The Relationship between R&D Spending and the Earnings Management of Japanese Electronics Companies

-A case of earnings management through real management activity-

Yoshihiro Tokuga

Graduate School of Management, Kyoto University

Shin Tanaka

Graduate School of Health Care Sciences, Jikei institute

November 2011

The Relationship between R&D Spending and the Earnings Management of Japanese Electronics Companies

-A case of earnings management through real management activity-

Yoshihiro TOKUGA¹

Shin TANAKA²

ABSTRACT

Japanese companies have been prohibited from using accrual manipulation for R&D since 1999; however, many Japanese companies had not used accrual manipulation even before 1999. Many companies (more than 90%) had expensed all of R&D spending when it occurred because of tax benefits, despite the fact that they could have used accrual manipulation of R&D spending based on the existing accounting rules. Therefore, Japanese firms would seem to have, in general, used real manipulation to (A) increase or decrease R&D spending, and/or (B) to change the content of R&D to gain target results within the short-term.

¹ Professor of Accounting, Graduate School of Management, Graduate School of Economics Kyoto University

² Associate Professor, Graduate School of Health Care Sciences, Jikei institute

Using the financial data from 1980 to 2006 of Japanese electronics companies, this paper shows two kinds of evidence that managers adjusted the amount of R&D spending for all periods according to their expected income and that since 2000 they have tried to shorten the term in which the benefit of their R&D spending was realized to improve short-term performance.

To determine the amount and/or the content of R&D spending for the purpose of gaining a short-term benefit can result in the loss of opportunities to gain greater long-term benefits.

I Introduction

Japanese firms, in general, consistently increased their R&D spending from the end of World War II to 1991. Japanese managers stated, and believed, that increasing R&D investment was their obligation, regardless of the effect on the short-term performance of their firm. However, R&D decreased for the first time in 1992, just after the burst of the economic bubble in Japan. From that time until 1999, Japanese managers, according to Mande *et al.* [2000], made optimal allocations to R&D. As a result, even in 2005, the R&D spending of Japanese firms has been ranked number two in the world.

Japanese companies have been prohibited from using accrual manipulation for R&D since 1999. However, many Japanese companies had not used accrual manipulation even before 1999 because of tax benefits, despite the fact that they could have used it for R&D spending based on the existing accounting rules. Therefore, Japanese firms would seem to have generally used real manipulation: (A) increase or decrease R&D spending and/or (B) change the content of R&D to meet short-term target results.

This paper shows empirical evidence that Japanese electronics companies have used real manipulation, especially changes in the content of their investment, regardless of changes in the accounting rules.

II R&D investment by Japanese electronics companies

Graph No.1 shows the time series change in R&D investment for the leading Japanese electronics companies. The historical change of R&D investment by the electronics industry in Japan is almost the same as that of Japanese firms in general. The amount of R&D spending grew continuously during the period between 1980 and 1991. After 1992, although the total amount of R&D spending of all electronics companies was growing, the time series change became erratic, depending on the firm. Moreover, companies can be divided into two groups based on their tendencies in R&D spending after 1997; some, such as Fujitsu and NEC, have decreased it and others, such as Panasonic and Sony, have increased it regardless of their performance. As graph 2 makes clear, the Japanese electronics industry, including Panasonic and Sony, fell into a critical situation from 2000 to 2001.

Table 1 shows that Japanese companies, except for those in the chemical and textile industries, increased R&D spending from 1991 and 2004,. Although the growth rate of R&D spending by the electronics industry decreased between 1991 and 2004, the actual amount of R&D spending by the electronics industry consistently increased.

[Table 1]

	1981-90	1991-00	2001-04	2005-06
Pharmaceutical (9.4)	8.6	3.5	6.0	12.5
Electronics (5.5)	12.4	1.7	0.8	5.1
Transportation Equipment (4.2)	9.4	0.2	6.6	11.3
Machinery (3.7)	9.5	2.9	3.9	8.3
Chemistry (3.7)	7.4	-0.5	-0.4	7.4
Textile (1.7)	8.0	-1.5	-15.2	11.8

Growth Rate of Industry-classified R&D

Graph 2 shows the historical change of the operating income per sales ratio, after adjusting for inflation, of Japanese companies. The red line represents the electronics industry, the blue line represents the automobile industry, and the black line represents all industries. We can see that this ratio has been decreasing, by and large, despite a continuous increase of R&D spending, as

[Graph 2]

III Previous Research and Hypothesis

1. Management Short-term decision-making and R&D Spending

Institutional investors (especially, mutual fund investors) reward short-term performance with large investment inflows. Fund managers facing strong performance-related flows have been shown to focus more on short horizon investments: The fund manager's investment horizons are driven by the short horizons of their investors. Based on Suto et al. [2005], Japanese institutional investors in 2004 were much more myopic than their American counterparts. In Japan, about three fourths of the institutional investors planned to buy and sell within six months, compared to only one fourth in the US. Pressure from the capital market tends to make managers become myopic.

Notably, Bushee [1998] examined, in the U.S., whether or not institutional investors create or reduce incentives for corporate managers to reduce investment in R&D. He found that a large proportion of ownership by institutions significantly increased the probability that managers would reduce R&D to reverse an earnings decline. This was especially the case if they had high portfolio turnover and engaged in momentum trading,

2. Accrual and real manipulation

It is generally accepted that there are two kinds of manipulation, accrual and real. Accrual manipulation means "accrual-based earnings management"..."to change the timing of a presentation" (Shipper [1989]). Roychowdhury [2006] refers to it as "earnings management through accrual manipulation." Real manipulation means "real earnings management"... "to change the timing of a transaction" (Shipper [1989]). Roychowdhury [2006] differently postulates it as "earnings management through real activities." Shipper's conception is too narrow. Real manipulation should include not only changes in the timing of R&D spending but also the discontinuation of a planned transaction and/or the change of the content of a transaction to meet short-term earnings goals if the part done through a manager's real activity is important for its conception. Managers use both accrual and real manipulation to improve short-term performance.

Japanese firms have been prohibited from using R&D spending as a deferred asset since 1999. Even previous to 1999, they had not deferred R&D spending because of tax benefits. For example, only 5 of the 53 electronics firms had used R&D spending as a deferred asset before 1998. Thus, most Japanese firms may have used only real manipulation in their earnings management. To attain a short-term performance gain, a firm might adopt two methods, used alternatively or simultaneously, to meet their target performance; ① adjust (increase or decrease) R&D spending, or ② change the content of R&D. Previous studies have documented that R&D spending is both an impetus for the growth of the firm and a source of competitive advantage (Ettlie [1998]; Lev and Sougiannis [1996]). However, managers may reduce R&D spending to opportunistically boost short-term performance (Bushee [1998]).

3. The Horizon and Myopia Problems

Past empirical research has presented evidence for the existence of a "Horizon Problem" and a "Myopia Problem" for R&D Investment.

Dechow and Sloan [1991] reported that opportunistic reductions in R&D spending become more likely when the CEO approaches retirement. This so called "Horizon Problem" is not covered in this paper.

The "Myopia Problem" is as follows; Opportunistic reductions in R&D spending become more likely when the firm faces a small earnings decline or a small loss. Mande et al. [2000] attempted to determine the relationship between income smoothing and the discretionary R&D expenditure of Japanese firms. They tested whether or not Japanese managers adjusted R&D based on short-term performance. Their results show that Japanese firms in several industries adjust their R&D budgets to smooth profits. Interestingly, adjustments to R&D are larger in expansion years. These results point to short-term decision making by Japanese managers that is similar to that documented for U.S. managers.

Based on the above discussion, our null hypotheses are as follows;

H1. Managers do not adjust R&D spending to improve short-term performance.

H2. Managers do not change the content of R&D spending to improve short-term performance.

IV Analytical Method

Previous research dealt with the regressional relationship between R&D investment and sales or operating income without considering a time lag or with a fixed time lag. Therefore, we attempted to determine whether or not an increase or decrease of R&D investment causes an increase or decrease of operating income by incorporating a flexible time lag. More concretely, we determined the relationship between current performance and investment in R&D at t-1, then worked backwards for each successive year until the relationship lost statistical significance. We then repeated the same process in regards to the performance of each year, proceeding from t-1 backwards.

```
OI_t = \beta_0 RD_t + \beta_1 RD_{t-1} + \beta_2 RD_{t-2} + \cdots + \beta_k RD_{t-k} + u_t
```


Pt may be the result of the R&D of t-1,t-2, t-3, and so on. To the contrary, R&D t-4 may have an influence on the P of t-3, t-2, t-1, and so on.

The problem with the estimation of this equation is that because of the high correlations between RDt and its lagged values, we do not get reliable estimates of the parameter β_i , the so-called multicolinearity problem. Irving Fisher [1937] assumed the β_i to decline arithmetically and S. Almon [1965] generalized this to the case where the β_i follow a polynomial of degree r in i.

This is known as the Almon lag or the Polynomial lag (Madala [2001], pp. 412-415).

Because we have to decide the shape of the equation in this model, we assumed that the effect of R&D investment would follow the shape of a quadratic equation based on the declining curve of the accumulated value in the patent right.

Moreover, we chose capital expenditure, advertisement expense and R&D expense as the determinants of the operating income, according to Lev & Sougiannis [1996], because variables other than R&D investment can also have an effect on operating income. The adjusted operating income per sales is assumed to be proportional to the sum of the capital expenditure with a one-year time lag, R&D with a flexible time lag, and advertisement cost per sales with a one-year time lag, according to Lev & Sougiannis [1996].

$$(OI_{S})_{i,t} = \alpha_0 + \alpha_1 (TA_{S})_{i,t-1} + \sum_k \alpha_{2,k} (RD_{S})_{i,t-k} + \alpha_3 (AD_{S})_{i,t-1} \cdots (1)$$

Where	OIi, t	Adjusted Operating Income
	Si, t-k	: Sales
	TAit-1	:Tangible Assets (Capital Expenditure)

- RDi, t-k : R&D Spending
- ADi, t-1 : Advertisement Expense

To verify Hypothesis 1, reverse regression of the multiple regression equation (1) is needed, as follows;

$$(\frac{RD}{S})_{i,t} = \alpha_0 + \alpha_1 (\frac{TA}{S})_{i,t-1} + \sum_k \alpha_{2,k} (\frac{OI}{S})_{i,t-k} + \alpha_3 (\frac{AD}{S})_{i,t-1} \cdots (2)$$

Where	OIi, t	: Adjusted Operating Income
	Si, t−k	Sales
	TAi, t-1	:Tangible Assets (Capital Expenditure)
	RDi, t-k	:R&D Spending
	ADi, t-1	:Advertisement Expense

To verify Hypothesis 2, multiple regression equation (1) was used.

VI Analysis and Results

1. Sample

Although the number of Japanese electronics companies listed on the First Section of the Tokyo Stock Exchange has varied from 140 to 150, the number of companies for which a complete data set was available for the period from 1980 to 2005 was 53^3 in the AMSUS data base (Nikkei Quick Co.)⁴.

2. Results

- H1. Managers do not adjust R&D spending to improve short-term performance.
- H2. Managers do not change the content of R&D spending to improve short-term performance.

For Hypothesis 1, we determined the relationship between the R&D investment of each previous year and the adjusted operating income of each year using multiple regression equation (2), while controlling for the effects of capital expenditure and advertisement activity. Concerning Hypothesis 1, the result of the Polynomial regression is as follows;

³ The names of the companies and their descriptive statistics are shown at the end of the paper. All 53 companies have been listed on the first section of Tokyo Stock Exchange. 53 is a sufficient sample size for our multiple regressions.

⁴ AMSUS is a financial data base which Nikkei Quick Co. provides. <u>http://corporate.quick.co.jp/service/product/amsus_market.html</u>

	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Time Lag	1	1	2	2	2	1	1	1	2	2	2	2	2	2	3
Significance Level	0.002	0.009	0.003	0.006	0.003	0.000	0.003	0.008	0.001	0.002	0.003	0.001	0.002	0.007	0.001
AIC	3.158	2.645	3.017	2.797	3.087	3.874	3.077	2.698	3.346	3.177	3.034	3.329	3.249	2.734	3.494

[table 2.] (See the result of the analysis 1 at the end of this paper)

AIC represents Akaike Information Criteria⁵.

Investment in R&D was shown to be strongly influenced by the operating income through all periods analyzed, at a significance level less than 1 %. The length of the time lag was one (current period) or two years (one year previously), except for 2005.

Next, we analyzed the relationship between the adjusted operating income of each year and the R&D investment of each previous year using multiple regression equation (1), while controlling for the effects of capital expenditure and advertisement activity, Concerning Hypothesis 2, the result of the Polynomial regression is as follows;

⁵ Two criteria are often used to reflect the closeness of fit and the number of parameters estimated. One is the Akaike information criterion (AIC), and the other is the Bayesian information criterion (BIC). AIC is a more general criterion that can be applied to any model that can be estimated by the method of maximum likelihood. See Maddala [2005], pp. 485, 488, 525.

	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Time Lag	2	3	3	4	4	3	4	4	4	1	1	1	1	1	1
Significance Level	0.005	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.000	0.000	0.000	0.000	0.000
AIC	4.801	3.747	2.831	8.436	9.866	3.910	8.389	7.027	5.523	2.648	3.611	4.025	4.278	3.895	3.722
Duration of Effect (year)	5	3	3	3	3	4	2	2	1	4	4	4	4	4	4

[table 3.] (See the result of the analysis 2 at the end of this paper)

The result of investment in R&D was found to be reflected in the operating income after a time lag through all periods, at a significance level of less than 1 %. The length of the time lag was three or four years before 1999, but it decreased to one year after 2000 and continued as such until 2005.

3. Implications

Firstly, Hypothesis 1 "Managers do not adjust R&D spending to improve short-term performance" was statistically rejected. This shows that managers engaged in earnings management that included adjustments to R&D spending. Secondly, Hypothesis 2 "Managers do not change the content of R&D spending to improve short-term performance" was also statistically rejected. This indicates the possibility that corporate managers changed the content of R&D spending after the crisis in the Japanese electronics industry to create short-term performance improvements.

Thirdly, we found empirical evidence that corporate managers have adopted two kinds of real R&D spending manipulation. Corporate managers have adjusted R&D spending and at the same time may have changed the content of R&D spending to improve short-term performance.

4. Limitations

A problem may exist concerning the second hypothesis. We cannot conclude without a doubt that the decrease in the period of the time lag was due solely to the myopic decisions of management because there is the possibility that the decrease was due to reduced product life cycles brought about by rapid technological innovation. However, there is collateral evidence indicating that Japanese electronics companies pulled the trigger and made strategic changes in the content of R&D when the electronics industry fell into a critical situation from 2000 to 2001.

VI Conclusion

Japanese companies have been prohibited from using accrual manipulation for R&D since 1999; however, many Japanese companies had not used accrual manipulation even before 1999 because of tax benefits, despite the fact that they could have used it for R&D spending based on the existing accounting rules. This indicates that Japanese firms generally used real manipulation by (A) increasing or decreasing R&D spending and/or by (B) changing the content of R&D to meet their short-term target results. This paper shows empirical evidence that Japanese electronics companies have used real manipulation regardless of changes in the accounting rules.

Firstly, R&D investment was both an impetus for growth and a source of competitive advantage, as shown by the statistically meaningful relationship between R&D spending and adjusted operating income during the period of our analysis (see Table 3). This result coincides with the results of previous studies by Ettlie [1998] and Lev and Sougiannis [1996].

Secondly, R&D investment was adjusted (increased or decreased) by the current or past adjusted operating income, as shown by the statistically meaningful relationship concerning the influence from operating income on R&D spending during the period of our analysis (see Table 2). Our results show that adjustment of R&D spending has been a means of real earnings

management by Japanese Electronics companies.

Thirdly, there is empirical evidence that corporate managers might have adopted another method of real manipulation, changing the content of R&D spending, to improve short-term performance: The length of the time lag was three or four years before 1999, but it decreased to one year after 2000 and continued as such until 2005, although there may be other reasons for this phenomenon, such as technological innovation from analog to digital or productive innovation.

IBIDEN CO., LTD	NEC Corporation
KONICA MINOLTA HOLDINGS, INC.	FUJITSU LIMITED
Minebea Co., Ltd.	IWATSU ELECTRIC CO.,LTD.
TOSHIBA CORPORATION	NEC Infrontia Corporation
Mitsubishi Electric Corporation	Sanken Electric Co., Ltd.
TOYO DENKI SEIZO K.K.	EPSON TOYOCOM CORPOR
(TOYO ELECTRIC MFG. CO. LTD.)	ATION
YASKAWA Electric Corporation	Kyosan Electric Mfg. Co., Ltd.
Shinko Electric Co., Ltd.	NOHMI BOSAI LTD.
MEIDENSHA CORPORATION	Japan Radio Co., Ltd.
Origin ELECTRIC CO.,LTD.	Matsushita Electric Industrial Co., Ltd.
TOSHIBA TEC CORPORATION	SHARP CORPORATION
TAKAOKA ELECTRIC MFG.CO.,LTD.	Hitachi Kokusai Electric Inc.
OSAKI ELECTRIC CO.,LTD.	Sony Corporation
OMRON Corporation	NEC TOKIN Corporation
TEIKOKU TSUSHIN KOGYO CO.,LTD.	CHINO CORPORATION
MITSUMI ELECTRIC CO., LTD.	TokoElectric.co

Company Names

TAMURA Corporation	IWASAKI ELECTRIC CO., LTD.
IKEGAMI TSUSHINKI CO.,LTD.	Ushio Inc.
PIONEER CORPORATION	Shin-Kobe Electric Machinery Co. ,Ltd.
Victor Company of Japan, Limited (JVC)	CASIO COMPUTER CO.,LTD.
Foster Electric Company, Limited	Nihon Inter Electronics Corporation
Clarion Co., Ltd.	Nippon Chemi-Con Corporation.
TOKO,INC.	ICHIKOH INDUSTRIES,LTD.
Hoshiden Corporation	KOITO MANUFACTURING CO., LTD.
HIROSE ELECTRIC CO.,LTD.	DAINIPPON SCREEN MFG. CO., LTD.
Japan Aviation Electronics Industry, Limited	Canon Inc.
Hitachi Maxell, Ltd.	Ricoh Company, Ltd.
Shindengen Electric Manufacturing Co., Ltd.	NIDEC SANKYO CORPORATION

Descriptive Statistics

		Capital	Total Assets	Total Liabilities	Sales	Operating	Net income	Advertisement	Depreciation	RAD
		Expenditure				Income	before tax			
1990	Ave	41898.24528	145846.3585	103627.9811	164737.9245	13164.67925	10324.45283	2193.90566	579.2264151	2424.90566
	SD	78444 66938	298594516	22079	306069 9974	24966.05822	16759 92709	4228 646639	1432 180313	5740.025008
<u> </u>	Ave	50641,24528	170357.6981	115819.3774	188002.8679	14800.03774	12376.84906	2518.207547	682,4528302	3352,735849
1981	Median	13218	36269	23819	44202	3753	2890	203	122	675
	SD	96817.19797	343360.5725	264774.3677	346487.8936	27570.01552	20515.91875	4783.831898	1559.524503	7657.639482
	Ave	58997.86792	185395.9434	122412.6981	201275	14450.30189	12088.62264	2748.867925	839.8867925	4211.792453
1982	Median	13862	39228	24859	48189	3178	2525	199	131	763
<u> </u>	80	111684.0095	3/0134.419/	281687.3949	370656.0325	2/4/526815	198/7.5806	5058.354791	1930.443798	9993,466603
1983	Median	16706	55086	32229	67072	4049	3828	2003/070412	135	240
	SD	131481,3699	430398.1307	328037.911	421286.6515	31211.60504	21819.85765	5192.602304	2340.594323	12185.60504
	Ave	81807.0566	248710.1132	164303.8302	275322.1321	18967.20755	18612.60377	3463.811321	1224.981132	8188.849057
1984	Median	19024	61632	38311	77524	5027	4452	255	168	842
	SD	160136.3637	487369.4179	367998.9065	521727.4721	37212.58836	33595.01777	6281.253182	3154.431117	20316.2053
1995	Ave	94845.26415	258386.283	165351.0755	284605.5472	12385.77358	13078.88679	3727.943396	1547.830189	11989.81132
1.000	SD	182505.474	499115 1942	353638 7949	534654 0747	22051 34449	22620 93192	6919 655974	4062 752642	30458 00694
	Ave	98512.37736	270366.0189	171527.5472	271609.6038	6332,415094	6800.320755	3044,716981	1720.584906	12491.71698
1986	Median	20405	64504	36539	66295	1637	2239	347	240	1170
	SD	185286.9763	508429.4991	364644.9971	531743.4235	13419.63471	11051.22545	5593.361207	4585.327316	33511.77457
	Ave	110035.3962	295113.6226	182294.566	301538.2264	10174.49057	10824.50943	3380.981132	1523.056604	14932,62264
1987	Median	21779	75210	38937	80026	2970	2958	335	227	1031
<u> </u>	au	204108.6119	54/041./13Z 223021.7736	3/4301.4380	339945 4905	20146.47855	18/60.77289	5313.304253 2975.622642	3293.152525	40452.12/93
1988	Median	26134	82787	40853	90904	3817	4075	463	1400.030103	10700.04900
	SD	227121.7223	620545.7744	421419.3883	657585.5707	36522,55936	31250.34086	7363.342581	3262.575904	47394.85645
	Ave	142523.0566	392717.5472	237100.3962	370097.8491	21940.60377	21396.37736	4928.886792	1762.188679	19672,49057
1989	Median	28912	88547	45670	99665	3705	4523	523	298	1453
	SD	272226.3443	737438.2276	494744.7595	706883.1104	46598.52698	40389.47593	9239.365706	3813.099653	54452.82027
4000	Ave	170797.1887	430795.5094	262266.8491	404277.7547	20789.84906	21516.01887	5325.45283	2031.377358	22277.28302
1990	SD	33977	90304	541541 9999	767778 4999	4012	39026 48258	9995 764197	4230 17472	60696 84394
	Ave	184492.5283	451180.2264	278286.3396	417762.4906	11621.20755	11647.03774	5342,264151	2211.584906	24122.4717
1991	Median	37107	89146	58887	113759	3317	2946	450	371	1372
	SD	361938.6414	847258.6943	576143.0829	782430.979	22861.43466	20555.06752	10283.82793	4468.151913	65536.2723
1992	Ave	191556.8679	446340.0189	273431.2264	400715.9623	5377.45283	6067.471698	4364.716981	2332.320755	23554.86792
1992	Median	37786	97214	57080	103642	2233	1513	309	339	1355
<u> </u>	8D	373403.5391	844892,2448	575599.8706	755915.0769	14899.19048	17247.29989	8406.72628	4582.919492	63618.0783
1993	Median	38658	4363520377	51776	88047	2226	1314	3710.041305	2346.675245	1257
	SD	372306.1936	821564.2313	548699.8702	744096.5932	12981.04898	14099.14893	7062.061853	4799.925427	58618.40103
	Ave	196423.0566	446921.1698	269365.1321	406347.9811	11210.75472	9605.283019	3767.264151	2168.54717	23064.37736
1994	Median	39932	98605	54196	96781	2175	1719	235	341	1221
	SD	393015.571	840239.9848	560401.5047	773024.4028	22962,69197	19314.1922	7144.834937	4825.045582	60010.69088
1995	Median	205714,4906	467008.283	284054.9057	443269.5849	15874.5283	13397.20755	3938.018868	2096.264151	24/54.22642
	SD	414310.1741	886447.538	599206.8315	863663.423	35548,29019	28577.06949	7499.746361	4769.010191	65098.38338
	Ave	215120.7736	480261.9434	288709.9434	482391	17366.35849	14937.67925	4257.132075	2167.056604	29014.88679
1996	Median	38347	113899	58924	107815	4037	4079	255	265	1280
	SD	431119.8228	907741.2023	606467.6426	954714.5064	34630.66449	27808.68847	8143.657915	5271.893513	77922.82817
1007	Ave	234609.1887	499162,9245	299150.6981	495663.0943	15358.43396	13165.22642	4198.301887	2262.792453	28917.75472
1337	SD 8D	39289	109355	66054	108/69	21216/0200	32/8	7024 050002	5633 9017	70396 35403
<u> </u>	Ave	242864.434	501246.5283	302897.1698	471044.4151	7340.90566	-4898.622642	3615	2317.943396	28491.09434
1998	Median	37478	107548	64596	108957	1818	802	315	286	1286
	SD	501398.6516	970576.9338	661654.345	916002,9423	21798.55022	46116.43985	6633.661528	6188.367569	73521.16291
40000	Ave	253708.6038	500071.0755	297557.6981	478606.8868	11263.45283	-2968.773585	3307.433962	2334.90566	27949.13208
1999	Median	38634	117790	63915	108452	2021	1224	241	297	1544
<u> </u>	au	32272.7043	510355 9303	63/621./062 306693.0377	517662.6001	24/61.623	60552,80674	3064 710001	2201 5040291	71081.82401
2000	Median	44351	129211	64007	127667	4097	2885	282	2361,554906	1413
	SD	559453.7683	986848.7988	645509.2131	1009863.711	42148.3266	25701.59334	7124.501965	6884.842547	73313.20506
	Ave	278386.3962	489795.8868	300765.0377	457176.8302	-2766.830189	-32806.81132	3385.226415	2674.132075	28983.13208
2001	Median	45971	118154	58719	108448	534	-2900	266	302	1604
<u> </u>	SD Aug	580794.6824	931146.3152	643933.4889	884361.0228	43066.93334	110005.9124	6428.645861	7385.297218	70434.27932
2002	Median	200000.0792	400032.0004	200913.9/17	442/37.0410	1236.40263	3335.09434	3130.00434	2/20/204101	20600.92403
	SD	563034.6301	867324 9839	580069-6311	827780 5471	39702,99599	50217.06649	5961,735893	7798.843852	60620,65399
	Ave	270790.434	474280.6038	272325.7358	437401.5094	10879.54717	12532,77358	3282.886792	2898.320755	23158.50943
2003	Median	43476	118086	61593	95591	2312	2184	234	328	1566
	SD	562797.3052	868595.6665	543878.2783	811703.946	50314.40857	57389.46604	6806.400225	8029.342338	55566.13241
	Ave	268272.8302	476009.3585	262899.5849	438819.1698	14971.37738	19053.28302	3160.09434	2647.150943	22937.88679
2004	sp	42393 544533 6034	870454 441	517001 1000	821414 4104	2970 56179 49970	57379 19400	256	7529.217414	56172 10042
	Ave	268281.4528	476048.4717	262917.5849	438908 283	14985 20755	19074 28302	3160.056604	2647.433962	22942 58491
2005	Median	42393	124733	62248	97154	2970	2673	256	285	1527
	SD	544518.533	870633.8978	517952.4042	821368.8932	56175.11792	57371.623	7503.081373	7529.11739	56170.19174

${\bf Result \, of \, the \, Analysis \, 1}$

$(RD_{S})_{i,t} = \alpha_0 + \alpha_1 (TA_{S})_{i,t-1} + \sum_k \alpha_{2,k} (OI_{S})_{i,t-k} + \alpha_3 (AD_{S})_{i,t-1}$

2005	sar ad r^2 aic	0.013058 0.217012 -321.689	Variable Coefficien Error t-statistic P-value	OPIS2A 0.01264 0.015195 0.831853 [.407]	OP(S2A(-1) 0.015903 9.36E-03 1.69827 [.093]	0PIS2A(-2) 0.01816 5.20E-03 3.49389 [.001]	OP(S2A(-3) 0.019411 4.01E-03 4.84514 [.000]	OP(52A(-4) 0.019656 5.36E-03 3.66512 [.000]	OP(S2A(-8) 0.018895 6.78E-03 2.78875 [.006]	OP(S2A(-6) 0.017128 7.42E-03 2.30885 [.023]	OP(S2A(-7) 0.014355 7.10E-03 2.02045 [.046]	OP(S2A(-8) 0.010576 5.78E-03 1.83065 [.070]	OP(S2A(-9) 5.79E-03 3.41E-03 1.697 [.093]
2004	sar ad r^2 aic	0.017333 0.295219 -306.677	Variable Coefficien Error t-statistic P-value	OPIS2A 0.029688 0.016237 1.82842 [.070]	OP(S2A(-1) 0.02804 0.010257 2.73375 [.007]	0PIS2A(-2) 0.026098 6.08E-03 4.2899 [000]	0P(S2A(-3) 0.023863 4.82E-03 4.94716 [.000]	OP(52A(~4) 0.021334 5.97E-03 3.57643 [.001]	OP(S2A(-5) 0.018512 7.28E-03 2.54337 [.012]	OP(S2A(-6) 0.015397 7.87E-03 1.95743 [.053]	OP(S2A(-7) 0.011988 7.49E-03 1.6007 [.113]	OP(S2A(-8) 8.29E-03 6.07E-03 1.36477 [175]	OP(S2A(-9) 4.29E-03 3.58E-03 1.19832 [.234]
2003	sar ad r^2 aic	0.021615 0.272294 -294.977	Variable Coefficien Error t-statistic P-value	OPIS2A 0.047616 0.018665 2.55103 [012]	OP(52A(-1) 0.038546 0.011864 3.24896 [.002]	0P(S2A(-2) 0.030434 7.00E-03 4.34811 [.000]	OP(S2A(-3) 0.023279 5.27E-03 4.41608 [.000]	OP(S2A(~4) 0.017082 6.41E~03 2.66335 [.009]	OP(S2A(-6) 0.011841 7.89E-03 1.50023 [.137]	OP(S2A(-6) 7.56E-03 8.59E-03 0.879579 [.381]	OP(S2A(-7) 4.23E-03 8.22E-03 0.514783 [.608]	OP(52A(-8) 1.86E-03 6.69E-03 0.278785 [781]	OP(S2A(-9) 4.54E-04 3.95E-03 0.114752 [.909]
2002	sar ad r^2 aic	0.024805 0.269315 -287.68	Variable Coefficien Error t-statistic P-value	OPIS2A 0.059118 0.021622 2.73416 [.007]	OP(52A(-1) 0.045675 0.013721 3.32892 [.001]	OPIS2A(-2) 0.033906 7.90E-03 4.29186 [.000]	OP(S2A(-3) 0.02381 5.55E-03 4.29188 [.000]	OP(S2A(~4) 0.015388 6.80E-03 2.26419 [.026]	OP(S2A(-6) 8.64E-03 8.57E-03 1.00772 [316]	OP(S2A(-6) 3.56E-03 9.46E-03 0.376574 [.707]	OP(S2A(-7) 1.63E-04 9.13E-03 0.01782 [.986]	OP(S2A(-8) -1.57E-03 7.46E-03 -0.209736 [834]	OP(S2A(-9) -1.62E-03 4.43E-03 -0.365904 [.715]
2001	sar ad r^2 aic	0.028896 0.298357 -279.59	Variable Coefficien Error t-statistic P-value	OPIS2A 0.061497 0.025849 2.37906 [.019]	OP(52A(-1) 0.049435 0.016294 3.03393 [.003]	OPIS2A(-2) 0.038686 9.07E-03 4.26678 [.000]	OP(S2A(-3) 0.029252 5.87E-03 4.98643 [.000]	OP(52A(-4) 0.021131 7.42E-03 2.84618 [.006]	OP(S2A(-5) 0.014324 9.71E-03 1.47528 [.143]	OP(S2A(-6) 8.83E-03 0.010897 0.810429 [420]	OP(S2A(-7) 4.65E-03 0.0106 0.438939 [.662]	OP(S2A(-8) 1.79E-03 8.71E-03 0.205306 [.838]	OP(S2A(-9) 2.37E-04 5.18E-03 0.045727 [.964]
2000	sar ad r^2 aic	0.033202 0.335568 -272.227	Variable Coefficien Error t-statistic P-value	OPIS2A 0.078056 0.031529 2.47571 [.015]	OP(52A(-1) 0.062781 0.019761 3.17703 [.002]	0PIS2A(-2) 0.049165 0.010586 4.64427 [.000]	OP(S2A(-3) 0.03721 5.99E-03 6.21643 [.000]	OP(S2A(-4) 0.026914 7.96E-03 3.38003 [.001]	OP(S2A(-5) 0.018279 0.011001 1.6615 [.100]	OP(S2A(-6) 0.011303 0.012631 0.894891 [.373]	OP(S2A(-7) 5.99E-03 0.012424 0.481929 [.631]	OP(S2A(-8) 2.33E-03 0.010272 0.226994 [821]	OP(S2A(-9) 3.36E-04 6.14E-03 0.05474 [.956]
1999	sar ad r^2 aic	0.033732 0.402652 -271.388	Variable Coefficien Error t-statistic P-value	OPIS2A 0.089215 0.034915 2.55522 [.012]	OP(S2A(-1) 0.07321 0.021882 3.34563 [.001]	0PIS2A(-2) 0.058779 0.011551 5.08877 [.000]	OP(S2A(-3) 0.045922 5.90E-03 7.7865 [.000]	OP(S2A(~4) 0.034639 8.02E-03 4.31868 [.000]	OP(S2A(-6) 0.024931 0.011529 2.16253 [.033]	OP(S2A(-6) 0.016796 0.013445 1.24928 [.214]	OP(S2A(-7) 0.010236 0.013326 0.768132 [.444]	OP(S2A(-8) 5.25E-03 0.011066 0.474396 [636]	OP(S2A(-9) 1.84E-03 6.63E-03 0.277212 [.782]
1998	sar ad r^2 aic	0.033162 0.441129 -272.291	Variable Coefficien Error t-statistic P-value	OPIS2A 0.091394 0.033872 2.69822 [.008]	OP(S2A(-1) 0.075873 0.021407 3.54428 [.001]	0PIS2A(-2) 0.06177 0.011478 5.38155 [.000]	OPIS2A(-3) 0.049085 5.76E-03 8.52869 [.000]	OP(S2A(~4) 0.037818 7.37E-03 5.12939 [.000]	OP(S2A(-5) 0.02797 0.010678 2.61946 [.010]	OP(S2A(-6) 0.019539 0.01254 1.55821 [.122]	OP(S2A(-7) 0.012527 0.012482 1.00362 [.318]	OP(S2A(-8) 6.93E-03 0.010394 0.667009 [.506]	OP(S2A(-9) 2.76E-03 6.24E-03 0.441962 [.659]
1997	sar ad r^2 aic	0.034514 0.431212 -270.174	Variable Coefficien Error t-statistic P-value	OPIS2A 0.105932 0.03443 3.07672 [.003]	OP(S2A(-1) 0.084866 0.021909 3.87358 [.000]	0PIS2A(-2) 0.066127 0.01191 5.55232 [.000]	OP(S2A(-3) 0.049715 5.96E-03 8.33791 [.000]	OP(S2A(~4) 0.035631 7.23E-03 4.92537 [.000]	OP(S2A(-6) 0.023874 0.010489 2.27612 [.025]	OP(S2A(-6) 0.014445 0.012372 1.16752 [.246]	OP(S2A(-7) 7.34E-03 0.012352 0.594448 [.554]	OP(S2A(-8) 2.57E-03 0.010306 0.249127 [804]	OP(S2A(-9) 1.20E-04 6.19E-03 0.01939 [,985]
1996	sar ad r [*] 2 aic	0.026142 0.568321 -252.793	Variable Coefficien Error t-statistic P-value	0PIS2A 0.142006 0.036658 3.87374 [.000]	OP(52A(-1) 0.113813 0.023415 4.86071 [.000]	OPIS2A(-2) 0.08873 0.012835 6.91294 [.000]	0P(\$2A(-3) 0.066756 6.47E-03 10.3132 [.000]	OP(52A(-4) 0.047891 7.62E-03 6.2879 [.000]	0P(\$2A(-6) 0.032136 0.011003 2.92051 [.004]	OP(S2A(-6) 0.01949 0.012992 1.5001 [.137]	OP(52A(-7) 9.95E-03 0.012984 0.766565 [.445]	OP(\$2A(-6) 3.53E-03 0.010843 0.325218 [,746]	OP(S2A(-9) 2.08E-04 6.52E-03 0.031962 [975]

1995			Variable	OP(S2A	OP(S2A(-1)	OP(S2A(-2)	OP(S2A(-3)	OP(S2A(-4)	OP(S2A(-5)	OP(S2A(-6)	OP(S2A(-7)	OP(S2A(-8)	OP(S2A(-9)
	sar	0.040034	Coefficien	0.100631	0.08062	0.06282	0.047231	0.033852	0.022683	0.013725	6.98E-03	2.44E-03	1.15E-04
	ad r ² 2	0.394007	Error	0.041701	0.026116	0.013583	6.17E-03	8.70E-03	0.013099	0.01552	0.015495	0.01292	7.76E-03
	aic	-262.31	t-statistic	2,41313	3.08701	4.62496	7.65299	3.88955	1.73172	0.884377	0.450348	0.188969	0.014879
			P-value	[018]	[.003]	[000]	[.000]	[.000]	[.086]	[.379]	[.653]	[.850]	[.988]

- 1994
 Variable
 OPIS2A
 OPIS2A(-2)
 OPIS2A(-2)
 OPIS2A(-4)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-6)
- 1993
 Variable
 OPIS2A
 OPIS2A(-1)
 OPIS2A(-2)
 OPIS2A(-3)
 OPIS2A(-4)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-6)
 OPIS2A(-6)

1992	v	/ariable	OP[S2A	OP(S2A(-1)	OPIS2A(-2)	OP(S2A(-3)	OP(S2A(-4)	OP(S2A(-5)	OP(S2A(-6)	OP(\$2A(-7)	OP(S2A(-8)	OP(S2A(-9)
sar	0.046626 C	Coefficien	0.096783	0.078042	0.061314	0.046601	0.033901	0.023216	0.014545	7.89E-03	3.24E-03	6.15E-04
ad r ² 2	0.399835 E	mor	0.036596	0.022736	0.011697	5.69E-03	8.38E-03	0.012257	0.01433	0.014207	0.011796	7.06E-03
aic	-254.231 t	-statistic	2.64468	3.43259	5.24178	8.18598	4.04412	1.89403	1.01496	0.555168	0.275021	0.087054
	F	-value	[009]	[.001]	[000]	[000]	[.000]	[.061]	[313]	[.580]	[.784]	[931]

 1991
 Variable
 OPIS2A
 OPIS2A(-1)
 OPIS2A(-2)
 OPIS2A(-3)
 OPIS2A(-4)
 OPIS2A(-6)
 OPIS2A(-7)
 OPIS2A(-8)
 OPIS2A(-6)

 ser
 0.043005
 Coefficien
 0.100554
 0.080342
 0.062388
 0.04669
 0.03325
 0.02066
 0.013139
 6.47E-03
 2.06E-03
 -1.01E-04

 ad r²
 0.417192
 Error
 0.031841
 0.019595
 0.01059
 5.65E-03
 0.01076
 0.012466
 0.012317
 0.01021
 6.11E-03

 aie
 -258.516
 t-statistic
 3.15801
 4.02671
 5.89137
 8.26841
 4.36692
 2.05075
 1.05397
 0.525214
 0.201663

 --value
 [.000]
 [.000]
 [.000]
 [.043]
 [.294]
 [.601]
 [.841]
 [.987]

Result of the Analysis 2

$(OI_{S})_{i,t} = \alpha_{0} + \alpha_{1}(TA_{S})_{i,t-1} + \sum_{k} \alpha_{2,k}(RD_{S})_{i,t-k} + \alpha_{3}(AD_{S})_{i,t-1}$

2005	sar ad r^2 aic	0.137698 0.380582 -196.838	Variable Coefficient Error t-statistic P-value	RDS2 0.643684 0.17294 3.72201 [.000]	RDS2(-1) 0.446057 0.112231 3.97445 [.000]	RDS2(-2) 0.278043 0.062866 4.42281 [.000]	RDS2(-3) 0.139642 0.029554 4.72492 [.000]	RDS2(-4) 0.030854 0.029226 1.0557 [.294]	RDS2(-6) -0.048321 0.044569 -1.0842 [.281]	RDS2(-6) -0.097883 0.054407 -1.79908 [.075]	RDS2(-7) -0.117832 0.055349 -2.12889 [.036]	RDS2(-8) -0.108168 0.046716 -2.31543 [023]	RDS2(-0) -0.06889 0.028295 -2.43468 [.017]
2004	sar ad r^2 aic	0.158205 0.430665 -189.48	Variable Coefficient Error t-statistic P-value	RDS2 0.670821 0.172225 3.89502 [.000]	RDS2(-1) 0.467129 0.111571 4.18684 [.000]	RDS2(-2) 0.293794 0.082382 4.70961 [.000]	RDS2(-3) 0.150818 0.029692 5.07939 [.000]	RDS2(-4) 0.038199 0.030145 1.26718 [.208]	RDS2(-5) -0.044062 0.04543 -0.969889 [.334]	RD 52(-6) -0.095965 0.055126 -1.74083 [.085]	RDS2(-7) -0.11751 0.055913 -2.10166 [.038]	RDS2(-8) -0.108698 0.047111 -2.30727 [.023]	RDS2(-0) -0.069528 0.028503 -2.43931 [.016]
2003	sar ad r^2 aic	0.170282 0.412686 -185.581	Variable Coefficient Error t-statistic P-value	RDS2 0.774964 0.18117 4.27756 [.000]	RDS2(-1) 0.532291 0.116457 4.57072 [.000]	RDS2(-2) 0.326324 0.063797 5.11507 [.000]	RDS2(-3) 0.157063 0.02861 5.48986 [.000]	RDS2(-4) 0.024507 0.031041 0.789513 [.432]	RDS2(-6) -0.071342 0.048419 -1.47342 [.144]	RDS2(-6) -0.130485 0.059024 -2.21072 [.029]	RDS2(-7) -0.152923 0.059899 -2.55302 [.012]	RDS2(-8) -0.138654 0.050458 -2.74789 [.007]	PDS2(-0) -0.08768 0.030518 -2.8731 [.005]
2002	sar ad r^2 aic	0.164582 0.351217 -187.385	Variable Coefficient Error t-statistic P-value	RDS2 0.775525 0.192677 4.025 [.000]	RDS2(-1) 0.523837 0.121913 4.2968 [.000]	RDS2(-2) 0.310846 0.064078 4.85108 [.000]	RDS2(-3) 0.136551 0.025465 5.36228 [.000]	RDS2(-4) 9.54E-04 0.03326 0.028677 [.977]	RDS2(-5) -0.095947 0.054 -1.77681 [.079]	RD S2(-6) -0.154151 0.065844 -2.34116 [.021]	RDS2(-7) -0.173659 0.066658 -2.6052 [.011]	RDS2(-8) -0.154489 0.056031 -2.75686 [.007]	RDS2(-9) -0.096583 0.033829 -2.85499 [.005]
2001	sar ad r^2 aic	0.16952 0.316384 -185.818	Variable Coefficient Error t-statistic P-value	RDS2 0.782264 0.216491 3.61337 [.000]	RDS2(-1) 0.52283 0.135144 3.8687 [.000]	RDS2(-2) 0.303665 0.06842 4.43826 [.000]	RIDS2(-3) 0.124768 0.023924 5.21508 [.000]	RDS2(-4) -0.013861 0.03846 -0.360405 [.719]	RDS2(-5) -0.112222 0.063515 -1.76685 [.080]	RDS2(-6) -0.170314 0.077203 -2.20606 [.030]	RDS2(-7) -0.188138 0.077916 -2.41464 [.018]	RDS2(-8) -0.165694 0.065343 -2.53575 [013]	RD/S2(-0) -0.102981 0.039385 -2.61471 [.010]
2000	887	0.165476	Variable Coefficient	RDS2 0.647473	RDS2(-1) 0.437419	RDS2(-2) 0.259654	RDS2(-3) 0.114181	RDS2(-4) 9.98E-04	RDS2(-5) -0.079895	RDS2(-6) -0.128497	RDS2(-7)	RDS2(-8) -0.128829	RDS2(-9) -0.08056

- sar 0.165476 Coefficient 0.647473 0.437419 0.259654 0.114181 9.98E-04 -0.078895 -0.12487 -0.14408 -0.12829 -0.08056 ad r²2 0.273068 Error 0.244513 0.151146 0.074256 0.022376 0.044184 0.073855 0.089629 0.090296 0.076624 0.04553 aic -187.098 Erstatistic 2.64801 2.89402 3.49676 5.10278 0.022586 -1.08177 -1.43365 -1.6037 -1.70356 -1.76917 P-value [009] [005] [001] [000] [982] [282] [155] [112] [092] [080]
- 1999
 Variable
 RD52
 RD52(-1)
 RD52(-2)
 RD52(-3)
 RD52(-4)
 RD52(-6)
 RD52(-7)
 RD52(-8)
 RD52(-8)

 sar
 0.138516
 Coefficient
 0.084401
 0.09684
 0.104639
 0.107798
 0.106317
 0.100197
 0.089437
 0.074037
 0.053998
 0.029319

 ad r²
 0.252461
 Error
 0.246698
 0.151405
 0.072765
 0.019519
 0.0467548
 0.076455
 0.092504
 0.093006
 0.077788
 0.046794

 aic
 -196.524
 t=ratuistic
 0.342124
 0.639088
 1.43803
 5.52282
 2.32395
 1.31053
 0.966841
 0.796045
 0.094162
 0.26544

 P=value
 [.733]
 [.524]
 [.154]
 [.000]
 [.022]
 [.193]
 [.336]
 [.428]
 [.489]
 [.532]
- 1998
 Variable
 RD52
 RD52(-1)
 RD52(-2)
 RD52(-3)
 RD52(-4)
 RD52(-6)
 RD52(-7)
 RD52(-8)
 RD52(-8)

 sar
 0.118046
 Coefficient
 -0.02071
 0.040258
 0.088136
 0.122926
 0.144629
 0.153244
 0.148771
 0.13121
 0.100561
 0.066824

 ad r²
 0.396221
 Error
 0.230588
 0.141025
 0.066915
 0.017494
 0.044247
 0.073207
 0.088403
 0.073904
 0.044417

 aic
 -204.999
 t=statistic
 -0.0267
 0.285466
 1.31714
 7.02687
 2.06822
 1.68672
 1.44528
 1.38069
 1.27934

 P=value
 [.929]
 [.776]
 [.911]
 [.000]
 [.001]
 [.095]
 [.141]
 [.177]
 [.204]
- Variable
 RDS2
 RDS2(-1)
 RDS2(-2)
 RDS2(-3)
 RDS2(-4)
 RDS2(-5)
 RDS2(-1)
 RDS2(-2)
 RDS2(-3)

 sar
 0.102847
 Coefficient
 -0.04062
 0.033219
 0.091552
 0.134379
 0.1617
 0.173515
 0.16824
 0.150827
 0.115824
 0.065715

 ad r²
 0.487911
 Error
 0.218632
 0.132996
 0.06237
 0.016019
 0.043157
 0.07076
 0.084935
 0.085038
 0.070942
 0.042602

 air
 -212.304
 +-statistic
 -0.16379
 0.249772
 1.46788
 8.33882
 3.74678
 2.45215
 1.9947
 1.77129
 1.63408
 1.54255

 P-value
 [.853]
 [.803]
 [.145]
 [.000]
 [.016]
 [.048]
 [.080]
 [.105]
 [.126]

1998			Variable	RDS2	RDS2(-1)	RDS2(-2)	RDS2(-3)	RDS2(-4)	RDS2(-5)	RDS2(-6)	RDS2(-7)	RDS2(-8)	RDS2(-9)
	sar	0.034318	Coefficient	0.144408	0.147161	0.146093	0.141204	0.132495	0.119964	0.103613	0.083441	0.059448	0.031634
	ad r ² 2	0.767395	Error	0.132956	0.08054	0.037365	9.83E-03	0.027203	0.044035	0.052611	0.052552	0.043778	0.026265
	aic	-239.731	t-statistic	1.08613	1.82719	3.90986	14.3607	4.87053	2.72428	1.9694	1.58778	1.35793	1.20444
			P-value	[.280]	[.071]	[.000]	[.000]	[.000]	[.008]	[.052]	[116]	[178]	[.232]

- RDS2(-3) RDS2(-4) RDS2(-6) 1995 BDS2(-1) RD S2(-2) RDS2(-5) RDS2(-7) BDS2(-8) BDS2(-9) 0.162647 0.036949 0.094724 0.048472 0.081447 -0.034270.037862 0.13632 0.013817 0.173708 0.058905 0.169501 0.150027 0.115285 0.065276 0.174032 0.556564 Em 0.1051 0.070029 0.069782 0.05805 0.034795 0.19691 0.360246 1.9542 9,86622 4,40198 294896 2,42045 1 09/00 224.669 2.14994 1.87603 [.000] [.017] [.053] [844] [719] [.000] [.004] [.034] [.050] [064]
- RD S2 RDS2(-1) RDS2(-2) RDS2(-3) RDS2(-4) BDS2(-5) RDS2(-6) RDS2(-7) RDS2(-8) RDS2(-9) 0.133795 0.01586 0.152213 0.03813 0.15812 0.059429 0.105402 0.102868 0.151516 0.132403 0.070433 0.100779 0.058531 10926 3.48E-03 0.174479 0.035061 0.458176 Error 209.098 t-statistic 0.019951 0.563835 2.10285 8.43583 3.99196 2.64317 2.13963 1.87985 1.72179 1.6156 [000] [.574] [.038] [.000] [010] [.035] [.063] [.088] [109] [984]
- RD:S2(-7) 0.096619 0.061368 RDS2(-2) RD(S2(-3) BDS2(-5) RDS2(-6) 1993 ID 52 RDS2(-1) RDS2(-4) RDS2(-8) RD S2(-9) 0.093117 0.113241 0.093589 0.126824 0.133866 0.134366 0.033941 0.128325 0.115743 0.061739 0.070954 0.130886 405186 -199.526 t-stati 0.605741 1.20998 2,83093 7.81962 3.95876 2,45356 1.8747 1.57442 1.39146 1.2685 [.064] [546] [229] [006] [000] [000] [016] [119] [167] [208]
- 1992 RDS2(-1) RDS2(-2) RD(S2(-3) RDS2(-4) RDS2(-5) RDS2(-6) RDS2(-7) RDS2(-8) RDS2(-9) RDS2 0.142381 Coefficie 0.17473 0.165285 0.154056 0141044 0.126247 0.109666 0.091301 0.071152 0.049219 0.025501 0.081765 0.043396 0.132239 0.041117 0.017856 0.028656 0.051234 0.051 0.042433 0.416236 0.02544 3.74678 4.40554 1.78205 .39514 1.00216 195.065 t-stat 1.32132 7.89884 1.1599 [189] [046] [000] [000] [000] [013] [078] [166] [249] [319] RD(S2(-5) 1991 RDS2 RDS2(-1) RDS2(-2) RD/S2(-3) RDS2(-4) RDS2(-6) RDS2(-7) RDS2(-8) RDS2(-9) 0.144673 Coefficient 0.238613 0.182606 0.156156 0.130742 0.106363 0.083019 0.060711 0.210092 0.039439 0.019202 0.116106 2.05514 0.072736 0.018103 8.62593 0.025138 5.20103 0.037149 2.86312 0.043752 0.038039 0.043563 0.036269 0.021764 0.495159 Erm 1.39365 0.88228 1.08739 [279] [.042] [005] [000] [000] [.000] [.005] [.061] [166] [380] walking.

Reference

Almon, S., [1965] "The distributed lag between capital appropriation and expenditure"

Econometrica Vol.33, pp.178-196.

Bushee, B.J. [1998],"The influence of institutional investors on myopic R&D investment

behavior." The Accounting Review, Vol.73, No.3 (July, 1998), pp.305-333.

Dechow, P. and R. G. Sloan [1991], "Executive incentives and horizon problem: an empirical

investigation", Journal of Accounting and Economics, Vol.14, pp.51-89.

Ettlie J. E. [1998] "R&D and global manufacturing performance.", Management Science,

Vol.44,No1. pp.1-11.

Feltham, G.A., and J. Ohlson [1995] "Valuation and clean surplus accounting for operating and

financial activities, Contemporary Accounting Research, Vol.11, pp.689-732.

Griliches, Z. [1980], "Returns to Research and Development Expenditures in the Private

Sector," in Kendrick, J. W. and B. N. Vaccara, eds., New Developments in Productivity

Measurement and Analysis, *The University of Chicago Press*.

Healy, P. M.[2002], "R&D Accounting and the Tradeoff between Relevance and Objectivity,"

Journal of Accounting Research, Vol.40, No.3, pp.677-711.

Lev, B and T. Saugianis [1996], "The Capitalization , Amortization, and Value-Relevance of R&D,

" Journal of Accounting and Economics, No.21, pp.107-138.

Lev, B[2004], "Sharpening the Intangibles Edge," Harvard Business Review, Vol.82, Issue 6,

pp.109-116.

Maddala,G.S., [1977] "Econometrics -International edition-" McGraw-Hill.

Mande, V., R. G. File, and W. Kwak [2000], "Income smoothing and discretionary R&D

expenditures of Japanese firms.", Contemporary Accounting Research, Vol.17, No.2,

pp.263-302.

Nishimura, Y. [2001], R&D Strategy and Accounting, Hakuto-shobo.

OECD [2001], The New Economy: Beyond the Hype, OECD Publications.

Pakes, A and M. Schankerman[1984], "The Rate of Obsolescence of Knowledge, Research

Gestation Lags, and the Private Rate of Return to Research Resources," NBER Working Paper,

No.346, National Bureau of Economic Research, Inc.

Roychowdhury, S [2006] "Earnings management through real activities

manipulation.", Journal of Accounting and Economics, Vol.42, pp.335-370.

Sakakibara, K. and M. Tsujimoto [2003], "Why did the Efficiency of Japanese Companies' R&D

decrease ?," Economic and Social Research Institute.

Shipper, K. [1989] "Commentary on earnings management.", Accounting Horizons, Vol.3,

pp.91-102.

Suto, M., L. Menkhoff, and D. Beckmann [2005], "Behavioral biases of institutional investors

under pressure from customers:

Japan and Germany vs. the US.", WIF-05-006, Waseda University

Suto, M and M. Toshino. "Behavioral Biases of Japanese Institutional Investors: fund

management and corporate governance", Corporate Governance: An International Review,

Vol.13, No.4, 2005, pp.466-477.

Yaekura, T., "The Relationship between Cost Allocation of R&D Investment and Future

Performance," K. Ito Ed. Accounting for Intangibles, 2006, pp. 317-337, Hakuto-shobo.

Acknowledgments

We are thankful for the comments and suggestions of the participants at a workshop at the National Taiwan University on the 2nd of February, 2008 in which we made a presentation covering the same topic as this paper. Special thanks go to Professors S. Li, J. Tsay, C. Lin, K. Chen, and C. Wang.