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Abstract

The authors offer a new perspective to the field of guaranteed min-
imum death benefit contracts, especially for simple return-of-premium
and rising-floor guarantees. A particular feature of these contracts is
a guaranteed capital upon the insured’s death. A complete methodol-
ogy based on the generalized Fourier transform is proposed to inves-
tigate the impacts of jumps and stochastic interest rates. This paper
thus extends Milevsky and Posner (2001). If jumps alone are consid-
ered, similar results are obtained but when stochastic interest rates
are introduced, the fair costs of the guarantee feature are found to be
substantially higher in this more general economy.
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1 Introduction

Life insurance contracts have an actuarial and a financial component. The
first is related to the remaining lifetime of the insured, the second is often
linked to financial markets. These contracts generally offer a capital pro-
tection and a participation in the performance of the market. Thus, they
match investors’ desire to get protection in bear markets and upside par-
ticipation in bull markets. Under different names such as variable annuities
(VA) in the USA, segregated funds in Canada, unit-linked in the UK, or
other products, many kinds of policies bearing these features are offered to
investors (see for example Hardy (2003) or Milevsky (2006)). In the present
article, the authors study a specific contract, an insurance policy with an
optional rider called a Guaranteed Minimum Death Benefit (GMDB). For
convenience, such insurance policies are referred to as GMDB contracts.
They belong to the class of VA and represent a multibillion dollar market
in the USA.

The GMDB guarantees a specific monetary amount upon the insured’s
death. The contract is associated with a subaccount and the guarantee can
take various predetermined forms. The usual one is the maximum of the
subaccount value and of the initial investment accrued at a guaranteed rate.
This guarantee is only triggered by the insured’s death and is returned to
the beneficiary of the policy. In this article, we consider two types of GMDB
contracts: the return-of-premium guarantee, and the rising-floor. In the first
case, the initial investment is guaranteed while in the second case, a positive
fixed return is guaranteed.

The initial premium is payable immediately to the insurance company
which can invest it in financial markets. The promised guarantee, only
paid on death, is not free but is paid for by the insured by deducting small
amounts from her subaccount. In practice, these payments are made on a
periodic basis. In this article, the modeling is in continuous time and con-
tractual payments are made instantaneously. These fees are endogenously
determined and are related by construction to the guaranteed minimum
death benefit. In this article, they will be referred to as insurance fees or
insurance risk charges.

Milevsky and Posner (2001) found these contracts overpriced. In this
article, two possible explanations of this overpricing are examined. Firstly,
the authors observe that market financial prices can jump, creating a jump
risk which must be taken into account. Secondly, interest rate risk must be
incorporated in the valuation of these GMDB contracts.

The main objective of this article is to determine to what extent these
risk factors have an impact on the GMDB contract price. Is it only the
jump risk which matters, the interest rate risk, or the combination of these
risks? To examine this question a new approach is introduced, which gen-
eralizes Milevsky and Posner’s (2001) seminal article. Their valuation was
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performed in a Black and Scholes economy: the subaccount value was as-
sumed to follow a geometric Brownian motion, and the term structure of
interest rates was assumed to be constant. This last assumption, which
can be acceptable for short-term options, is not acceptable for medium- or
long-term contracts such as life insurance products. Generally, GMDB con-
tracts are investment vehicles with a long term horizon and as such they
are very sensitive to interest rate movements which are by nature uncertain.
A stochastic modeling of the term structure is therefore appropriate. In
this article, we use a one-factor model of a Hull and White (1993) type for
stochastic interest rates.

The Gaussian hypothesis for asset returns has been questioned for a long
time. It is now widely accepted that many observed return distributions
display asymmetry and fat tails (see Cont (2001)). From a modeling point
of view, the introduction of jumps allows these facts to be taken into account.
The many crashes and rallies in financial markets over the last years show
obvious jumps in prices. The suggested model accordingly incorporates
upwards as well as downwards jumps.

In life insurance, Hardy (2003) suggested using regime-switching models
introduced by Hamilton (1989), in particular the regime-switching lognor-
mal model. Ballotta (2005) was the first author to analyze the impacts of
jumps in valuing participating life insurance contracts, using a jump diffu-
sion process with Gaussian jumps while Kassberger, Kiesel, and Liebmann
(2008) made use of Meixner and NIG processes. Le Courtois and Quittard-
Pinon (2008) used a Kou process and took into account early default in
with-profits life insurance contracts. In this article, we also consider a Kou
process, a jump diffusion process whose jumps have a double exponential
distribution (see Kou (2002).

In this article the impact of market risk and actuarial risk is analyzed
through the “fair value” of insurance risk charges and of the GMDB contract.
The fair value is the International Accounting Standards Board (IASB) mar-
ket valued recommendation for financial reporting. It can be expressed as
the expectation of discounted cash-flows under a particular probability mea-
sure, the so-called risk-neutral probability. This corresponds to the main
result of arbitrage pricing theory. To sum up, we keep the framework of
Milevsky and Posner and extend it by considering stochastic interest rates
and jumps. Indeed, because of the long maturity of the contracts under
study, the effects of the stochastic nature of interest rates are expected to
be significant. And, because of the nature of the embedded option, which is
essentially a put option on the subaccount value, we anticipate that jumps
increase the value of the fair insurance risk charge, especially if the probabil-
ity of occurrence of downward jumps increases. We also expect a synergistic
effect of jumps and stochastic interest rates. To understand why, consider
the fact that as soon as we introduce stochastic interest rates, we can directly
use zero-coupon bonds as numéraires. In this case, the subaccount relative
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price incorporates the characteristics of the term structure of interest rates,
regardless of whether the interest rates and subaccount are correlated. We
can intuitively infer from this fact that the uncertainty of interest rates cap-
tured by the volatility structure of zero-coupon bonds has an effect on the
subaccount value which at the same time can be lowered by negative jumps.
This combined effect raises the embedded put option price. In fact, these
interactions are very complex and only a suitable model can make the role
of each of the economic variables involved explicit. This is precisely the
purpose of the present article.

In their article, Milevsky and Posner (2001) found insurance risk charges
for simple return-of-premium contracts between one and ten basis points,
while they reported a median value observed in the market of 115 basis
points. In the numerical analysis of our model and using a particular set
of parameters for the same type of contract, we found a range of 0.89 to
14.06 basis points insurance risk charge depending on purchase age when
jumps are introduced. However, insurance risk charges range from 5.29 to
26.51 basis points when stochastic interest rates are considered on top of
jumps. We found insurance fees ranging from 22.99 to 89.80 basis points for
rising-floor contracts in the same setting.

We also show that with stochastic interest rates and a high probability
of downward jumps, the model can yield high fees. So our model is versatile
enough to obtain a large spectrum of prices. In particular, it allows us to
recover the market values quoted by Milevsky and Posner (2001). Our re-
sults highlight the situations where the combined effect of stochastic interest
rates and jumps has a significant impact on insurance fees.

The remainder of this article is organized as follows. The next section will
introduce the main notation and the general framework used in the sequel.
The pricing model and applications are studied in section 3. Various risk
factor impacts are discussed in section 4. The final section concludes.
2 General Framework and Main Notations
In this section, the main definitions and notations are formally introduced.
The general framework of the analysis is set up. In a first subsection, mor-
tality and financial risk are considered. In subsection two, the GMDB under
analysis is defined. Subsection three deals with the main equations of this
article while the last subsection reviews Milevsky and Posner’s (2001) solu-
tion.
2.1 Financial risk and mortality
Financial risk is related to market risk firstly because the policyholder’s ac-
count is linked to a financial asset or an index, and secondly via stochastic
interest rates. We denote by r the stochastic process modeling the instan-
taneous risk free rate. The discount factor is:

δt = e−
∫ t

0 rs ds. (1)
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The policyholder’s account value is modeled by the stochastic process S. In
this model, ` stands for the fees associated with the insurance risk charge.

As far as mortality is concerned, we use the traditional actuarial nota-
tion. The remaining lifetime of a policyholder aged x is a random variable
Tx. For an individual aged x, the probability of death before time t ≥ 0 is
P (Tx ≤ t) = 1− (tpx). Letting λ denote the force of mortality, we have

P (Tx ≤ t) = 1− exp
(
−
∫ t

0
λ(x+ s)ds

)
. (2)

As usual, Fx(t) and fx(t) are respectively the c.d.f. and the p.d.f. of the
random variable Tx. To ease notation, we generally omit the x from the
remaining lifetime random variable and only write T when no confusion is
possible. We assume stochastic independence between mortality and finan-
cial risks.
2.2 Contract Payoff
The insurer promises to pay upon the policyholder’s death the contractual
amount max{S0e

gT , ST }, where g is a guaranteed rate, S0 is the insured
initial investment, and ST is the subaccount value at time of death x + T .
We will generalize this payoff further by considering a contractual expiry
date x+ Θ. This contract only provides a guarantee on death. Otherwise, if
the insured is still alive after time Θ lapses, she receives the account value
at that time. For the sake of simplicity, we keep the first formulation, and
we have:

max{S0e
gT , ST } = ST +

[
S0e

gT − ST
]+
. (3)

Written in this way, the contract is seen to consist of a long position on the
insured account plus a long position on a put option written on her account.
Two remarks are in order: firstly, the insured has the same amount of money
as if she invested directly in the financial market (aside from the fees), but
also has the possibility of getting more, due to the put option. Secondly
because T is a random variable, her option is not a vanilla one but an
option whose exercise date is itself random (the insured’s death). The other
difference with the option analogy lies in the fact that in this case there is
no upfront payment. Similarly to Milevsky and Posner (2001), the option
part in (3) is referred to as the GMDB Option Payoff. Informally, we can
write

Death Payment = Account Value + GMDB Option Payoff.

In this contract, the investor pays the guarantee by installments. The
paid fees constitute the so-called insurance risk charges. We assume they
are continuously deducted from the policyholder account at the contractual
proportional rate `. More precisely, we consider that in the time interval
(t, t+ dt), the life insurance company receives `St dt as instantaneous earn-
ings. We denote by F the cumulative discounted fees.
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The contract can also be designed in order to cap the guaranteed rate g.
In the VA literature, this is known as capping the rising-floor. Let C denote
the maximum amount set in the policy by the insurer, C ≥ S0. In that case,
the payoff becomes [min[C, S0e

gT ] − ST ]+. As Milevsky and Posner (2001)
noticed, this can be further simplified to:{

(S0e
gT − ST )+ if T ≤ ln[C/S0]/g

(M − ST )+ if T > ln[C/S0]/g.

2.3 Main Equations
In this article, we are essentially interested in the fair value of the insurance
risk charge. To evaluate it, we consider that the fair price is the arbitrage-
free price which, according to arbitrage theory, is given by the expectation of
the discounted contract payoff under a martingale measure that is equivalent
to the physical or historical one. In our paper, we do not have a complete
market. However, we suppose that a risk-neutral measure has been chosen.
For practical purposes, it can be obtained from the market, see for example
Björk (2004). There exists a huge literature on how to choose a risk-neutral
measure. This is not the purpose of this paper but the interested reader can
find additional information, for example, in Cont and Tankov (2004) and
references therein.

Using standard arbitrage theory in continuous time, the GMDB option
fair price is

G(`) = EQ
[
δT (S0e

gT − ST )+],
and upon conditioning on the insured’s future lifetime,

G(`) = EQ
[
EQ
[
δT (S0e

gT − ST )+|T = t
]]
. (4)

If FT denotes the discounted value of all fees collected up to time T , the
fair value of the insurance risk charge can be written as

ME(`) = EQ[FT ]

which, after conditioning, also gives

ME(`) = EQ
[
EQ[FT |T = t]

]
. (5)

Because the protection is only triggered by the policyholder’s death, the
endogenous equilibrium price of the fees is the solution in `, if any, of the
following equation

G(`) = ME(`). (6)

This is the key equation of this article. To solve it, we have to define the
investor account dynamics, and make additional assumptions on the process
S, and, of course, on mortality.
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2.4 Milevsky and Posner solution
In their paper, Milevsky and Posner (2001) assumed that ` is a constant,
that S is a Geometric Brownian motion with a volatility σ, and that the
mortality is either of an exponential type or of a Gompertz type. With obvi-
ous notations the GMDB option price, which they called a Titanic Option,
is then given by

G(`) =
∫ Θ

0
fx(t)EQ

[
δT (S0e

gT − ST )+|T = t
]
dt, (7)

where the inner conditional expectation is exactly the standard Black Scholes
Merton put formula with a strike price of K = S0e

gt.
Assuming an exponential future lifetime, they obtained the price in

closed form. Although this modeling is not realistic, it has the advantage of
yielding simple formulas and it provides a kind of benchmark. Milevsky and
Posner (2001) also obtained a closed-form solution for the present value of
fees. For a parametrized version of Gompertz lifetime, numerical methods
were necessary. In all cases, the equilibrium value of ` can only be obtained
by a root searching algorithm.
3 Suggested Pricing Model
To investigate the GMDB contract fair price, the following model is intro-
duced. First, the model takes stochastic interest rates into account. A one-
factor interest rate model with an exponential volatility structure is used1.
Second, the underlying asset process incorporates jumps.

The zero-coupon bond is assumed to obey the following stochastic dif-
ferential equation (SDE) in the risk-neutral universe:

dP (t, T )
P (t, T ) = rt dt+ σP (t, T ) dWt, (8)

where P (t, T ) is the price at time t of a zero-coupon bond maturing at time
T , rt is the instantaneous risk-free rate, and σP (t, T ) describes the volatility
structure, and W is a standard Brownian motion.

In order to incorporate a dependency between the subaccount and the
interest rates, we suggest introducing a correlation between the diffusive
part of the subaccount process and the zero-coupon bond dynamics. The
underlying account price process S is supposed to behave according to the
following SDE under the chosen equivalent pricing measure Q:

dSt
St−

=
(
rt − `

)
dt+ ρσ dWt + σ

√
1− ρ2 dZt + (Y − 1) dÑt. (9)

1This is a standard one-factor interest rate Hull and White (1993) model with a deter-
ministic zero-coupon bond volatility structure of exponential type. In this model, interest
rates are Gaussian. Therefore, negative interest rates can theoretically occur. However,
when the model is calibrated using empirical data, the probability of these events is very
low and not economically significant.
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Again, rt is the instantaneous interest rate, ` represents the fixed propor-
tional insurance risk charge, σ is the asset’s volatility, ρ is the correlation
between the asset and the interest rate, W and Z are two independent stan-
dard Brownian motions, and the last term represents the jumps. Ñ is a
compensated Poisson process with intensity λ, while Y , a random variable
independent from the former processes, represents the price change due to
a jump. The jump size is defined by J = ln(Y ).

Let us emphasize here that the non-drift part M , defined by dMt =
ρσ dWt + σ

√
1− ρ2 dZt + (Y − 1) dÑt, is a martingale in the considered

risk-neutral universe.
3.1 Modeling stochastic interest rates and subaccount jumps
Denoting by Nt the Poisson process with intensity λ and applying Itō’s
lemma, the dynamics of S can be expressed as:

St = S0 e

∫ t

0 rs ds−(`+ 1
2σ

2+λκ) t+ρσWt+σ
√

1−ρ2 Zt+
Nt∑
i=1

ln
(
(Y )i

)
, (10)

where κ = E(Y − 1).
A lengthy calculation shows that the subaccount price process can be

derived under the T -forward measure as:

St = S0
P (0, t)e

Xt (11)

where X is the process defined by:

Xt = −(`+ 1
2σ

2+λκ)t+
∫ t

0

(
σP (s, T )

(
ρσ − σP (s, t)

)
+ 1

2σ
2
P (s, t)

)
ds

+
∫ t

0

(
ρσ − σP (s, t)

)
dW T

s + σ
√

1− ρ2 Zt +
Nt∑
i=1

ln
(
(Y )i

)
.

(12)

We can rewrite Eq. (11) as follows:

St = S0 exp
(
−(`+ 1

2σ
2+λκ)t+ σ

√
1− ρ2 Zt

)
× 1

P (0,t) exp
(∫ t

0

[
σP (s, T )[ρσ−σP (s, t)]+ 1

2σ
2
P (s, t)

]
ds+

∫ t

0
[ρσ−σP (s, t)]dW T

s

)
︸ ︷︷ ︸

Stochastic interest rates

×
Nt∏
i=1

Yi︸ ︷︷ ︸
Jumps

The expression of St can be decomposed into three parts in the T -forward-
neutral universe. The first part is related to the subaccount trend and
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Brownian volatility, the second part is associated with the stochastic interest
rates while the last part takes the jumps into account.

This equation explains how the combined effect of jumps and stochastic
interest rates works. We see that the stochastic interest rates through the
volatility σP act as a multiplier on the jump part. We can also notice that
the combined effect is present even if the correlation coefficient ρ is equal to
zero.
3.2 Present value of fees
By definition, Ft is such that:

dFt = δt ` Stdt.

Using a chain rule on δtSt, we get:

FT =
∫ T

0
dFt = S0 − δTST +

∫ T

0
δtSt−dMt.

Without loss of generality, we will also assume from now on that S0 = 1.
As the last term of FT is an integral with respect to a martingale, whose

expectation is zero, we recover Milevsky and Posner’s (2001) previous result
on the present value of fees:

ME(`) = EQ[FT ] = 1− EQ[δTST ]. (13)

Using (1) and (10), we get:

ME(`) = 1− EQ
[
e
−`T−1

2σ
2T+ρσWT +σ

√
1−ρ2 ZT +

NT∑
i=1

ln
(
(Y )i

)
−λκT ]

.

As all random variables are independent from each other and by the prop-
erties of lognormal and compound Poisson laws, this reduces to:

ME(`) = 1− EQ
[
EQ
[
e−`T |T = t]

]
, conditioning on the future lifetime T ,

ME(`) = 1−
∫ ∞

0
e−`tfx(t)dt (14)

where fx is the p.d.f. of the random variable T . A very interesting fact
is that only the mortality model plays a role in the computation of the
expected present value of fees, as seen in (14).

Introducing the time to contract expiry date Θ, we have:

ME(`) = 1− EQ
[
e−`min(T,Θ)

]
= 1− EQ

[
e−`T 1l{T<Θ} + e−`Θ 1l{T≥Θ}

]
ME(`) = 1−

∫ Θ

0
e−`tfx(t)dt−

(
1− Fx(Θ)

)
e−`Θ. (15)
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3.3 Mortality models
Two mortality models are considered, namely the Gompertz model and the
Makeham model2. In the case of the Gompertz mortality model, the force
of mortality at age x follows

λ(x) = 1
b

exp
(x−m

b

)
,

where m > 0 is the modal value of the Gompertz distribution and b > 0 is
a dispersion parameter.

After some algebra, the integral part in (15) can be written as:∫ Θ

0
e−`T fx(t)dt = ebλ(x)e(x−m)`

(
Γ
(
1− `b, bλ(x)

)
− Γ

(
1− `b, bλ(x)e

Θ
b
))

where Γ(a, x) =
∞∫
x
e−tta−1dt is the upper incomplete gamma function and a

must be positive. This condition entails an upper limit on the possible value
of the insurance risk charge `: ` < 1

b .
The present value of fees3 in the case of a Gompertz-type mortality

model amounts to:

ME(`) = 1− ebλ(x)e(x−m)`
[
Γ
(
1− `b, bλ(x)

)
− Γ

(
1− `b, bλ(x)e

Θ
b
)]

− ebλ(x)
(
1−e

Θ
b
)
e−`Θ.

(16)

3.4 Valuation of the embedded GMDB option
The valuation of this embedded GMDB option is performed in two steps:

First, conditioning on the policyholder’s remaining lifetime, the option is
valued in the context of a Kou process with stochastic interest rates, with the
assumption that the financial asset in the investor subaccount is correlated
with the interest rates. This is a non trivial problem which, to the best of
our knowledge, has not been solved before.

Specifically, let us recall the embedded GMDB option fair price as can
be seen in (4):

G(`) = EQ
[
EQ
[
δT (S0e

gT − ST )+|T = t
]]
.

Using the zero-coupon bond of maturity T as a new numéraire, the inner
expectation IT can be rewritten as:

IT = EQ
[
δT (S0e

gT − ST )+] = P (0, T )EQT

[
(K − ST )+].

2In the Makeham mortality model, the force of mortality is λ(x) = A + BCx, where
B > 0, C > 1 and A ≥ −B. The presence of the constant A prevents us from obtaining
closed-form formulas. Hence, a numerical quadrature was used to compute the present
value of all collected fees.

3It is to be noted that the above formula (16) corrects typos in Milevsky and Posner’s
(2001) original article.
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The last term of the right-hand side of this equation shows how using the
forward-neutral measure QT neutralizes the stochastic discount factor δT .
This expectation can now be computed using an adaptation of the gener-
alized Fourier Transform approach4 proposed by Boyarchenko and Leven-
dorskǐı (2002).

Once this step is performed, the second step is to price the embedded
GMDB option by quadrature using the density of a chosen mortality distri-
bution. We consider two distributions, namely a parametrized Makeham,
and a parametrized Gompertz distribution. The solution, although not in
closed-form, is fast and accurate. In this model, we consider that the two
main sources of uncertainty come from the subaccount investment and from
interest rates. Formally, these two risks are linked in (8) and (9). These
equations lead to (11) for the risky subaccount price. In this expression,
the impact of interest rates intervenes only through the zero-coupon bond
volatility and through the initial term structure of interest rates. This mod-
eling is a very parsimonious way to simultaneously take the two main risks
into account and allows tractable solutions that we exploit in our empirical
study.

4 Empirical study
Throughout this analysis, all mortality models were fitted from actual data.
We systematically make a distinction between simple return-of-premium
(g = 0%) and rising-floor (g = 5%) contracts.

4.1 Jumps impact
In this subsection, we only study the impact of jumps in the underlying
account dynamics. The interest rate structure remains flat. The contract
expiry is set at age 75. The mortality model is the Gompertz mortality
model. The Gompertz parameters used in this subsection and the next one
are those calibrated to the 1994 Group Annuity Mortality Basic table in
Milevsky and Posner (2001). They are recalled in Table 1.

Table 1 – Gompertz distribution parameters – Milevsky and Posner (2001)

Female Male
Age (years) m b m b

30 88.8379 9.213 84.4409 9.888
40 88.8599 9.160 84.4729 9.831
50 88.8725 9.136 84.4535 9.922
60 88.8261 9.211 84.2693 10.179
65 88.8403 9.183 84.1811 10.282

4A detailed account of the suggested generalized Fourier approach used in the article
can be obtained from the authors upon request.
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We examine in turn the no-jumps case and two jump diffusion models.
The volatility in the no-jumps case is set to 20 %. In the Merton case, given
here for comparison purposes, the jump sizes are Gaussian i.i.d. with mean
µJ and standard deviation σJ . Here, µJ = 0 and σJ = 0.25.

In the Kou case, the jump sizes J = ln(Y ) are i.i.d. and follow a double
exponential law:

fJ(y) = pη1e
−η1y1y>0 + qη2e

η2y1y≤0 (17)

with p ≥ 0, q ≥ 0, p + q = 1, η1 > 0 and η2 > 0. The parameter p is the
probability of upward jumps, and q is the probability of downward jumps.
The parameter η1 is the inverse mean size of upward jumps while η2 is the
inverse mean size of downward jumps.

The following parameters for the Kou case serve as reference parameters:
p = 0.4, η1 = 10, and η2 = 5.

The Poisson intensity is arbitrarily set to λ = 0.5 in both jump diffusion
cases. The diffusive part of both jump diffusion models is such that their
overall quadratic variation is exactly the same as the quadratic variation of
the no-jumps case.

In Figure 1, we plotted the risk-neutral probability density functions
of market returns according to the Kou model and according to the usual
Gaussian case. We considered market returns over a 1 year period (see 1a),
a 5 year period (see 1b), a 10 year period (see 1c), and a 15 year period (see
1d).

Tables 2 and 3 show the percentage of premium versus the annual insur-
ance risk charge in all three cases for a male policyholder (see Table 2 for the
simple return-of-premium case and Table 3 for the policy with a rising-floor
guarantee of 5 %).

Table 2 – Jumps impact – Male policyholder – r = 6%, g = 0%, 200% cap. Gom-
pertz mortality model. In each case, the left column displays the relative importance
of the overall collected fees given by the ratioME(`)/S0. The right column displays
the annual insurance risk charge ` in basis points (bp).

Purchase age No jumps case Merton model Kou model
(years) (%) (bp) (%) (bp) (%) (bp)

30 0.25 0.61 0.25 0.60 0.25 0.60
40 0.47 1.47 0.46 1.45 0.46 1.45
50 0.82 3.64 0.79 3.54 0.79 3.52
60 1.18 8.90 1.12 8.45 1.12 8.39
65 1.19 13.24 1.10 12.32 1.09 12.19

We can notice that both jump diffusion models roughly give the same
insurance risk charge, having the same overall quadratic variation. In the
sequel, we only make use of the Kou process as a jump diffusion model.
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(c) Time to maturity τ = 10 years
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Figure 1 – Risk-neutral densities for the Kou model with jump intensity λ = 0.5
and jump component parameters p = 0.4, η1 = 10, and η2 = 5 versus the Gaussian
model with σ = 0.20. The diffusive parameter in the Kou model is chosen to equate
the total quadratic variation in both models.

4.2 Stochastic interest rate impact
Only stochastic interest rates are considered in this subsection.

The initial yield curve y(0, t) is supposed to obey the following paramet-
ric equation y(0, t) = α− βe−γt where α, β and γ are positive numbers. For
comparison purposes, we also use a flat interest rate structure set at r = 0.06.
The yield is then assumed to converge towards r for longer maturities. The
initial yield curve equation is set as follows:

y(0, t) = 0.0595− 0.0195 exp(−0.2933 t). (18)

As stated earlier, the interest rate volatility structure is assumed to be
of exponential form. It can be written as follows:

σP (s, T ) = σP
a

(
1− e−a(T−s)), (19)

where a > 0. In the sequel, we take σP = 0.033333, a = 1 and the correlation
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Table 3 – Jumps impact – Male policyholder – r = 6%, g = 5%, 200% cap. Gom-
pertz mortality model. In each case, the left column displays the relative importance
of the overall collected fees given by the ratioME(`)/S0. The right column displays
the annual insurance risk charge ` in basis points (bp).

Purchase age No jumps case Merton model Kou model
(years) (%) (bp) (%) (bp) (%) (bp)

30 1.35 3.25 1.34 3.24 1.24 2.98
40 2.52 7.97 2.50 7.92 2.30 7.28
50 4.23 19.22 4.19 19.05 3.85 17.44
60 4.90 37.59 4.82 37.00 4.42 33.86
65 3.48 39.33 3.38 38.16 3.10 34.99

between the zero-coupon bond and the underlying account will be set at
ρ = 0.35.

Melnikov and Romaniuk’s (2006) Gompertz and Makeham parameters,
estimated from the Human mortality database 1959-1999 mortality data,
are used in the sequel. As shown in Table 4, no further distinction was
made between female and male policyholders.

Table 4 – Gompertz (G) and Makeham (M) mortality model parameters for the
USA (US) – Melnikov and Romaniuk (2006)

A B C
GUS 6.148 ×10−5 1.09159
MUS 9.566 ×10−4 5.162 ×10−5 1.09369

With these parameters and a rising-floor guarantee (g = 5%), Table 5
shows that introducing stochastic interest rates does not change the insur-
ance risk charge rate significantly. Thus, when taken separately, neither
jumps nor stochastic interest rates have a significant effect on the fair insur-
ance fees.

Table 5 – Stochastic interest rate impact on the annual insurance risk charge (bp)
– No jumps considered – Gompertz mortality model – g = 5%, 200% cap

Age (years) 30 40 50 60 65
Flat term structure 4.79 11.16 24.88 44.45 45.20
Stochastic interest rates 4.49 10.64 24.27 44.78 46.81

Indeed, the longer the time to maturity, the more jumps tend to smooth
out, hence the lesser impact. On the other hand, the stochastic nature of
interest rates has a significant impact for the typical time horizon involved
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in this kind of insurance contract. We study the combined effect of jumps
and stochastic interest rates in greater depth in the following subsection.
4.3 Impact of combined risk factors
In subsequent figures, the circles correspond to the no-jumps model with a
constant interest rate. The crosses correspond to the introduction of Kou
jumps while maintaining a flat term structure of interest rates. The squares
add jumps and stochastic interest rates to the no-jumps case. These three
curves are built with a Gompertz mortality model. The stars take jumps and
stochastic interest rates into account but the mortality model was replaced
with a Makeham mortality model.
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Figure 2 – Annual insurance risk charge – USA – g = 0%
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Figure 3 – Annual insurance risk charge – USA – g = 5%

Figure 2 displays the annual insurance risk charge with respect to the
purchase age in the case of a simple return-of-premium contract. From age
30 to around 67 (respectively 72) with stochastic interest rates (respectively
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with a flat term structure), the risk charge rises steadily across all models. It
sharply decreases afterwards as the contract expiry approaches. All curves
display a maximum.

Figure 3 presents the case with a rising-floor guarantee at 5%. All curves
exhibit the same pattern but the maximum is reached at younger ages,
around 57 years in a stochastic interest rates environment and around 63
years in a flat term structure of interest rates environment.

More generally, the guarantee feature provided by the GMDB becomes
less and less valuable as the purchase age nears the contract termination
date. Indeed, the potential investor has no incentive to buy the GMDB
policy if she is almost certain she won’t possibly benefit from it in the short
time left before contract expiry. Moreover, if the time horizon is short, the
uncertainty surrounding the economic outlook is very low and she could
make a profit by investing directly in a government bond.

The two lower curves in Figures 2, and 3 notably correspond to the flat
term structure of interest rates setting. The jump effect is less pronounced
than the stochastic interest rates effect as represented by the two upper
curves. The thin band in which these upper curves lie shows that the change
of mortality model also has much less impact than the stochastic nature of
interest rates.
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Figure 4 – Sensitivity to the probability of occurrence of upward jumps

We also plotted the insurance risk charge for a GMDB contract with
a simple return-of-premium guarantee as a function of the probability of
upward jumps p in Figure 4. The investor is 50 years old. Again, we can
notice here that jumps alone don’t change the insurance risk charge by
much as the two curves in the flat term structures of interest rates setting
can attest. Note that when we added stochastic interest rates alone to
the Milevsky and Posner’s (2001) model, the effect was not much more
pronounced. However, once stochastic interest rates are introduced together
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with jumps, the impact of jumps is strongly reinforced, especially for lower
probabilities of upward jumps (p ≤ 0.6). We can also see in Figure 4 that
the fair insurance risk charge increases as the probability of occurrence of
downward jumps increases. Moreover, the insurance fee can reach high
levels (around 135 bp) for a very high probability of downward jumps. Thus
market fees reported by Milevsky and Posner (2001), with a median of 115
bp, can be recovered in our model5. We can also observe that this combined
effect is less important when upward jump probabilities increase. The fair
insurance fees can even be lower than the ones predicted by the base model.
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(c) Adding only jumps
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(d) Combined effect of stochastic interest
rates and jumps

Figure 5 – Stochastic interest rate and jump impact on the fair value of both the
total collected fees ME and the embedded GMDB option G with respect to the
insurance risk charge `. The probability of upward jumps p was set at 0.3, 0.4, and
0.5.

The various risk factor impacts are depicted in Figure 5 for a rising-floor
guarantee (g = 5%) held by a policyholder aged 50. The full line in each

5In light of the model developed in this article, a possible explanation of these market
fees would be that the insurers were adopting a very prudent attitude towards the financial
markets, as if they expected high probabilities for downward jumps.
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subfigure corresponds to the present value of all collected fees ME with
respect to the insurance risk charge `. As noticed earlier, the present value
of fees ME(`) only depends on the remaining lifetime of the policyholder,
which is modeled here by the Gompertz mortality model. The intersection
of the fees line (ME) with the embedded GMDB option value curves (G)
in each subfigure gives the fair value of the insurance risk charge `. The
upper left subfigure 5a represents the base case, with a flat term structure
of interest rates and no jumps in the subaccount dynamics. The resulting
fair charge is 24.88 bp. The upper right subfigure 5b shows the effect of
adding only stochastic interest rates to this base case while the lower left
subfigure 5c shows the impact of adding only jumps for various probabilities
of upward jumps.The last subfigure 5d on the lower right shows the combined
effect of both stochastic interest rates and jumps. A clear distinction can
now be made between the three embedded GMDB option value curves G(`).
The fair insurance fee is at 39.89 bp for q = 50%, increases to 68.47 bp for
q = 60%, and finishes at 119.78 bp for q = 70%.

Table 6 – Combined impact on the annual insurance risk charge (bp) – USA –
g = 0%, 200% cap

Gompertz Makeham
No jumps Kou Kou

Age flat stoch. flat stoch. stoch.
30 0.90 0.80 0.89 5.29 5.67
40 2.10 1.90 2.05 8.67 8.97
50 4.81 4.51 4.64 14.14 14.30
60 10.68 10.51 10.04 22.24 22.19
65 15.31 15.65 14.06 26.51 26.35

Table 7 – Combined impact on the annual insurance risk charge (bp) – USA –
g = 5%, 200% cap

Gompertz Makeham
No jumps Kou Kou

Age flat stoch. flat stoch. stoch.
30 4.79 4.49 4.39 22.99 24.61
40 11.16 10.64 10.16 40.40 41.63
50 24.88 24.27 22.52 68.47 68.92
60 44.45 44.78 39.95 89.80 89.35
65 45.20 46.81 40.13 75.78 75.25

This subsection is the most complete one because it takes into account
jumps, stochastic interest rates, and two standard mortality models esti-
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mated in the USA. As reported in Tables 6 and 7, and displayed in Figures 2
and 3, the behavior of the insurance risk charge with respect to age is of
the same type whatever the considered model. However, within this type,
differences can be noticed. First, the jump effect alone does not change the
fees very much. Second, there are also substantial differences between the
simple return-of-premium and the rising-floor contracts. When the inter-
est rate is constant and a Kou process is considered, the results are close to
those of Milevsky and Posner (2001) so jumps alone do not play a significant
role. Third, when stochastic rates are combined with jumps, the results are
very different: fees are substantially higher. Furthermore, and interestingly,
the probability of upward jumps p has a great influence: when p decreases,
fees rise as expected, as Figure 4 shows. On the one hand, for the simple
return-of-premium contract, fees as high as 135 bp are obtained for a 50
year old investor. On the other hand, fees lower than 1 bp can be obtained.
Fourth, the choice of mortality model does not have a significant impact6.
5 Conclusion
In this paper, we consider the Guaranteed Minimum Death Benefit con-
tract (GMDB). In essence, upon death, this contract offers beneficiaries the
maximum of the policyholder initial capital accrued at a minimum guaran-
teed rate and the value of the insured account linked to a financial market.
Milevsky and Posner (2001) named this contract a Titanic option. From
a purely financial point of view, the pricing is done via contingent claim
analysis. Previously, the fair contract price was obtained in a Black and
Scholes context as in Milevsky and Posner (2001) or in a regime-switching
lognormal context as in Hardy (2003).

In this paper, the Black and Scholes framework is extended to a more
general case allowing for stochastic interest rates and jumps. Specifically, the
market value of the policyholder’s account is assumed to follow a geometric
Lévy process. We examine the case of jump diffusions. The mortality is
of a Gompertz or a Makeham type. Our methodology was based on an
adaptation of the generalized Fourier transform approach.

For the typical maturities involved in this kind of contract, we found
that introducing jumps while keeping the overall quadratic variation con-
stant in a flat interest rate setting doesn’t change the fair costs of the GMDB
very much and the results are similar to Milevsky and Posner’s. On the
other hand, introducing a stochastic interest rate setting raises these fair
costs substantially. The important result stemming from this paper is that
with stochastic interest rates, significantly higher insurance risk charges are
found, and this is even more pronounced for rising-floor contracts. The
combined effect of stochastic interest rates and jumps is related to the prob-
ability of downward jumps: the higher this probability, the higher the fees.

6This observed fact corresponds to the drops of the mortality indices already mentioned
by Melnikov and Romaniuk (2006).
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