Levhari and Mirman (1980), for instance, examines the dynamic and steady-state
properties of the fish population that results from strategic interaction among players.
In this literature, issues of interest such as the existence, multiplicity and inefficiency
of equilibria are discussed in Benhabib and Radner (1992), Dockner and Sorger (1996),
and Sorger (1998). Sorger (2005) considers a commons problem with amenity value and
extraction cost and presents condition under which the equilibrium is tractable. Only a
few papers, however, incorporate the risk or uncertainty surrounding the joint exploita-
tion of productive resources. Recently, Antoniadou et al. (2013) introduce a simple
random shock into the growth function of common-property resource and identifies
a class of dynamic games which supports a linear symmetric Markov-perfect Nash
equilibrium in their setting. Their analysis shows that the existence of uncertainty can
amplify or mitigate the commons problem, depending on preference and technology
in the economy. Yet consideration of uncertain regime shifts is largely absent in the
analysis of dynamic games.

The present paper provides a general framework with which a dynamic problem
with potential regime shifts can be analyzed in a strategic environment as well as
from social planner’s perspective. In section 2, we explain the structure of the model
and introduce basic assumptions. Based on a fairly general framework, necessary and
sufficient conditions for the solution of agents’ problem are discussed. We accordingly
define a symmetric Markov-perfect Nash equilibria for the model of a general form.

Section 3 demonstrates how the framework presented in this paper can be used to
investigate problems of interest. To this end, we focus on a simple dynamic common-
property resource problem and derive an equilibrium in a tractable form. In order to
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clarify the implications of potential regime shifts in dynamic games, we consider three
different cases: the standard model with no regime shift, the one with exogenous risk
of regime shift, and the one with endogenous risk of regime shift. It is shown that when
the risk is endogenous, potential of regime shifts can facilitate precautionary manage-
ment of common-property resources even in a strategic environment. It is also shown
that there exists a resource-depletion trap in which a regime shift, once it happens,
triggers a reversal of resource accumulation dynamics in a direction of deterioration.
Section 4 concludes the paper.

2 General framework

2.1 Regime

Consider an economy with N ∈ N identical agents sharing a productive resource. Let θ

be a vector of parameters which characterize the current system of economy. We call θ

a regime. We assume that utility of each agent in general depends both on flow x and
on stock z of resource. So the utility function of agent n ∈ {1, 2, . . . , N} is given by

U(xn(t), z(t); θ). (1)

Technology available in the economy is represented by a growth function G, and the
dynamics is expressed as

ż(t) = G(z(t), ∑N
n=1 xn(t); θ), (2)

which governs the relationship between stock and flow of resource under a given
regime. This also provides a channel through which agents strategically interact.

The economy experiences regime shifts, which we model as discontinuous changes
in θ at unpredictable timings. Let Θ be the set of all possible values of θ. A regime
shift, say from θ1 ∈ Θ to θ2 ∈ Θ, might cause a sudden change in agents’ taste or a
sharp decline in productivity of resource, or both. Such a shift is triggered by stochastic
events. The risk of regime shifts is thus captured by a hazard rate

λ(t) = λ(z(t); θ) (3)

so that conditional density of timing T of a regime shift is given by

f (T; θ|T ≥ s) = λ(z(T); θ)e−
∫ T

s λ(z(τ);θ)dτ. (4)

Notice we allow for the possibility that the hazard rate is influenced by z. One could
interpret this as representing the fact that the current level of resource stock directly
affects the frequency of shift-triggering stochastic events. Alternatively, (3) could mean
that while stochastic events themselves are exogenous, the current regime may or may
not survive these events, depending on the state of resource stock at the timing of
stochastic shocks.
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The simplest way of modeling a regime shift is to assume that the shift occurs once
and only once, as in Polasky et al. (2011). In reality, however, regime shifts are better
modeled as an open-ended process. Also, not only the timing, but also the realized state
of regime is usually unknown ex ante. So we assume θ is stochastic and obeys a Markov
process. To be more precise, θ is a piecewise deterministic Markov process, which has
a stationary distribution p over Θ and the conditional distribution p(·|θ) of the next
regime θ′ at the timing of regime shift only depends on the preceding realization θ of
regime. A game in this model is then represented by a list ⟨U, G, λ, Θ, p⟩.

2.2 Agents’ problem

We focus on Markov-perfect Nash equilibria or MPNE. Denote by Z the set of possible
values of z and by X(z) the set of admissible values of x given z. Let Θp be the support
of p and ϕ : Z × Θp → X be a stationary Markovian strategy. Suppose at period s, the
current regime is given by θ ∈ Θp. The problem of each agent is then formulated as

V(z; θ) = max
x(t)∈X(z(t))

E
[ ∫ T

s
e−ρ(t−s)U(x(t), z(t); θ)dt

+ e−ρ(T−s)E
[
V(z(T); θ′)

∣∣θ] ∣∣∣∣T ≥ s
]

, (5)

s.t. ż(t) = G(z(t), (N − 1)ϕ(z(t); θ) + x(t); θ), (6)

z(s) = z > 0 given, (7)

where
E
[
V(z; θ′)|θ

]
=
∫

Θ
V(z; θ′)dp(θ′|θ), (8)

and the expectation operation very outside of the objective function (5) is taken in terms
of timing T of regime shifts.

It is worth noting that the objective function (5) may be rewritten as∫ ∞

s
e−ρ(t−s)−

∫ t
s λ(z(τ);θ)dτ

{
U(x(t), z(t); θ) + λ(z(t); θ)E

[
V(z(t); θ′)

∣∣∣θ] }dt, (9)

so that the problem can be seen as a deterministic problem. One could even make it
look more familiar by introducing another state variable

y(t) := e−
∫ t

s λ(z(τ);θ)dτ and thus ẏ(t) = −λ(z(t); θ)y(t) with y(s) = 1, (10)

with which the problem is a standard autonomous problem with two state variables.

2.3 Equilibrium

We here define equilibrium. Let us first state the necessary condition for the solutions
of the problem.
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Proposition 1. Consider a game ⟨U, G, λ, Θ, p⟩. Suppose that the value function V : Z ×
Θp → R in (5) is well defined and is continuously differentiable in z. Let Vz := ∂V/∂z . Then
V solves

ρV(z; θ) =U(ϕ(z; θ), z; θ) + Vz(z; θ)G(z, Nϕ(z; θ); θ)

+ λ(z; θ)
{
E
[
V(z; θ′)

∣∣∣θ]− V(z; θ)
}

∀(z, θ) ∈ Z × Θp, (11)

where ϕ : Z × Θp → X satisfies

ϕ(z; θ) ∈ argmax
x∈X(z)

{
U(x, z; θ)− Vz(z; θ)G(z, (N − 1)ϕ(z; θ) + x; θ)

}
(12)

for each (z, θ) ∈ Z × Θp.

Proof. See Appendix A.1.

The Hamilton-Jacobi-Bellman (HJB) equation (11) might seem a bit complicated. To
interpret this, notice that (11) may be written as

ρ̃(z; θ)V(z; θ) = max
x∈X(z)

{
U(x, z; θ)− Vz(z; θ)G(z, (N − 1)ϕ(z; θ) + x; θ)

}
, (13)

where

ρ̃(z; θ) := ρ +
V(z; θ)−E[V(z; θ′)|θ]

V(z; θ)
λ(z; θ). (14)

Comparing (13) with the standard HJB equation, we see that the risk of regime shifts
in effect changes the discount rate from ρ to ρ̃. In fact, when there is no risk of regime
shift, ρ and ρ̃ coincide because in that case E[V(z, θ′)|θ] = V(z; θ) in (14). In particular,
if λ is independent of z and if E[V(z; θ′)|θ] = 0, which should be the case when the
next regime is the ‘end of the world,’ then ρ̃ = ρ + λ. This means that the effective
discount rate is raised exactly to the extent of hazard rate, a well-known result since
Yaari (1965). In such a case, the HJB equation can be solved just as in the case of no
regime shift.

In general, however, how much agents effectively discount future value of resource
stock depends on what kind of regimes are coming. As is clear from (14), the effective
discount rate becomes higher than the original one if and only if E[V(z; θ′)|θ] < V(z; θ).
When agents are expected to be better off by a regime shift, for instance, the risk of such
a regime shift rather decreases the effective discount rate. And the better the coming
regimes are, the lower the effective discount rate will be.

Since we assume that λ in general depends on z, however, solving the HJB equation
involves extra work. In the standard model of no regime shift, a wide class of differen-
tial games have a linear equilibrium, in which V and ϕ are both linear in z. When, for
example, U and G are both homogenous of degree one, it should be easy to see that
(11) is satisfied by a linear equilibrium as long as ρ̃ is constant. In the case of endoge-
nous risk of regime shifts, on the other hand, (14) suggests that ρ̃ may depend on z in
a complicated way. Then even a nice combination of homogenous functions does not
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guarantee the existence of a linear equilibrium. Hence, if equilibria of tractable form
are to be found, we need to assume that λ(z; θ) is also some well-behaved function as
we will see in the next section.

For the sake of completeness, let us state the sufficient condition for the solution,
which we will use to check a candidate equilibrium strategy in fact solves the original
problem.

Proposition 2. Consider a game characterized by ⟨U, G, λ, Θ, p⟩. Suppose a continuously
differentiable value function V : Z × Θp → R and stationary Markovian strategy ϕ : Z ×
Θp → X satisfy (11) and (12). If furthermore for each θ ∈ Θp

lim
T→∞

e−ρ(T−s)
[
V(ẑ(T); θ)e−

∫ T
s λ(ẑ(τ);θ)dτ − V(z(T); θ)e−

∫ T
s λ(z(τ);θ)dτ

]
≥ 0 (15)

for any feasible path {ẑ(t)} from ẑ(s) = z, then ϕ solves the problem (5).

Proof. See Appendix A.2.

With the propositions above in mind, we define equilibrium as follows.

Definition 1. A symmetric Markov-perfect Nash equilibrium of game ⟨U, G, λ, Θ, p⟩ consists
of continuously differentiable value function V : Z × Θp → R and stationary Markovian
strategy ϕ : Z × Θp → X such that (11), (12), and (15) are satisfied.

3 A common-property resource problem

In this section, we show the existence of a symmetric MPNE and characterize the equi-
librium. To this end, we restrict ourselves to a specific class of games.

3.1 Specifications and benchmark results

The game we investigate here is a subclass of those analyzed by Sorger (2005), who
considers a common-property resource with constant natural growth rate R > 0. The
growth function is accordingly given by

G(z, ∑N
n=1 xn; θ) := Rz − b ∑N

n=1 xn, (16)

where we interpret b > 0 as the index of vulnerability of resource stock to human
intervention1. Let Z = R+ and X(z) = R+ for z > 0 and X(z) = {0} for z = 0. Agents
are assumed to derive utility both from the flow of extracted resource and from the
existing stock itself. To be more specific, instantaneous utility function is defined by

U(x, z; θ) := xα(az)1−α, α ∈ (0, 1), (17)

1In the absence of regime shifts, b can be normalized to unity by choosing the appropriate unit of x. But
now that b changes upon a regime shift, b is not constant across different regimes and thus normalization
is not appropriate.
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where a > 0 captures the quality of amenity service associated with resource stock. For
simplicity, we abstract cost of resource extraction. Notice that with this specification U
and G are both homogenous of degree one. As for the hazard rate function, we specify

λ(z; θ) :=
1

czω
ω ≥ 0, (18)

where c > 0 represents the resilience of the system when z = 12.
In this class of games, a regime is represented by θ = (a, b, c, ρ, α, ω, R). Let Θ be

defined by

Θ := {θ ∈ R7
++ | α ∈ (0, 1), ρ > R, αN < 1, (1 − α)ωR < ρ − R}. (19)

The restrictions ρ > R and αN < 1 are necessary so that a linear and finite extraction
strategy constitutes an equilibrium in the absence of regime shift (Sorger, 2005). The
last restriction (1 − α)ωR < ρ − R ensures the existence of an MPNE under the risk of
regime shifts, which is shown in the appendix. To simplify the analysis, we assume the
support Θp ⊂ Θ of p is finite. This assumption will be made throughout.

Sorger (2005) studied this type of model in the absence of regime shifts, which
corresponds to a special case of our model where Θp is a singleton. We take his result
as a benchmark against which the role of regime shifts can be evaluated. For the
benchmark case, the following proposition characterizes a symmetric MPNE.

Proposition 3. Consider a game ⟨U, G, λ, Θ, p⟩ specified above where Θp = {θ} for some
θ ∈ Θ. There exists a symmetric MPNE such that

V(z; θ) = γ∗(θ)z and ϕ(z; θ) = β∗(θ)z, (20)

where γ∗(θ) is a solution to

ρ − R = F(γ; θ), where F(γ; θ) := (1 − αN)α
α

1−α ab−
α

1−α γ− 1
1−α , (21)

and β∗(θ) is given by

β∗(θ) :=
αF(γ∗(θ); θ)

(1 − αN)b
=

α(ρ − R)
(1 − αN)b

. (22)

There are no other linear symmetric MPNE.

Proof. See Appendix A.3

Note that γ∗(θ) is increasing with respect to R and a, and decreasing with respect
to ρ and b. This makes sense since people are better off when the resource is more
productive or when the amenity service from the resource stock is of high quality.
On the other hand, the equilibrium level of welfare declines if the system become
more vulnerable to human intervention or people become impatient. The equilibrium

2We could instead work on non-parametric model as in Sorger (2005) without specifying functional
forms for U and λ. In that case we need to impose a bit more complicated restrictions on U and λ to
ensure the existence of equilibria.
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extraction rate β∗(θ) moves exactly in the opposite direction except for a, of which
β∗(θ) is independent.

The symmetric MPNE described in the proposition above is inefficient. To see this,
consider the case all agents employ the same linear strategy x(t) = βz(t). Then z(t) =
z(0)e−(ρ−R+Nbβ) and the discounted value of total utility is given by∫ ∞

s
e−ρ(t−s)z(t)U(β, 1; θ)dt =

z(0)a1−αβα

ρ − R + Nbβ
, (23)

which is strictly concave and attains its maximum at

βc(θ) =
α(ρ − R)
(1 − α)Nb

. (24)

It should be easy to see βc(θ) < β∗(θ) as long as N > 1. This means that every agent
can be better off by simultaneously reducing their equilibrium exploitation rate. In
other words, agents overexploit the resource and end up with a lower level of welfare
at MPNE. Hence, this game exemplifies the tragedy of the commons in a classical sense.
A question of particular interest then is whether the risk of regime shifts can encourage
agents to behave in a more precautionary manner and refrain from overexploitation.
And if such a precautionary resource-use is possible, in what condition should it be
the case?

3.2 Equilibrium under risk of regime shifts

We now turn to the case where Θp consists of multiple regimes. Then the system
switches from one regime to another during the course of dynamic strategic interaction
among agents. But some distinct regimes can be regarded as essentially the same since
different combinations of parameter values can support the same equilibrium. These
cases are exceptional and of no interest. In order to make occurrence of regime shifts
substantial for agents, we define strictly distinct regimes as follows.

Definition 2. Let V∗(z; θ) be the value function in the absence of regime shifts under a partic-
ular regime θ ∈ Θ. We say that two regimes θ1 ∈ Θ and θ2 ∈ Θ are strictly distinct from each
other if V∗(z; θ1) ̸= V∗(z; θ2) for z > 0.

To introduce the risk of regime shifts, consider first the case of ω = 0 with probabil-
ity one so that λ(z; θ) = 1/c > 0. In this case the hazard rate is independent of existing
level of resource stock.

Proposition 4. Consider a game ⟨U, G, λ, Θ, p⟩ specified above where Θp contains multiple
and strictly distinct regimes and ω = 0 for all θ ∈ Θp. There exists a symmetric MPNE such
that

V(z; θ) = γx(θ)z and ϕ(z; θ) = βx(θ)z, (25)

where
βx(θ) > β∗(θ) and γx(θ) < γ∗(θ) (26)

for at least one θ ∈ Θp.
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Proof. See Apendix A.4.

This proposition shows there exists a linear equilibrium under the risk of regime
shifts just as in the absence of regime shifts as long as the risk if exogenous. It further-
more states that the potential regime shifts always worsen the tragedy of the commons
at least under one particular regime. It will be instructive if we express the equilibrium
in a more explicit form. As shown in the appendix, γx(θ) is actually a solution to

ρ̃(γ; θ)− R = F(γ; θ), (27)

in which ρ̃ is defined by

ρ̃(γ; θ) := ρ +

(
1 −

E[γx(θ′)
∣∣θ]

γ

)
λ(θ) (28)

and the extraction rate βx(θ) is given by

βx(θ) :=
αF(γx(θ); θ)

(1 − αN)b
(29)

for each θ ∈ Θp. Note that function F is decreasing in γ. So it follows from (29) and
(22) that βx(θ) > β∗(θ) if and only if γx(θ) < γ∗(θ). Comparing (27) with (21), we
obtain

γx(θ) < γ∗(θ) ⇐⇒ ρ̃(γ∗(θ); θ) > ρ ⇐⇒ E[γx(θ′)
∣∣θ] < γ∗(θ), (30)

for each θ ∈ Θp. Hence, the exogenous risk of regime shifts accelerates the extraction
if agents are expected to be worse off under the coming regimes than in the case of
continuation of the current regime. And if there are strictly distinct regimes, there at
least one regime which is unambiguously better than the other regimes. Under such
a regime, any shift is undesirable, which provides an incentive for agents to accelerate
their extraction.

To clarify this point, suppose there are only two regimes possible under p so that
Θp = {θ1, θ2}. Let us say that we are currently in regime θ1 and the regime is expected
to shift into θ2 at an unpredictable timing. In many cases of concern such as regime
shifts in an ecological system due to human intervention, regimes are expected to shift
in a bad direction. Perhaps the growth rate declines (R2 < R1), the quality of resource
amenity value decreases (a2 < a1), or the resource stock becomes more vulnerable
to human intervention (b2 > b1). Once such a shift happens, people are likely to be
worse off, which is naturally translated into E[γx(θ′)|θ1] < γ∗(θ1). As a result, agents
accelerate strategic exploitation, anticipating an undesirable regime shift in the future.
This argument is formalized by the next corollary.

Corollary 1. Consider a game ⟨U, G, λ, Θ, p⟩ specified above where Θp = {θ1, θ2} and ω1 =

ω2 = 0. If R1 > R2, a1 > a2, b1 < b2, c1 < c2, or/and ρ1 < ρ2, then

βx(θ1) > β∗(θ1) and βx(θ2) < β∗(θ2). (31)
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Proof. See Apendix A.5.

If the next regime is expected to be more preferable than the current one, which is
the case when the current regime is θ2, overexploitation is mitigated. When an unde-
sirable regime shift is expected, however, our result provides a pessimistic prediction.
It basically predicts that agents overexploit resource more aggressively exactly when
such a reckless behavior should be avoided.

This alarming result might be altered when the risk of regime shift is rather endoge-
nous and if people correctly recognize that their behavior affects the risk. To investigate
this case, suppose ω > 0 for sure so that the risk of regime shifts depends on z. In this
case, it is easy to see there is no linear equilibrium. But a tractable solution exists,
which we see in the next proposition.

Proposition 5. Consider a game ⟨U, G, λ, Θ, p⟩ specified above where Θp consists of multiple
regimes and ω > 0 for all θ ∈ Θp. There exists a symmetric MPNE such that

V(z; θ) = γl(z; θ)z and ϕ(z; θ) = βl(z; θ)z (32)

for each θ ∈ Θp, where βl(z; θ) is strictly decreasing in z. Moreover, there exists z∗ such that
as long as z ≥ z∗

βl(z; θ) < β∗(θ) ∀θ ∈ Θp. (33)

Proof. See Appendix A.6

The equilibrium extraction rate ϕ(z; θ)/z is not constant, but decreasing in z. This
suggests that if the remaining resource stock is sufficiently large, endogenous risk of
regime shifts may facilitate resource preservation. The proposition states that this is in
fact the case. In other words, common-property resources with potential regime shifts
could be better managed than in the absence of regime shift as long as the current
resource base is in a good shape. It should be worth emphasizing here that this re-
sult is independent of how good or bad regimes are coming next. Hence, contrary to
the case of exogenous regime shifts, the risk of regime shift does not necessarily im-
ply acceleration of strategic resource exploitation, but rather encourages precautionary
resource-use even if the regime is expected to shift in a bad direction.

This result relates to the recent work of Polasky et al. (2011). Based on a linear
utility model combined with a fairly general growth function, they considered social
planner’s problem with potential regime shifts. They showed that when the risk of
regime shift is increased by dwindling resource stock, the optimal management of
productive resource must be precautionary in the sense that the optimal steady state
level of resource stock is always higher. Our analysis suggests that a similar argument
holds even in a decentralized and strategic environment. Also worth worth noting
is that the results above hold in the case of social planer’s problem as well since our
model formulation includes the case of N = 1.

10



3.3 Equilibrium dynamics

Aside from the precautionary resource-use, the non-linearity of equilibrium extraction
rate produces an interesting consequence in equilibrium dynamics. To highlight the
point, consider first the case when the risk of regime shift is absent or exogenous. Then
the equilibrium extraction rate is constant under each regime and agents’ strategy can
be expressed as x = βz. Then the dynamics of resource accumulation is given by

ż(t) = Rz(t)− bNβz(t) = (R − bNβ)z(t), (34)

implying that the equilibrium growth rate is constant, at least within the same regime.
So ż(t) > 0 if and only if R − bNβ > 0. Since β is a function of θ, the equilibrium
dynamics is completely determined by regime θ itself, independent of the level of z.

When the risk of regime shift is endogenous, on the other hand, equilibrium ex-
traction rate βl(z; θ) is a decreasing function of the remaining resource stock z. This
implies there exists a non-trivial steady state and the equilibrium dynamics depend on
the level of resource stock, which we formalize by the following proposition.

Proposition 6. Consider a game ⟨U, G, λ, Θ, p⟩ specified above where Θp consists of multiple
regimes and ω > 0 for all θ ∈ Θp. At the MPNE described in proposition 5, there exists a
unique non-trivial steady state zss(θ) for each θ ∈ Θp such that

1. ż(t) < 0 if z(t) < zss(θ) and

2. ż(t) > 0 if z(t) > zss(θ) as long as the current regime is θ.

Moreover, there exist zss and zss such that

3. limt→∞ z(t) = 0 if z(t) < zss for some t ∈ [0, ∞) and

4. lim supt→∞ z(t) = ∞ if z(t) > zss for some t ∈ [0, ∞).

Proof. See Appendix A.7

The equilibrium dynamics depend on the level of resource stock. When the resource
stock is larger than the steady-state level, the stock continues to grow as long as the
current regime persists. Since the hazard rate is decreasing in z, the risk of regime shift
will decline over time, providing a further basis for sustainable growth of resource
stock. If the stock level is smaller than the steady-state level, however, the logic is
completely turned around. The resource stock will gradually diminish, followed by
ever-more frequent occurrence of regime shifts.

What is critical then is the level of resource stock at the timing of regime shift.
Suppose z(t) > zss(θ) under regime θ ∈ Θp. This implies that along the equilibrium
path, the stock of resource continuously grows as long as regime θ persists. Let us say at
some period t′ > t, a regime shift happens and another regime θ′ ∈ Θp emerges. Then
this shift changes the dynamics and the level of steady state stock is altered accordingly.
If the level of remaining resource stock is ‘overtaken’ by the steady state under a new
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Figure 1: Equilibrium dynamics in the case of endogenous risk

regime (i.e., if z(t′) < zss(θ′)), the resource stock declines thereafter, at least until the
next regime shift occurs. The situation is depicted in Figure 1. Of course the logic can
be the other way around. It might be possible that even if the equilibrium dynamics
is characterized as a continuous decline of resource stock under a particular regime,
subsequent regime shifts, once they happen, can reverse the dynamics into sustainable
growth of resource.

But the proposition states that there are ‘points of no return’ in stock level, above
or below which the equilibrium dynamics is never reversed. If at some period t the
remaining resource stock z(t) becomes smaller than the lower boundary zss, the stock
level declines thereafter no matter which regime emerges in the subsequent periods.
So the process is irreversible, destined for collapse of resource base. Therefore, this
implies on one hand that there exists a resource-depletion trap and once the system is
caught in the trap, it will be impossible to escape from the trap. On the other hand,
however, if the resource stock reaches the upper boundary zss, then one can safely say
that the equilibrium resource-use remains sustainable thereafter, regardless of future
occurrence of regime shifts. Hence, the equilibrium dynamics can be characterized in
terms of initial stock z(0). When the initial resource stock z(0) is smaller than zss, then
the resource management is not sustainable and the resource base diminishes over time
whereas if z(0) is larger than zss, then the resource base never collapses. If z(0) is in
between zss and zss, then the resource management may or may not be sustainable,
depending on the realization of regimes in the course of strategic interaction among
agents.
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4 Conclusions

This paper presented a general framework with which a dynamic problem with po-
tential regime shifts can be analyzed in a decentralized and strategic environment as
well as from social planner’s perspective. Based on a fairly general framework, we
discussed necessary and sufficient conditions for the solution of agents’ problem and
defined a symmetric Markov-perfect Nash equilibria for the model of a general form.

We also demonstrated how the framework presented in this paper can be used to
investigate problems of interest. To this end, we focused on a simple dynamic common-
property resource problem and derive an equilibrium in a tractable form. Based on
comparison of three different specifications of regime shifts, it was shown that when the
risk is endogenous, potential of regime shifts can facilitate precautionary management
of common-property resources even in a strategic environment. It was also shown that
there exists a resource-depletion trap in which a regime shift, once it happens, triggers
a reversal of resource accumulation dynamics in a direction of deterioration.
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A Proofs

A.1 Proof of Proposition 1

Let J(s, z, {xn(t)}; θ) be the value of objective function along a feasible path {xn(t)}
from z(s) = z, namely,

J(s, z, {xn(t)}; θ) :=
∫ ∞

s
e−ρ(t−s)

{
U(xn(t), z(t); θ)

+ λ(z(t); θ)E[V(z(t); θ′)|θ]
}

e−
∫ t

s λ(z(τ);θ)dτdt, (35)

where {z(t)} satisfies

ż(t) = G(z(t), (N − 1)ϕ(z(t); θ) + xn(t); θ). (36)

Then for any ∆s ≥ 0,

J(s, z, {xn(t)}; θ) =
∫ s+∆s

s
e−ρ(t−s)

{
U(xn(t), z(t); θ)

+ λ(z(t); θ)E[V(z(t); θ′)|θ]
}

e−
∫ t

s λ(z(τ);θ)dτdt

+
∫ ∞

s+∆s
e−ρ(t−s)

{
U(xn(t), z(t); θ)

+ λ(z(t); θ)E[V(z(t); θ′)|θ]
}

e−
∫ t

s λ(z(τ);θ)dτdt (37)

=
∫ s+∆s

s
e−ρ(t−s)

{
U(xn(t), z(t); θ)

+ λ(z(t); θ)E[V(z(t); θ′)|θ]
}

e−
∫ t

s λ(z(τ);θ)dτdt

+ e−ρ∆se−
∫ s+∆s

s λ(zτ ;θ)dτ J(s + ∆s, z + ∆z, {xn(t)}; θ), (38)

where we define ∆z by

∆z :=
∫ s+∆s

s
ż(t)dt =

∫ s+∆s

s
G(z(t), (N − 1)ϕ(z(t); θ) + x(t); θ)dt. (39)

Note that by definition

V(z; θ) = max
{xn(t)}t≥s

J(s, z, {xn(t)}; θ), (40)

and
V(z + ∆z; θ) = max

{xn(t)}t≥s+∆s

J(s + ∆s, z + ∆z, {xn(t)}; θ). (41)

So we have

V(z; θ) = max
{xn(t)}s+∆s≥t≥s

{ ∫ s+∆s

s
e−ρ(t−s){U(xn(t), z(t); θ)

+ λ(z(t); θ)E
[
V(z(t); θ′)|θ

] }
e−
∫ t

s λ(z(τ);θ)dτdt

+ e−ρ∆se−
∫ s+∆s

s λ(zτ ;θ)dτV(z + ∆z; θ)

}
, (42)
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or equivalently

0 = max
{xn(t)}s+∆s≥t≥s

{
1

∆s

∫ s+∆s

s
e−ρ(t−s)

{
U(xn(t), z(t); θ)

+ λ(z(t); θ)E[V(z(t); θ′)|θ]
}

e−
∫ t

s λ(z(τ);θ)dτdt

+
e−ρ∆se−

∫ s+∆s
s λ(zτ ;θ)dτV(z + ∆z; θ)− V(z; θ)

∆s

}
. (43)

Since V(z; θ) is differentiable by assumption, by passing to the limit for ∆s → 0, we
obtain the Hamilton-Jacobi-Bellman equation

(ρ + λ(z; θ))V(z; θ) = max
x∈X(z)

{
U(x, z; θ) + λ(z; θ)E[V(z; θ′)|θ]

+ Vz(z; θ)G(z, (N − 1)ϕ(z; θ) + x; θ)
}

. (44)

A.2 Proof of Proposition 2

Since V and ϕ satisfy the HJB equation,

ρV(z; θ) = U(ϕ(z; θ), z; θ) + Vz(z; θ)G(z, Nϕ(z; θ); θ)

+ λ(z; θ)
{
E[V(z; θ′)|θ]− V(z; θ)

}
(45)

≥ U(xn, z; θ) + Vz(z; θ)G(z, (N − 1)ϕ(z; θ) + xn; θ)

+ λ(z; θ)
{
E[V(z; θ′)|θ]− V(z; θ)

}
(46)

for any x ∈ X(z). Let {x̂n(t)} be an arbitrary feasible path and {ẑn(t)} be the associated
path of state variable so that x̂(t) ∈ X(ẑ(t)) for all t ∈ [s, ∞) and

˙̂z(t) = G(ẑ(t), (N − 1)ϕ(ẑ(t); θ) + x̂n(t); θ) (47)

with ẑ(s) = z. Then

ρV(ẑ(t); θ) ≥U(x̂n(t), ẑ(t); θ) + Vz(ẑ(t); θ)G(ẑ(t), (N − 1)ϕ(ẑ(t); θ) + x̂n(t); θ)

+ λ(ẑ(t); θ)
{
E[V(ẑ(t); θ′)|θ]− V(ẑ(t); θ)

}
(48)

while

ρV(z(t); θ) = U(ϕ(z(t)), z(t); θ) + Vz(z(t); θ)G(z(t), Nϕ(z(t); θ); θ)

+ λ(z(t); θ)
{
E[V(z(t); θ′)|θ]− V(z(t); θ)

}
(49)

where {z(t)} satisfies
ż(t) = G(z(t), Nϕ(z(t); θ); θ) (50)

with z(s) = z.
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Let JT(s, z, {x̂n(t)}; θ) and JT(s, z, ϕθ ; θ) be the values of objective function along
{xn(t)} and {ϕ(z(t); θ)}, respectively, truncated up until T > s. Namely,

JT(s, z, {x̂n(t)}; θ) :=
∫ T

s
e−ρ(t−s)

{
U(x̂n(t), ẑ(t); θ)

+ λ(ẑ(t); θ)E[V(ẑ(t); θ′)|θ]
}

e−
∫ t

s λ(ẑ(τ);θ)dτdt, (51)

and

JT(s, z, ϕθ ; θ) :=
∫ T

s
e−ρ(t−s)

{
U(ϕ(z(t); θ), z(t); θ)

+ λ(z(t); θ)E[V(z(t); θ′)|θ]
}

e−
∫ t

s λ(z(τ);θ)dτdt. (52)

Then it follows from (48) and (47) that

JT(s, z, {x̂n(t)}; θ) ≤
∫ T

s
e−ρ(t−s)

{
ρV(ẑ(t); θ)− Vz(ẑ(t); θ) ˙̂z(t)

+ λ(ẑ(t); θ)V(ẑ(t); θ)
}

e−
∫ t

s λ(ẑ(τ);θ)dτdt (53)

= −
∫ T

s

d
dt

{
e−ρ(t−s)V(ẑ(t); θ)e−

∫ t
s λ(ẑ(τ);θ)dτ

}
dt (54)

= V(z; θ)− e−ρ(T−s)V(ẑ(T); θ)e−
∫ T

s λ(ẑ(τ);θ)dτ (55)

while (49) and (50) imply

JT(s, z, ϕθ}; θ) =
∫ T

s
e−ρ(t−s)

{
ρV(z(t); θ)− Vz(z(t); θ)ż(t)

+ λ(z(t); θ)V(z(t); θ)
}

e−
∫ t

s λ(z(τ);θ)dτdt (56)

= −
∫ T

s

d
dt

{
e−ρ(t−s)V(z(t); θ)e−

∫ t
s λ(z(τ);θ)dτ

}
dt (57)

= V(z; θ)− e−ρ(T−s)V(z(T); θ)e−
∫ T

s λ(z(τ);θ)dτ. (58)

Thus

JT(s, z, ϕθ}; θ)−JT(s, z, {x̂n(t)}; θ)

= e−ρ(T−s)
[
V(ẑ(T); θ)e−

∫ T
s λ(ẑ(τ);θ)dτ − V(z(T); θ)e−

∫ T
s λ(z(τ);θ)dτ

]
. (59)

Hence, if (15) is satisfied

V(z, θ)− J(s, z, {x̂n(t)}; θ) = lim
T→∞

JT(s, z, ϕθ}; θ)− lim
T→∞

JT(s, z, {x̂n(t)}; θ) ≥ 0 (60)

for any feasible path {x̂n(t)}.

A.3 Proof of Proposition 3

Fix θ ∈ Θ and define u : R+ → R by

u(y; θ) := U(y, 1; θ) = yαa1−α ∀y ∈ R+, (61)
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so that U(x, z; θ) = U(x/z, 1; θ)z = u(x/z; θ)z. Then it follows from the FOC that

u′(ϕ(z; θ)/z; θ) = bVz(z; θ) or ϕ(z; θ) = v(bVz(z; θ); θ)z, (62)

where v is the inverse function of u′. This implies that V(z; θ) is linear in z if and only
if ϕ(z, θ) is linear in z. Suppose

V(z; θ) = γ∗(θ)z (63)

for some constant γ∗(θ). Then Vz(z; θ) = γ∗(θ) and the policy function is

ϕ(z; θ) = v(bγ∗(θ); θ)z = β∗(θ)z where β∗(θ) := α
1

1−α ab−
1

1−α γ∗(θ)−
1

1−α . (64)

It thus follows from the HJB equation that

ργ∗(θ) = u(β∗(θ); θ) + γ∗(θ)(R − Nbβ∗(θ)) (65)

= Rγ∗(θ) + (1 − αN)α
α

1−α ab−
α

1−α γ∗(θ)−
α

1−α . (66)

In other words, γ∗(θ) is a solution to the equation

ρ − R = F(γ; θ) where F(γ; θ) := (1 − αN)α
α

1−α ab−
α

1−α γ− 1
1−α (67)

and

β∗(θ) =
αF(γ∗(θ); θ)

(1 − αN)b
=

α(ρ − R)
(1 − αN)b

. (68)

Note that ρ − R is positive, and lim supγ→0 F(γ; θ) = ∞ and limγ→+∞ F(γ; θ) = 0.
Hence, (67) has a unique solution.

Since ż(t)/z(t) ≤ R for any feasible path,

e−ρTV(z(T); θ) = e−ρTγ∗(θ)z(T) ≤ γ∗(θ)z(0)e−(ρ−R)T (69)

for any T ≥ 0. Noticing that ρ > R by assumption, we see that the RHS of the inequality
converges to 0 as T → ∞. Therefore, the transversality condition is also satisfied.

A.4 Proof of Proposition 4

Suppose for each θ ∈ Θp there exists some constant γx(θ) such that

V(z; θ) = γx(θ)z z ∈ R+. (70)

Then Vz(z; θ) = γx(θ) and the policy function is

ϕ(z; θ) = v(bγx(θ); θ)z = βx(θ)z, (71)

where

βx(θ) := α
1

1−α ab−
1

1−α γx(θ)−
1

1−α =
αF(γx(θ); θ)

(1 − αN)b
. (72)
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It thus follows from the HJB equation that

ργx(θ) +
(
γx(θ)−E[γx(θ′)

∣∣θ]) λ(c) = u(βx(θ); θ) + γx(θ)(R − Nbβx(θ)) (73)

= F(γx(θ); θ)γx(θ) + γx(θ)R. (74)

Note that ż/z ≤ R for any feasible path,

e−ρTV(z(T); θ)e−
∫ T

s λ(θ)dτ ≤ γx(θ)z(0)e−(ρ−R+λ(θ))T (75)

for any T ≥ 0. Since ρ > R by assumption and λ(θ) ≥ 0, the RHS of the inequality
converges to 0 as T → ∞. Therefore, the transversality condition is satisfied. Hence, if
there exists a solution {γx(θ)}θ∈Θp to the system of equations

ρ − R +

(
1 −

E[γx(θ′)
∣∣θ]

γx(θ)

)
λ(θ) = F(γx(θ); θ) θ ∈ Θp, (76)

then (70) and (71) constitute an MPNE.
We shall show that there exists a solution to (76). By assumption, support Θp of p

is finite. So we may write Θp = {θ1, θ2, . . . , θM} for some M ∈ N. Let γx
m := γx(θm) for

each m ∈ {1, 2, . . . , M} and πm′|m := Prob{θ′ = θm′ |θ = θm} so that

E[γx(θ′)|θm] =
M

∑
m′=1

γx
m′πm′|m. (77)

Then (76) may be written as

(1 − πm|m)γ
x
m − ∑

m′ ̸=m
γx

m′πm′|m = Hx(γx
m; θm), (78)

where
Hx(γ; θ) :=

1
λ(θ)

{F(γ; θ)γ − (ρ − R)γ} . (79)

Observe that

∂Hx(γ; θ)

∂γ
< 0, lim sup

γ→0
Hx(γ; θ) = ∞, lim inf

γ→∞
Hx(γ; θ) = −∞, (80)

which implies that for each γx
−m := (γx

1 , . . . , γx
m−1, γx

m+1, . . . , γx
M) ∈ RM−1

++ , there exists
a unique γx

m ∈ R++ satisfying (78). Since F is continuously differentiable with respect
to γ, so is Hx. Then by the implicit functions theorem, there exists a continuously
differentiable function Γx

m : RM−1
++ → R++ such that

(1 − πm|m)Γ
x
m(γ

x
−m)− ∑

m′ ̸=m
γx

m′πm′|m = Hx(Γx
m(γ

x
−m); θm), (81)

for any γx
−m ∈ RM−1

++ . Define Γx : RM
++ → RM

++ by

Γx(γx
1 , . . . , γx

M) := (Γx
1(γ

x
−1), . . . , Γx

M(γx
−M)) for each (γx

1 , . . . , γx
M) ∈ RM

++, (82)
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of which we shall find a fixed point.
Notice that

∂Γx
m(γ

x
−m)

∂γx
m′

> 0 ∀m′ ̸= m. (83)

So defining γ0
m := Γx

m(0) > 0 where 0 := (0, . . . , 0) ∈ RM−1, we obtain

Γx
m(γ

x
−m) ∈ [γ0

m, ∞) ∀γx
−m ∈ RM−1

++ . (84)

Define hx
m : R+ → R+ by

hx
m(γ) := Γx

m(1 · γ) (85)

where 1 := (1, . . . , 1) ∈ RM−1
++ . It follows from Proposition 3 and (79) that Hx(γ∗

m; θm) =

0 where γ∗
m := γ∗(θm) and

(1 − πm|m)γ
∗
m − ∑

m′ ̸=m
γ∗

mπm′|m = Hx(γ∗
m; θm) = 0, (86)

meaning that hx
m(γ

∗
m) = γ∗

m. Since hx
m(0) = γ0

m > 0 and γ∗
m is a unique solution to

Hx(γ; θm) = 0, it then must be the case that

hx
m(γ) < γ ∀γ > γ∗

m. (87)

This, together with (83) and (84), implies

Γx
m(γ

x
−m) ∈ [γ0

m, γ] ∀γx
−m ∈ (0, γ]× (0, γ]× · · · × (0, γ] (88)

for any γ ≥ γ∗
m, meaning

Γx(γx
1 , . . . , γx

M) ∈
M

×
m=1

[γ0
m, γ∗] ∀(γx

1 , . . . , γx
M) ∈

M

×
m=1

[γ0
m, γ∗]. (89)

where γ∗ := maxm{γ∗
m}. By Browder’s fixed point theorem, there then exists (γx

1 , . . . , γx
M) ∈

×M
m=1[γ

0
m, γ∗] such that

Γx(γx
1 , . . . , γx

M) = (γx
1 , . . . , γx

M). (90)

This fixed point constitutes a solution to (78) and thus to (76).
We now show that if Θp consists of strictly distinct regimes, then γx

m < γ∗
m for some

m ∈ {1, 2, . . . , M}. Suppose on the contrary that γx
m ≥ γ∗

m for all m. By construction

γx
m ≤ γ∗ = max

m′
{γ∗(θm′)} (91)

for each m ∈ {1, 2, . . . , M} and γx
m̄ = γ∗

m̄ for m̄ := argmax
m′

{γ∗
m′}. If γx

m = γx
m̄ for all m,

0 = (1 − πm|m)γ
∗
m̄ − ∑

m′ ̸=m
γ∗

m̄πm′|m (92)

= (1 − πm|m)γ
x
m − ∑

m′ ̸=m
γx

m′πm′|m (93)

= Hx(γx
m; θm) (94)

= Hx(γ∗
m̄; θm) (95)

< Hx(γ∗
m; θm) = 0 ∀m ̸= m̄, (96)
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where the strict inequality follows the fact that regimes are strictly distinct, which in
turn implies γ∗

m < γ∗
m̄. Since this is impossible, there must exist some m such that

γx
m < γx

m̄ = γ∗
m̄. But this then implies

0 = Hx(γ∗
m̄; θm̄) (97)

= Hx(γx
m̄; θm̄) (98)

= (1 − πm̄|m̄)γ
x
m̄ − ∑

m′ ̸=m̄
γx

m′πm′|m̄ (99)

> (1 − πm̄|m̄)γ
∗
m̄ − ∑

m′ ̸=m̄
γ∗

m̄πm′|m̄ (100)

= 0, (101)

a contradiction. Therefore γx
m < γ∗

m for some m ∈ {1, 2, . . . , M}. For such m, (29) and
(22) imply βx(θm) > β∗(θm).

A.5 Proof of corollary 1

Let γ∗
1 := γ∗(θ1) and γ∗

2 := γ∗(θ2). Notice first that

Hx(γ; θ) =
1

λ(θ)
{F(γ; θ)γ − (ρ − R)γ} (102)

= c
{
(1 − αN)α

α
1−α ab−

α
1−α γ− α

1−α − (ρ − R)γ
}

, (103)

which, given γ > 0, is increasing in R, a, and c, and decreasing in b and ρ. Since
Hx(γ∗

1 ; θ1) = Hx(γ∗
2 ; θ2) = 0 and Hx(γ; θ) is strictly decreasing with respect to γ, this

means γ∗
2 < γ∗

1 .
Let γx

1 := γx(θ1), γx
2 := γx(θ2). Then

(1 − π1|1)γ
x
1 − π2|1γx

2 = Hx(γx
1 ; θ1) (104)

(1 − π2|2)γ
x
2 − π1|2γx

1 = Hx(γx
2 ; θ2), (105)

where π2|1 = 1 − π1|1 and π1|2 = 1 − π2|2, and thus

γx
1 = γx

2 +
1

1 − π1|1
Hx(γx

1 ; θ1) (106)

γx
2 = γx

1 +
1

1 − π2|2
Hx(γx

2 ; θ2). (107)

If either γx
1 = γ∗

1 or γx
2 = γ∗

2 , then γ∗
1 = γx

1 = γx
2 = γ∗

2 , a contradiction. Therefore
γ∗

2 < γx
2 < γx

1 < γ∗
1 , which together with (29) and (22) implies βx(θ1) > β∗(θ1) and

βx(θ2) < β∗(θ2).
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A.6 Proof of Proposition 5

Fix z > 0 and suppose

V(z; θ) = γl(z; θ)z where γl(z; θ) := χ(θ) [λ(z; θ)]−(1−α) (108)

for some constant χ(θ) for each θ ∈ Θp. Then

Vz(z; θ) =

[
1 − (1 − α)

λ′(z; θ)z
λ(z; θ)

]
V(z; θ)

z
= (1 + (1 − α)ω)γl(z; θ) (109)

and the FOC implies

ϕ(z; θ)/z = v(b(1 + (1 − α)ω)γl(z; θ); θ) (110)

= α
1

1−α (1 + (1 − α)ω)−
1

1−α ab−
1

1−α χ(θ)−
1

1−α λ(z; θ) (111)

=
αF(γl(z; θ); θ)

(1 − αN)b(1 + (1 − α)ω)1/(1−α)
(112)

=: βl(z; θ). (113)

Notice that βl(z; θ) is strictly decreasing in z. The HJB equation is

ρ =
u(βl(z; θ); θ)

γl(z; θ)
+

(
E
[
V(z; θ′)

∣∣θ]
γl(z; θ)z

− 1

)
λ(z; θ) +

Vz(z; θ)z
V(z; θ)

[
R − bNβl(z; θ)

]
(114)

= R + (1 − α)ωR +

(
E[γl(z; θ)

∣∣θ]
γl(z; θ)

− 1

)
λ(z; θ)

+

(
α

1 + (1 − α)ω

) α
1−α

(1 − αN)ab−
α

1−α (γl(z; θ))−
1

1−α , (115)

or

ρ − [1 + (1 − α)ω]R +

(
1 −

E
[
γl(z; θ′)

∣∣θ]
γl(z; θ)

)
λ(z; θ) = [1 + (1 − α)ω]−

α
1−α F(γl(z; θ); θ)

(116)
for all z.

Note that ż/z ≤ R for any feasible path,

e−ρTV(z(T); θ)e−
∫ T

s λ(z;θ)dτ ≤ χl(θ)c−1z(0)e−(ρ−R−(1−α)φR)T−
∫ T

s λ(z;θ)dτ (117)

for any T ≥ 0. Since ρ − R − (1 − α)φR > 0 by assumption and λ(z; θ) ≥ 0 for any
z, the RHS of the inequality converges to 0 as T → ∞, meaning that the transversality
condition is satisfied. Hence, if there exists a solution to (116), then (108) and (110)
constitutes an MPNE.

We shall show that there exists a solution to (116). By assumption, support Θp of p
is finite. So we may write Θp = {θ1, θ2, . . . , θM} for some M ∈ N. Let γl

m(z) := γl(z; θm)

for each m ∈ {1, 2, . . . , M} and πm′|m := Prob{θ′ = θm′ |θ = θm} so that

E[γl(z; θ′)|θm] =
M

∑
m′=1

γl
m′(z)πm′|m. (118)
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Then (116) may be written as

(1 − πm|m)γ
l
m(z)− ∑

m′ ̸=m
γl

m′(z)πm′|m = Hl(γl
m(z); θm), (119)

where

Hl(γ; z, θ) :=
1

λ(z; θ)

{
[1 + (1 − α)ω]−

α
1−α F(γ; θ)γ − (ρ − [1 + (1 − α)ω]R)γ

}
. (120)

Observe that since ρ − [1 + (1 − α)ω]R > 0 by construction of Θ,

∂Hl(γ; z, θ)

∂γ
< 0, lim sup

γ→0
Hl(γ; z, θ) = ∞, lim inf

γ→∞
Hl(γ; z, θ) = −∞, (121)

which implies that for each γl
−m := (γl

1, . . . , γl
m−1, γl

m+1, . . . , γl
M) ∈ RM−1

++ , there exists a
unique γl

m ∈ R++ satisfying (119). Since F is continuously differentiable with respect
to γ, so is Hl . Then by the implicit functions theorem, there exists a continuously
differentiable function Γl

m(·; z) : RM−1
++ → R++ such that

(1 − πm|m)Γ
l
m(γ

l
−m; z)− ∑

m′ ̸=m
γl

m′πm′|m = Hl(Γl
m(γ

l
−m; z); z, θm), (122)

for any γl
−m ∈ RM−1

++ . Define Γl(·; z) : RM
++ → RM

++ by

Γl(γl
1, . . . , γl

M; z) := (Γl
1(γ

l
−1; z), . . . , Γl

M(γl
−M; z)) for each (γl

1, . . . , γl
M) ∈ RM

++, (123)

of which again we shall find a fixed point.
Notice that

∂Γl
m(γ

l
−m; z)

∂γl
m′

> 0 ∀m′ ̸= m. (124)

So defining γ0
m(z) := Γl

m(0; z) > 0 where 0 := (0, . . . , 0) ∈ RM−1, we obtain

Γl
m(γ

l
−m; z) ∈ [γ0

m, ∞) ∀γl
−m ∈ RM−1

++ . (125)

Define hl
m(·; z) : R+ → R+ by

hl
m(γ; z) := Γl

m(1 · γ; z) (126)

where 1 := (1, . . . , 1) ∈ RM−1
++ . Let γ⋆

m(z) > 0 be the unique solution to Hl(γ; z, θm) = 0,
which exists since ρ − [1 + (1 − α)ω]R > 0 by construction of Θ. Then

(1 − πm|m)γ
⋆
m(z)− ∑

m′ ̸=m
γ⋆

m(z)πm′|m = Hl(γ⋆
m(z); z, θm) = 0, (127)

meaning that hl
m(γ

⋆
m(z)) = γ⋆

m(z). Since hl
m(0; z) = γ0

m(z) > 0 and γ⋆
m(z) is a unique

solution to Hl(γ; z, θm) = 0, it then must be the case that

hl
m(γ; z) < γ ∀γ > γ⋆

m(z). (128)
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This, together with (124) and (125), implies

Γl
m(γ

l
−m; z) ∈ [γ0

m(z), γ] ∀γl
−m ∈ (0, γ]× (0, γ]× · · · × (0, γ] (129)

for any γ ≥ γ⋆
m(z) and (129) implies

Γl(γl
1, . . . , γl

M; z) ∈
M

×
m=1

[γ0
m(z), γ⋆(z)] ∀(γl

1, . . . , γl
M) ∈

M

×
m=1

[γ0
m(z), γ⋆(z)]. (130)

where γ⋆(z) := maxm{γ⋆
m(z)}. By Browder’s fixed point theorem, there then exists

(γl
1(z), . . . , γl

M(z)) ∈×M
m=1[γ

0
m(z), γ⋆(z)] such that

Γl(γl
1(z), . . . , γl

M(z); z) = (γl
1(z), . . . , γl

M(z)), (131)

which constitutes a solution to (119) and thus to (116) for given z.
To find the sufficient condition for precautionary resource-use, notice that for each

m ∈ {1, . . . , M}
γl

m(z) ≥ γ0
m(z) (132)

and γ0
m(z) is the unique solution to

ρm − [1+ (1− αm)ωm]Rm + (1−πm|m)λ(z; θm) = [1+ (1− αm)ωm]
− αm

1−αm F(γ; θm). (133)

Since F is decreasing in γ, this means

βl(z; θm) =
αmF(γl

m(z); θm)

(1 − αmN)bm(1 + (1 − αm)ωm)1/(1−αm)
(134)

≤ αmF(γ0
m(z); θm)

(1 − αmN)bm(1 + (1 − αm)ωm)1/(1−αm)
(135)

=
αm

(1 − αmN)bm

ρm − Rm − (1 − αm)ωmRm + (1 − πm|m)λ(z; θm)

1 + (1 − αm)ωm
(136)

for each z. Comparing (136) with (68) yields

βl(z; θm) < β∗(θm) (137)

if

(1 − πm|m)λ(z; θm) =
(1 − πm|m)

cmzωm
< (1 − αm)ωmρm. (138)

Define z∗ by

z∗ := max
m


[

cm(1 − αm)ωmρm

1 − πm|m

]−1/ωm
 , (139)

then as long as z ≥ z∗, (138) is satisfied for any m ∈ {1, 2, . . . , M} and thus βl(z; θ) <

β∗(θ) for any θ ∈ Θp.
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A.7 Proof of Proposition 6

Proof of Proposition 5 shows that for each θ ∈ Θp there exists a constant χ(θ) > 0 such
that

βl(z; θ) = α
1

1−α (1 + (1 − α)ω)−
1

1−α ab−
1

1−α χ(θ)−
1

1−α c−1z−ω. (140)

Notice that lim supz→0 βl(z; θ) = ∞ and limz→∞ βl(z; θ) = 0. Since βl(z; θ) is continu-
ous, there then exists a unique zss(θ) such that

R − bNβl(zss(θ); θ) = 0. (141)

Since βl(z; θ) is strictly decreasing in z, this implies

G(z, Nϕ(z; θ); θ) = R − bNβl(z; θ) < 0 if z < zss(θ) (142)

while
G(z, Nϕ(z; θ); θ) = R − bNβl(z; θ) > 0 if z > zss(θ), (143)

which proves the first part of the theorem. Sine Θp is finite, we can define

zss := max
θ∈Θp

{zss(θ)} and zss := min
θ∈Θp

{zss(θ)}. (144)

Once z(t) > zss for some t ∈ [0, ∞), then z(t) > zss(θ) for all θ ∈ Θp, and thus
ż(t) > 0 no matter which regime characterizes the system at period t. Therefore
lim supt→∞ z(t) = ∞. The proof for the case of z(t) < zss is similar.
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