
 

 
 

京都大学大学院 経済学研究科 再生可能エネルギー経済学講座     ディスカッションペーパ No.60 

 

 

 

京都大学大学院経済学研究科 

再生可能エネルギー経済学講座 

ディスカッションペーパー 

 

 

Assessing the Carbon Mitigation Impact of Energy Choices in China: 
A Focus on Renewable Energy and Thermal Efficiency Improvement 

 

 

 

 

 

2024 年 3 月 

March 2024 
 

 

 

Jie YANGa*, Yimeng DUb, Teng MAc 
 
 

a Researcher, Global Research Centre for Advanced Sustainability Science, 
University of Toyama 

b Lecturer, Research Project on Renewable Energy Economics, Kyoto University 
c Lecturer, Graduate School of Economics, Kyoto University 

 

 
  
 
 
 
 
 
 
 
 
 

 
* Correspondence to: University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-8555, Japan. E-mail addresses: 
ygxm320@gmail.com, yangjie@ctg.u-toyama.ac.jp (J. Yang) 



 

  

ディスカッションペーパ No.60       京都大学大学院 経済学研究科 再生可能エネルギー経済学講座

      

 
 
 

 

Assessing the Carbon Mitigation Impact of Energy Choices in China: 
A Focus on Renewable Energy and Thermal Efficiency Improvement 

 
 

Jie YANGa, Yimeng DUb, Teng MAc 
 

a Researcher, Global Research Centre for Advanced Sustainability Science, 
University of Toyama 

b Lecturer, Research Project on Renewable Energy Economics, Kyoto University 
c Lecturer, Graduate School of Economics, Kyoto University 

 

 
Abstract: 
This study estimates the carbon mitigation effects of various energy choices, focusing on renewable energy (RE) 

adoption and thermal efficiency improvement. We compiled a comprehensive panel data covering 2,641 counties from 
2003 to 2017 and employed a dynamic panel model for the analysis. Our results suggest that the adoption of wind 
power and thermal efficiency improvement, with the latter indicated by the adoption of large thermal power plants, 
significantly reduces carbon emissions. Notably, increasing wind power capacity exhibits a more substantial marginal 
reduction effect than increasing large thermal capacity. Moreover, the mitigation impact of RE is more substantial in 
regions with diverse renewable power types and higher renewable capacity. These results provide robust evidence 
regarding thermal efficiency improvement’s role in carbon mitigation and underscore the growing environmental 
benefits of RE as its share in installed capacity increases. Our findings emphasize the necessity of policies that 
incentivize the utilization of various RE types and target regional environmental efficiency gaps, which are crucial for 
achieving enhanced carbon mitigation during the energy transition. 
 
Keywords: Renewable energy; Thermal efficiency improvement; Carbon mitigation; Dynamic panel analysis; System 
GMM
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１． Introduction 

Climate mitigation strategies such as reducing coal capacity, sustainably using thermal 
energy, increasing the use of renewable energy (RE), and improving energy efficiency are 
considered effective methods for reducing greenhouse gas emissions. In response to these 
efforts, global energy intensity and carbon intensity decreased by 2% and 0.3% per year over 
2010–2019, respectively (IPCC 2022). Nevertheless, disparities in regional greenhouse gas 
emission trends and developmental stages present challenges. Developing countries, in 
particular, face hurdles in adopting low-emission technologies due to financial, technology, 
and capacity limitations (IPCC 2022). Additionally, factors such as portfolio diversification, 
policy heterogeneity, and perceptions of risk and return play significant roles in shaping 
strategic decisions between conventional and RE technologies (Wütenhagen and Menichetti 
2012). 
As the world’s largest emitter of greenhouse gases, China faces significant challenges due to 

its rapidly increasing energy demand and emissions. Currently, fossil fuels remain the 
dominant source in China’s primary energy consumption, with coalfired electricity alone 
accounting for over 60% of the nation’s power supply in 2020 (IEA Data Service 2022). The 
country has set ambitious goals to transform its energy profile by increasing the share of 
renewable electricity consumption to 33% by 2025, up from 27.3% in 2019. This shift is 
expected to significantly reduce carbon emissions. 
During the initial phase of the energy transition, especially in regions abundant with coal, a 

strategic approach might involve replacing inefficient small thermal power plants with more 
efficient ones. This strategy could offer greater immediate benefits compared with the early 
adoption of RE sources. Transitioning to RE can be costly initially and may pose risks to 
energy supply stability. In some cases, this situation has paradoxically led to the concurrent 
expansion of thermal power for energy security. Thus, improving the efficiency of thermal 
power plants is a crucial aspect of the energy transition. Without such improvement, 
expanding thermal power could significantly boost carbon emissions instead of delivering 
environmental benefits. Wang et al. (2019) emphasized the importance of adopting carbon 
reduction technologies, managing power plant capacity, and optimizing the operational 
schedules of thermal power plants to control emissions. Accurately quantifying the 
environmental impact of various energy choices, including the adoption of RE and thermal 
efficiency improvement, can provide important information for regional energy investment 
decisions, which are highly dependent on the costs and benefits of transitioning to new energy 
sources. 
This study aims to investigate the impacts of different energy choices on carbon emissions 

by addressing two main questions: Is RE more effective at reducing carbon emissions than 
efficient thermal power plants, and how do the effects vary across adoption types and 
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regions? To answer these questions, we collect detailed and comprehensive information on 
wind, solar, and large thermal power plants to construct adoption and installed capacity 
measures at the county level. The adoption of large thermal plants serves as an indicator of 
thermal efficiency improvement. We use a balanced county-level panel dataset of 2,641 
counties from 2003 to 2017 to compare the carbon mitigation effects of wind, solar, and large 
thermal power across energy adoption types and regions. To uncover the relationship between 
energy choices and carbon emissions, we conduct a dynamic panel analysis. This strategy 
allows us to integrate the county and year fixed effects to control for time-invariant county 
characteristics and time trends. 
This study contributes to existing literature in several ways. First, we conduct a comparative 

analysis of the effects of various energy choices on carbon emissions, with a focus on RE 
adoption and thermal efficiency improvement. This bridges a knowledge gap, as most 
previous studies have concentrated on a single energy choice (Alvarez-Herranz et al. 2017; 
Hasnisah et al. 2019; Li et al. 2021; Lin and Zhu 2019; Wang et al. 2023; Zhang et al. 2021). 
It is worth noting that thermal plants in developed countries exhibit relatively high generation 
efficiency attributed to larger production scales, the adoption of clean coal technologies, and 
stringent fossil fuel regulations (Eguchi et al. 2021; Li et al. 2019). Comparing different 
energy choices offers valuable insights to regions dealing with the dual concerns of energy 
efficiency and climate change. Second, we provide empirical findings on the mitigation 
effects of renewables by power type and adoption type. We estimate the heterogeneous 
mitigation effects of wind, solar, and various combinations of renewables, whereas most 
studies have primarily focused on the environmental benefits of RE consumption in general 
(Alvarez-Herranz et al. 2017; Azam et al. 2021; Hasnisah et al. 2019; Li et al. 2021; Murshed 
et al. 2022; Wang et al. 2023). This deepens our understanding of their heterogeneous 
potential, emphasizing the need for region-specific energy strategies. Finally, the empirical 
literature investigating the carbon mitigation effects of RE is primarily assessed at the 
regional (Ahmad et al. 2021; Lin and Zhu 2019; Zhang et al. 2023), national (Azam et al. 
2021; Murshed et al. 2022; Novan 2015), and global levels (Alvarez-Herranz et al. 2017; 
Dong et al. 2017, 2018; Hasnisah et al. 2019; Kazemzadeh et al. 2022; Li et al. 2021; Wang et 
al. 2022, 2023). However, many county-specific natural, historical, and political factors can 
affect carbon emissions and energy choices, which are not fully considered in previous studies. 
Our analysis contributes to the literature by identifying the causal effects, controlling for those 
potentially omitted characteristics. 
The remainder of this paper is organized as follows. Section 2 reviews the relevant literature 

and discusses the potential mechanisms. Section 3 describes the data, analytical framework, 
and estimation strategy. Sections 4 and 5 present the empirical findings and discussion, 
respectively. Section 6 concludes. 
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２．  Literature Review 

The relationship between economic growth, energy efficiency, and carbon emissions has 
garnered significant attention in the environmental literature. Generally, economic growth and 
increased energy intensity are positively associated with carbon emissions (Li et al. 2021; 
Milin et al. 2022). Industrial modernization and structural optimization are key to enhancing 
energy efficiency and reducing emissions (Li et al. 2022b; Rehman et al. 2023). In China’s 
transport sector, for instance, gains in energy efficiency have led to significant emission 
reductions (Li et al. 2022a). Additionally, policies aimed at reducing coal use and reforming 
energy consumption have been shown to boost efficiency (Liu and Jin 2020; Su et al. 2023).  
In the power sector, China launched the “Replacing small units with large ones” program in 

2017 with the aim of closing small and outdated thermal plants and replacing them with 
efficient large thermal plants. This effort led to the retirement of over 100 gigawatts (GW)11 
of small thermal power plants between 2006 and 2015 (Li et al. 2019). With the promotion of 
large thermal installations, units larger than 600 MW accounted for 50.3% of gross installed 
capacity by 2013 and those larger than 1,000 MW accounted for 56.7% by 2017 (China 
Electricity Council 2003–2017; Li et al. 2019). Research by Eguchi et al. (2021) reinforced 
the benefits of this transition, indicating that larger plants achieve superior efficiency through 
the utilization of clean coal technologies and more effective equipment. The transition from 
small plants to large ones results in a significant reduction in coal consumption per unit of 
electricity generated, thereby enhancing overall efficiency (Li et al. 2019). Thus, the shift to 
larger thermal plants is a strategic move towards improved environmental performance 
compared to smaller thermal plants. 
RE has been consistently shown to contribute to economic growth and environmental 

sustainability (Du and Takeuchi 2019; Halilbegovi ́c et al. 2023; Li et al. 2022b; Rehman et al. 
2022). A growing body of literature highlights the positive impact of RE consumption, 
alongside green energy innovation and investment, in reducing carbon emissions and air 
pollution (Ahmad et al. 2021; Alvarez-Herranz et al. 2017; Azam et al. 2021; Dong et al. 
2017, 2018; Hasnisah et al. 2019; Kazemzadeh et al. 2022; Li et al. 2021; Lin and Zhu 2019; 
Murshed et al. 2022; Novan 2015; Wang et al. 2022, 2023; Zhang et al. 2023). Table 1 
provides a summary of relevant empirical studies on the mitigation effects of RE, along with 
their key findings. Most existing studies primarily examine the impacts of RE from the 
perspective of the consumption share due to the limited availability of micro-level data. For 
example, Alvarez-Herranz et al. (2017) and Wang et al. (2023) employed global panel data, 
and Murshed et al. (2022) used time series data in Argentina, all finding that an increased RE 
share reduces emissions. More recent literature has begun utilizing more detailed data to 

 
1 As a reference, the cumulative thermal installed capacity in 2017 was about 1,105 GW. 
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comprehensively explore the specific impacts of different RE types. For instance, Novan 
(2015) quantified the heterogeneity in the marginal impacts of RE generation and capacity 
investments on pollution using hourly generation data from the Texas market. Using 
city-level data aggregated from power plants in China, Zhang et al. (2023) found significant 
mitigation effects of RE on air pollution. 

 

However, some findings reveal inconsistencies. Azam et al. (2021) observed a negative 
impact of RE on CO2 emissions in some major polluting countries but a positive effect in 
Russia. Drawing on empirical evidence from Asian countries, Hasnisah et al. (2019) 
suggested that RE consumption does not significantly contribute to carbon reduction. Zhang 
et al. (2021) also found limited mitigation effects and suggested that RE investment may only 
start to reduce emissions during the middle stages of development. Depending on the 
significance of RE sources, the nature of RE, and fluctuations in RE technology development 
and RE share, outcomes can differ from one country to another (Azam et al. 2021; Hasnisah 
et al. 2019). In this study, we attempt to provide a comprehensive analysis of the mitigation 
effects of various energy choices using county-level data aggregated from power plants, 
taking a multidimensional perspective into account. 
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３． Data and Estimation Method 

３.１ Data 

This study compiles a balanced county-level panel dataset from 2003 to 2017 to estimate the 
dynamic panel models, including 2,641 counties, across 15 years. The CO2 emissions data are 
sourced from Carbon Emission Accounts and Datasets (CEADs)2, which are estimated using 
satellite-observed night-time light imagery. Given that county-level carbon emissions data are 
neither officially published nor standardized (Liang et al. 2019), we use this county-level CO2 
emissions data from 2003 to 2017 to investigate power-related carbon emissions. Additionally, 
we use CO2 intensity as an energy-related estimate of carbon emissions. This measure, 
reflecting the progress of regional industrial structure and technological innovation, has been 
extensively used in previous studies (Liang et al. 2019; Zhao et al. 2014). CO2 intensity is 
calculated as the unit of CO2 emissions per unit gross domestic product (GDP)3, CO2 
intensity = CO2 emissions / GDP. Figure 1 shows the trend in county-level annual average 
CO2 emissions and CO2 intensity from 2003 to 2017. CO2 emissions increased until 2010 
but have since remained relatively stable, likely due to the implementation of carbon 
mitigation policies. 

 

CO2 intensity followed a similar trend during 2003–2010 but significantly decreased 

 
2 Carbon Emission Accounts and Datasets (2003–2017) provides information on CO2 emissions in 2,735 
Chinese counties from 1997 to 2017, which is useful for the development of strategic policies tailored to local 
conditions. 
3 We collect county-level real GDP data from Chen et al. (2022). GDP data are deflated to 2017 values using US 
dollars (2017=1). 
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thereafter, indicating that CO2 emissions grew more slowly than the GDP. By 2017, the 
average CO2 intensity had almost returned to the 2003 levels. Nonetheless, considerable 
variation in CO2 intensity exists across different regions. Figure 2 illustrates the spatial 
distribution of regional CO2 intensity in 2017. Counties with high CO2 intensities are 
concentrated in the central and west regions, characterized by lower levels of economic 
development. It is worth noting that more than 60% of the thermal power-sourced generation 
is concentrated in eastern and central China (China Electricity Council 2019). Eastern China 
boasts the highest thermal installed capacity and CO2 emissions but exhibits the lowest CO2 
intensity. Thermal power plants in central and western China have low efficiency, while those 
in eastern China achieve higher intensity levels attributed to their superior energy-saving and 
emission reduction capabilities (Eguchi et al. 2021; Fang et al. 2022). 

 
We obtain energy data from the China Electricity Council (2003–2017) (CEC), which 

provides annual statistics on China’s electric power industry since 1988, including details on 
the installed capacity and location of plants with a capacity over 6,000 kW. Given the limited 
operation of renewable plants before 2003, our analysis commences from that year, tracking 
the growth in installed capacity of renewable power plants through 2017. For large thermal 
power plants, we focus on those with capacities exceeding one million kW. By 2017, wind 
power constituted 28.3% of China’s total renewable capacity at 163.2 GW, while solar 
capacity reached 204.3 GW by 2019, accounting for 25.9% of the total renewable capacity. 
The transition from thermal to renewables is marked, with wind and solar capacity increasing 
by 4.3% from 2000 to 2010 and surging by 15.2% from 2010 to 2019, amidst reductions in 
thermal capacity. 
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Notably, the installation of renewables exhibits significant regional disparities. Figure 3 
shows the county-level spatial distribution of wind and solar power in 2017, categorized into 
the northeast, east, central, and west regions based on socioeconomic development levels. 
Predominantly, the northeast and west regions collectively accounted for 64.6% of China’s 
wind capacity, while the east and central regions collectively accounted for 57.8% of the 
country’s solar capacity in 2017. Despite the rapid growth of RE in China, it still represents a 
small proportion of the country’s total energy production. In 2019, wind generation ranged 
from 5.4% to 14.5%, and solar generation ranged from 3.2% to 17.6% across China’s 
provinces (China Electricity Council 2019). Regions with a larger proportion of renewable 
capacity are likely to see more substantial impacts on emissions reduction, even if the national 
average for installed capacity remains relatively low. 

 
This energy data, combined with other datasets, allow us to analyze the varying causal 

effects on CO2 emissions among different types of power. Referring to the previous literature, 
factors such as population density, wind speed, and sunlight duration have been considered as 
determinants influencing the selection of power plant locations (Su et al. 2023; Wang et al. 
2024; Zhang et al. 2023). Additionally, temperature and precipitation impact both CO2 
emissions and plant efficiency (Zhang et al. 2023). 
We sourced population density data from WorldPop (2000-2020) and weather data from the 

China National Meteorological Information Centre. The latter provides daily measures of 
temperature, precipitation, relative humidity, and wind speed at various weather stations 
across China, along with precise coordinates for each station. This information enables us to 
extrapolate annual county-level weather data. 
Table 2 summarizes the statistics of these variables. On average, the county shares of wind, 

solar, and large thermal adoption are 8.4%, 6.2%, and 7.2%, respectively. After 2010, there 
was a significant increase in RE adoption, particularly in solar power. By 2017, these shares 
rise to 23.7%, 32.7%, and 10.5%, respectively. When comparing average installed capacities, 
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wind (16.5 MW) and solar (5.3 MW) are considerably lower than large thermal power (135.9 
MW). Since the solar industry was established late and the installed capacity was distributed 
in a scattered manner, its average capacity was the smallest throughout our study period. 
 

 

３.２ Energy Measures 

To estimate the impacts of various energy choices, we constructed six energy measures. 
𝑊𝑖𝑛𝑑, 𝑆𝑜𝑙𝑎𝑟, and 𝐿𝑎𝑟𝑔𝑒 thermal are dummy variables designed to assess the adoption 
impact of these energy sources. Both 𝑊𝑖𝑛𝑑 and 𝑆𝑜𝑙𝑎𝑟 signify counties with wind or solar 
power plants exceeding 6,000 kW in installed capacity. By the end of 2017, such wind and 
solar plants constituted over 99.9% and 79.4% of their respective total installed capacities. 
These variables distinguish counties with RE adoption from those without.4 𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙 
variable indicates counties with large-scale thermal power plants of over one million kW, 
which represented 56.7% of the total thermal capacity by the end of 2017. This variable 
differentiates counties with major thermal power plants from those without. Counties lacking 
large thermal facilities (i.e., the comparison group of large thermal) likely depend on smaller 
thermal power sources, typically coal-fired, which are prevalent in most counties. Small 
thermal power plants generally have higher heat rates and lower energy efficiency (Li et al. 
2019), making 𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙 an appropriate proxy for thermal efficiency improvement. 

 
4 A county, regardless of whether it had adopted RE, uses thermal power or hydropower as the main energy 
source for power generation. 
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Additionally, we use the continuous variables 𝑊𝑖𝑛𝑑	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 , 𝑆𝑜𝑙𝑎𝑟	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 , and 
𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 to measure the marginal effects of the installed capacity of each 
power type. 𝑊𝑖𝑛𝑑	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 and 𝑆𝑜𝑙𝑎𝑟	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 capture the marginal effects of installed 
capacity for renewable power plants, while 𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 captures the marginal 
effects of installed capacity for large thermal power plants. Figure 4 shows the county share 
of RE adoption by power type and year. Our sample includes a balanced panel of 2,641 
counties, with approximately 45% (1,192) adopting RE by 2017. The breakdown of counties 
adopting wind, solar, and both types of plants by 2017 are 328, 564, and 300, respectively. 

３.３ Econometric Model 

This study employs a dynamic panel model to investigate the causal effects of various 
energy choices on carbon mitigation. Carbon emissions at the regional level are closely linked 
to the regional energy structure. In the short term, this structure, which is influenced by local 
resource endowments, energy consumption patterns, and supply, may remain unchanged. 
Therefore, we include the lagged values of carbon emissions measures to address the 
persistence in these variables. However, the inclusion of lagged dependent variables could 
introduce bias due to endogeneity issues. Dynamic panel models effectively control for 
unobservable time-invariant factors in both year and county, while also mitigating 
endogeneity through the incorporation of lagged or differenced terms as instrumental 
variables. Furthermore, our panel data comprises 2,641 counties across a span of 15 years, 
featuring a considerably larger number of cross-sectional units (𝑁) than the time span (𝑇). 
According to Bond (2002), when the dependent variable is persistent and close to being a 
random walk (i.e., the coefficient of the first lag 𝛾 is close to 1), the difference of the 
generalized method of moments (GMM) estimator yields a biased and inefficient estimate, 
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particularly when 𝑇 is short. Given that 𝛾 in our models are ranging between 0.955 and 
1.062, as seen in the main results of Tables 3 and 4, we opt for the system GMM model 
proposed by Arellano and Bond (1991) to estimate the mitigation effects. The general model 
we use can be specified as follows: 

     𝑌!" = 𝑓(𝑌!,"$%, 𝐸!" , 𝑋!" , 𝛿! , 𝜇")	          (1) 

Equation (1) shows the association between carbon emission 𝑌!", its lagged term 𝑌!,"$%, 
energy strategy indicator 𝐸!", weather and county controls 𝑋!", regional trends 𝛿!, and time 
trends 𝜇". We further expand Equation (1) to add the logarithm forms of variables to estimate 
the system GMM model: 

										𝑙𝑛𝑌!" = 𝛾𝑙𝑛𝑌!,"$% + 𝛽𝐸!" + 𝜃𝑋!" + 𝛿! + 𝜇" + ε&'	       (2) 

where 𝑙𝑛𝑌!"	is the logarithm of the carbon emission measures in county 𝑖 in year 𝑡 during 
2003–2017, including CO2 emissions and CO2 intensity (see the details in Subsection 3.1). 
𝑙𝑛𝑌!,"$%  is the lagged value of 𝑙𝑛𝑌!" . 𝐸!"  indicates the energy measures of the energy 
adoption5 or cumulative installed capacity in county 𝑖 in year 𝑡. 𝑋!" is the set of control 
variables that can affect regional carbon emissions and energy location choices, including 
county-level population density, wind speed, and sunlight duration, as well as the two weather 
controls of temperature and precipitation. 𝛿! denotes the county fixed effects, controlling for 
unobservable time-invariant county characteristics. 𝜇𝑡  denotes the year fixed effects 
common to all counties in period 𝑡 , which controls for national energy policies, 
environmental regulations, and trends that shape carbon emissions over time. 𝜀!" denotes the 
error term. The main variable of interest is 𝐸!", and the parameter 𝛽 captures the effects of 
the energy measures on carbon emissions:  

											Δ𝑙𝑛𝑌!" = 𝛾Δ𝑙𝑛𝑌!,"$% + 𝛽Δ𝐸!" + 𝜃Δ𝑋!" + Δ𝜇" + Δε&'       (3) 

The dynamic panel analysis removes the county fixed effects by time differencing, and we 
obtain Equation (3). The estimates will be biased if we use ordinary least squares regression 
because ∆𝑙𝑛𝑌!,"$% is correlated with ∆𝜀!". We thus use the GMM estimator developed by 
Arellano and Bond (1991) and	𝑙𝑛𝑌!,"$(	(𝑠	 ≥ 	2) as the instrument for ∆𝑙𝑛𝑌!,"$%. Similarly, 
lags of Eit are used as instruments for the energy measures. Additionally, we use the 
first-order autocorrelation test AR(1) and second-order autocorrelation test AR(2) statistics to 

 
5 Energy adoption refers to whether a certain type of renewable power facility exists in county 𝑖 in year 𝑡. A 
dummy variable is used to illustrate energy adoption, which accounts for 1 when wind/solar power facility exist 
in county 𝑖 in year 𝑡, and 0 otherwise. 
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investigate whether the assumption of no serial correlation in 𝜀𝑖𝑡 can be rejected. The 
Hansen J test assesses the presence of overidentifying restrictions, helping determine whether 
the chosen instruments are correlated with the error term. In our presentation of the results, 
we include the p-values for both the AR(1) and AR(2) tests, as well as the Hansen statistics. 
Low p-values in the AR(1) test indicate that the fundamental assumption of no serial 
correlation is met, whereas high p-values in the AR(2) and Hansen J test suggest that potential 
sources of correlation have been effectively addressed in our analysis. As a result, a 
combination of a low AR(1) p-value and high AR(2) and Hansen J test p-values is indicative 
of the appropriateness of our estimation approach. Our choice of estimation strategy and the 
estimation procedure follow the analytical framework in Figure 56. 

 
We develop three hypotheses based on the literature review in Section 2. H1: Both RE 

adoption and thermal efficiency improvement are linked to reductions in carbon emissions. 
H2: An increase in the installed capacity of RE sources is expected to result in a more 
significant mitigation effect. H3: Higher installed capacity leads to higher marginal benefits. 

４． Results 

４.１ Effects of energy adoption and installed capacity 

We first examine the effects of energy adoption by power type and report the results in Table 
3. The results for CO2 emissions and CO2 intensity are detailed in columns 1–3 and 4–6, 
respectively. In addition to the lagged dependent variables, we also treat the energy measures 
as endogenous in our regression models. 
The results in columns 1–3 reveal a significant positive correlation between past and present 

CO2 emissions. 𝑊𝑖𝑛𝑑, 𝑆𝑜𝑙𝑎𝑟,  and 𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙  exhibit negative and statistically 
significant effects on CO2 emissions. The coefficients in column 3 imply that wind and solar 

 
6 We used the econometric software Stata 16.1 for the analysis. The specific Stata commands employed for data 
visualization and model estimation included grmap, tabstat, xtset, xtabond2, among others. 
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power adoption reduce CO2 emissions at the county level by 1.6% and 2.3%, respectively. 
In comparison, 𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙	demonstrates a more pronounced reduction effect of 2.9%. 
Similarly, the results in columns 4–6 indicate that lagged CO2 intensity significantly 
influences current CO2 intensity. Both CO2 emissions and intensity display persistence over 
time. The coefficients in column 6 imply that wind and large thermal power adoption leads to 
1.2% and 1.4% decreases in CO2 intensity, respectively, while solar power adoption shows 
no statistically significant effect on CO2 intensity. Despite similar county shares (8.4% for 
𝑤𝑖𝑛𝑑, 6.2% for 𝑠𝑜𝑙𝑎𝑟, and 7.2% for 𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙), wind and solar power exhibit smaller 
mitigation effects compared to large thermal power due to their lower installed capacities. 
The reduction effect observed in large thermal adoption can be attributed to the phasing out 

of inefficient small thermal units. Tang et al. (2019) reported a substantial decrease in 
installed capacity from smaller coal-fired units and a significant drop in overall coal-fired 
capacity from 2014 to 2017. The adoption of ultra-low emissions technology in new and 
refurbished units since 2014 has further improved the efficiency of coal-fired power plants. 
The potential rise in carbon emissions from increased large thermal power capacity is 
mitigated by advancements in efficiency, underscoring the carbon mitigation potential of 
large thermal adoption. 
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Table 4 presents the effects of installed capacity by power type. Specifically, the coefficients 
in column 3 suggest that a 1% increase in wind and large thermal capacity decreases CO2 
emissions by 0.017% and 0.008%, respectively. Similarly, the results in column 6 suggest that 
a 1% increase in wind and large thermal capacity leads to 0.008% and 0.004% decreases in 
CO2 intensity, respectively, while additional solar capacity shows no significant effect on 
both CO2 emissions and intensity. 
The estimates of installed capacity are quantitatively small compared with those of 

county-level energy adoption. However, the marginal reduction effects of wind capacity are 
more substantial than those of large thermal capacity. As reported in Table 4, a 1% increase in 
𝑊𝑖𝑛𝑑	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 — equivalent to a 0.165 MW7 increase — reduces CO2 emissions by 
0.017%. A 1% increase in 𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦  — equivalent to a 1.359 MW 8 
increase — reduces CO2 emissions by 0.008%. Essentially, a 1 MW increase in the installed 
capacity of wind and large thermal results in CO2 emission reductions of approximately 
10.303% and 0.006%, respectively. This translates to a reduction of about 0.287 and 0.0002 
million tonnes of CO2 emissions.9 We find that increasing the installed capacity of wind 
power by 1 MW reduces carbon emissions much more efficiently than increasing the installed 
capacity of large thermal power plants by the same amount. 

Despite the higher efficiency of large thermal power plants compared to smaller ones, they 
still depend on fossil fuels, unlike wind power, which operates without fossil fuel 
consumption. Therefore, wind power, for the same installed capacity, offers greater carbon 
reduction benefits than large thermal power. Additionally, wind power installations have seen 
rapid growth within counties, increasing from 0.069 MW in 2003 to 54.229 MW in 2017, 
averaging an annual increase of 21.9%. In comparison, large thermal power grew from 38.578 
MW to 225.116 MW during the same period, with an average annual growth of 9.2%. This 
brisk expansion of wind capacity could be a key factor in its heightened carbon mitigation 
impact. 
 

 
7 This number is calculated based on the mean of Wind capacity in Table 2. A 1% increase is 0.01 ∗ 16.502 
= 0.165 MW. 
8 This number is calculated based on the mean of Large thermal capacity in Table 2. A 1% increase is 0.01 
∗ 135.876 = 1.359 MW. 
9 This number is calculated based on the mean of CO2 emissions in Table 2. A 1 MW increase in the 
installed capacity of wind leads to a 0.103 ∗ 2.782 = 0.287 million tonne reduction in CO2 emissions and 
that of large thermal leads to a 0.00006∗2.782 = 0.0002 million tonne reduction in CO2 emissions. 
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４.２ Effects across adoption types 

We further explore how the effects of energy choices vary across seven types of adoption, 
depending on the number of power generation sources utilized in a county. Counties using a 
single energy source are categorized as either 𝑊𝑖𝑛𝑑	𝑜𝑛𝑙𝑦 , 𝑆𝑜𝑙𝑎𝑟	𝑜𝑛𝑙𝑦 , or 
𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙	𝑜𝑛𝑙𝑦 . Those employing two energy sources are categorized as 
𝑊𝑖𝑛𝑑	𝑎𝑛𝑑	𝑠𝑜𝑙𝑎𝑟, 𝑊𝑖𝑛𝑑	𝑎𝑛𝑑	𝑙𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙, or Solar and large thermal. Those adopting 
threeenergy sources are categorized as Wind, solar, and large thermal. Table 5 presents a 
summary of the county share and average installed capacity for each adoption type. 
𝑊𝑖𝑛𝑑	𝑜𝑛𝑙𝑦 (5.5%), 𝑆𝑜𝑙𝑎𝑟	𝑜𝑛𝑙𝑦 (3.4%), and	𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙	𝑜𝑛𝑙𝑦 (5.5%) counties account 
for the largest shares, followed by counties adopting 𝑊𝑖𝑛𝑑	𝑎𝑛𝑑	𝑠𝑜𝑙𝑎𝑟 (1.8%). Counties 
usually adopt a single energy source, with those opting for multiple types favoring a 
combination of wind and solar. 
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Figure 6 plots the estimated effects of the installed capacity by adoption type on CO2 

emissions and CO2 intensity, respectively. These figures do not include adoption types with a 
county-level share below 1%: 𝑊𝑖𝑛𝑑	𝑎𝑛𝑑	𝑙𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙  (0.7%), 
𝑆𝑜𝑙𝑎𝑟	𝑎𝑛𝑑	𝑙𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙 (0.6%), and	𝑊𝑖𝑛𝑑, 𝑠𝑜𝑙𝑎𝑟, 𝑎𝑛𝑑	𝑙𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙 (0.4%). We find 
that counties adopting both wind and solar exhibit a greater marginal mitigation effect in 
installed capacity compared with those adopting either wind or solar alone. Capacity increases 
in counties with Large thermal only or Wind and solar lead to reductions in both CO2 
emissions and CO2 intensity. This aligns with our main findings for large thermal. 
Interestingly, while an increase in Wind only capacity shows no significant effect on CO2 
emissions, it does contribute to a decrease in CO2 intensity. 
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４.３ Effects across regions 

The costs and benefits of fuel switching and energy efficiency vary by region, depending on 
the mix of energy sources. Different regions face distinct trade-offs between emission 
mitigation and energy choices. To examine this heterogeneity and its alignment with these 
trade-offs, we estimate different regional samples. 
Table 6 details the county shares of adoption and installed capacity by power type and 

region. Notably, the northeast boasts the highest county share (15.8%) and installed capacity 
(28.3 MW) for wind. By comparison, Western China exhibits high installed capacities for 
both wind (approximately 22.8 MW) and solar (around 8.7 MW). Eastern China has the 
highest county share (11.0%) and installed capacity (230.3 MW) for large thermal power, 
while the shares of renewables in Eastern and Central China are comparatively low. Our main 
findings indicate that the capacity share of renewables is a more significant factor than the 
county share of adoption. Therefore, regions with a higher share of wind and solar installed 
capacity are more likely to demonstrate notable carbon mitigation effects. 

 
Table 7 reports the heterogeneous effects of installed capacity across regions. The first four 

columns present the results for CO2 emissions, while columns 5 to 8 show those for CO2 
intensity. As shown in columns 1 and 4, an increase in Wind capacity significantly reduces 
CO2 emissions in the northeast and west regions, while an increase in Solar capacity shows a 
significant reduction effect only in the west (column 4). In terms of 
𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, a capacity increase is positively associated with CO2 emissions in 
Central China (column 3). One explanation for this is that in Cen-tral China, both small and 
large thermal power plants exhibit lower carbon emission efficiency owing to high coal 
intensity, high managerial inefficiency, and poor technical operating parameters of equipment 
(Eguchi et al. 2021; Fang et al. 2022). 



 

 
 
 

17 

京都大学大学院 経済学研究科 再生可能エネルギー経済学講座       ディスカッションペーパ No.60 

2024年 3月 

Columns 5 and 8 of Table 7 similarly demonstrate that an increase in 𝑊𝑖𝑛𝑑	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 in 
the northeast and west has a significant reduction effect on CO2 intensity. An increase in 
𝐿𝑎𝑟𝑔𝑒	𝑡ℎ𝑒𝑟𝑚𝑎𝑙	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 does not decrease CO2 emissions, although it has a significant 
reduction effect on CO2 intensity in the east (column 6). Overall, an increase in 
𝑊𝑖𝑛𝑑	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 yields large and statistically significant estimates of -0.121 and -0.073 in 
columns 1 and 5, respectively. This significant impact is attributed to the high installed 
capacity in the northeast. Similarly, an increase in 𝑆𝑜𝑙𝑎𝑟	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 yields a statistically 
significant estimate of -0.011 in the west (column 4), yet the effects in other regions are not 
significant. In summary, our findings highlight the considerable regional heterogeneity in the 
effects of energy choices, with the mitigation impacts of renewables largely dependent on the 
regional availability of energy resources. Regarding large thermal power, there is a notable 
environmental efficiency gap across regions. Power units in the east exhibit larger capacities, 
higher energy savings, and greater emission reduction capabilities, as discussed in the works 
of Fang et al. (2022); Xie et al. (2018). This heterogeneity leads to diverse environmental 
outcomes. 

 

５． Discussion 

This study investigates the carbon mitigation effects of RE adoption and thermal efficiency 
improvement from a multidimensional perspective. We first estimate the mitigation effects of 
energy adoption and find that both RE adoption and thermal efficiency improvements 
contribute to reduced carbon emissions. Consistent with previous research by Ahmad et al. 
(2021); Kazemzadeh et al. (2022); Wang et al. (2022, 2023), among other studies, our results 
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affirm that RE plays a pivotal role in emission reduction. Furthermore, we present new 
empirical evidence suggesting that large thermal power adoption, representing thermal 
efficiency improvement in this context, has a significant role in carbon mitigation. Most 
existing literature has identified minimal environmental benefits from non-renewable power 
generation (Li et al. 2022b; Zhang et al. 2023), often overlooking the effects of thermal 
efficiency improvement. While some studies recognize the potential of efficient thermal 
power for carbon mitigation (Eguchi et al. 2021; Li et al. 2019), empirical evidence remains 
sparse. Our analysis, leveraging power plant data, uniquely identifies the impact of thermal 
efficiency improvement through the adoption of large thermal power. 
Our results confirm the carbon mitigation benefits of RE and large-scale thermal power. 

However, it is possible that counties already equipped with these energy sources had naturally 
lower emissions. Further analysis, specifically focusing on the installed capacity by type of 
power, indicates that expansions in wind and large thermal capacity have effectively reduced 
carbon emissions. This finding is consistent with existing literature that highlights the 
mitigation effects of RE. On the other hand, additional solar capacity did not show a 
significant mitigation effect. Solar power’s limited carbon mitigation effects could be due to 
several factors. Firstly, the impact of a power source is often proportional to its installed 
capacity, which must exceed a certain threshold to have a significant effect. Novan (2015) 
found that external benefits increase as renewable capacity grows, and Zhang et al. (2023) 
suggested that an increase in RE share significantly reduces air pollution, especially when the 
share exceeds 28.22%. The average installed capacity of solar (5.285 MW) is less than 
one-third of wind (16.502 MW), which is too small to yield any significant marginal benefits 
within our study period. Secondly, the relatively low average capacity factor10 of renewables, 
exacerbated by high curtailment rates (15% for wind and 12.6% for solar in 2015), could 
impact solar power performance. Finally, accurately capturing the mitigation effect of 
small-scale distributed photovoltaic (PV) solar systems11 is challenging. In our sample, an 
increase in solar capacity may have a more pronounced impact in regions with a high installed 
capacity of centralized grid-connected PV power systems, such as the northeast and west. Our 
findings highlight that wind power significantly outperforms large thermal power in carbon 
emission reduction per unit of installed capacity. Additionally, the lagging development and 
low installed capacity of solar power can diminish its benefits, echoing the findings of 
minimal mitigation impacts of RE in previous studies (Azam et al. 2021; Hasnisah et al. 2019; 
Zhang et al. 2021). We also investigate the heterogeneous mitigation effects of different 
energy choices across adoption types and regions. Our results present evidence that 

 
10 The capacity factor is the ratio of the actual electric power generation of a power plant to its maximum 
generation potential (Li et al. 2019). 
11 Distributed PV refers to smaller solar power generation facilities that are located close to consumers and 
connected to distribution systems, with access voltages below 35 kilovolts (World Resources Institute 2018). 
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diversifying RE sources leads to greater carbon mitigation than relying on a single source. 
Furthermore, we find that an increase in wind capacity led to reduced carbon emissions in 
the northeast and west regions, while an increase in solar capacity achieved this effect in the 
west. Contrasting with Zhang et al. (2023), who emphasized the role of a clean energy mix in 
reducing air pollution in various regions of China, our results indicate that higher installed 
capacities are associated with lower emissions, offering a complementary view on the benefits 
of scaling up RE installations. 
Our study has several limitations. First, we did not consider the effects of hydropower in our 

analysis. Although data on hydropower plants is available from the CEC, accurately 
pinpointing their locations is challenging, as many are situated on rivers at county borders. 
Further, hydropower, as a base load energy source, has shown minimal change in installed 
capacity and generation over the past 20 years compared to RE. Consequently, its mitigation 
effects are likely limited within our study period. Second, county-level power generation data 
are unavailable after 2012. Given that power generation is intricately linked to carbon 
emissions, a more comprehensive dataset is essential to fully understand how energy choices 
impact carbon emissions. Lastly, our analysis did not account for inter-regional transmission 
networks and power dispatch. Wang et al. (2024) used a non-dynamic spatial econometric 
model to assess the carbon emission reduction effects of inter-regional transmission. Future 
research could be improved by including spatial analyses to capture these dynamics and 
examining how inter-regional transmission supports RE usage and emission reductions.  

６． Conclusions 

This study uses a county-level panel data spanning 15 years to examine the carbon 
mitigation impact of various energy choices. Our results suggest that improving thermal 
efficiency can be a potent tool for carbon mitigation, especially in the initial stages of RE 
development. The carbon mitigation potential of RE might be constrained during its early 
development phases due to a limited replacement effect. As coal remains the primary source 
of energy in China, promoting the clean and efficient use of coal-fired thermal power is vital 
for advancing green industry and reducing carbon emissions. This energy strategy is also 
relevant to other countries that are rich in coal yet struggling with underinvestment in 
domestic resources. Efficient and clean thermal power generation offers a cost-effective 
method for controlling carbon emissions (Rehman et al. 2021). Therefore, to achieve the most 
substantial reduction in carbon emissions, policy efforts should focus on balancing the 
enhancement of thermal power efficiency with the expansion of RE capacity. 
Furthermore, our findings reveal that an increase in wind capacity significantly reduces 

carbon emissions, with the marginal mitigation benefits of wind capacity far exceeding those 
associated with increases in large thermal capacity. The rising utilization rates and installed 
capacity of wind and solar power, coupled with decreasing costs, position these renewables as 
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increasingly cost-competitive options for future energy transitions (Lu et al. 2021). Therefore, 
energy policies that reduce curtailment rates and promote the adoption of solar power and 
other RE could significantly contribute to achieving carbon emission mitigation goals. 
Additionally, our study highlights that carbon mitigation effects vary across regions. For 

example, implementing policies that fully utilize distributed solar panel capacity can optimize 
the carbon mitigation potential of solar power in Central and Eastern China. Our results 
suggest the need for regional investment priorities that consider the environmental impacts of 
different energy choices and account for regional environmental efficiency disparities. 
Development plans addressing regional imbalances should parallel structural adjustments and 
technological advancements in the power industry, fostering sustainable regional economic 
growth and mitigating carbon emissions. 
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