

Lessons Learned from Creating an OSW Industry in Europe

Faizi Freemantle

25 April 2022

Introduction to the Carbon Trust

OUR MISSION

To accelerate the move to a decarbonised future.

Services in Offshore Wind

Programme Management

We are global leading experts in delivering large scale RD&D and collaboration programmes, with a track record of delivering real cost reductions

Market Insights and Training

Experience delivering market insights to established European developers and international companies to aid in their strategic expansion plans

Energy Systems and Storage

We are at the forefront of the current energy system advancement, and leading a number of transformational projects to facilitate the move to a more dynamic, versatile system

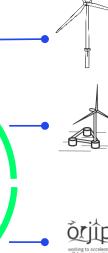
Technology Advice

We deliver insights into technology progress and support to help understand market gaps and evaluate solutions – subcontracting technical consultants where necessary

Policy Advice

CARBON

TRUST


We provide strategic policy support and advice in market support, cost reduction and economic development across a number of sectors

Cost Modelling

Our in-house LCOE model allows for the cost benefits of innovation to be evaluated, the assessing of market impacts and review technology impacts across a wide range of markets

World leading offshore wind R&D programmes

The Offshore Wind Accelerator (OWA)

Carbon Trust's flagship collaborative RD&D programme for bottom-fixed offshore wind.

The Floating Wind JIP (FLW JIP)

The Floating Wind JIP Overcomes challenges and advance opportunities for commercial scale floating wind

The Offshore Renewables JIP (ORJIP)

Offshore Renewables JIP aims to reduce consenting and environmental risks for offshore projects.

The Integrator

The Integrator is designed to examine the interplay between offshore wind, existing infrastructure, and other technologies to highlight opportunities for innovation investment.

Partners we work with:


BACKGROUND 1

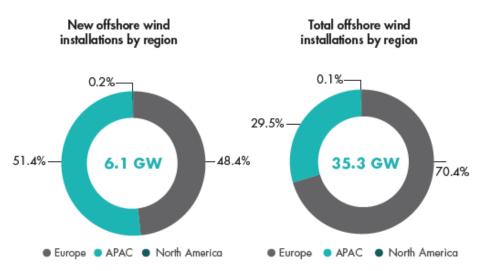
The Benefits of Offshore Wind

Why is Offshore Wind favoured by European Governments?

- Scale: 1GW+ projects possible
- Capacity Factor higher than other RE
- Reduced local opposition compared to onshore RE
- Close to coastal demand centres
- Economics potential for low cost due to economies of scale and other economic benefits such as job creation

-Global energy policy is at a turning point similar in magnitude to the Oil Shocks of the 1970s

- OSW is well placed to meet fulfil the energy needs of many countries and is particularly suited to meet Japan's energy policy requirements of '3E+S'


BACKGROUND 2

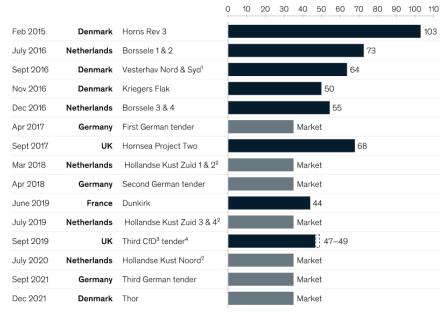
Success of OSW in Europe

OSW in Europe has been a Success Story

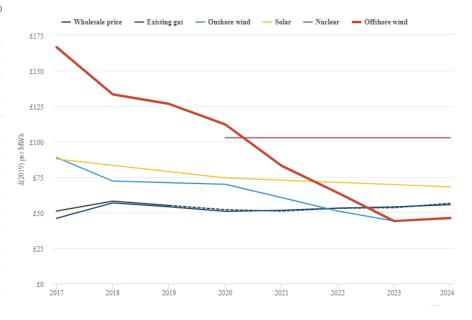
- The global offshore wind market has been dominated by a few North Sea European nations (Denmark, UK, Netherlands, Germany) and more recently China.
- These nations have rapidly increased installed capacity over the past decade, causing the perception of OSW to change from a small contributor to the energy mix to a central part of net zero plans.
- Successful markets have developed as a result of many factors including:
 - Favourable policies
 - Public and private R&D
 - Innovation
 - Economies of scale
 - Skills and knowledge transfer from Oil & Gas
 - Competitive international supply chain

Source: GWEC Offshore Wind Report 2021

Offshore Wind has achieved impressive cost reduction in Europe



Winning subsidy bids on recent offshore wind auctions, €/megawatt-hour (MWh)


Subsidized	offtake	
Subsidized	offtake	

■ Bids of 0 €/MWh, implying power to be taken off at electricity wholesale price at time of transaction

Sept 2021

Comparison of electricity cost by energy source in the UK

Source: Carbon Brief

Source: Mckinsey

LESSONS LEARNED 1

Six Pillars of Offshore Wind Policy Development

• Effective policy to support sector building can be characterised by six key pillars

Drivers	 MARKET SCALE & VISIBILITY Consistently considered the most critical driver for offshore wind development, giving confidence to developers and suppliers to plan and make necessary investment decisions. 				
Enablers	2. SITE DEVELOPMENT Models vary across jurisdictions, characterised by the allocation of development activities between government bodies and wind farm developers.	3. GRID CONNECTION A vital element of offshore wind policy, largely characterised by the differentiation of responsibility between developers, system operators, and third parties.	4. INCENTIVE MECHANISMS Critical enablers to catalyse growth and investment, particularly in an industry's formative years, evolving over time to encourage competition and drive cost reduction.		
Supporting	5. SUPPLY CHAIN DEVELOPMENT Vital to building the necessary capability to deliver projects on time and on budget, as well as improve the competitiveness of domestic suppliers. Linking energy policy to industrial strategy can maximise the capture of local economic benefits.				
	6. INNOVATION SUPPORT Essential to complement supply chain policies and drive cost reduction across the industry. Technology innovation has been a cornerstone of cost reduction achieved to date and will continue to play a major role going forward.				

12

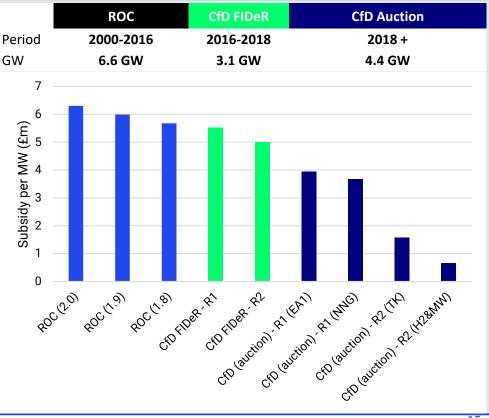
UK Case Study: Clear Government backing has helped the

- The UK government has been a very vocal supporter of OSW and this has been key to industry success.
- Clear and ambitious targets have been set. 2030 target set at:
 - 30GW in the OSW Sector Deal (2019) •
 - 40GW as part of the Net Zero strategy (2021) •
 - 50GW as part of Energy Security Strategy ٠ (2022)
- Consistent support through subsidy schemes
- Clarity of permitting and regulatory frameworks
- UK government made a clear choice to back offshore over onshore wind due to its relative merits

industry grow

Incentive mechanisms evolve with technology and market maturity

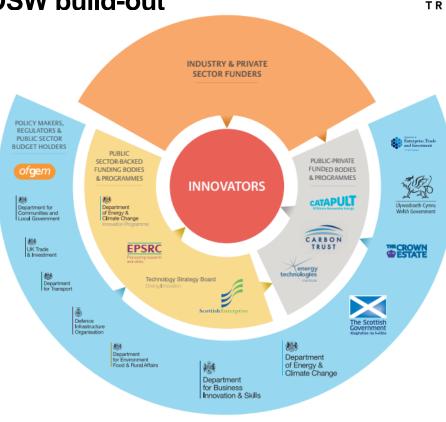
Demonstration projects	Early commercial projects	Large-scale commercial projects			
Maturity					
Capital grants	Fixed off-take contracts	Competitive auctions			
 Supports early projects where costs are uncertain due to lack of experience E.g. UK Offshore Wind Capital Grants Scheme 	 Market-based mechanism Provides commercial returns for developers, based on energy generation E.g. Feed-in premium; UK ROCs 	 Increased competition encourages cost reduction Auction budgets can help to control government spend E.g. UK Contracts for Difference 			


- Governments take on higher risk in immature stages, shifting risk to developers as the technology matures
- Growing technology maturity means that emerging markets are expected to go straight to fixed offtake or competitive auctions
- Limited market maturity may be a barrier to competitive auctions in more isolated markets

Case Study: Evolution of UK Subsidy Support

- Subsidy support was reduced steadily and gradually, until the industry was mature and a competitive supply chain had been developed.
- It wasn't until 9.7 GW of offshore wind had been deployed in the UK that competitive auctions were introduced.
- The introduction of competitive auctions saw prices fall dramatically.
- However, this cost reduction was only made possible due to the stable regulatory framework and support mechanisms that had allowed the industry to develop and mature.

Chart notes: Indicative subsidy revenue/payments calculated to account for the different duration of ROCs (20 years) and CfDs (15 years). **Assumptions:** ROC price = £45/MWh. Wholesale price = £45/MWh. Capacity factor = 40%.

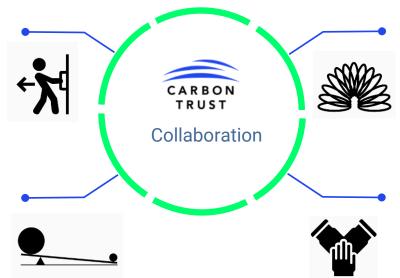

LESSONS LEARNED 2

Market-Pull R&D

Innovations from extensive R&D have been key to reducing cost and accelerating OSW build-out

- In the UK many public and private bodies have been involved in supporting OSW R&D.
- Early R&D was focused on technology demonstration and relied on public funding.
- However focus quickly moved to commercialisation, with R&D largely funded by industry (market-pull principle).
- The Carbon Trust has been at the forefront of creating collaborative industry R&D programmes for this purpose.

Benefits of a collaborative programme



Market-pull principle

- Near market, commercially focused RD&D
- Industry led and industry inclusive
- Industry-wide alignment on key issues provides clarity to the market and creates opportunities for innovators

Financial leverage

- Joint contributions
- Investment leverage
- Risk sharing

Flexibility

- Flexible nature and timing of projects
- Broad focus across several technical areas
- Flexible use of funding for the different projects
- Certainty and stability of the process and the resources available

Knowledge pool

- Large number of technical
 experts and strategists involved
- Open discussions, knowledge sharing and alignment of ideas at a technical and strategic level
- Open platform to innovators

Offshore Wind Accelerator (OWA)

Objective

Started in 2008 and currently in Stage 4, The OWA programme aims to **continue the cost reduction of offshore wind**, overcome **market barriers**, develop industry **best practice**, trigger the development of new **industry standards** and support the **international expansion** of offshore wind

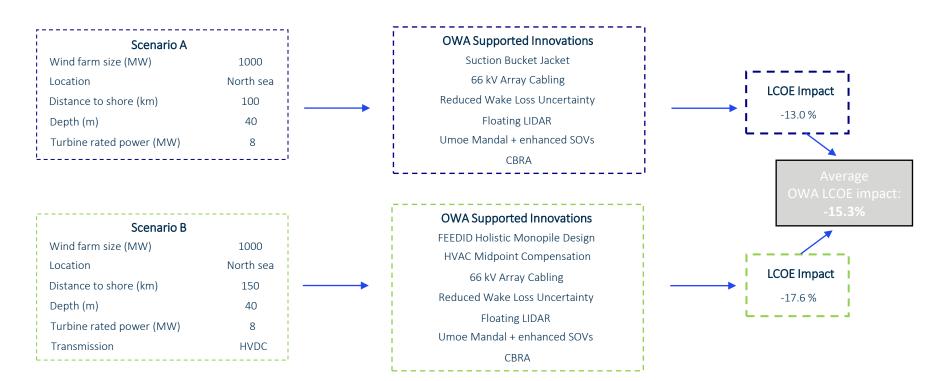
 Joint industry project currently involving 9 developers + Carbon Trust Over £105m total programme spend to date.
 Initially both public and privately funded but now 100% funded by the industry partners

- > The largest and most established innovation programme
 - New lower-cost technologies, ready to use

- Value to government and industry partners with great financial leverage
 - Efficient vehicle to accelerate innovation

OWA is channelling funding to the supply chain and drives innovations to the market

OWA Impact



Additional Information

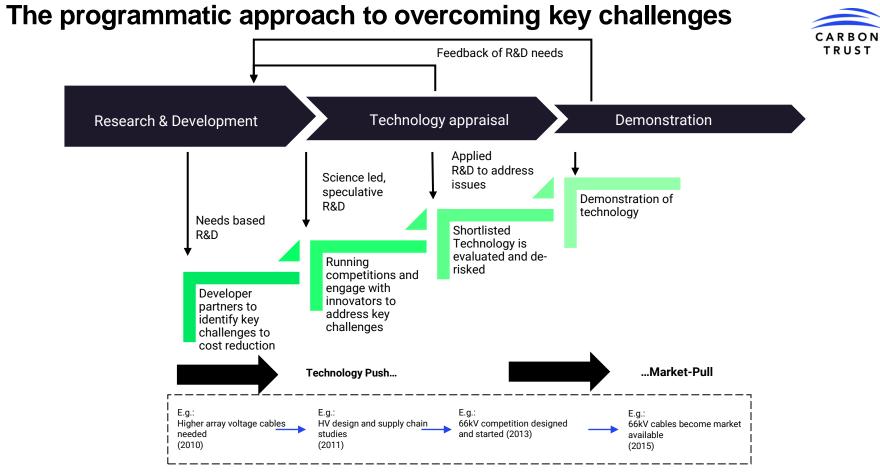
OWA Cost Modelling - Estimated Cost Impact

OWA Case Study of Innovation Support

• Access | Umoe Mandal – WaveCraft Crew Transfer Vessel (CTV)

SUMMARY

The OWA have been working with Umoe Mandal since 2011 to commercialise WaveCraft – their CTV concept. The programme support enabled significant development and de-risking. WaveCraft progressed from TRL 2 to TRL 9 in about 4 years and is now commercially available for use in offshore wind farms.


IMPACT

- Higher vessel motion stability and transit speeds (up to 35-40kts)
- Higher wave conditions operability (2.5Hs)
- Improved wind farm accessibility
- Potentially signifycant increase in turbine availability

DEVELOPMENT

2

Thanks for listening

Faizi Freemantle Faizi.Freemantle@carbontrust.com