

Energy transition on track or in troubled waters: Insights from recent trends and experiences in Germany and elsewhere

Kyoto University

Dr. Felix Chr. Matthes Kyoto, 30th September 2016

- German population 81 million
- German GDP in 3,026 bn € (3,359 bn US\$) in 2015
 - Highly industrialized (26% of GDP from industry)
 - Strong manufacturing industry
 - Strong primary industries (2015: Crude steel production 43 mln t, Primary aluminum production 531,000 t)
 - Strong net exporter (net trade surplus in 2015: ~ 248 bn €)
- Primary energy (2015): Oil 34%, natural gas (21%), hard coal (13%), lignite (12%), renewables (12,5%), nuclear (7,5%)
- Power generation (2015): lignite (24%), renewables (31%), hard coal (18%), nuclear (14%), natural gas (9%), others (4%)
- Strong federal structures (significant impact of states on energy legislation), strong municipalities (~900 municipal utilities)
- Member of the European Union (internal market, increasing integration of energy and climate policies)

• Primary drivers

- contribution to avoid dangerous climate change
- minimize overall vulnerability of the country (e.g. nuclear risks, energy security)
- modernize the country with cutting-edge technology to strengthen the economic basis of the country

• There are however other dimensions

- major investment needs exist anyway
- increasingly volatile global fuel markets
- major technological innovation and cost decrease is underway (solar PV, offshore wind, storage, ICT)
- major cost increases for conventional technologies
- deep crisis of coal industry (high fixed costs and uncertain future)
- major uncertainties on the macroeconomic and international policy environment

- Liberalised energy markets (since 1996)
 - utilities are increasingly vulnerable to switching customers
 - unbundled electricity and gas network operations (legal/ownership)
 - central trading platforms (electricity exchange) provide price transparency
 - broad market transparency on generation, networks
- A strong tradition of decentral/cooperative economic activities (since the early 20th century)
 - strong decentral/cooperative sector (businesses, financial sector etc.)
 - robust legal and institutional framework for the decentral/cooperative sector

- Highly controversial Energy Concept 2010 (September 2010)
 - Lifetime extension of nuclear plants (by 8 to 12 years)
 - Ambitious climate and energy policy targets
 - Some additional policies (Energy & Climate Fund!), significant gaps in respective policies
- Revision of the 2010 decisions (Spring/Summer 2011)
 - Reversion of NPP lifetime extension, acceleration of phase-out
 - Confirmation of targets
 - Additional policies (efficiency, CHP, renewables, infrastructure, regulation)
 - Result: continuation of (well-discussed and well-prepared) strategies, now with a clear long-term focus
- Comparable debates within the EU (apart from nuclear): Low-carbon Economy Roadmap 2050, Energy Roadmap 2050)

	GHG	Renewable Energies			Nuclear			
	emissions	Gross final	Power	Primary	Space	Final	Power	power
		consump-	generation	energy	heating	Energy	consump-	
		tion					tion	
2011								-41%
2015								-47%
2917								-54%
2019								-60%
2020	-40%	18%	35%	-20%	-20%	-10%	-10%	
2021								-80%
2022								-100%
2030	-55%	30%	50%					
2040	-70%	45%	65%					
2050	-80 to	CO 0/	900/	E0 0/	000/	400/	250/	
2050	-95%	60%	80%	-50%	-80%	-40%	-23%	
Base	1000			2009	2000	2005	2009	2010
year	1990			2000	2000	2005	2000	2010

BReg 2010+2011

The historical context Electricity generation & electricity policy

Kohlenstatistik, Matthes (1999, 2015)

The historical context Long history of CO2 emissions & ambitious goals

CDIAC, UBA, Öko-Institut

Öko-Institut e.V.

Institut für angewandte Ökologie

Institute for Applied Ecology

The EU ETS: Robust long-term commitment Long-term caps and/or other long-term mechanisms

Öko-Institut 2014

Öko-Institut e.V. Institut für angewandte Ökologie

Institute for Applied Ecology

The bigger picture on the future electricity system The market and regulatory environment

Ν	New quality of (global) fuel market uncertainties!										
N	New quality of technology development / cost uncertainties!										
N	New quality of regulatory uncertainties?										
_											
	Liberalisation/		Deep		Decentralisation	П	Infrastructure	Н	Sector		
	Restructuring		Decarbonisation		Digitalisation		dependency	Il	integration		
•	-										
	The competitive		New		New		Stronger		New		
	environment		technologies with now		technologies		and partiy		energy		
			economic		Strong		transmission				
	Free		characteristics		coordination		and		Flexibility		
	customer's		Enorgy		needs		distribution		options		
	choice		efficiency		New		grids		nom		
	Unbundling		implications		players		Unsettled		integration		
			Implications		New		role		integration		
					economic		of storage				
					appraisals						

Matthes 2016

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

The changing costs of new supply systems Storage costs as (additional) game changer?!

Energy transition in Germany Expansion of power generation from renewables

Germany: Historical & projected roll-out of power generation from RES

BMU. BMWi, Öko-Institut 2014

Structural change in power generation structures Historical patterns (average week, stylized)

www.oeko.de

Matthes 2016

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

Structural change in power generation structures Historical data 2015 (average week)

Matthes 2016

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

Structural change in power generation structures Illustrative projection 2025 (average week)

Matthes 2016

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

Structural change in power generation structures Illustrative projection 2035 (average week)

Matthes 2016

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

Structural change in power generation structures Illustrative projection 2045 (average week)

Matthes 2016

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

Structural change in power generation structures Historical patterns (windy & sunny week, stylized)

Matthes 2016

Structural change in power generation structures Historical data 2015 (windy & sunny week)

Matthes 2016

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

Structural change in power generation structures Illustrative projection 2025 (windy & sunny week)

Matthes 2016

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

Structural change in power generation structures Illustrative projection 2035 (windy & sunny week)

Matthes 2016

Structural change in power generation structures Illustrative projection 2045 (windy & sunny week)

Matthes 2016

Expansion of German RES generation capacities Phases of the transition towards a new market design

Germany: Historical & projected roll-out of RES generation capacities

BMU. BMWi, Öko-Institut 2014

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

What about the costs? Perspective 1: Historical wholesale prices

Different wholesale (base) electricity price trends and levels in Europe

Matthes 2016

What about the costs? Perspective 3: Retail electricity prices (households)

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

What about the costs? Perspective 2: Financing actual RES investments

Öko-Institut 2016

Öko-Institut e.V.

Institut für angewandte Ökologie

Institute for Applied Ecology

Insights from the EU Energy Roadmap 2050 Primary energy supply for different trajectories

Power generation for different trajectories Renewables dominate for each trajectory

European Commission, E3MLab 2011

Öko-Institut e.V.

Institut für angewandte Ökologie Institute for Applied Ecology

A long-term thought experiment on Germany Embarking on different tracks

Öko-Institut (2016)

A thought experiment on Germany Going renewables is the more robust way

Öko-Institut (2016)

- The traditional German power system
 - Running a (centralized) system based on 500 large generation units
- The emerging new power System in Germany (as of summer 2015)
 - approx. 1.5 million PV installations
 - approx. 30,000 wind power installations
 - approx. 10,000 biomass power plants
 - approx. 30,000 small- and medium-scale cogeneration plants
 - approx. 700 conventional power generation units
- The need for a new market design
 - for phase 1 of roll-out of renewables (0...25% market share) investment certainty and broad economic participation are priority #1
 - for phase 2 a new balance needs to be found between priorities from phase 1 and the increasing need for coordination and an appropriate sharing of risks

Expansion of power generation from renewables New structure of players & the need for coordination

The geographic dimension of Energiewende The old geography

The geographic dimension of Energiewende The new geography

The future is unknown and uncertain but we may be able to describe it structurally

- From an overall perspective on all challenges and (foreseeable) trends some structural features of the future energy system will probably be robust ones
 - Significantly more energy efficient but not necessarily less consuming
 - Mid-term low CO2 and longer-term zero CO2
 - Much more diverse (technology options, centralized / distributed / decentralized, economic perspectives and appraisals etc.)
 - Much more (but not exclusively) distributed and decentralized
 - Much more coordination-intensive
 - Much more capital-intensive
 - Much more infrastructure-intensive (and subject to much more regulatory efforts?!)
 - Much more sensitive to public acceptance
 - Not significantly more expansive (than the counterfactual)
- Transition will be step-wise and priorities will differ in different steps / phases. Without reflection on these long-lasting and robust structural features one might end on a dead track

- Energy transition: a policy-driven structural change of the energy system
- The target system is technically feasible and affordable
 - manifold options at the supply & flexibility side exist already or are in the pipeline
 - costs of the target system do not differ significantly from the counterfactual, transition costs and distributional effects are however significant)
- The real challenges arise from structural changes that needs to be reflected carefully for the design of the transition process a
 - structurally changing technology patterns
 - structurally changing economics (a zero marginal costs system)
 - structurally changing players / market participants
 - structurally changing spatial patterns

- Paving the Way for clean generation and flexibility options (renewables & complementary flexibility) ^(C)
 - innovation, level-playing-field & roll-out
 - sustainable economic basis (coordination & enabling investments)
- Designing the Exit-Game for the non-sustainable capital stocks
 - security of supply, flexibility, emission levels and fixed costs
 - output management (ETS etc.) vs. capacity management
 - nuclear power (O) and high-carbon assets (O)
- The infrastructural dimension: Triggering adjustments in time 😕
 - integration of centralized and distributed and storage and demand flexibility options
 - reflection of the new geography of the energy system
- The innovation side: Making innovation work in time 🙂
 - for energy efficiency, generation, flexibility, storage and integration

Thank you very much

Dr. Felix Chr. Matthes Energy & Climate Division Berlin Office Schicklerstraße 5-7 D-10179 Berlin f.matthes@oeko.de www.oeko.de twitter.com/FelixMatthes

