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ABSTRACT. We study optimal stopping problems whose reward function involves both the state process
X and its running maximum S. In this article, the state process is a spectrally negative Lévy process. The
problem is in nature a two-dimensional one. We present a method that handles this problem in a systematic
way and find, in a general setting, explicit solutions by using excursion theory and scale functions.
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1. INTRODUCTION

We let X = (Xt, t ≥ 0) be a spectrally negative Lévy process (i.e., a Lévy process with only negative jumps)
and denote by Y the reflected process,

Yt = St −Xt

where St = supu∈[0,t]Xu ∨ s with s = S0. Hence Y is the excursion of X from its running maximum S. We
consider an optimal stopping problem that involves both X and S:

V̄ (x, s) = sup
τ

Ex,s
[∫ τ

0
e−qtf(Xt, St)dt+ e−qτg(Xτ , Sτ )

]
.

where the rewards f and g are measurable functions from R2 to R+. The rigorous mathematical definition of
this problem is presented in Section 2. In this study, we shall solve for optimal strategy and corresponding value
function along with optimal stopping region in the (s, x)-plane. In contrast to diffusion case, when the state
process X is a spectrally negative Lévy process, no characterization of the value function is yet known even for
problems involving X alone, while a number of authors have succeeded in extending the classical results by using
the technique called scale functions. We just name a few here : Baurdoux and Kyprianou [5, 6] for stochastic
games, Avram et al. [4], Kyprianou and Palmowski [17], and Loeffen [19] for the optimal dividend problem,
Alili and Kyprianou [1] and Avram et al. [3] for American and Russian options. Due to the lack of general
characterization, solution techniques presented in these articles are more or less problem-specific. Optimality is
usually obtained by so-called “threshold strategy”. That is, the player should stop and receive rewards on the first
occasion when the state process enters a certain region. Accordingly, in Lévy and other jump models, the authors
first qualitatively argue what optimal strategy should be and construct a candidate value function in continuation
and stopping region. Then they prove its optimality by verifying the ‘quasi-variational inequalities’ (see Øksendal
and Sulem [20]). Since the problem at hand involves two dimensions; , finding and proving the overall optimal
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strategy may be challenging. There are some papers on two-dimensional optimal stopping problems (involving S
and X) that have specific reward functions: for example, Ott [21] and Guo and Zervos [15]. In the former, the
author solves problems including a capped version of the Shepp-Shiryaev problem [25], and the latter is another
contribution that extends [25] with the reward function g(x, s) = (xasb −K)+, a, b,K ≥ 0.

The technique used in our study is excursion theory. Excursion theory for spectrally negative Lévy processes
has been developed recently. See Bertoin [7] as a general reference. More specifically, an exit problem of the
reflected process Y was studied by Avram et al. [3], Pistorius [23] [24] and Doney [11]. In this study, rather than
solving for particular reward functions, we shall provide a general framework that tackles this problem, namely
two-dimensional involving S and X for spectrally negative Lévy processes. As in the case of diffusions in Egami
and Oryu [12], we look at excursions that occur at each level of S, and reduce the problem to an infinite number of
one-dimensional optimal stopping problems. This approach is new with Lévy process, but is already utilized with
diffusion processes: see, for example, Graversen and Peskir [14] and Alvarez and Matomäki [2]. Having thus far
characterized two-dimensional problem as a set of one-dimensional optimal stopping problems, we shall focus on
and contribute to obtaining, in a general setting, an explicit form of value function (e.g., (5.4b)) among the class of
stopping times S ′ ( S defined in (2.4), a class of threshold strategies. Our method is general in the sense that it
can treat problems in which the conventional method relying on the smooth-fit principle does not work (see Section
6). The explicit formula of the value function should be of great help for further analysis.

The key step is to compute U(s, s) in (2.11), or the value of similar kind. This denotes the value if we start with
S = X . In Section 3, we characterize this value in an integral form by using the excursion theory (see Proposition
3.1). Once this is found, the problem reduces to the one-dimensional problem. In those reduced problems, U(s, s)

appears in different situations (see Case (1-L), (2-L), and (3-L)) in Section 4. We shall provide explicit forms
of U(s, s) for each of the cases, which is our main contribution (see Propositions 4.1 and 4.2). With U(s, s) at
hand, we shall compute U(x, s) for x ≤ s, the general value and draw a (s, x)-diagram from which one can tell a
certain point in R2 belongs either continuation or stopping region. This is treated in a systematical way in Section
5. Finally in Section 6 we handle lookback options with jumps: g(x, s) = es − kex as an illustration of how
to implement our methods. Note that in Section 2, we discuss sufficient conditions for optimality and the scale
function of a spectrally negative Lévy process. Some technical matters are collected in Appendices.

2. PROBLEM WITH SPECTRALLY NEGATIVE LÉVY PROCESSES

Let the spectrally negative Levy processX = {Xt; t ≥ 0} represent the state variable defined on the probability
space (Ω,F ,P), where Ω is the set of all possible realization of the stochastic economy, and P is a probability
measure defined on F . We denote by F = {Ft}t≥0 the filtration with respect to which X is adapted and with the
usual conditions being satisfied. The Laplace exponent ψ of X is given by

ψ(λ) = µλ+
1

2
σ2λ2 +

∫
(−∞,0)

(eλx − 1− λx1l(x>−1))Π(dx),

where µ ≥ 0, σ ≥ 0, and Π is a measure concentrated on R\{0} satisfying
∫
R(1 ∧ x2)Π(dx) < ∞. It is

well-known that ψ is zero at the origin, convex on R+ and has a right-continuous inverse:

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}, q ≥ 0.

The running maximum process S = {St; t ≥ 0} is defined by St = supu∈[0,t]Xu ∨ s. In addition, we write Y
for the reflected process defined by Yt = St −Xt. The payoff is composed of two parts; the running income to be
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received continuously until stopped and the terminal reward part to be received when the process is stopped. We
consider the following optimal stopping problem and the value function V̄ : R2 7→ R associated with initial values
X0 = x and S0 = s;

V̄ (x, s) = sup
τ∈S

Ex,s
[∫ τ

0
e−qtf(Xt, St)dt+ 1l{τ<∞}e

−qτg(Xτ , Sτ )

]
(2.1)

where Px,s( · ) := P( · |X0 = x, S0 = s) and Ex,s is the expectation operator corresponding to Px,s, q ≥ 0 is the
constant discount rate and S is the set of all F-adapted stopping times. The running income function f : R2 7→ R
is a measurable function that satisfies the regularity condition

(2.2) Ex,s
[∫ ∞

0
e−qt|f(Xt, St)|dt

]
<∞.

The reward function g : R2 7→ R+ and is assumed to be measurable and integrable with respect to the Lévy
measure Π. Our main purpose is to calculate V̄ and to find the stopping time τ∗ which attains the supremum. For
each Borel measurable function l : R 7→ R+, we define a stopping time τ(l) by

(2.3) τ(l) := inf{t ≥ 0 : St −Xt > l(St)},

and define a set of stopping times S ′ by

(2.4) S ′ := {τ(l) : l : R 7→ R+}.

In other words, τ(l) is the first time the excursion S −X from level, say S = s, becomes greater than some value
l(s). When l is constant, for example, l̄ ≡ c on R, we write

τc := inf{t ≥ 0 : St −Xt > c}.

2.1. On the Optimal Strategy. We will reduce the original problem (2.1) to an infinite number of one-dimensional
optimal stopping problem and discuss the optimality of the proposed strategy (2.3). Let us denote by f̄ : R2 7→ R
the q-potential of f where

f̄(x, s) := Ex,s
[∫ ∞

0
e−qtf(Xt, St)dt

]
.

From the strong Markov property of (X,S) and the regularity condition (2.2), we have

Ex,s
[∫ τ

0
e−qtf(Xt, St)dt

]
= f̄(x, s)− Ex,s

[
1l{τ<∞}e

−qτ f̄(Xτ , Sτ )
]
,(2.5)

whose derivation is standard. Hence the value function V̄ can be written as

V̄ (x, s) = f̄(x, s) + V (x, s),

where

V (x, s) := sup
τ∈S

Ex,s
[
1l{τ<∞}e

−qτ (g − f̄)(Xτ , Sτ )
]
.(2.6)

We shall concentrate on V (x, s). By the dynamic programming principle, we can write V (x, s) as

V (x, s) = sup
τ∈S

Ex,s
[
1l{τ<θ}e

−qτ (g − f̄)(Xτ , Sτ ) + 1l{θ<τ}e
−qθV (Xθ, Sθ)

]
,(2.7)
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for any stopping time θ ∈ S . See, for example, Pham [22] page 97. Now we set θ = Ts in (2.7). For each level
S = s from which an excursion occurs, the value S does not change during the excursion. Now let us set stopping
times (first passage times) Tm as

Tm = inf{t ≥ 0 : Xt > m}.

Hence, during the first excursion interval from S0 = s and St = s for any t ≤ Ts, and (2.7) can be written as the
following one-dimensional problem for the state process X;

V (x, s) = sup
τ∈S

Ex,s
[
1l{τ<Ts}e

−qτ (g − f̄)(Xτ , s) + 1l{Ts<τ}e
−qTsV (s, s)

]
.(2.8)

Now we can look at only the process X and find τ∗ ∈ S. In relation to (2.8), we consider the following one-
dimensional optimal stopping problem as for X and its value function V̂ : R2 7→ R;

V̂ (x, s) = sup
τ∈S

Ex,s
[
1l{τ<Ts}e

−qτ (g − f̄)(Xτ , s) + 1l{Ts<τ}e
−qTsK

]
,(2.9)

where K ≥ 0 is a constant. Now the following lemma provides a sufficient condition for threshold strategies (i.e.,
stopping times from S ′) to be optimal for (2.9). See also Theorem 2.2 in Øksendal and Sulem [20] for this type of
verification theorem.

Lemma 2.1. Fix some s ∈ R, and let a differential operator A defined by

Aw(x) := µw′(x) +
σ2

2
w′′(x) +

∫ ∞
0

Π(dy)[w(x+ y)− w(x)− yw′(x)1l{−1<y}].

If there exist z∗ ∈ (s− b, s) and a function w ∈ C1((−∞, s]) ∩ C2((−∞, s)\{z∗}) such that

(i) w(s) = K,

(ii) Aw(x)− qw(x) = 0 and w(x) > (g − f̄)(x, s) on x ∈ (z∗, s),

(iii) Aw(x)− qw(x) < 0 and w(x) = (g − f̄)(x, s) on x ∈ (−∞, z∗],
then w(x) = V̂ (x, s) for every x ∈ (−∞, s] and the F-stopping time τ∗ = inf{t ≥ 0;Xt < z∗} gives supremum
in (2.9).

Proof. We postpone the proof to Appendix A. �

To use Lemma 2.1, one usually constructs a candidate w(·) and proves the required inequalities (ii) and (iii).
However, for the optimal stopping problems in spectrally negative Lévy models, this procedure tends to be
problem-specific, depending on various data such as functions f, g and process X . It is because no general re-
sults about the optimality of threshold strategy have been proved. In this study, having thus far characterized our
two-dimensional problem (2.1) as a set of one-dimensional optimal stopping problems (2.8), we shall focus on and
contribute to obtaining, in a general setting, an explicit form of solution (5.4b) among the class of stopping times
S ′ ( S. Accordingly, we consider the value function Ū (instead of V̄ ) which is defined by

Ū(x, s) := f̄(x, s) + U(x, s),(2.10)

where

U(x, s) := sup
τ∈S′

Ex,s
[
1l{τ<∞}e

−qτ (g − f̄)(Xτ , Sτ )
]
.(2.11)

Note that, for our problem, the optimality of (5.4b) for (2.8) (and hence for (2.1)) is given by verifying the condi-
tions in Lemma 2.1 with K = U(s, s).
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2.2. Scale functions. We review some mathematically important facts before solving the problem. Associated
with every spectrally negative Lévy process, there exists a (q-)scale function

W (q) : R 7→ R; q ≥ 0,

that is continuous, strictly increasing on [0,∞) and 0 on (−∞, 0). It is uniquely determined by∫ ∞
0

e−βxW (q)(x)dx =
1

ψ(β)− q
, β > Φ(q).

Fix a > x > 0 and define

Ta := inf{t ≥ 0 : Xt > a} and T−0 := inf{t ≥ 0 : Xt < 0}.

then we have

Ex
[
e−qTa1{Ta<T−0 , Ta<∞}

]
=
W (q)(x)

W (q)(a)

and

Ex
[
e−qT

−
0 1{Ta>T−0 , T−0 <∞}

]
= Z(q)(x)− Z(q)(a)

W (q)(x)

W (q)(a)
,

where

Z(q)(x) := 1 + q

∫ x

0
W (q)(y)dy, x ∈ R.

Here we have Z(q)(x) = 1 on (−∞, 0]. We also have

Ex
[
e−qT

−
0

]
= Z(q)(x)− q

Φ(q)
W (q)(x), x > 0.

In particular, W (q) is continuously differentiable on (0,∞) if Π does not have atoms and W (q) is twice-
differentiable on (0,∞) if σ > 0; see, e.g., Chan et al.[9]. Throughout this paper, we assume the former:

Assumption 1. We assume that Π does not have atoms.

Fix q > 0. The scale function increases exponentially; W (q)(x) ∼ eΦ(q)x

ψ′(Φ(q)) as x ↑ ∞. There exists a (scaled)
version of the scale function WΦ(q) = {WΦ(q)(x);x ∈ R} that satisfies

WΦ(q)(x) = e−Φ(q)xW (q)(x), x ∈ R

and ∫ ∞
0

e−βxWΦ(q)(x)dx = 1
ψ(β+Φ(q))−q , β > 0.

Moreover WΦ(q)(x) is increasing, and as is clear from the exponential increase of W (q),

WΦ(q)(x) ↑ 1

ψ′(Φ(q))
as x ↑ ∞.
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Regarding its behavior in the neighborhood of zero, it is known that

(2.12)

W (q)(0) =

{
0, unbounded variation
1
d , bounded variation

}
and W

(q)′

+ (0) =


2
σ2 , σ > 0

∞, σ = 0 and Π(0,∞) =∞
q+Π(0,∞)

d2 , compound Poisson


where d := µ−

∫
(−1,0) xΠ(dx). See Lemmas 4.3-4.4 of Kyprianou and Surya [18]. Moreover, we have (see e.g.,

Pistorius [24])

(2.13) lim
x→∞

W
(q)′

+ (x)

W (q)(x)
= Φ(q).

For a comprehensive account of the scale function, we refer the reader to [7, 8, 16, 18]. See also [13, 26] for
numerical methods for computing the scale function.

3. CHARACTERIZATION OF U(s, s)

Now we look to an explicit solution of Ū for τ ∈ S ′. Let us introduce the probability measure P̃x,s such that the
Radon-Nikodym derivative between P̃x,s and Px,s is defined by

dP̃x,s

dPx,s

∣∣∣∣
Ft

= e−qt+Φ(q)(Xt−x).

Under P̃x,s, X has the Laplace exponent ψ̃ defined by

ψ̃(λ) = ψ(λ+ Φ(q))− ψ(Φ(q))

=

(
σ2Φ(q) + µ+

∫
(−∞,0)

x(eΦ(q)x − 1)1l{x>−1}Π(dx)

)
λ

+
1

2
σ2λ2 +

∫
(−∞,0)

(eλx − 1− λx1l{x>−1})e
Φ(q)xΠ(dx).

Note that since ψ̃′(0+) = ψ′(Φ(q)+) > 0, X drifts to∞ for q ≥ 0.
Let WΦ(q) : R 7→ R be the scale function of X under P̃x,s, that is, WΦ(q) has the Laplace transform∫ ∞

0
e−λxWΦ(q)(x)dx =

1

ψ̃(λ)
.

In addition, we define the process η = {ηt; t ≥ 0} of the height of the excursion as

ηu := sup{(S −X)Tu−+w : 0 ≤ w ≤ Tu − Tu−}, if Tu > Tu−,

and ηu = 0 otherwise, where Tu− := inf{t ≥ 0 : Xt ≥ u} = limm→u− Tm. Then η is a Poisson point process,
and we denote its characteristic measure under P̃x,s by ν̃. It is known that there is a relation between WΦ(q) and ν̃:

(3.1) WΦ(q)(x) = c exp

(
−
∫ ∞
x

ν̃[u,∞)du

)
,

where c is some positive constant. See Bertoin [7] (page 195) for an explanation of this identity.
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Recall that if τ ∈ S ′, equation (2.5) can be written as

Ex,s
[∫ τ

0
e−qtf(Xt, St)dt

]
= f̄(x, s)− Ex,s

[
1l{τ<∞}e

−qτ f̄(Xτ , Sτ )
]
.

Accordingly, the function U in (2.11) is

U(x, s) = sup
τ∈S′

Ex,s
[
1l{τ<∞}e

−qτ (g − f̄)(Xτ , Sτ )
]
.(3.2)

As a first step, we consider the case X0 = S0. By using the stopping times Tm = inf{t ≥ 0 : Xt > m} and the
strong Markov property of (X,S), when τ(l) ∈ S ′ and S0 = X0 = s, the first term of the expectation in (3.2) can
be written as follows:

Es,s
[
1l{τ(l)<∞}e

−qτ(l)(g − f̄)(Xτ(l), Sτ(l))
]

(3.3)

=

∫ ∞
s

Es,s
[
1l{τ(l)<∞,Sτ(l)∈dm}e

−qτ(l)(g − f̄)(Xτ(l), Sτ(l))
]

=

∫ ∞
s

Es,s
[
1l{Tm≤τ(l)}e

−qTmEm,m
[
e−qτl(m)(g − f̄)(Xτl(m)

, Sτl(m)
)1l{Sτl(m)

∈dm}

]]
=

∫ ∞
s

Es,s
[
1l{Sτ(l)≥m}e

−qTm
] (

(g − f̄)(m− l(m),m)

×Em,m
[
e−qτl(m)1l{Yτl(m)−=l(m),Sτl(m)

∈dm}

]
+

∫∫
A

(g − f̄)(m− y + h,m)

× Em,m
[
e−qτl(m)1l{Xτl(m)

−Xτl(m)−∈dh,Sτl(m)
∈dm,Yτl(m)−∈dy}

])
,

where

A = {(y, h) ∈ R2; y − h ∈ [l(m),∞), h < 0, y ∈ [0, l(m)]}.

Now we examine each term on the right-hand side of the last (third) equality of (3.3). First, since X is a
spectrally negative process and S is its running maximum process, by (3.1) we have, for m ≥ s,

Es,s
[
1l{Sτ(l)≥m}e

−qTm
]

= Ẽs,s
[
e−(m−s)Φ(q)1l{Sτ(l)≥m}

]
(3.4)

= e−(m−s)Φ(q)P̃s,s(Sτ(l) ≥ m)

= exp

(
−
∫ m

s

(
W ′Φ(q)(l(u)+)

WΦ(q)(l(u))
+ Φ(q)

)
du

)

= exp

(
−
∫ m

s

W
(q)′

+ (l(u))

W (q)(l(u))
du

)
.

Next, from Theorems 1 and 2 in Pistorius [24], we have

Em,m
[
e−qτl(m)1l{Xτl(m)

−Xτl(m)−∈dh,Sτl(m)
∈dm,Yτl(m)−∈dy}

]
= 1l{y−h>l(m)}Π(dh)

(
W

(q)′

+ (y)−
W

(q)′

+ (l(m))

W (q)(l(m))
W (q)(y)

)
dydm,
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and

Em,m
[
e−qτl(m)1l{Yτl(m)−=l(m),Sτl(m)

∈dm}

]
=
σ2

2

(
W

(q)′

+ (l(m))2

W (q)(l(m))
−W (q)′′

+ (l(m))

)
dm.

Putting together, if τ(l) ∈ S ′, (3.3) becomes

Es,s
[
1l{τ(l)<∞}e

−qτ(l)(g − f̄)(Xτ(l), Sτ(l))
]

=

∫ ∞
s

Es,s
[
1l{τ(l)<∞,Sτ(l)∈dm}e

−qτ(l)(g − f̄)(Xτ(l), Sτ(l))
]

=

∫ ∞
s

exp

(
−
∫ m

s

W
(q)′

+ (l(u))

W (q)(l(u))
du

)(
σ2

2

(
W

(q)′

+ (l(m))2

W (q)(l(m))
−W (q)′′

+ (l(m))

)

× (g − f̄)(m− l(m),m) +

∫ l(m)

0
dy

∫ y−l(m)

−∞
Π(dh)(g − f̄)(m− y + h,m)

×

(
W

(q)′

+ (y)−
W

(q)′

+ (l(m))

W (q)(l(m))
W (q)(y)

))
dm.

Hence we have, up to this point, proved the following:

Proposition 3.1. When X0 = S0 = s, the function U can be represented by

(3.5) U(s, s) = sup
l

∫ ∞
s

exp

(
−
∫ m

s

W
(q)′

+ (l(u))

W (q)(l(u))
du

)
Ψm(l(m))dm

where Ψm(z) : (0,∞) 7→ R is defined by

Ψm(z) :=
σ2

2

(
W

(q)′

+ (z)2

W (q)(z)
−W (q)′′

+ (z)

)
(g − f̄)(m− z,m)(3.6)

+

∫ z

0
dy

∫ y−z

−∞
Π(dh)(g − f̄)(m− y + h,m)

(
W

(q)′

+ (y)−
W

(q)′

+ (z)

W (q)(z)
W (q)(y)

)
,

provided that the integral is finite.

Recall that l(s) denotes the height of the excursion Y = S −X when S = s. The representation in Proposition
3.1 applies to general cases.

4. COMPUTING U(s, s)

We examine how to compute U(s, s). In solving an optimal stopping problem involving S and X , one of the
aims is to draw a diagram like Figure 1. Note that we draw the diagram with s on the horizontal axis since it is
better understood than otherwise. For distinct points in the (s, x)-diagram, we need to determine whether a point
in R2 is in the continuation region (C) or stopping region (Γ). The task in this section1 is to compute the value
U(s, s) at a point (s, s) on the diagonal and to determine whether it belongs to C or Γ.

As stressed before, once we fix S = s, the problem reduces to one-dimensional problems in X and hence the
way to find U(s, s) for a fixed s is similar to the one described in Section 2.1. Let us denote by Σs ⊆ R (resp.

1Once this is done, then the next task is to examine the points (s, x) by moving downwards to x = 0 from the diagonal
x = s. We take this in Section 5.
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Cs) the stopping region (resp. continuation region) with respect to the reward (g − f̄)(Xτ , s) with s fixed. That is,
continuation and stopping region for the problem, supτ∈S′ Ex,s[e−qτ (g − f̄)(Xτ , s)].

Note that this Σs (resp. Cs) should be distinguished from the stopping region Γ ⊆ R2 (resp. C) of the problem
(2.1), the final object to figure out. Due to the dependence of the reward on s, there are certain situations which we
need to be careful about. To discuss further, we shall hereafter assume the following:

Assumption 2. Denote by x∗(s) the threshold point that separates Cs and Γs with respect to the problem

sup
τ∈S′

Ex,s[e−qτ (g − f̄)(Xτ , s)]

associated with this s.

(i) (g − f̄)(x, s) is increasing in s, and
(ii) the continuation region Cs corresponding to (g − f̄)(Xτ , s) is in the form of As := (−∞, x∗(s)] or

Bs := [x∗(s),∞).

The first assumption is merely to restrict our problems to practical ones because we are solving maximization
problems. The second is to make our argument concrete and simplistic. More complicated structure can be handled
by some combinations of the cases prescribed below.

4.1. Case (1-L): s ∈ Σs. If s ∈ Σs for the problem supτ∈S′ Ex,s[e−qτ (g − f̄)(Xτ , s)], we need to consider the
possibility that a greater value can be obtained, instead of stopping immediately, if one stopsX during an excursion
from some upper level s′ > s. This value is represented as U(s, s) in Proposition 3.1. Once U(s, s) is obtained,
we can compute, for this s,

U(x, s) = sup
τ∈S′

Ex,s
[
1l{τ<Ts}e

−qτ (g − f̄)(Xτ , s) + 1l{Ts<τ}e
−qTsU(Xs, s)

]
,(4.1)

which is the equation with V replaced by U in (2.8) since we are looking to τ ∈ S ′. This part shall be treated in
the next section. In this section, we shall compute U(s, s) for s ∈ Σs.

Proposition 4.1. Let s be fixed in R. Under q ≥ 0 and σ > 0 instead of Assumption 1, suppose further that (1)
Ψs : R+ 7→ R is continuous and (2) the net reward function (g− f̄)(x, s) is nondecreasing in the second argument.
Then we have

(4.2) U(s, s) =
Ψs(l

∗(s))W (q)(l∗(s))

W
(q)′

+ (l∗(s))−W (q)(l∗(s))
,

and l∗(s) is the maximizer of the map z 7→ Ψs(z)W (q)(z)

W
(q)′
+ (z)−W (q)(z)

on [0,∞).
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Proof. From the equation (3.1), we have for any ε > 0,

U(s, s) = sup
l

[
exp

(
−
∫ s+ε

s

W
(q)′

+ (l(u))

W (q)(l(u))
du

)

×
∫ ∞
s+ε

exp

(
−
∫ m

s+ε

W
(q)′

+ (l(u))

W (q)(l(u))
du

)
Ψm(l(m))dm

+

∫ s+ε

s
exp

(
−
∫ m

s

W
(q)′

+ (l(u))

W (q)(l(u))
du

)
Ψm(l(m))dm

]

= sup
l

[
exp

(
−
∫ s+ε

s

W
(q)′

+ (l(u))

W (q)(l(u))
du

)
U0(s+ ε, s+ ε)

+

∫ s+ε

s
exp

(
−
∫ m

s

W
(q)′

+ (l(u))

W (q)(l(u))
du

)
Ψm(l(m))dm

]
This expression motivates us to set Uε : R 7→ R as

Uε(s) := sup
l(s)

[
exp

(
−
εW

(q)′

+ (l(s))

W (q)(l(s))

)
U(s+ ε, s+ ε) + εΨs(l(s))

]
.(4.3)

Then we have limε↓0 Uε(s) = U(s, s). Since limε↓0 U(s+ ε, s+ ε) = U(s, s), the optimal threshold l∗(s) should
satisfy

lim
ε↓0

Uε(s) = lim
ε↓0

[
exp

(
−
εW

(q)′

+ (l∗(s))

W (q)(l∗(s))

)
U(s+ ε, s+ ε) + εΨs(l

∗(s))

]
.

For taking limits of ε ↓ 0, we need the following lemma whose proof is postponed to Appendix B:

Lemma 4.1. Under the assumptions of Proposition 4.1, we have Uε(s) = 1
1+εU(s+ ε, s+ ε) for ε > 0 sufficiently

small.

Suppose that we have proved the lemma. From (4.3) with Lemma 4.1, we obtain

U(s, s) = lim
ε↓0

Uε(s)− exp

(
− εW

(q)′
+ (l∗(s))

W (q)(l∗(s))

)
U (s+ ε, s+ ε)

1− (1 + ε) exp

(
− εW

(q)′
+ (l∗(s))

W (q)(l∗(s))

)
= lim

ε↓0

εΨs(l
∗(s))

1− (1 + ε) exp

(
− εW

(q)′
+ (l∗(s))

W (q)(l∗(s))

) =
Ψs(l

∗(s))W (q)(l∗(s))

W
(q)′

+ (l∗(s))−W (q)(l∗(s))

where the last equality is obtained by L’Hôpital’s rule. Finally, by using (2.12) and (3.6)

lim
z↓0

Ψs(z)W
(q)(z)

W
(q)′

+ (z)−W (q)(z)
= (g − f̄)(s, s)

which is desired and hence l∗(s) is the value which gives supremum to Ψs(z)W (q)(z)

W
(q)′
+ (z)−W (q)(z)

on [0,∞). �
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Remark 4.1. (i) If q > 0, a sufficient condition for the continuity of Ψs is the continuity of f and g. This is a
consequence of the continuity of x 7→ Ex,s[f(Xt, St)] for all t ≥ 0 and s ∈ R+, W (q) ∈ C2 and

(4.4) |f̄(x, s)− f̄(y, s)| ≤ q−1|f(x, s)− f(y, s)|

for all x, y ∈ R. If q = 0, sufficient conditions for the continuity of Ψs are more restrictive, for example, the
boundedness of f .
(ii) Ψs(z)W (q)(z)

W
(q)′
+ (z)−W (q)(z)

is the value for the strategy l with l(s) = z and l = l∗ for every m > s; that is, this amount is

obtained if we stop when X goes below s− z in the excursion at level S = s and, if not, use optimal strategy for
the higher levels S > s. �

4.2. Case (2-L): s ∈ As := [x∗(s),∞). As is defined in Assumption 2. In this case, similar to (1-L), a positive
l∗(s) may lead to improvement of the value of U(s, s), so that we use Proposition 4.1.

4.3. Case (3-L): s ∈ Bs := (−∞, x∗(s)]. Bs is defined in Assumption 2. For this case, the typical situation is
that x∗(s) is monotonically decreasing in s. See Figure 1. The curve separating the region Γ and C2 corresponds
to the function x∗(s). Then define the point ŝ such that

(4.5) s = x∗(s)

holds.

Proposition 4.2. In Case (3-L) with (4.5), the value function U(s, s) is represented by

U(s, s) = e−Φ(q)(ŝ−s)(g − f̄)(ŝ, ŝ)(4.6)

for s ≤ ŝ.

Proof. Recall that there are no upward jumps. Hence one receives (g− f̄)(x∗(ŝ), ŝ) = (g− f̄)(ŝ, ŝ) when stopping
there. Recall also that from (3.4) we have

Es,s
[
1l{Sτ(l)≥ŝ}e

−qTŝ
]

= exp

(
−
∫ ŝ

s

W
(q)′

+ (l(u))

W (q)(l(u))
du

)
.

Since we are not stopping until s = ŝ in this case, the excursion characteristic measure ν is obtained by letting

l→∞. Then we have liml→∞
W

(q)′
+ (l(u))

W (q)(l(u))
= Φ(q) for all u due to (2.13). Combing these facts, we have (4.6). �
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FIGURE 1. The solution (s, x)-diagram in a schematic presentation.

5. GENERAL SOLUTION U(x, s)

Finally, let us consider the case of S0 > X0. Given U(s, s), we shall find the general solution for

U(x, s) = sup
τ∈S′

Ex,s[e−qτ (g − f̄)(Xτ , Sτ )], x ≤ s.

While it is next to impossible to exhaust all the patterns of diagrams like this, it should be instructive to consider a
case like Figure 1 since it seems typical for optimal stopping with (g − f̄)(x, s) that satisfies Assumption 2 and it
contains a variety of situations (see (A)∼ (C) below) that may occur in real problems. As we mentioned in Section
2.1, this is a problem only about X . But conventionally, one needs to apply conventional solution methods as cited
in Section 1 and to use a guesswork about the form of candidate value functions in the continuation region. In
contrast, we use the excursion approach to find explicit forms:

(A) Let us study the region s > s̄ in Figure 1. This corresponds to what we examined in Case (1-L) for finding
U(s, s) for s in this region. More precisely, (−∞, s] = Γ ∪C1 with Γ = (−∞, s− l∗(s)] and C1 = (s− l∗(s), s]
being stopping and continuation region, respectively. The curve separating C1 and Γ is the trace of the points l∗(s).
By (2.8), Ū(x, s) can be represented in terms of Ū(s, s) as follows:

Ū(x, s) = f̄(x, s) + sup
τ∈S′

Ex,s
[
1l{Ts<τ}e

−qTs(Ū − f̄)(s, s) + 1l{τ<Ts}e
−qτ (g − f̄)(Xτ , s)

]
.(5.1)

Note that (Ū − f̄) = U and hence this equation is the same as (4.1). Set τ = τ(l). Then, from (2.12), the first term
in (5.1) can be written by

(5.2) Ex,s
[
1l{Ts<τ}e

−qTs(Ū − f̄)(s, s)
]

=
W (q)(l(s) + x− s)

W (q)(l(s))
(Ū − f̄)(s, s).
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For the second term, For x ∈ [s− l(s), s], by splitting into two cases and using Theorem 1 and 2 in Pistorius [24]
one more time,

Ex,s
[
1l{τ<Ts}e

−qτ (g − f̄)(Xτ , s)
]

(5.3)

= Ex,s
[
e−qτl(s)1l{Yτl(s)−=l(s),Sτl(s)=s}

]
(g − f̄)(s− l(s), s)

+

∫∫
A

(g − f̄)(s− y + h, s)Ex,s
[
e−qτl(s)1l{Xτl(s)−Xτl(s)−∈dh,Sτl(s)=s,Yτl(s)−∈dy}

]
=
σ2

2

(
W

(q)′

+ (l(s) + x− s)−
W

(q)′

+ (l(s))

W (q)(l(s))
W (q)(l(s) + x− s)

)

× (g − f̄)(s− l(s), s) +

∫ l(s)

0
dy

∫ y−l(s)

y−b
Π(dh)(g − f̄)(s− y + h, s)

×

(
W (q)(l(s) + x− s)

W (q)(l(s))
W (q)(y)−W (q)(y + x− s)1l{y>s−x}

)
.

where A is defined in (3.3). Now we can write down Ū(x, s). First, for the stopping regions, it becomes from (5.1)

(5.4a) Ū(x, s) = g(x, s), x ∈ (−∞, s− l∗(s)]

Next, for the continuation region, by combining these terms (5.2) and (5.3), and denoting the optimal deviation
from a given level s by l∗(s), we can write Ū(x, s) for x ∈ (s− l∗(s), s],

Ū(x, s) = f̄(x, s) +
W (q)(l∗(s) + x− s)

W (q)(l∗(s))
(Ū − f̄)(s, s)(5.4b)

+
σ2

2
(g − f̄)(s− l∗(s), s)

×

(
W

(q)′

+ (l∗(s) + x− s)−
W

(q)′

+ (l∗(s))

W (q)(l∗(s))
W (q)(l∗(s) + x− s)

)

+

∫ l∗(s)

0
dy

∫ y−l∗(s)

−∞
Π(dh)(g − f̄)(s− y + h, s)

×

(
W (q)(l∗(s) + x− s)

W (q)(l∗(s))
W (q)(y)−W (q)(y + x− s)1l{y>s−x}

)
.

Note that Ū − f̄ = U and U(s, s) is given by (4.2) and that l∗(s) + x− s > 0 for x ∈ (s− l∗(s), s].

(B) For the region s ∈ [ŝ, s), we have again s ∈ Σs (Case 1-L) but when applying Proposition 4.1 at this s, it turns
out that U(s, s) = (g− f̄)(s, s) with l∗(s) = 0. That is, the maximum of (4.2) is attained by l∗(s) = 0. Hence the
structure of stopping rule is that C2 ∪ Γ = (−∞, x∗(s)] ∪ [x∗(s), s] (see Figure 1). The curve separating C2 and
Γ is the trace of points x∗(s). Then the task is to find the value x∗(s) for

U(x, s) = sup
τ∈S′

Ex,s[e−qτ (g − f̄)(Xτ , Sτ )] = sup
x(s)∈(−∞,s]

Ex,s[e−qTx(s)(g − f̄)(x(s), s)], x ≤ s



14 M. EGAMI AND T. ORYU

because X has no upward jumps. It is well known (and can be also derived by the argument in Section 4.3) that

Ex,s[e−qTx(s)(g − f̄)(x(s), s)] = e−Φ(q)(x(s)−x)(g − f̄)(x(s), s).

Then the value function in the continuation region can be found by finding x∗(s) that maximizes this quantity. In
summary,

U(x, s) =

e−Φ(q)(x∗(s)−x)(g − f̄)(x∗(s), s), x ∈ (−∞, x∗(s)],

(g − f̄)(x, s), x ∈ [x∗(s), s].

(C) Finally, let us proceed to the region (−∞, ŝ]. This is what we study in Case (3-L). If x∗(s) is monotonically
decreasing in s as in Figure 1, we have

U(x, s) = e−Φ(q)(ŝ−x)(g − f̄)(ŝ, ŝ), x ∈ (−∞, s]

by the argument that derives Proposition 4.2. In this range of s, there is no stopping region.

6. LOOKBACK OPTION IN A JUMP MODEL

To further illustrate the method we have presented in a concrete example, we study the lookback option with
exponential jumps. In (2.1), the data are

f(x, s) ≡ 0, g(x, s) = es − kex, k ∈ [0, 1]

with the process

Xt = x+ µt+ σBt +

N(t)∑
i=1

ξi,

where B is a standard Brownian motion, N is a Poisson process with intensity θ, and ξi (i = 1, 2, . . .) are
independent identically distributed random variables whose distributions are exponential with parameter η under
P. The Laplace exponent ψ of X is ψ(γ) = µγ + σ2γ2

2 − θγ
η+γ and ψ(γ) = q has three solutions Φ(q) > 0,

−γ1 < 0, and −γ2 < 0 (with −γ2 < −η < −γ1 < 0) and q-scale function W (q) of X is represented with these
values;

W (q)(x) =
eΦ(q)x

ψ′(Φ(q))
+

e−γ1x

ψ′(−γ1)
+

e−γ2x

ψ′(−γ2)
.

Example 6.1 (Classical Lookback Option). Note that if we put θ = 0, then X is a Brownian motion with drift and
ψ(γ) = q has only two solutions (Φ(q) and one negative solution). Before we move on, it shall be beneficial to
take up the case with no jumps, which is the classical lookback option in [25]. We shall confirm that Proposition
4.1 provides the same solution in the literature. The process is X = µt+ σBt. From Proposition 4.1, U(s, s) can
be computed as follows: First, W (q)(x) = eα2x−eα1x√

µ2+2σ2q
where α1 and α2 are a negative and a positive solution of

µα + 1
2σ

2α2 = q, respectively. Since we assume that there are no jumps, Ψm(s) reduces to only the first term
of (3.6). It can be confirmed by a simple computation that (4.2) provides an optimal excursion height l∗(s) and
U(s, s). See Figure 2-(a) for a numerical example. Ū(x, s) = U(x, s) is then computed. See the literature (e.g.
Section 3.2.1 in [12]). The optimal strategy, for given s, the stopping region is (−∞, s− l∗] and the continuation
region is (s− l∗, s]. �
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(a) Plain Lookback Option
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(b) With Negative Jumps

FIGURE 2. Lookback Options: (a) The original problem is written in terms of geometric Brownian motion dXt =

νXtdt+σXtdBt and g(x′, s′) = s′−kx′, i.e., s′ = es and x′ = ex. With the parameter set (ν, σ, q, k) = (0.05, 0.25, 0.15, 0.5)

and at s′ = 5, the solution is β = 0.701636 such that l∗(s′) = (1− β)s′. In terms of Browinian motion, it is g(x, s) = es − kex

and dXt = µdt+ σdBt where µ = ν − 1
2
σ2. When s = log 5, our solution is provided at l∗(s) = l∗ = 0.35434 that maximizes

(4.2). See the graph. This has the relationship β = e−l
∗

as desired. The value of U(s, s) is 3.58648 which is the same as the one in
the original problem. (b) With θ = 1.5 and η = 1, the optimal deviation l∗(s) = 1.2497 and the value U(s, s) = 3.1822 both

decrease.

Now we resume the case with exponential jumps. The first step corresponds to the analysis in Section 4.
We compute U(s, s) by Proposition 4.1. We set θ = 1.5 and η = 1. In Figure 2-(b), we plot the map z 7→

Ψs(z)W (q)(z)

W
(q)′
+ (z)−W (q)(z)

(see (4.2)) and observe that the maximizer is l∗(s) = 1.2497, independent of s. The value

Ψs(z)W (q)(z)

W
(q)′
+ (z)−W (q)(z)

seems relatively unaffected by the levels of l(s). A possible explanation is as follows: the mean

jump size 1
η is 1 in this example, much larger than the drift µ. Hence no matter where l(s) is set, it should be jumps

that may bring the process into the stopping region. This fact may lead to the flat curve in Figure 2-(b).
For the next step, we refer to Section 5. With the information of l∗(s) and the corresponding U(s, s) = 3.1822,

we solve the resultant one-dimensional optimal stopping

Ū(x, s) = U(x, s) = sup
τ∈S′

Ex,s[1l{τ<Ts}e
−qτ (s− kXτ ) + 1l{Ts<τ}e

−qTsU(s, s)].

Analogous to the plain lookback option case in Example 6.1, optimal strategy is in the form of Γ = (−∞, s− l∗]
and C = (s− l∗, s]. Hence the case (A) in Section 5 applies and thereby use (5.4b) to compute U(x, s), the value
function whose stopping time is in the set of S ′. Figure 3 shows the two graphs of U(x, s) for s = log 5. The blue
curve shows the value function without jumps. The solid line is for the continuation region and the dashed line is
for the stopping region. Similarly, the red curve is the value function with jumps. While the smooth-fit principle
works at s− l∗(s) = 1.2551 without jumps, it does not at s− l∗(s) = 0.3597 when there are jumps. We see that
the two value functions coincide on [0, 0.3597]. Finally, note that the optimal threshold excursion level l∗(s) in
fact does not depend on s. This is reasonable considering the form of the reward function and is the same structure
as the classical problem. Hence the (s, x)-diagram has, for all s ≥ 0, the shape in the region explained in (A) of



16 M. EGAMI AND T. ORYU

0.0 0.5 1.0 1.5
x0

1

2

3

4

5

FIGURE 3. comparison of two cases: Lookback Options U(x, s) on the continuation region: No jumps (Blue)
and with jumps (Red) with θ = 1.5 and η = 1. In the respective stopping regions, the curves are dashed. In the jump case,
s − l∗(s) = log(5) − 1.2497 = 0.3597 and at that point the smooth-fit principle does not work, while in the classical case, the
smooth-fit works at s− l∗(s) = 1.2551. The two value functions coincide on [0, 0.3597].

Section 5. Specifically, we conclude

U(x, s) =



W (q)(l∗+x−s)
W (q)(l∗)

U(s, s) + σ2

2 g(s− l∗, s)×
(
W

(q)′

+ (l∗ + x− s)− W
(q)′
+ (l∗)

W (q)(l∗)
W (q)(l∗ + x− s)

)
+
∫ l∗

0 dy
∫ y−l∗
−∞ Π(dh)g(s− y + h, s)

×
(
W (q)(l∗+x−s)
W (q)(l∗)

W (q)(y)−W (q)(y + x− s)1l{y>s−x}
)
, x ∈ (s− l∗, s],

es − kex, x ∈ (−∞, s− l∗],

where the value in the continuation region is thanks to (5.4b).

APPENDIX A. PROOF OF LEMMA 2.1

Proof. First we prove w(x) ≥ V̂ (x, s) for every x ∈ R+. The Itô’s rule (see e.g. Cont and Tankov[10] page 277)
gives us

e−q(t∧Ts)w(Xt∧Ts)

= w(X0)−
∫ t∧Ts

0
qe−quw(Xu)du

+ µ

∫ t∧Ts

0
e−quw′(Xu)du+ σ

∫ t∧Ts

0
e−quw′(Xu)dBu

+
σ2

2

∫ t∧Ts

0
e−quw′′(Xu)du

+

∫ t∧Ts

0

∫ ∞
0

duΠ(dy)e−qu[w(Xu + y)− w(Xs−)− yw′(Xs−)1l{−1<y}]

+

∫ t∧Ts

0

∫ ∞
0

(M(du,dy)− duΠ(dy))e−qu[w(Xu + y)− w(Xu−)]
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where we denote by M the Poisson random measure associated with X . By collecting terms, we have

= w(X0)−
∫ t∧Ts

0
qe−quw(Xu)du,

+

∫ t∧Ts

0
e−quw′(Xu)du+ σ

∫ t∧Ts

0
e−quw′(Xu)dBu

+

∫ t∧Ts

0
e−qu(Aw(Xu)− qw(Xu))du

+

∫ t∧Ts

0

∫ ∞
0

(M(du,dy)− duΠ(dy))e−qu[w(Xu + y)− w(Xu−)].

Since the process {Xt∧Ts : t ≥ 0} does not leave the interval [s− b, s], the integrals with respect to the Brownian
motion B and the compensated jump measure (i.e., the last term) are martingales. Therefore, by taking expecta-
tions, we have

(A.1) w(x) = Ex,s
[
e−q(t∧Ts)w(Xt∧Ts)

]
− Ex,s

[∫ t∧Ts

0
e−qu(Aw(Xu)− qw(Xu))du

]
.

By the assumption

Aw(x)− qw(x) ≤ 0, x ∈ (−∞, s],

we have

w(x) ≥ Ex,s
[
e−q(τ∧Ts)w(Xτ∧Ts)

]
, x ∈ (−∞, s], τ ∈ S.(A.2)

Now, for any stopping time τ ∈ S, by using (i)-(iv),

w(x) ≥ Ex,s
[
e−q(τ∧Ts)w(Xτ∧Ts)

]
(A.3)

≥ Ex,s
[
1l{τ<Ts}e

−qτ (g − f̄)(Xτ , s) + 1l{Ts<τ}e
−qTsK

]
.

Taking the supremum over the set S, we have w(x) ≥ V̂ (x, s)

On the other hand, if we substitute τ∗ = inf{t ≥ 0;Xt < z∗} for τ in (A.1)-(A.3), then all the inequalities are
satisfied as equalities thanks to the assumptions (i)-(iii). Therefore, w(x) = V̂ (x, s) for every x ≤ s. �

APPENDIX B. PROOF OF LEMMA 4.1

Lemma 4.1 is the following claim: Under the assumptions of Proposition 4.1, we have Uε(s) = 1
1+εU(s+ ε, s+ ε)

for ε > 0 sufficiently small.

Proof. In view of (3.4) and (3.6), the probabilistic meaning of (4.3) is that Uε(s) is attained when one chooses the
excursion height l(s) optimally in the following optimal stopping:

(B.1) Uε(s) = sup
lD(s)

Es,s[e−qTs+ε1l{Ts+ε≤T−s−l(s)}U(s+ ε, s+ ε) + e
−qT−

s−l(s)1l{T−
s−l(s)<Ts+ε}

(g − f̄)(s− l(s), s)],

that is, if the excursion from s does not reach the level of l(s) beforeX reaches s+ε, one shall receiveU(s+ε, s+ε)

and otherwise, one shall receive the reward. Note that without loss of generality, we have set k(x, s) ≡ 0. Since
(g − f̄)(x, s) is assumed to be nondecreasing in s, (B.1) implies that Uε(s) ≤ U(s+ ε, s+ ε). As ε ↓ 0, it is clear



18 M. EGAMI AND T. ORYU

that U(s + ε, s + ε) ↓ U(s, s) and Uε(s) ↓ U(s, s). Let us set α(ε) := 1
1+ε ∈ (0, 1) for ε > 0. Suppose, for a

contradiction, that we have

(B.2) α(ε) · U(s+ ε, s+ ε) < Uε(s) < U(s+ ε, s+ ε),

for all ε > 0. While the second inequality always hold, the first inequality leads to a contradiction to the fact
that the function ε 7→ (1 − α(ε))U(s + ε, s + ε) is continuous for all s. Indeed, due to the monotonicity of
α(ε) ·U(s+ ε, s+ ε) in ε, we would have Uε(s) > U(s, s) > α(ε) ·U(s+ ε, s+ ε) for all ε > 0. Hence one cannot
make the distance between U(s+ ε, s+ ε) and α(ε) ·U(s+ ε, s+ ε) arbitrarily small without violating (B.2). This
shows that there exists an ε′ = ε′(s) such that ε < ε′ implies that Uε(s) ≤ α(ε) · U(s+ ε, s+ ε).

For the converse direction, in (B.1), one could choose a stopping time that visits the left boundary −∞, then by
reading (3.4) with l(u) = +∞ and m = s+ ε, (B.1) becomes

Uε(s) ≥ lim
a↑∞

exp

(
−
∫ s+ε

s

W
(q)′

+ (a)

W (q)(a)
du

)
U(s+ ε, s+ ε) = e−εΦ(q)U(s+ ε, s+ ε)

for any ε > 0. The equal sign is due to (2.13). Now suppose that there were no ε’s such that Uε(s) ≥ U(s+ε, s+ε).
It follows that for any ε, we would have

Uε(s) > e−εΦ(q)U(s+ ε, s+ ε) > e−εΦ(q)Uε(s).

Then by letting ε ↓ 0, it would be U(s, s) > U(s, s) for all s ∈ I, which is absurd. Since the convergence of
e−εΦ(q) ↑ 1 is monotone in ε, there exists an ε′′ = ε′′(s) > 0 such that ε < ε′′ implies that Uε(s) ≥ U(s+ ε, s+ ε).
Hence for any s, we have Uε(s) ≥ α(ε)U(s+ ε, s+ ε) for ε < ε′′. This completes the proof of Lemma 4.1. �
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