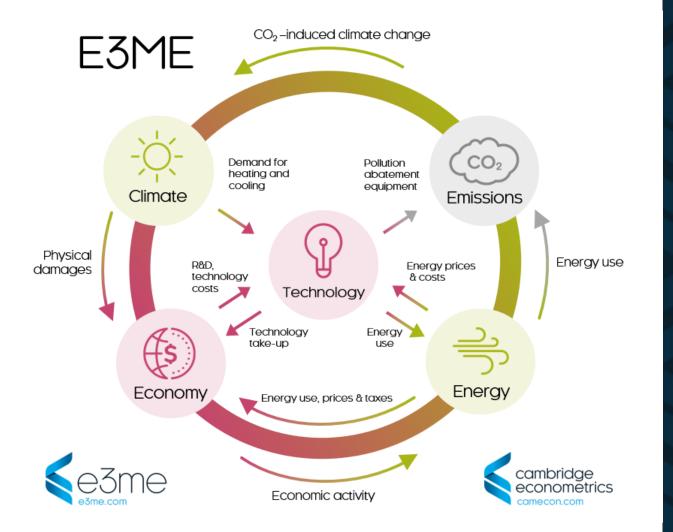
Kyoto University Seminar

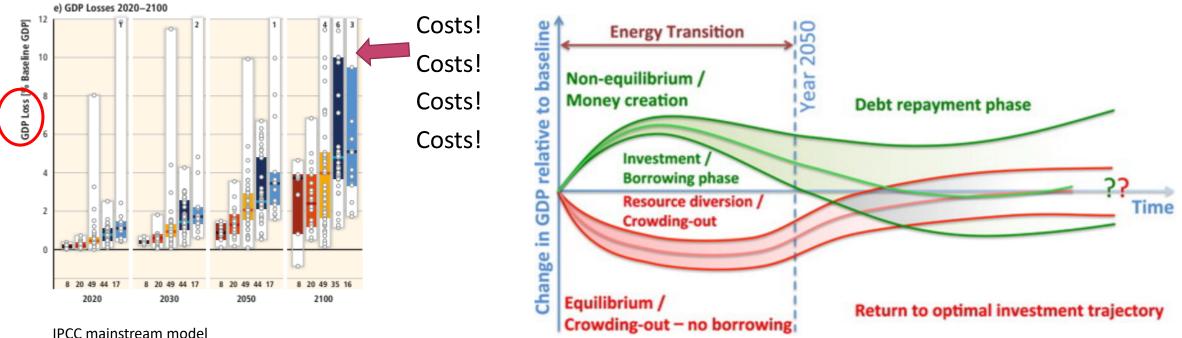
E3ME-FTTs: Modelling of Japan Net Zero

Unnada Chewpreecha Email: <u>uc@camecon.com</u> 29th March 2021



Overview

- E3ME and FTTs Overview
- Modelling Japan Net Zero in E3ME step by step



E3ME is a macro-econometric model designed to assess global policy challenges.

Following the Cambridge tradition*, it is the most model of its type. It is widely used for policy assessment, forecasting and research purposes.

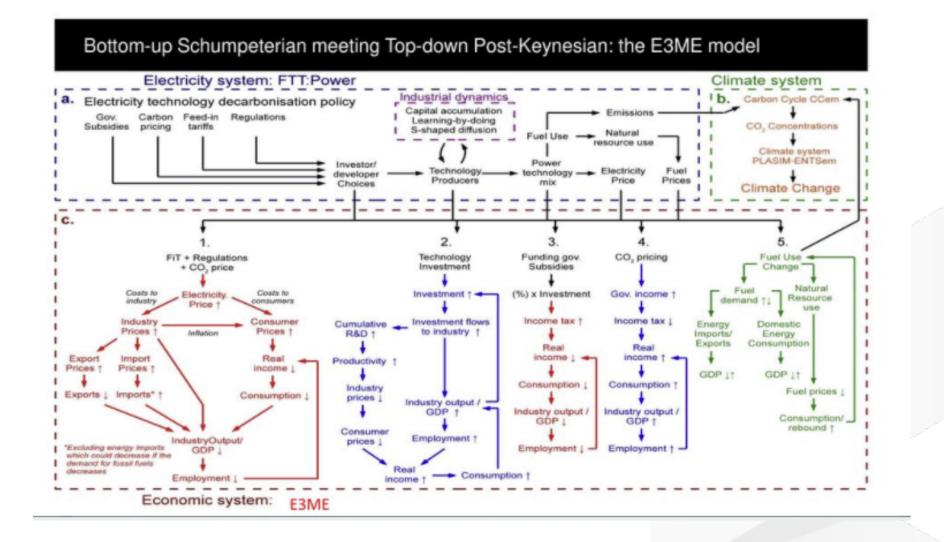
*Post-Keynesian, non-optimisation, accept real world behaviours and uncertainties

Optimisation vs Simulation approach

Source: Clarke et al (2014)

Mercure et al (2018)

https://www.tandfonline.com/doi/full/10.1080/14693062.2019.1617665



Key Features of FTTs in E3ME

	FTT-Power	FTT-Transport	FTT-Heat	FTT-Steel
Technologies	24	25	13	26
Inputs from E3ME	Electricity demand	Fleet/ car demand	Heat demand	Steel demand
Output to E3ME	 Fuel demand and emissions Electricity price Electricity investment Detailed PG employment 	 Fuel demand and emissions Average car price 	 Fuel demand and emissions Costs of boilers 	 Fuel demand and emissions Steel investment Steel price Detailed steel employment
Policies		 Tax (carbon, fuel, vel Subsidy Regulations (phase of Turnover time Discount rate Feeds in tariff Demonstration technology Demand side policie 	out, limits)	ciency

Example: FTT Policy Impacts in E3ME

Modelling Japan Net Zero in E3ME

E

62

ſ

4

 \bigcirc

Step 1: Define Scenarios

- Baseline E3ME existing baseline (IEEJ2021)
- Net Zero Scenario by 2050 with nuclear
- Net Zero Scenario by 2050 without nuclear

Assumptions

- Revenue neutrality (including policy costs and revenues), remaining amount used to reduce income tax, VAT, and social security contribution
- Include energy + processed CO2 emissions only
- Assuming small remaining emissions can be absorbed by LULUCF
- No action in Rest of World
- Net Zero can be achieved via combination of polices based on existing technologies in E3ME
- Allow for Biomass plus CCS technology

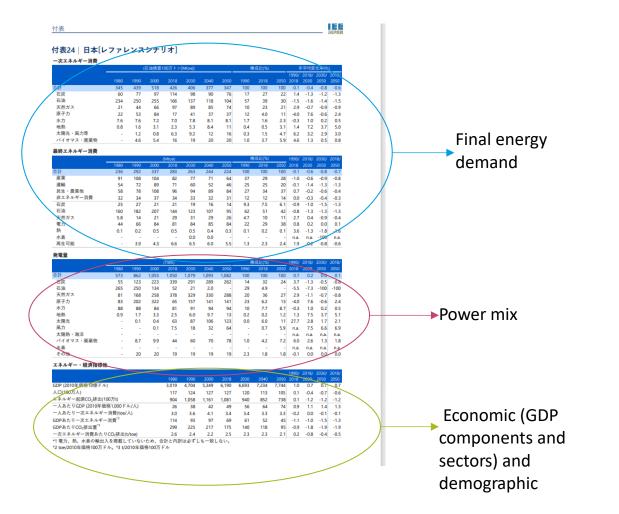
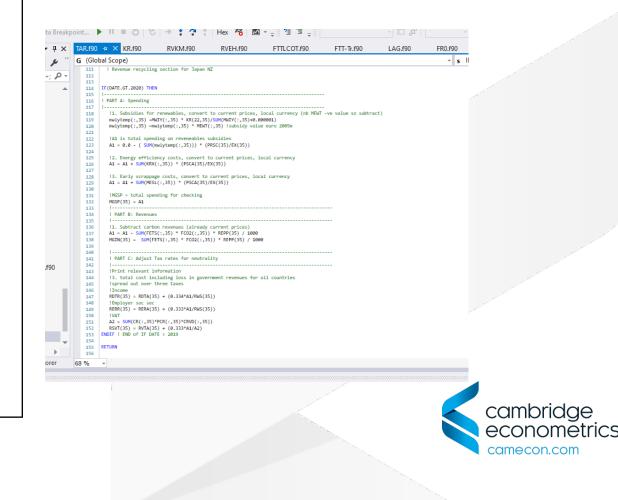

Step 2: Define Policies

Table 3-1: Policy inputs

	Sectors	Net-Zero	Net-Zero without Nuclear				
Carbon tax (from 2025 onward)	All sectors	Carbon tax gradually increasing from $50/tCO_2$ in 2021 to reach around $400/tCO_2$ in 2040 (2010 prices). Fixed rate after 2040.					
Coal phase out regulation	Power	Phase out by 2040					
Nuclear phase out regulation	Power	As IEEJ2021	Phase out with operating age reduced to 40 years				
Renewable subsidies and Feed- in-Tariffs	Power	Subsidies for expensive renewable technologies (biomass+CCS) between 2021-2035 Feed-in-Tariff for onshore and offshore winds between 2021-2035 Solar is excluded as already competitive.					
Kick start for biomass+CCS	Power	A programme to support biomass+CCS plants by setting up a small size demonstration plant in the first year					
Ban on petrol & diesel engines by regulation	Road transport	Ban sales from 2035 onw	vard				
Biofuel mandate	Freight and air transport	Increase share of biofuels	s in fuel mix				
EV subsidies	Road transport	Subsidies given to EVs in	the first few years				
Energy efficiency investment	Buildings and industry	Similar level of investmen Sustainable Development					
Coal, gas and oil boiler regulations	Buildings	Gradual ban of fossil fuel boilers by 2050					
Steel sector	Steel	Regulation of blast furnac zero by 2050 (switch to re	ce to gradually reduced to ecycled steel + EAF)				
Processed emissions	Industry	Assume processed emiss 4% pa in the net zero sce					

Step 2: Calibrate E3ME Baseline for Japan to IEEJ21

-	Interpolate between years
•	Using RAS to obtain fuel users by fuels
-	Using shift/share (based on historical and trends) apply growth rates while matching totals
•	Create consistent projections for other variables e.g GDP components, energy sector outlooks
•	Save numbers on databank
•	Run the model to create residuals
-	Apply residuals to endogenous solutions (baseline and scenarios)



Step 3: Set up Scenario Files with Policy Inputs

Step 4: Set Up Revenue Recycling Code in E3ME

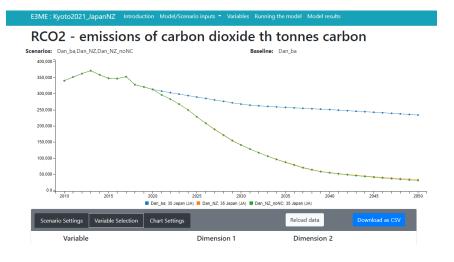
- Policy revenues = carbon tax revenues
- Policy costs = energy efficiency investment, renewables subsidies, stranded power plants (including nuclear)
- Leftover revenues = adjust tax rates (income tax, VAT, social security contribution)
- Automated process to take into accounts of rebounds in emissions

Step 5: Run Baseline, Scenarios and Solve for Solutions

Command Prompt - run

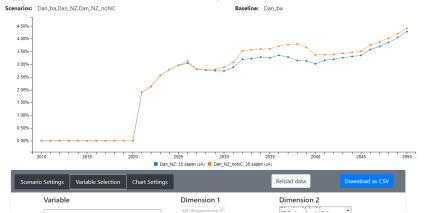
2046100	57	2.0	2.0	2.1	2.1	2.1	2.6	2.4	2.9	2.9	2.5	0.0	1.7	7.3
2047100														
2048100														
2049100														
2050100						2.2	2.6	2.4	3.0	2.9	2.5	0.0	1.6	1.3
Time taken (minutes): 108.09														

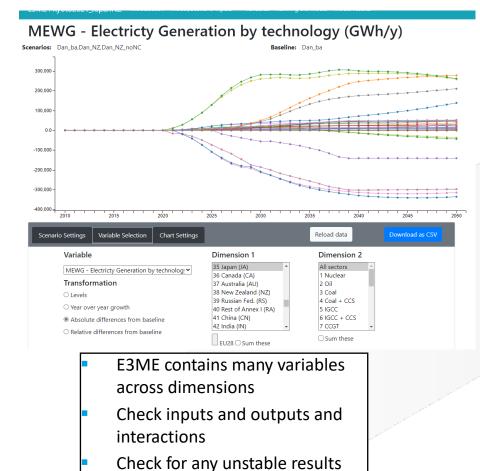
e:\Kyoto2021_JapanNZ>e3mer In dRep Asns\Assumptions Scenarios\B_ETS Databank Output\ Rep_ba Time taken (minutes): 0.00 E3ME data analysis: please wait until completed.


e:\Kyoto2021_JapanNZ>e3mer In Dan1 Asns\Assumptions Scenarios\B_ETS Databank Output\ Dan_ba Time taken (minutes): 0.01 E3ME data analysis: please wait until completed.

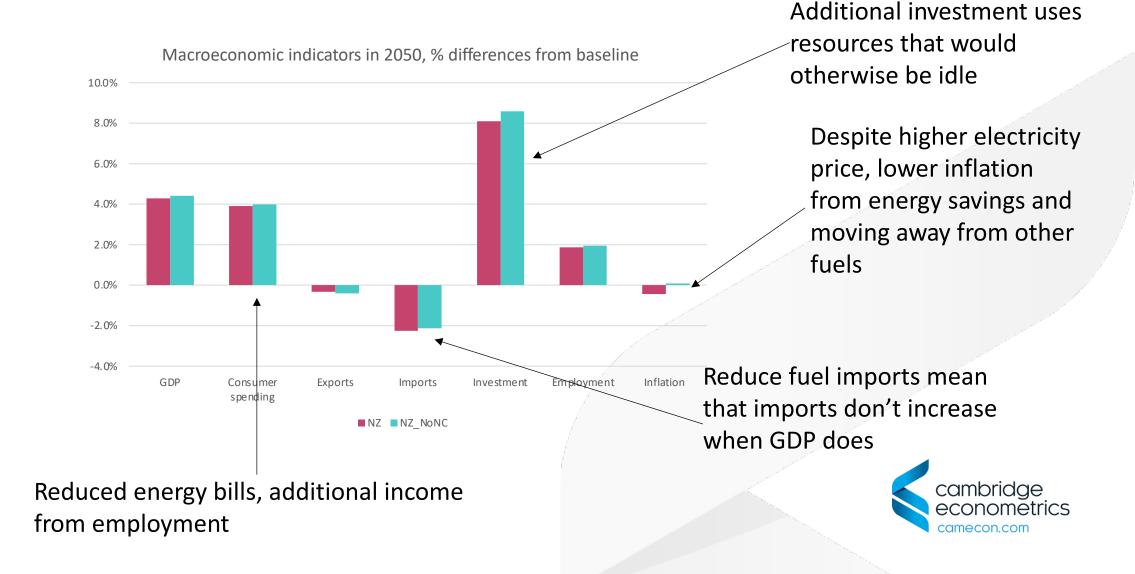
e:\Kyoto2021 JapanNZ>e3mer In EnJapanNZ Asns\Assumptions Scenarios\B ETS Databank Output\ E3ME60 SUMMARY SOLUTION FOR EACH YEAR Last iteration for 61 region(s) as % change (D) previous year: DATE IT GHG DGDP DSC DSV DSX DSM DPSH DPCE DPSX DPSM DAW BTRA PBRA UNRA 2011 11 54 3.1 2.7 5.0 6.7 7.6 4.2 2.1 4.2 4.7 4.0 0.0 2.6 6.3 2012 9 55 2.5 2.6 3.9 2.5 2.2 3.9 4.9 2.0 1.7 9.3 2.3 6.2 0.0 2013 10 55 2.7 2.6 3.4 2.7 2.3 0.5 -0.4 -0.1 -0.3 -3.0 0.0 6.2 1.4 2014 9 56 2.9 2.8 3.5 3.5 3.3 -0.5 -2.2 1.0 -0.3 0.9 0.0 1.6 6.2 2015 50 56 2.1 2.4 - 0.41.2 0.8 1.7 12.2 7.8 7.8 13.1 -0.0 6.12016 57 56 2.0 2.4 1.7 1.8 1.9 -3.0 -5.3 -4.5 -5.5 -0.5 -0.0 1.8 7.6 2017 86 56 2.4 2.1 3.0 3.1 3.0 3.4 3.4 4.5 4.8 2.6 -0.0 1.8 7.4 2018 48 55 4.0 2.9 6.9 3.3 3.1 3.4 3.3 5.5 5.7 3.3 -0.0 7.2 2019 42 55 3.2 2.8 4.0 3.7 3.6 2.9 2.7 2.5 2.5 3.3 -0.0 1.7 7.1 2020 42 55 2.7 2.5 3.1 3.4 3.4 3.0 2.9 2.5 2.5 2.9 -0.0 1.7 6.9

- Each scenario takes about 30 mins to run!
- Solution can become unstable/ crash
- Fixes are added and re run again




Step 6: Inspect Model Results using E3ME FrontEnd

E3ME : Kyoto2021_JapanNZ Introduction Model/Scenario inputs - Variables Running the model Model resu


RGDP - GDP expenditure measure at market prices (RSC+RSG+RSK+RSS+RSX-RSM)

Final Step: Present Key Findings

Kyoto University Seminar

E3ME-FTTs: Modelling of Japan Net Zero

Unnada Chewpreecha Email: <u>uc@camecon.com</u> 29th March 2021

