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1 Introduction

The purpose of this paper is to derive the optimal timing strategy of environmental

policy in the presence of agency conflict due to asymmetric information. We incorporate

asymmetric information into the optimal timing problem in environmental economics.

In the recent research about the optimal timing of environmental policy, real options

model has been often used1. The reasons are as follows. First, there is always uncertainty

over the future costs and benefits of adopting a particular environmental policy. With

global warming, for example, we do not know how much average temperatures will raise

with or without the economic impact of higher temperatures. Second, there are usually

important irreversibilities associated with environmental damage itself, but also with re-

spect to the costs of adopting policies to reduce the damage. Third, policy adoption is

rarely a now or never proposition; in most cases it is feasible to delay action and wait

for new information. These uncertainties, irreversibilities, and possibilities of delay can

significantly affect the optimal adoption timing of environmental policy. Thus a number

of recent studies have examined the optimal timing of environmental policy, at times

drawing upon the theory of uncertainties, irreversibilities, and possibilities of delay. For

example, see Dixit and Pindyck (1994) and Pindyck (2000, 2002).

In practical situation, the policy maker has often delegated the adoption of environ-

mental policies to agents, taking advantage of agents’ special skills. In this situation, there

is likely to be agency conflict due to asymmetric information. For example, the agent can

observe the realized value of the cost expenditure over which there is uncertainty, while

the policy maker cannot observe the realized value.

No principal-agent conflicts arise in the standard environmental economics literature,

as it is assumed that the policy maker makes the adoption decision. However, when the

policy maker delegates the adoption of environmental policy to agents under asymmetric

information, it leads to what is called principal-agent conflicts. Then, the policy maker’s

problem is to design an optimal contract to provide incentives for agents to truthfully

reveal their private information. Otherwise, the policy maker suffers some losses due to

asymmetric information. What is of great interest is to derive the optimal contract under

asymmetric information, and to calculate the value of social welfare using the contingent

claims approach under principal-agent conflict.

The principal-agent setting leads to a decomposition of the underlying option into two

components: a “policy maker’s option” and an “agent’s option.” Importantly, there is a

1An excellent overview of the real options model is found in Dixit and Pindyck (1994). In the real

options model, the project value of investment opportunity can be calculated by the option pricing theory

in financial engineering. See, e.g., Chiarella (2002) or Kijima (2002) for details of the option pricing theory.
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conflict between the interests of the policy maker and those of the agent, i.e., there is a con-

flict between a policy maker’s option and an agent’s option value. In such principal-agent

conflicts, the agent attempts to increase his option value by using private information.

This action of the agent, at the same time, decreases the policy maker’s option value

due to principal-agent conflicts. The contracts must be designed to provide incentive for

agents to truthfully reveal private information and preserve the value of the policy maker’s

option.

In this paper, under the presence of principal-agent conflicts due to asymmetric infor-

mation, we derive the optimal contracts and calculate the value of social welfare. This

paper shows that the value of social welfare in the asymmetric information setting is sig-

nificantly different from that implied by the first-best full-information setting. The result

comes from the fact that agents display greater inertia in adoption of policy, in that they

adopt the environmental policy later than implied by the first-best full-information solu-

tions. Importantly, the value of social welfare in the asymmetric information setting is

strictly lower than that in the full-information setting.

The remainder of the paper is organized as follows. Section 2 describes the setup

of the model. Section 3 simplifies the optimization problem and solves for the optimal

contracts. In Section 4, I analyze the implications of the model in terms of the agency cost

and the expected time lag due to principal-agent problem, and the comparative statics of

the optimal contracts with respect to the key parameter (volatility). Section 5 concludes.

Appendices contain the proofs and the solutions of the optimal contracts.

2 Model

In this section, we begin with a description of the model, we then define the value function.

As a useful benchmark, we provide the solution to the first-best full-information problem.

Finally, we present the problem in the asymmetric information setting.

2.1 Setup

Throughout our analysis, we suppose that agents are risk neutral. The policy maker

(principal) has an option to adopt an environmental policy. We assume that the policy

maker delegates the adoption of environmental policy to an agent. In this paper, we

incorporate agency conflict into the optimal timing problem of environmental economics

developed by Dixit and Pindyck (1994), and Pindyck (2000, 2002). This model is similar
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to the one developed by Grenadier and Wang (2005)2

Let Mt be a stock of environmental pollutants, e.g., the average concentration of CO2

in the atmosphere or the acidity level of a lake. And let Et be a rate of emission of

the pollutant that controls Mt. We also begin with a restrictive assumption about the

evolution of Et: Until a policy is adopted, Et stays at the constant level E ∈ R+. Once

the policy is adopted, Et falls immediately to zero, where it remains. The evolution of

Mt is then given as:

dMt

dt
= γE − λMt, M0 = m, (1)

where λ is the natural rate at which the stock of pollutant dissipates over time.

By solving the ODE given (1), we can determines Mt as a function of time. Suppose

the policy is adopted at time τ , so that Et = E for 0 ≤ t < τ and Et = 0 for t ≥ τ . Then,

Mt =

( ¡
m− γE

λ

¢
e−λt + γE

λ
if 0 ≤ t < τ,

γE
λ

¡
eλτ − 1¢ e−λt +me−λt if t ≥ τ.

(2)

If the environmental policy is never adopted, the first line of (2) applies for all t, so that

Mt asymptotically approaches γE/λ. If the policy is adopted at time 0, thenMt = me
−λt.

We will assume that the flow of social welfare (negative benefit) associated with the

stock variable Mt can be specified by a function B(Mt, Xt;Et), where Xt shifts stochas-

tically over time. For simplicity we will assume that B is linear in M :

B(Xt,Mt;Et) = −XtMt. (3)

And we will assume that Xt follows a geometric Brownian motion:

dXt

Xt
= µ dt+ σ dzt, X0 = x, (4)

where µ,σ are constants，(zt)t≥0 is a standard Brownian motion．

We will assume that the expenditure in adopting the policy is completely sunk, and

its cost expenditure at the time of adoption is I. The cost expenditure, I, may take one

of two possible values: I1 or I2 with I2 > I1 where Ii ∈ R+ for i ∈ {1, 2}. We denote
∆I := I2 − I1. We may regard a draw of I1 as a “lower cost” expenditure and a draw of

I2 as a “higher cost” expenditure. The probability of drawing I1 equals p, an exogenous

variable.

Now we assume the cost expenditure is privately observed by the agent. Immediately

after making a contract with the owner at time zero, the agent observes whether the
2Grenadier and Wang (2005) examines the investment timing under asymmetric information. We

apply the model developed by Grenadier and Wang (2005) into the adoption timing on environmental

economics.
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cost expenditure is of “lower cost” or “higher cost”. On the other hand, although the

policy maker cannot observe the true value of I, he does observe the amount transferred

to himself at the adoption time of environmental policy to be handed over by the agent.

While the agent could attempt to hand over I2 when the true value is I1, it will be seen

in equilibrium that the amount transferred to the policy maker at the adoption time of

policy will always be the true value.

Although the policy maker cannot contract on the cost expenditure privately observed

by the agent, he can contract on the observable component of the value, Xt. Contingent

on the level of Xt at policy adoption when I = Ii, x(Ii), the policy maker designs the

optimal compensation s(Ii) paid to the agent.

The assumption that a portion of the value is privately observed only by one (e.g.,

agent) and not observed by the other (e.g., policy maker) is quite common in the asymmet-

ric information literature. This asymmetric information invites a host of principal-agent

issues. An excellent overview of asymmetric information approach is found in Mas-Collel

et al. (1995) and Salanié (2005).

In summary, the policy maker faces an optimization problem with asymmetric infor-

mation. The policy maker needs to provide compensation incentive to induce the agent to

reveal private information voluntarily and truthfully, by choosing the equilibrium policy

adoption strategy.

2.2 Value Functions

Since the policy maker delegates the adoption of environmental policy to the agent, the

underlying option value of social welfare is decomposed into two components: the policy

maker’s option and the agent’s option. Thus the sum of these option values is equal to

the option value of social welfare.

Let V (x,m; Ii) denote the option value of the policy maker for I = Ii. The value,

V (x,m; Ii), can be written as

V (x,m; Ii) = Ex
·
−

Z τi

0

e−rsB(Xs,Ms;E)ds+

Z ∞

τi

e−rsB(Xs,Ms; 0)ds

¸
−Ex

£
e−rτi(Ii + si)

¤
,

where r is the discount rate, τi is the adoption (stopping) time that the policy is imple-

mented when I = Ii, si is the compensation paid to the agent for I = Ii, and Ex[·] denotes
the expectation operator given that X0 = x. Using the fact that the strong Markov prop-

erty and the time homogeneity of the geometric Brownian motion, X, we can rewrite the

4



value function as follows:

V (x,m; Ii) = Ex[e−rτi ]

µ
γE

(r − µ)(r + λ− µ)xi − Ii − si
¶

− xm

(r + λ− µ) −
γEx

(r − µ)(r + λ− µ) ,

Here, we define the Laplace transform of the adoption time by:

Ex[e−rτi ] = W (x; xi), x < xi,

for trigger xi := x(Ii), i ∈ {1, 2}. Then it is important to note that τi := inf{t ≥ 0 :

Xt = xi}. Since the realized value of I can be either I1 or I2, we denote the triggers by

x1 = x(I1) and x2 = x(I2), respectively. Then, the Laplace transform of the adoption

time satisfies the ordinary differential equation:

x2σ2

2
d2W (x;xi) + µx dW (x;xi)− rW (x; xi) = 0, (5)

subject to the boundary condition that W (xi; xi) = 1 and W (0;xi) = 0. As we show in

Appendix, solving the ordinary differential equation forW (x;xi), one obtains the following

results:

Lemma 2.1 The Laplace transform of the adoption time is obtained by:

Ex[e−rτi ] =

µ
x

xi

¶β

, x < xi, (6)

where β is the positive root of quadratic equation:

Q(y) = y(y − 1)σ
2

2
+ yµ− r = 0. (7)

Moreover, the expected adoption time is obtained by:

Ex [τi] =
1

µ− 1
2
σ2
log

³xi
x

´
, x < xi. (8)

We assume that µ > 1
2
σ2 for this expectation to exist. So, under such a condition,

the expected adoption time is decreasing in the mean growth rate µ. In particular, the

expected adoption time is increasing in the volatility, σ. This result is exactly the same

as the one in the standard option-pricing literature.

Using Lemma 2.1, we can rewrite the option value of the policy maker for I = Ii:

V (x,m; Ii) =

µ
x

xi

¶β ½
γE

(r − µ)(r + λ− µ)xi − Ii − si
¾

(9)

− xm

r + λ− µ −
γEx

(r − µ)(r + λ− µ) ,
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where x < xi.

We denote the options value of the policy maker by πp(x,m). Then, since the option

value of the policy maker is defined by πp(x,m) = p V (x,m; I1) + (1− p)V (x,m; I2), the

option value of the policy maker, πp(x,m;x1, x2, s1, s2), is equal to:

πp(x,m; x1, x2, s1, s2) = p

µ
x

x1

¶β µ
γE

(r − µ)(r + λ− µ)x1 − I1 − s1

¶
(10)

+(1− p)
µ
x

x2

¶β µ
γE

(r − µ)(r + λ− µ)x2 − I2 − s2

¶
− xm

r + λ− µ −
γEx

(r − µ)(r + λ− µ) ,

where x < x1.

On the other hand, the agent has a payoff function s1 if I = I1 and s2 if I = I2.

We will assume that the agent incurs a cost ξ if he make employment contract at time

zero. Similar to the derivation of the policy maker’s value, the options value of the agent,

πa(x;x1, x2, s1, s2), can be written as:

πa(x; x1, x2, s1, s2) = p

µ
x

x1

¶β

s1 + (1− p)
µ
x

x2

¶β

s2 − ξ, (11)

where x < x1.

Thus, since the value of social welfare is defined as π = πp + πa, we can write it as

follows:

π(x,m;x1, x2) = p

µ
x

x1

¶β µ
γE

(r − µ)(r + λ− µ)x1 − I1

¶
(12)

+(1− p)
µ
x

x2

¶β µ
γE

(r − µ)(r + λ− µ)x2 − I2

¶
− ξ

− xm

r + λ− µ −
γEx

(r − µ)(r + λ− µ) ,

where x < x1.

In this section, the value function has been derived. However, the triggers to which

the environment policy is adopted have not been decided. Before analyzing the optimal

trigger in the asymmetric information, we first briefly review the full-information solution

used as the benchmark.

2.3 A Full-Information Setting

It is useful to begin our analysis by looking at the optimal contract problem when I is

publicly observable by both the policy maker and the agent. Deriving the full-information

solution, we will show that it turns out to be the first-best solution.
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When the policy maker can observe the realized value of I, the policy maker must

make the contract to the agent by s1 = s2 = s. Hence we form the following optimization

problem:

max
x1,x2,s

p

µ
x

x1

¶β µ
γE

(r − µ)(r + λ− µ)x1 − I1 − s
¶

(13)

+(1− p)
µ
x

x2

¶β µ
γE

(r − µ)(r + λ− µ)x2 − I2 − s
¶

− xm

r + λ− µ −
γEx

(r − µ)(r + λ− µ) ,

subject to one constraint:

p

µ
x

x1

¶β

s+ (1− p)
µ
x

x2

¶β

s− ξ ≥ 0. (14)

Constraint (14) ensures that the agent accept the employment contract. The policy

maker’s problem can be summarized as the solution to the objective function (13) subject

to (14).

Now describe the optimal contract in the full-information setting. The proofs detailing

the solutions are provided in Appendix.

Proposition 2.1 In the full-information setting, the optimal contracts (x1, x2, s) are as

follows:

x1 = x
∗
1, x2 = x

∗
2, s = s∗ :=

Ã
p

µ
x

x∗1

¶β

+ (1− p)
µ
x

x∗2

¶β
!−1

ξ,

where

x∗i = x∗(Ii) :=
β

β − 1
(r − µ)(r + λ− µ)

γE
Ii. (15)

Moreover, the optimal triggers in the full-information setting turn out to be those to

maximize the value of social welfare. That is,

(x∗1, x
∗
2) = arg max

(x1,x2)

π(x,m;x1, x2). (16)

From the second statement of Proposition 2.1, triggers (x∗1, x
∗
2) will be called the first-best

full-information ones. From the first statement, we state the following remark:

Remark 2.1 The first-best full-information trigger for the realized state I1 is strictly

smaller than that for I2, i.e., x
∗
1 < x

∗
2
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Remark 2.1 implies that the trigger for having the “low cost” expenditure is strictly smaller

than for having “high cost.” In general, the agent having the “high cost” expenditure will

display greater inertia in its behavior than the agent having “low cost.”

Let superscript “∗” on the value be the first-best full-information one, for example,
π∗(x,m) = π(x,m; x∗1, x

∗
2). Then substituting the solutions x1 = x

∗
1, x2 = x

∗
2, s = s

∗ into

the agent’s value function (11), we can obtain the following result:

Corollary 2.1 In the first-best full-information setting, the optimal contracts keep the

value of the agent zero, i.e., π∗a(x) = 0.

Since the value of social welfare is defined as π(x,m) = πp(x,m) + πa(x), Corollary

2.1 leads to the following result.

Lemma 2.2 In the first-best full-information setting, the value of social welfare, π∗(x,m),

is equal to:

π∗(x,m) = p

µ
x

x∗1

¶β ½
γE

(r − µ)(r + λ− µ)x
∗
1 − I1

¾
(17)

+(1− p)
µ
x

x∗2

¶β ½
γE

(r − µ)(r + λ− µ)x
∗
2 − I2

¾
− ξ

− xm

r + λ− µ −
γEx

(r − µ)(r + λ− µ) ,

for x < x∗1.

The function in equation (17) has simple intuitive interpretations; the first two terms

represent an options value with each probability p and 1 − p, respectively. The last two
terms correspond to the discounted value of evolving social welfare.

Finally, we examine the comparative statics with respect to the key parameter (volatil-

ity), σ. As we show in Appendix, one can obtain the following result.

Lemma 2.3 In the first-best full-information setting, the trigger x∗i is increasing in the

volatility for i ∈ {1, 2}. Moreover, the value of social welfare is increasing in the volatility.

Lemma 2.3 implies that uncertainty delays the adoption of environmental policy. This

result is exactly the same as the one in the standard option-pricing literature.

2.4 An Asymmetric Information Setting

In an asymmetric information setting, the policy maker will make the employment con-

tract in order to induce the agent to do the truth-telling action at adoption. Otherwise,
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the principal will suffer some loss due to asymmetric information. Thus the policy maker

must attempt to design the contract to reveal truthfully private information.

Since there are only two possible value of Ii, for any si scheduled, there can be at most

two exercise/subsidy trigger pairs that will be chosen by the agent. Thus, the contract is

modeled as a mechanism, M = {x(Ĩ), s(Ĩ); Ĩ ∈ {I1, I2}}, which may be contingent on a
reported Ĩ. Since the revelation principle ensures that the agent truthfully reveals a true

I as private information3, we will make no distinction between a reported Ĩ and a true I.

Thus we will drop the suffix “tilde” on the reported Ĩ and simply write the reported type

as I.

In the asymmetric information setting, the policy maker sets the contract pairs in

order to induce the agent to engage in truth-telling action at adoption. In order to

accomplish these objectives, the principal must attempt to design two types of constraints:

the incentive compatibility and participation constraints.

The incentive compatibility constraint ensures that the agent will adopt the environ-

mental policy in accordance with the policy maker’s expectations. Specifically, the agent

having a I1 type privately observed cost will adopt the policy at x1, and the agent having

I2 will adopt the policy at x2. To provide such a timing incentive, the agent must not

have any incentive to divert value. These conditions ensure that this value diversion does

not occur. The incentive compatibility constraints in this model are as follows:µ
x

x1

¶β

s1 ≥
µ
x

x2

¶β

(s2 +∆I), (18)µ
x

x1

¶β

(s1 −∆I) ≤
µ
x

x2

¶β

s2. (19)

Constraints (18) and (19) are the incentive compatibility constraints for the agent in state

I1 and I2, respectively. Consider, for example, constraint (18). The agent’s payoff in state

I1 is (x/x1)
βs1 if he tell the truth, but it is (x/x1)

β(s2+∆I) if he instead claims that it is

state I2. Thus, he will tell the truth if (18) is satisfied. Constraint (19) follows similarly.

Constraint (19) will be shown not to be binding, so only constraint (19) is relevant to our

discussion.

On the other hand, the participation constraints in this model are as follows:

s1 ≥ 0, (20)

s2 ≥ 0. (21)

Note that non-negative s1 and s2 insures that the agent makes an agreement about em-

ployment. For example, if s2 < 0, then the agent would refuse the contract on learning

3See, e.g., Mas-Colell et al. (1995), and Salanié (2005) for details of the revelation principle.
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that I = I2. Thus, we assume a non-negative compensation. Moreover, we will assume

that the policy maker pay the cost incured to the agent at time zero when the policy

maker makes employment contract.

In sum, in the asymmetric information setting, the policy maker’s problem can be

summarized as the maximization of its objective function, subject to the four inequality

constraints (18) to (21). Fortunately, we will find in the next section that the problem

can be simplified in that we can reduce the number of constraints to only one.

3 Model Solution

In this section, we provide the solution to the optimal contract problem described in

the previous section: maximizing the policy maker’s value function subject to the four

inequality constraints (18) to (21).

3.1 A Simplified Statement of the Principal-Agent Problem

We can form the optimization problem as:

max
x1,x2,s1,s2

p

µ
x

x1

¶β µ
γE

(r − µ)(r + λ− µ)x1 − I1 − s1

¶
(22)

+(1− p)
µ
x

x2

¶β µ
γE

(r − µ)(r + λ− µ)x2 − I2 − s2

¶
− xm

(r + λ− µ) −
γEx

(r − µ)(r + λ− µ) ,

subject to four constraints:(18),(19),(20),(21). We now proceed to characterize the solu-

tion to problem (22) through a series of steps. Proofs of these procedures are shown in

Appendix.

Following the steps given in Appendix, we can simplify the optimization problem

noted above as (22) and show that we can determine the optimal contract by solving the

following optimization problem:

max
x1,x2,s1

p

µ
x

x1

¶β µ
γE

(r − µ)(r + λ− µ)x1 − I1 − s1

¶
(23)

+(1− p)
µ
x

x2

¶β µ
γE

(r − µ)(r + λ− µ)x2 − I2

¶
− xm

(r + λ− µ) −
γEx

(r − µ)(r + λ− µ) ,

subject to only one constraint:µ
x

x1

¶β

s1 ≥
µ
x

x2

¶β

∆I, (24)
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where x < x∗1. It is important to note that we can simply substitute s2 = 0 into the

problem.

We now simplified optimization problem for the policy maker. In the next subsection,

we provide the solution to the optimal contract problem.

3.2 Optimal Contract

Now describe the optimal contracts. The proofs detailing the solutions are provided in

Appendix.

Proposition 3.1 In the asymmetric information setting, the optimal contracts (x1, x2, s1, s2)

are as follows:

x1 = x
∗
1, x2 = x

∗
3, s1 = s

∗
1 :=

µ
x∗1
x∗3

¶β

∆I, s2 = s
∗
2 = 0. (25)

where x∗i is defined by (15) and I3 is defined by

I3 := I2 +
p

1− p∆I. (26)

Proposition 3.1 implies that the agent adopt the environmental policy at the first time

that x hits x∗1 if I = I1, and that x hits if I = I2. Moreover, the policy maker gives s1 to

the agent if the policy is adopted at x∗1, gives nothing if adopted at x
∗
3.

The first property of the solution is that the agent having state I1 will always adopt

the environmental policy at the trigger, x∗1.

Remark 3.1 In the asymmetric information setting, the optimal contract has x1 = x
∗
1.

Remark 3.1 implies that the trigger in the asymmetric information setting is exactly the

same as that in the first-best full-information setting. As we will show see, it is less costly

for the policy maker to distort x2 from the first-best level than to distort x1 away from

the first-best level in order to provide the appropriate incentive to the agent.

The second property of the solution is that the agent having state I2 will not adopt

the environmental policy at the full-information trigger, x∗2. Intuitively, the necessity of

ensuring that the agent having state I2 does not imitate the one having state I1 leads the

agent having state I2 to display a greater option to wait than the first-best full-information

solution. In order to dissuade the agent having state I1 from adopting the policy at x∗2,

the distance between triggers in the asymmetric information setting is sufficiently larger

than that in the first-best full-information setting.
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Lemma 3.1 In the asymmetric information setting, the adoption trigger for an agent

having high cost, I2, is strictly bigger than that in the first-best full-information setting,

i.e., x∗3 > x
∗
2.

The third property of the solution is that the policy maker sets the optimal compen-

sation s1 according to the level of triggers. The compensation s1 is the present value of

information rent paid to the agent in order to provide the incentive to truthfully reveal

private information. Also, as ∆I increases, the agent has a greater incentive to divert this

difference in value. Thus, an increase in ∆I increases the optimal compensation s1.

The last property of the solution is that the policy maker keeps the optimal compen-

sation s2 zero. The intuition is straightforward. Giving the agent having high cost I2

positive rent implies higher rent for the agent of state I1 in order to induce the agent to

engage in truth-telling at adoption. In order to minimize these rents, it is optimal for the

principal to keep s2 zero.

Let superscript “∗∗” on the value be the asymmetric information one, for example,
π∗∗(x,m) = π(x,m;x∗1, x

∗
3, s
∗
1, s
∗
2). Substituting the solutions into each value, we can

obtain the following results.

Proposition 3.2 In the asymmetric information setting, the policy maker and the agent

options value, π∗∗p and π∗∗a , respectively, can be written as:

π∗∗p (x,m) = p

µ
x

x∗1

¶β µ
γE

(r − µ)(r + λ− µ)x
∗
1 − I1

¶
(27)

+(1− p)
µ
x

x∗3

¶β µ
γE

(r − µ)(r + λ− µ)x
∗
3 − I2

¶
− p

µ
x

x∗3

¶β

∆I − ξ

− xm

(r + λ− µ) −
γEx

(r − µ)(r + λ− µ) ,

and

π∗∗a (x) = p

µ
x

x∗3

¶β

∆I, (28)

where x < x∗1. The value of social welfare, π
∗∗, can be written as:

π∗∗(x,m) = p

µ
x

x∗1

¶β µ
γE

(r − µ)(r + λ− µ)x
∗
1 − I1

¶
(29)

+(1− p)
µ
x

x∗3

¶β µ
γE

(r − µ)(r + λ− µ)x
∗
3 − I2

¶
− ξ

− xm

(r + λ− µ) −
γEx

(r − µ)(r + λ− µ) ,

where x < x∗1.

12



It is interesting to note that the options value of social welfare is equivalent to the first-

best full-information value in which x∗3 is replaced by x
∗
2. However, that difference follows

the next result.

Corollary 3.1 The value of social welfare in the asymmetric information setting, π∗∗(x,m),

is strictly lower than that in the first-best full-information setting, π∗(x,m), i.e., π∗∗(x,m) <

π∗(x,m).

Importantly, the agency conflict due to asymmetric information problem leads to a de-

crease in the value of social welfare.

4 Model Implications

In this section, we analyze several of the more important implications of the model.

First, Subsection 4.1 examines the agency cost due to asymmetric information. Second,

Subsection 4.2 demonstrates the asset substitution by examining the comparative statics

with respect to the key parameter of the model.

4.1 Agency Cost

Although the policy maker chooses the value-maximizing contract to provide an incen-

tive for the agent to truthfully reveal private information, the principal-agent problem

ultimately proves costly. So, in this situation, there will be an agency cost due to the

suboptimal strategy.

We refer to the difference between the first-best option value and the suboptimal

option value. Thus, we can define the agency cost due to principal-agent issues as C,

where C := π∗(x,m)− π∗∗(x,m) for x < x∗1. The agency cost turns out to be:

C = (1− p)
µ
x

x∗2

¶β ½
γE

(r − µ)(r + λ− µ)x
∗
2 − I2

¾
(30)

−(1− p)
µ
x

x∗3

¶β ½
γE

(r − µ)(r + λ− µ)x
∗
3 − I2

¾
.

It is important to note that the agency cost is strictly positive, because of Corollary 3.1.

Furthermore, we conclude that the agency cost is driven by the distance of the trigger x∗3
form x∗2.

Now we consider the expected time lag caused by the distance of the triggers. We

define the expected adoption times in the full and asymmetric information setting by:

pEx[τ ∗1 ] + (1− p)Ex[τ ∗2 ], pEx[τ ∗1 ] + (1− p)Ex[τ ∗3 ],

13



respectively. Then the expected time lag can be defined by the difference between the

above expected adoption times. So, the expected time lag, Ψ := (1 − p)Ex [τ ∗3 − τ ∗2 ], is

given by:

Ψ =
(1− p)
µ− 1

2
σ2
log

Ã
I2 +

p
1−p∆I

I2

!
. (31)

The proof is straightforward from Lemma 2.1.

It is important to note that the expected time lag depends upon only five parameters,

µ, σ2, p, I1, and I2. An increase in ∆I increases the expected time lag. Thus the greater

the distance between triggers, the larger in the expected time lag the agent adopts. In

particular, the expected time lag is increasing in the volatility σ.

4.2 Asset Substitution

To get to a deeper understanding of the insights of the model, we now perturb some of

the key parameters of the model and analyze their impacts on the optimal contract pairs

and the value. In this subsection, we examine the sensitivity of the optimal contract and

value with respect to the volatility σ. It may be recalled that the contracts and values,

(x1, x2, s1) and (πp, πa,π), respectively, are obtained in Proposition 3.1 to 3.2. We begin

with the impact to the solutions. The proof is given by Appendix.

Lemma 4.1 In the asymmetric information setting, an increase in the volatility σ in-

creases the contract pairs, (x1, x2, s1).

On the other hand, we examine the comparative statics of the policy maker’s and

agent’s options values with respect to the volatility.

Lemma 4.2 In the asymmetric information setting, an increase in the volatility increases

the policy maker’s value, has an ambiguous effect on the agent’s value.

Importantly, an increase in the volatility may possibly give rise to what is called “asset

substitution.” If the underlying state is relatively high, in that,¯̄̄̄
log

µ
x

x∗3

¶¯̄̄̄
<

¯̄̄̄
1

β − 1
¯̄̄̄
, (32)

then an increase in the volatility increases the agent’s option value. Therefore, if (32) is

satisfied, an increase in the volatility increases the policy maker’s value, while it increases

the agent’s value. These results imply that an increase in the volatility shifts wealth from

the agent to the policy maker. This possibility to transfer wealth is known as “asset

14



substitution.” Naturally, since the sum of these two values is the value of social welfare,

whether this sum is increasing or decreasing in the volatility is an interesting question.

The result is as follows:

Corollary 4.1 In the asymmetric information setting, an increase in the volatility has

an ambiguous effect on the value of social welfare.

Hence in the asymmetric information setting, the impact with respect to the volatility

may be different from the one in the first-best full-information setting.

5 Concluding Remark

This paper extends the optimal timing in environmental policy model to account for

asymmetric information between the policy maker and the agent. Asymmetric Informa-

tion leads to principal-agent conflict. When the adoption of policy is delegated to agents

under asymmetric information, employment contracts must be designed to provide in-

centives for agents to truthfully reveal their private information. This paper presents a

model of optimal contracting in a continuous-time principal-agent setting in which there

is asymmetric information. The implied behavior at adoption differs significantly from

that of the first-best full-information solution. In particular, there will be greater inertia

in adoption, as the model predicts that the agent will have a more valuable option to wait

than the policy maker. The value of social welfare in the asymmetric information setting

is strictly lower than that in the first-best full-information setting.

Appendix (Proof of Lemmas and Propositions)

Proof of Lemma 2.1 The first statement is shown by using the standard arguments

(e.g., Dixit and Pindyck, 1994). Here, we show the second statement in Lemma 2.1.

Differentiating (6) with respect to r yields

Ex[τie−rτi ] =

µ
x

xi

¶β

log
³xi
x

´ Ãµ
µ− 1

2
σ2

¶2

+ 2rσ2

!−1/2

.

Taking r into zero gives the result. ¤

Proof of Proposition 2.1 Now we form the Lagrangian as follows:

max
x1,x2,s,φ

L = p

µ
x

x1

¶β ½
γE

(r − µ)(r + λ− µ)x1 − I1 − s
¾
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+(1− p)
µ
x

x2

¶β ½
γE

(r − µ)(r + λ− µ)x2 − I2 − s
¾

− xm

r + λ− µ −
γEx

(r − µ)(r + λ− µ)

+φ

"
p

µ
x

x1

¶β

s+ (1− p)
µ
x

x2

¶β

s− ξ

#
,

where φ denote the multiplier on the constraint. The first-order conditions with respect

to xi yield:½
γE

(r − µ)(r + λ− µ)xi − Ii
¾ −β
xi
+

γE

(r − µ)(r + λ− µ) = 0, i ∈ {1, 2}.

Here we can obtain the solution. Moreover, now we define the first-best solution by xFB
i

which maximize the value of social welfare, i.e.,

xFB
i := argmax

x̂i

(µ
x

x̂i

¶β µ
γE

(r − µ)(r + λ− µ) x̂i − Ii
¶)

, i ∈ {1, 2}.

This shows that x∗i = x
FB
i for i ∈ {1, 2}. ¤

Proof of Lemma 2.3

For the first statement, differentiating the trigger with respect to σ yields

dx∗i
dσ

=
∂x∗i
∂β

∂β

∂σ
=

µ −1
(β − 1)2

(r − µ)(r + λ− µ)
γE

Ii

¶
∂β

∂σ
, i ∈ {1, 2}.

Here, differentiating Q(y) defined by (7) with respect to σ yields:

∂Q

∂β

∂β

∂σ
+
∂Q

∂σ
= 0.

Since (∂Q
∂β
) > 0 and (∂Q

∂σ
) > 0, we obtain (∂β

∂σ
) < 0. Thus the triggers are increasing in the

volatility, i.e., (dx∗i /dσ) > 0 for i ∈ {1, 2}.
For the second statement, differentiating the policy maker’s value with respect to σ

yields:

dπ∗p(x,m)

dσ
=

µ
∂π∗p
∂β

+
∂π∗p
∂x∗1

∂x∗1
∂β

+
∂π∗p
∂x∗2

∂x∗2
∂β

¶
= p

µ
x

x∗1

¶ ½
γE

(r − µ)(r + λ− µ)x
∗
1 − I1

¾
log

µ
x

x∗1

¶
+(1− p)

µ
x

x∗2

¶ ½
γE

(r − µ)(r + λ− µ)x
∗
2 − I2

¾
log

µ
x

x∗2

¶
,

where we have used the envelope theorem, (∂π∗p/∂x
∗
i ) = 0 for i ∈ {1, 2}. Thus we can

show (dπ∗p/dσ) > 0. On the other hand, since π∗a(x) = 0, an increase in the volatility

increases the sum of these values, the value of social welfare, π∗(x,m). ¤
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Proof of Simplified Statements In order to simplify the optimization problem, we

show three lemmas, Lemma A.1 to A.3.

Lemma A.1 (20) is not binding, i.e., s1 > 0.

(proof)

s1 ≥
µ
x1

x2

¶β

(s2 +∆I) ≥
µ
x1

x2

¶β

∆I > 0.

The first and second equalities follow from (18) and (21), respectively. ¤

Lemma A.2 (21) is binding, i.e., s2 = 0.

(proof) Now we can form the Lagrangian as follows:

max
x1,x2,s1,s2,φ1,φ2,φ3

L = p

µ
x

x1

¶β µ
γE

(r − µ)(r + λ− µ)x1 − I1 − s1

¶
+(1− p)

µ
x

x2

¶β µ
γE

(r − µ)(r + λ− µ)x2 − I2 − s2

¶
− xm

(r + λ− µ) −
γEx

(r − µ)(r + λ− µ)

+φ1

"µ
x

x1

¶β

s1 −
µ
x

x2

¶β

(s2 +∆I)

#

+φ2

"µ
x

x2

¶β

s2 −
µ
x

x1

¶β

(s1 −∆I)
#
+ φ3s2,

where φi denote the multiplier on these constaints (i = {1, 2, 3}). The first-order condi-
tions with respect to s1 and s2 gives:µ

x

x1

¶β

(−p+ φ1 − φ2) = 0,µ
x

x2

¶β

{−(1− p)− φ1 + φ2)}+ φ3 = 0.

These two equations show that φ3 > 0. ¤

Lemma A.3 (19) is not binding．

(proof) Substituting s2 = 0 into (19) givesµ
x

x1

¶β

(s1 −∆I) ≤ 0.

Then, s1 ≤ ∆I is satisfied from the above equation. There we obtain s1 < ∆I readily by

the policy maker’s payoff maximization problem. ¤
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Proof of Proposition 3.1 We form the Lagrangian as follows:

max
x1,x2,s1,φ

L = p

µ
x

x1

¶β µ
γE

(r − µ)(r + λ− µ)x1 − I1 − s1

¶
+(1− p)

µ
x

x2

¶β µ
γE

(r − µ)(r + λ− µ)x2 − I2

¶
− xm

(r + λ− µ) −
γEx

(r − µ)(r + λ− µ) + φ

"µ
x

x1

¶β

s1 −
µ
x

x2

¶β

∆I

#
,

where φ denote the multiplier on these constraints. The first-order conditions with respect

to x1, x2, and s1 gives:

p

µ
1 +
−β
x1

½
γE

(r − µ)(r + λ− µ)x1 − I1 − s1

¾¶
+ φ
−β
x1
s1 = 0,

(1− p)
µ
1 +
−β
x2

½
γE

(r − µ)(r + λ− µ)x2 − I2

¾¶
− φ
−β
x2
∆I = 0,

−p+ φ = 0.

Rearranging these constraints gives the solutions. ¤

Proof of Lemma 4.1 For the first statement, the proof is exactly the same as that in

the proof of Lemma 2.3. For the second statement, differentiating the compensation s1

with respect to σ yields:

ds1

dσ
=

µ
∂s1

∂β
+
∂s1

∂x∗1

∂x∗1
∂β

+
∂s1

∂x∗3

∂x∗3
∂β

¶
∂β

∂σ

=

µ
x∗1
x∗3

¶β

∆I

½
log

µ
x∗1
x∗3

¶
+ (−β)

µ
(x∗1)

−1∂x
∗
1

∂β
− (x∗3)−1∂x

∗
3

∂β

¶¾
∂β

∂σ

=

µ
x∗1
x∗3

¶β

∆I

½
log

µ
x∗1
x∗3

¶¾
∂β

∂σ
> 0,

where the step from second to third equation follows from the fact that
∂x∗i
∂β
=

−x∗i
β(β−1)

. Since

log (x∗1/x
∗
3) < 0 because of x

∗
1 < x

∗
3, we obtain the positive sign. Thus the compensation

is increasing in the volatility. ¤

Proof of Lemma 4.2 Differentiating the policy maker’s value with respect to σ gives:

dπ∗∗p (x,m)

dσ
=

µ
∂π∗∗p
∂β

+
∂π∗∗p
∂x∗1

∂x∗1
∂β

+
∂π∗∗p
∂x∗3

∂x∗3
∂β

¶
∂β

∂σ

= p

µ
x

x∗1

¶β ½
γE

(r − µ)(r + λ− µ)x
∗
1 − I1

¾
log

µ
x

x∗1

¶
∂β

∂σ

+(1− p)
µ
x

x∗3

¶β ½
γE

(r − µ)(r + λ− µ)x
∗
3 − I3

¾
log

µ
x

x∗3

¶
∂β

∂σ
> 0,
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where the deviation from first to second equation follows from the envelope theorem³
∂π∗∗p (x,m)

∂x∗i

´
= 0. See, e.g., Mas-Collel et al. (1995) for details about the envelope theorem.

The positive sign of the last equation follows from the fact that
n

γE
(r−µ)(r+λ−µ)

x∗i − Ii
o
> 0,

log ( x
x∗i
) < 0, and (∂β

∂σ
) < 0 for i ∈ {1, 3}.

On the other hand, differentiating the agent’s value with respect to σ yields:

dπ∗∗a (x,m)
dσ

=

µ
∂π∗∗a
∂β

+
∂π∗∗a
∂x∗3

∂x∗3
∂β

¶
∂β

∂σ

= p

µ
x

x∗3

¶β

∆I

½
log

µ
x

x∗3

¶
+

1

β − 1
¾ µ

∂β

∂σ

¶
.

Since log(x/x∗3) < 0 and (1/(β − 1)) > 0, the sign in parentheses is ambiguous. ¤

Proof of Corollary 4.1 Since the sum of the policy maker’s and agent’s values is the

value of social welfare, it is straightforward to check the result by using the fact obtained

in Lemma 4.2. ¤
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