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Abstract

This paper presents a model for approximating the value of a basket of default-correlated
assets and analyzes subordinate tranches in securitized debt obligations. The model is cal-
ibrated to an intensity-based simulation of correlated defaults and represents an alternative
computation method to full Monte Carlo simulation. Timing of individual obligor defaults
are driven by intensity processes and collateral value is modeled with a jump-diffusion pro-
cess where the number of jumps corresponds to the total number of defaultsin the asset
pool. This approach allows decomposition of subordinate obligations in terms of a collec-
tion of simpler securities and yields useful risk management information.
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1 Introduction

This article presents a method for valuation and analysis ofsubordinate tranches of
structured securities backed by a pool of defaultable claims. To demonstrate ideas,
we focus on collateralized debt obligations (CDOs) which account for a growing
share of all asset-backed securities issued. A CDO is a derivative security on a port-
folio of bonds, loans, or other credit risky claims. Cash flowsfrom the collateral
portfolio are divided into tranches of varying quality and yield which are then sold
to investors. Along with other credit correlation products, the CDO has become a
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popular vehicle for investing in and managing credit risk. The asset pool of a CDO
is typically a diversified portfolio of debt collateral thatmay include commercial
and real-estate loans, sovereign and corporate bonds, and other asset backed se-
curities. These products are offered in response to interest by insurers, banks, and
fund managers who wish to efficiently redistribute, transfer, or speculate on risk.
For example, banks issue CDOs to reduce credit exposure and, accordingly, regula-
tory capital while investors with varying constraints and levels of risk aversion gain
access to an asset pool that would not be available otherwise.

The credit correlation market has grown significantly sinceits beginnings in the
late 1980s. Below $5 billion prior to mid-1990s, by 2000 the annual global CDO
issuance grew to nearly $100 billion (Flanagan and Sam, 2002). According to a
recent survey, correlation products accounted for about a quarter of the market for
credit derivatives in 2002, which itself increased by 50% from the previous year
to over $2 trillion in notional outstanding value (Patel, 2003). The market demand
for CDOs depends on a set of structural trade-offs that determine how the pro-
ceeds from the collateral pool are directed into several debt and equity tranches
organized by their relative seniority. Default correlation makes evaluation of sub-
ordinated products a challenging and computationally intensive exercise. Our aim
in this article is to describe a method for efficient valuation and analysis of such
securities that offers reduced computational burden but retains the essence of the
correlation structure.

Issuers of CDOs face the challenge of matching investor requirements while mini-
mizing funding costs for tranches. The issuer or sponsor often sells the portfolio of
debt to a special purpose vehicle (SPV) and takes an equity interest. The SPV uses
these debt obligations as its asset pool to issue liabilities in the form of prioritized
multi-layer tranches. In a traditional SPV, senior, mezzanine, and subordinate notes
are offered along with equity shares. Senior notes appeal torelatively risk averse
investors and are paid before mezzanine and lower-subordinated notes, but after
management, transaction, and hedging costs are subtracted. Any remaining cash
flows go to equity holders. In this paper, we propose a model toapproximate the
value of collateralized structures by starting with the most subordinate tranche and
working our way to the most senior liability piece.

The potential for arbitrage as a result of mispricing is a keypractical consideration
in constructing debt structures (Goodman and Fabozzi, 2002, see). In most appli-
cations, simplifying assumptions allow a quick and rough comparison of the yield
offered on a particular tranche with other market opportunities. For example, the
rate of return on the equity tranche can be estimated by considering a static port-
folio composition and by benchmarking to market rates whileadjusting for a fixed
annual default rate and recovery. However, due to the great flexibility in configur-
ing deals (subordination structure, quality of collateraland trigger tests, leverage,
asset diversity, and delayed cash flow draw features to name afew), a much more
detailed analysis is required to structure these securities. For example, increasing
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the amount of investment grade debt in the collateral pool reduces the need for
credit enhancement and requires a smaller equity share; equity capital can be also
lowered by increasing diversity in the collateral pool. Equity can account for two
to fifteen percent of a typical CDO’s capitalization depending on credit quality and
asset diversity.

1.1 Modeling default correlation

A straightforward method for building default correlationis to modify or com-
bine single-name default models in a way that allows dependency among entities.
Single-name default models provide the marginal default probability distributions
that are combined to get a joint default probability distribution. This process con-
tains two key steps: first, selecting or developing a suitable model for single-name
default; second, specifying an appropriate structure of dependence that binds to-
gether the marginal distributions. Of course, the final result should be consistent
with market signals and, ideally, would be efficient and easyto calibrate and imple-
ment.

Approximations can be made at each modeling stage to improveefficiency and ease
of use. While simpler models offer the benefit of quick analysis, they often rely on
coarse assumptions about the correlation structure of collateral assets. Although
more efficient in getting order-of-magnitude values, this limits their usefulness in
design, valuation, and dynamic risk management. More complex models, those
with better ability to capture default correlations, tend to be computationally inten-
sive and less transparent. Here, we provide a brief (and by nomeans exhaustive)
review of default correlation pricing models.1

In thestructuralstrand of models, pioneered by Merton (1974), default is triggered
when a firm’s asset value falls below a threshold level. Zhou (2001) proposes a
model of joint default in this vein where asset values of two firms are correlated.
Overall, parameter estimation can be challenging in these models and they have
had mixed success in matching the range of observed term structures of default
probabilities needed for pricing credit derivatives.

In response to empirical problems of traditional structural models in reconciling
firm value with market rates, a related line of research abstracts from firm value
and, instead, focuses on a continuous-time measure of credit quality. Default occurs
when credit quality deteriorates to a certain threshold level. Thesethresholdmodels
are more versatile and have had greater success in matching implied default proba-
bilities observed from credit spreads or bond prices (see,e.g., Avellaneda and Zhu,
2001; Esteghamat, 2003). Hull and White (2001) introduce a discrete-time version

1 Many models quantify loss over a fixed horizon to focusing on risk measurement rather
than pricing and dynamic hedging (see Crouhy et al. (2000) for a review).
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of the threshold model with default dependency by considering pairwise correlation
of credit qualities. The default barrier is made time-dependent and is calibrated so
that the model is consistent with market information. Overbeck and Schmidt (2003)
extend this approach to a model that uses time-scaled correlated Brownian motion
to represent uncertainty in credit quality (or firm value). Time scaling is essentially
equivalent to introducing time variation in volatility of the credit quality process
and adds additional freedom in calibrating the model to marginal default probabil-
ity distributions. Working in a continuous-time setting, they obtain a quasi-analytic
expression for pairwise default distribution to mitigate the high computational bur-
den of threshold models with correlated defaults.

A critical feature of default rates, supported by empiricalevidence, is time varia-
tion in correlation and the importance of systemic effects.In a recent study Das
et al. (2001) find significant systematic variation in default rates over time. Default
rates tend to vary with the business cycle, peaking during recessions. These effects
have been incorporated in many credit risk measurement models through intro-
duction of common factor dynamics (examples include Wilson(1997) and Pesaran
et al. (2003)). However, Adelson (2003) points out that, although it is widely recog-
nized that systematic forces can drive default correlations, most popular models do
not capture time-varying credit risk dependencies in structured securities. Adelson
cites, as evidence, the failure of these models to account for linkages among credit
risks that have led to poor performance in the securitization market in recent years
including CDOs and other asset-backed securities. The top three rating agencies,
Standard & Poor, Moody, and Fitch, use models with static default correlation to
evaluate these securities.

Intensity-basedpricing models (e.g., Lando, 1998; Duffie and Singleton, 1999) take
hazard rates of default as a primitive and are, by design, well-suited to match credit
spreads. Intensity models incorporate the systemic features of default correlation
by allowing hazard rates of default to depend on a set of common (e.g., macroe-
conomic) state factors (see, for example, Duffie and Singleton, 1999; Duffie and
Gârleanu, 2001). Giesecke (2003) constructs a joint exponential model of default
intensities along with a common shock intensity component.In these models, inten-
sities are often assumed to be independentconditionalon the state of the economy
or factor values.

It is important to note that the assumption of conditional independence does not
imply defaults are independent. In fact, correlation is orchestrated by time-varying
dynamics of the common factors. For instance, hazard rates of default for firms in
a particular industry sector may all increase in response torecessionary economic
pressures, in turn, increasing the likelihood of default for each firm in the sector.
Other firms may be affected more by oil price shocks. Some studies find, however,
that the range of correlations achieved with intensity-based models may be limited.
There have been three responses to correct this weakness: exploring models of
infectious default; usingcopulafunctions; and reexamining factor specifications in
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intensity models.

In variations of so-called contagion or infectious type models, the assumption of
conditional independence is relaxed and default intensities are made to depend on
default events of other entities (e.g., Davis and Lo, 2001; Jarrow and Yu, 2001; Yu,
2003b). Contagion models fill an important gap but at the cost of analytic tractabil-
ity. They can be especially difficult to implement for large portfolios.

In an alternative approach, Li (2000) and Schönbucher and Schubert (2001) show
how to apply the Gaussian copula to obtain joint default timedistributions for pric-
ing credit correlation securities. A copula is a functionalthat maps marginal dis-
tributions to a joint distribution. Very popular in practice for its simplicity in use,
the Gaussian copula imposes arguably unrealistic time dependency on the correla-
tion structure. In particular, dependency among defaults is high initially and rapidly
and monotonically decays over time for thet-copula family, including the Gaussian
copula. Rogge and Schönbucher (2003) overcome this drawback by considering the
Archimedean class of copulae. The copula approach is relatively straightforward to
implement, it can match a wide range of default dependenciesand, as a result,
it holds obvious appeal to practitioners. This flexibility,however, is accompanied
with loss of economic intuition about structural connections of default and about
choice of copula. Calibration is data intensive and simulations can be very slow,
requiring large numbers of simulations to analyze basket securities. Moreover, the
copula function and its parameters have to be reestimated ascredit events unfold,
whether due to idiosyncratic or systematic causes.

In a recent study Yu (2003a) argues that the problem of low correlations in intensity
models may be due to insufficient specification of common factors and not to an
inherent feature of the approach. Building on empirical results of Duffee (1999)
and Driessen (2005), Yu shows high correlations are possible in a simple two-factor
model of default intensities.

1.2 Computational issues

Models that do well in capturing individualand joint default behavior tend to be
computationally intensive and slow. A quick response time is especially important
in calculating hedge positions and performing sensitivityanalysis in trading en-
vironments. Several studies address this issue. Pykhtin and Dev (2003) derive an
analytical approximation for tranche loss distributions in a homogenous portfolio
of identical loans driven by a single risk factor. Defining default intensities to be
conditionally independent functions of a low dimensional vector of latent factors,
Gregory and Laurent (2003) illustrate the efficiency gains of calculating default
distributions through characteristic functions. Latent factors are endogenously im-
plied and are not connected to macroeconomic variables. Theauthors give single-
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factor examples but point out that extension to multiple factors is uncomplicated
for the case of Gaussian but not Archimedean copulae. Andersen et al. (2003) con-
sider copulae with conditionally independent default times where default intensities
are time-varying but not factor dependent. They obtain computationally advanta-
geous semi-analytic approximations by combining factor reduction techniques on
the Gaussian copula correlation matrix with a recursive scheme (rather than charac-
teristic functions or simulations) for evaluating loss distributions. Hull and White
(2004) choose a multifactor Gaussian andt copulae under the assumption of in-
dependence of default times given the common factors. They employ a recursive
relation to evaluate default probabilities with reduced computational requirements
over simulation methods.

This paper is in the spirit of these studies. We demonstrate asalient way of comput-
ing market prices of subordinate tranches that does not require full simulation anal-
ysis and does not impose oversimplifying assumptions. Our approach is based on
constructing approximate dynamics for the collateral value with a jump-diffusion
process where the diffusion piece reflects gradual changes in portfolio value and the
jump component captures shocks due to asset defaults in the portfolio. This process
is calibrated to a default model driven by a multifactor conditionally independent
vector of intensity processes. Hazard rates of default are linked to state factors,
capturing the effect of common factor dynamics but allowingfaster computations.

Simulations indicate that for a typical pool, the approximation performs well. The
model, of course, would be recalibrated periodically as needed to increase accuracy
and for longer maturities. In addition to fast convergence properties, the method
provides useful information for structural analysis and design of subordinate claims
in correlation derivatives. Based on the approximation scheme, we also present
convenient formulae for tranche values which allow decomposition of subordinated
claims in terms of call options andith-to-default derivatives. These results can be
used by issuers and potential investors to evaluate, to optimize, and to hedge CDO
structures.

2 Setup and assumptions

Assume, in the usual manner, that prices can be determined inan equivalent risk-
neutral no-arbitrage environment and there are no market frictions. In this setting,
we consider a model of collateral default based on the Cox process approach of
Lando (1998) with cross-sectionalconditional independence of default intensities
givenvalues of a set of common factors. It should be emphasized that conditional
independence does not imply independence of defaults. To the contrary, default
intensities are correlated, deriving their dependence from time variation in a set
of common latent or observable state variables which may include, for example,
interest rates, energy prices, GDP, equity market prices, specific industry sector
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factors, and inflation. In other words, correlation of default intensities is ascribed to
a factor model. The choice of observable factors will dependon the mix of collateral
assets in the portfolio. Our assumptions regarding credit events and key features of
collateralized debt obligations are detailed below.

There is a complete probability space(Ω,G, P∗) with an increasing family of right-
continuousσ-algebrasG , {Gt}t≥0 that characterizes uncertainty whereGt rep-
resents all information available at timet. Information arrives from distinct (and
independent) sourcesGt = Ft ∨ H1

t ∨ H2
t ∨ · · · ∨ Hn

t whereF , {Ft}t≥0 and

Hi , {Hi
t}t≥0 are filtrations generated by a Brownian motion and default (count-

ing) processes for entities indexed byi. F is the history of random shocks in the
common (e.g., macroeconomic) state processes;Hi is the default history of entityi.
TheF-Brownian motion is assumed also to be a Brownian motion in the enlarged
filtration G.

For a given default time of obligori, denotedτi, we introduce the associated jump
process1{τi≤t} for t ≥ 0 taking on a value of zero ifτi > t and a value of one
otherwise.P∗ is the risk-neutral spot martingale measure. Knowledge of state factor
history is not sufficient to know whether an entity has defaulted or not. To determine
that, either individual default histories or a larger history are needed. This meansτi

is not necessarily a stopping time with respect toF , although it is always a stopping
time with respect to the largerG.

The portfolio of assets that represents the collateral poolof a CDO consists ofn
different obligors or names. Each obligori in the pool has a random credit event
(e.g., default) intensity ofλi

t of the formλi(Xt) : Rd → R+ whereXt is a state
variable taking values inRd representing an aggregate proxy vector for economic,
financial, and political variables of consequence. The default time of obligori, τi

for i = 1, . . . , n, is governed by theF-hazard processΛi
t =

∫ t
0 λi

s ds. Equivalently,
the probability that a credit event occurs after timet, given no events have occurred
prior to t is P

∗(τi > t | Ft) = e−Λi
t. A default event for obligori corresponds

to the first (and only) jump of its counting process.2 A counting processNt =∑n
i=1 1{τi≤t} keeps track of the total number of default events in the assetportfolio.

Default times are assumed conditionally independent with respect toFt underP∗,
for anys > 0,

P
∗(τ1 > t1, . . . , τn > tn | Fs) = P

∗(τ1 > t1 | Fs) · · · P
∗(τn > tn | Fs).

Default correlation arises from dependence of default intensities on state vectorX.
Other specifications are possible, for example, mapping marginal default distribu-
tions through a copula function to obtain the joint distribution. Intensity of a firm
could be made dependent of the default history of other firms (introducing infec-
tious defaults). These extensions are not considered in this study.

2 This assumption is temporarily suspended in analyzingType 1claims below, where suc-
cessive defaults of one bond are considered.
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2.1 Collateral tests and seniority

Cash flows from a diversified collateral pool are distributed to two broad classes of
investors: equity holders (least subordinate) and note holders (remaining higher pri-
ority classes). Periodically, the note holders receive first dollars as pre-determined
coupons from the cash flows generated by the portfolio. Equity holders receive
dividends as long as note holders receive their share of coupon payments and the
market value of the portfolio passes a certain test, for example, requiring that port-
folio value divided by capitalization be greater than some pre-determined ratio.
At maturity, note holders are entitled to receive principalpayments before equity
holders. Any residual portfolio value is given to equity holders.

The special purpose vehicle that is setup as a part of a collateralized debt obliga-
tion is often equipped with protective clauses to safeguardthe investment of senior
note holders. For example, the value, quality, or diversityof the asset pool may be
periodically measured against benchmark values. A failed test can result in asset
liquidation and dissolution of the SPV. Here, we focus on a collateral market value
test and, for illustration purposes, consider two oppositescenarios.

Type 1 claim(no collateral test): Some structures incorporate a certain flexibility
in dealing with collateral tests. Equity holders can potentially inject additional
capital into the structure; senior note holders may allow a grace period for the
tests to be met; assets may be sold until the test requirements are met. In order to
allow for such contingencies, suppose no matter how the value of the portfolio
fluctuates, the CDO under consideration is not liquidated. All tranche disburse-
ments are collected and distributed at maturity. Pricing under this scenario is
discussed in Section 3.

Type 2 claim(market value structure): To avoid the risk that note holders do not
recover their principal and accrued coupon payments, the contract is terminated,
assets are liquidated, and note holders and equity holders are paid out according
to the designated prioritization as soon as the market valueof the portfolio drops
below a threshold level. The threshold level is the par valueof a debt tranche or
any reference asset value. This more general case is discussed in Section 4.

2.2 Recovery and reinvestment

Carey (2002) shows that average credit loss rates have been significantly higher
in the U.S. during recessions when compared to periods of economic expansion.
Frye (2003) finds that recovery rates and default rates rise together. Moreover, re-
covery rates are more sensitive to changes in the default environment (low versus
high default years; business cycles) than default rates themselves. Despite these
findings, most models focus on default rates and treat loss rates as constant or ex-
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ogenous variables. This may be partly due to the fact that recovery rates are implied
in the corporate bond spreads used to calibrate default probabilities. Moreover, in
intensity-based models, hazard rates can be conveniently modified to incorporate
correlated recovery rates. In particular, if recovery is defined as a fraction of as-
set market value just prior to default, the hazard rate can bereplaced with a “loss
adjusted” hazard rate (see, for example, Duffie and Singleton, 1999).

In this paper, we treat recovery as an independent exogenousvariable. An equiva-
lent interpretation is that recovery is a fraction of marketvalue. When a collateral
asset defaults, a fractioñLi of its market value is lost. We assume, for simplicity,
that L̃i ≡ L̃ is constant over all the assets in the portfolio. The defaulted asset is
sold immediately at(1− L̃) fraction of its pre-default value. Sale proceeds are used
in one of two ways.

Type 1 claim: Post-default proceeds are invested “in kind.” The recovery amount
is used to buy a similar type or class of bond governed by the same default
intensity process as that of the original asset. The newly purchased asset is again
subject to future default. This, in fact, is equivalent to allowing multiple credit
events for a single obligor.

Type 2 claim: The proceeds from sale of defaulted asset are used to increase
shares of the surviving assets in the portfolio or are reinvested in a similar asset.
We do not make any assumptions regarding exactly how the recovery amount is
allocated except that the new portfolio contains a mix of assets not too drastically
different from the original portfolio.

3 Price in the absence of collateral tests

Subordinate tranches of a collateralized obligation resemble call options on more
senior tranches. In this section we confirm that, absent collateral tests, indeed the
most subordinate tranche is a default-adjusted call optionwith collateral assets as
the underlying. Collateral tests introduce additional complexity which we shall ad-
dress in the next section. There, the call option analogy is modified to reflect the
effect of default losses on the senior notes.

Consider a portfolio ofn bonds with default intensitiesλi
t for i = 1, . . . , n. We

apply no threshold tests to portfolio value and allow multiple credit events for each
bond. In reality, the bond either remains in the portfolio oris replaced with another
bond in the same class and of the same credit quality and default propensity as the
original. In either case, the portfolio always consists of the same number of bonds
with the same default intensity as the original portfolio. Therefore, successive credit
events are associated with the same intensity. Thus, then different default intensi-
ties can be combined so that the next credit event occurs at timemin(τ1, τ2, . . . , τn)
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and has intensityλt =
∑n

i=1 λi
t. We postulate the following dynamics for the ag-

gregate portfolio value process (the motivation for this assumption is explained in
Section 4.2). Fix(Ω,G, P) and letVt be the aggregate portfolio value defined under
the empirical probability measureP

dVt

Vt−

= νt dt + σt dBt − Lt( dNt − λt dt) (1)

whereLt ≥ 0 is the loss rate of portfolio value ensuing a credit event at time t.
Nt is anF-conditional Poisson process with intensityλt that keeps count of the
number of defaults.νt andσt are drift and diffusion coefficients corresponding to
the aggregate income from the portfolio. We assume they are smooth functions such
that the Equation (1) admits a unique and strong solution.

Proposition 1 Under assumptions of Section 2 for a type 1 claim and dynamics
(1), the value of the most subordinate tranche of the basket derivative is given by

V sub
t = Gt E

∗[G−1
T (VT − D)+ | Gt] (2)

whereD is the promised amount to be paid to note holders at timeT and

Gt = exp
(∫ t

0
ru du

)
(3)

with 0 ≤ Lt < 1 and rt the spot interest rate. The expectation operatorE
∗ is

with respect to an equivalent martingale probability measureP
∗ obtained from the

empirical probability measureP via

dP
∗

dP

∣∣∣∣∣
Gt

= exp

{∫ t

0
βu dBu −

∫ t

0

β2
u

2
du +

∫ t

0
ln(1 + pu) dNu −

∫ t

0
λupu du

}

whereβt is the market price of the diffusion risk andpt is the market price of the
jump risk, satisfying

1 + pt > 0 and νt − rt + σtβt − λtptLt = 0. (4)

This proposition states that, under an appropriate change of probability measure,
the subordinated basket claim of type 1 can be valued as a calloption on collateral
value discounted using a short ratert. A proof appears in the appendix.

4 Incorporating a market value test

This section presents a more general model (in the frameworkof type 2 claims
introduced in Section 2) for analyzing barrier-type basketoptions and collateralized
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debt obligations. In particular, we consider the valuationof subordinated pieces
(starting with equity) of a collateralized security that isliquidated when collateral
value fails a threshold test. Introducing a collateral testhas the effect of modifying
Equation (2) so that it reflects the possibility of partial transfer or full liquidation
of assets before maturity. Early asset transfer occurs whencollateral value falls
below a required level and is a guarantee mechanism to safeguard the most senior
investors. This guarantee comes at the expense of subordinate investors and its
inclusion in pricing adds accounting complications but theapproach is similar to
that described in the previous section. For the remainder ofthe paper, we assume
all processes are specified under an equivalent martingale measureP∗.

4.1 CDO default

We refer to the asset transfer or liquidation event as structural or CDO defaultto
distinguish it from individual collateral defaults orcredit eventsof obligors repre-
sented in the asset basket. To specify the trigger level thatprecipitates asset liqui-
dation, consider a reference asset with timet price

Yt = D E
∗

[
exp

(
−
∫ T

t
rs ds

)∣∣∣∣∣Gt

]

such that at maturityT , it grows toYT = D. The threshold levelD can be flexibly
chosen on a contract by contract basis. For example,D may be the notional debt
amount. Note holders and equity holders may negotiate on thelevel D and the
corresponding reference zero coupon bond. In practice, if portfolio value is below
a certain percentage of capitalization, senior tranche holders may be repaid to the
extent that the value of the portfolio meets the test. This arrangement corresponds
to shifting both portfolio value,V , and reference value,Y , curves downward. To
give equity holders more ‘cushion,’ the magnitude of the shift for the Y curve can
be made greater than that ofV curve. Note holders claim the assets ifτ < T where

τ , inf {t ≥ 0 : Vt ≤ Yt} .

is a stopping time of the portfolio value process. IfVτ = Yτ , they recoverD almost
surely at maturityT .

4.2 Asset pool dynamics

As individual asset values change either independently or in response to common
economic or sectoral shocks, the value of the collateral portfolio fluctuates. In our
setup, the value of the asset portfolio is affected by randomfluctuations in the state
process and by the number of default events in the obligor pool. These variables
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can be simulated to generate portfolio value scenarios and,in turn, to evaluate
CDO claims. This procedure can be computationally intensiveand does not pro-
vide a transparent view of the impact of various design parameters on the value of
a particular tranche. In this section, we propose an approximation to the dynamics
of the collateral pool that allows faster valuations and a salient way of performing
sensitivity analysis on subordinated structures.

The motivation for our approximating process is as follows.Since defaults in the
asset portfolio are guided by the default intensities of individual obligations, there
is reason to believe that, especially for diversified portfolios, the remaining uncer-
tainty in portfolio value is mainly due to systemic risk factors (e.g., interest rate
movements, equity market valuations). Thus, on the aggregate, portfolio value may
tend to vary in accordance with general economic conditionsadjustedby default
events. From this point of view, a diffusion process with a jump component linked
to the number of credit events in the portfolio is a natural choice. Thus, we assume
evolution of collateral value can be approximated by theP

∗-process

Vt = V0 exp
(∫ t

0
(µs −

1

2
σ2

s) ds +
∫ t

0
σs dBs

)
(1 − L)Nt (5)

with corresponding stochastic differential equation

dVt = Vt−(µt dt − Lt dNt + σt dBt) (6)

whereµt, σt, Nt, andBt are defined similarly as in Equation (1).3 Note that the
running number of defaults affects portfolio value throughthe counting process that
drivesNt. In other words, individual default events in the asset poolhave a direct
bearing on the approximated value of the portfolio. Preliminary tests, outlined in
Section 5.1, provide support for this assertion, increasing with effectiveness as for
diversified asset pools.

The value of the equity piece of the CDO is, then,

V sub
t = E

∗
[
e−
∫ T

t
rs ds(VT − D) 1{τ>T} | Gt

]
(7)

whereD represents the aggregate claim of note holders at maturity.

Equation (7) can be easily evaluated by Monte Carlo simulation of the underlying
default and portfolio value processes, thus bypassing the need for a full simula-
tion of individual asset dynamics in the collateral pool. Portfolio value, as defined

3 An intuitive mathematical argument is as follows: If each defaultable bond hasan inten-
sity affine in the state vectorX where each component ofX follows an independent square
root diffusion process, then it is well known that bond prices are exponential affine. A first-
order approximation, via the central limit theorem, for the value of a diversified portfolio is
a lognormal process if the number of the bonds is sufficiently large.
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above, can itself be considered an aggregate credit score orstate process (follow-
ing a geometric Brownian motion with jumps or GBMJ, for short) indicating the
overall credit quality of the CDO where threshold crossings signal credit events as
described, for example, in Avellaneda and Zhu (2001), Bélanger et al. (2001), and
Esteghamat (2003). The following section presents more explicit variations of the
above valuation formula under different scenarios of response to impeding failure
of the collateral to meet its market value test. The variations rely on the conditional
independence of default events under the risk neutral measureP

∗ and require fewer
simulations to evaluate.

4.3 Valuation

Section 3 developed an intuitive valuation formula based onthe well-understood
call option-like feature of subordinated debt. In this section, we extend this idea
to a more general case by showing that a subordinate tranche can be treated as a
collection of ith-to-default basket derivatives plus a default-adjustedportfolio of
call options. This decomposes subordinate structures intosimpler securities with
obvious pricing and hedging benefits.

Assume, momentarily, that the default timeτ of the CDO coincides with default
of a collateral asset. This restriction is revisited shortly. It can be equated, roughly,
with affording greater flexibility to pool managers in dealing with impending and
predictable shortages or failures of collateral tests. Additionally, to reduce the cost
of default, managers are given a grace period to meet collateral tests before note
holders assume ownership of the assets. Another situation,compatible with the
coincident default restriction, is that of a collateral pool consisting of high-yield
debt, where individual default events most likely will dominate general economic
uncertainty. Therefore, CDO defaults will tend to be caused by large shifts in credit
yield spreads and not by gradual degradation of portfolio value. If the portfolio
consists of floating rate debt, the effect of price fluctuations due to interest rate
movements are mitigated, supporting the coincident-default scenario.

Denote thei-th default time byτ(i), its hazard process byΛ(i)
t , and its default inten-

sity byλ
(i)
t . Our assumption implies that, for example,{τi = τ, τi+1 = τ} is a null

event. Using the conditional independence of default timesyields a more explicit
formulation for Equation (7) by conditioning on the event that the CDO default
time τ corresponds to thei-th default in the portfolio,

V sub
0 =

n∑

i=1

E
∗
(i)[·] P∗(τ(i) = τ) + E

∗
[
e−
∫ T

0
rs ds(VT − D)+

]
P
∗(τ(n) < τ) (8)

with E
∗
(i)[·] = E

∗[e−
∫ T

0
rs ds(VT − D)+∑n

j=1

∫∞
T Pj(u) λj

u e−Λj
u du] andPj(u) :=

∑
j
−

,j+

∏
k∈j

−

(1 − e−Λk
u)

∏
l∈j+ e−Λl

u wherej−, j+ are sequences of obligors de-
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faulting before and after default of thej-th entity, respectively. The summation is
taken with respect to all such permutations. ExpectationE

∗
(i)[·] denotes value of a

contract promising to pay(VT − D)+ at maturityT only if the i-th default occurs
afterT (following the convention of Bielecki and Rutkowski (2002)).The second
term in (8) corresponds to the event that collateral defaults do not cause CDO de-
fault. Now, consider the probability part of Equation (8), that is,P∗(τ = τ(i)) =
P
∗(τ ≤ τ(i)) − P

∗(τ ≤ τ(i−1)). We claim the probability can be rewritten as

P
∗(τ ≤ τ(i)) =

∫ ∞

0
P
∗

(
Vτ(i)−

Yτ(i)

≤ (1 − L)−i | τ(i) = t

)
dP

∗(τ(i) ≤ t). (9)

To see this, consider two shadow processes: One to keep trackof a hypothetical
portfolio value which experiences no loss as a result of credit events; another to
accumulate a loss percentage. Each time there is a default event, compute post-loss
asset value by multiplying the shadow price by the accumulated loss and check
whether it is above or below the value of the reference bond. If post-loss value
is greater thanYt, the reference price, let the value process continue. Otherwise,
declare CDO default. If thei-th default causes structural default, we combine all
the losses at that time by multiplying the shadow price by(1 − L)i. Since the
probability distribution ofi-th asset default is known, we can calculate

P
∗(τ ≤ τ(i)) =

n∑

j=1

∫ ∞

0
P
∗
(

Vu

Yu

≤ (1 − L)−i
)

Pj(u) λj
u e−Λj

u du. (10)

The probability just inside the integral has a well-known analytic solution when
drift and diffusion parameters are constants. Namely,

P
∗
(

Vt−

Yt

≤ (1 − L)−i
)

= Φ

(
−γ0 − γ1t√

t

)
+ e−2γ0γ1Φ

(
−γ0 + γ1t√

t

)

whereΦ is the cumulative standard normal distribution,γ0 = ln(V0/Y0)+ln(1−L)i√
σ2

V
+σ2

Y

,

γ1 = νV −νY√
σ2

V
+σ2

Y

, νV = µV − σ2
V /2, andνY = µY − σ2

Y /2.

Proposition 2 Under assumptions of Section 2 for a type 2 claim with the addi-
tional assumption that the CDO default necessarily coincidewith defaults of the
collateral pool, the value of the least senior tranche of CDO at time zero is

V sub
0 =

n∑

i=1

P
∗(τ(i) = τ) E

∗


e−

∫ T

0
rs ds(VT − D)+

∑

j

∫ ∞

T
Pj(u) λj

u e−Λj
u du




+ P
∗(τ(n) < τ)E∗

[
e−
∫ T

0
rs ds(VT − D)+

]
(11)

wherePj(u) ,
∑

j
−

,j+

∏
k∈j

−

(1 − e−Λk
u) · ∏l∈j+ e−Λl

u. P
∗(τ(i) = τ) is given by

Equation (10) andP∗(τ(n) < τ) = 1 −∑n
i=1 P

∗(τ(i) = τ).
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Thus, with the collateral test in place, the most subordinate tranche can be decom-
posed into a default-adjusted call option plus a series ofith-to-default securities.

Remark 1 Since the sum value of all tranches must equal the value of collateral
(net of fees), the above pricing formula can be used successively to value each
tranche of a CDO by working up from the least to the most senior claim. For ex-
ample, to price a mezzanine tranche just above equity, introduce a new reference
curve,Zt such thatZT < YT = D almost surely. If asset valueVt crosses curve
Zt at a timeτM ∈ (0, T ], mezzanine and equity are both in default. This new as-
set value process yields the value of the combined mezzanineand equity pieces at
time zero,V M+E

0 . Hence we haveV M
0 = V M+E

0 − V E
0 . Finally, the value of the

remaining senior piece at time zero,V S
0 is V S

0 = V0 − V M+E
0 .

Remark 2 Removing the restriction that structural CDO default coincide with a
collateral default has the effect of modifying Equation (11) to account for the pos-
sibility of predictable defaults (formally, accessible default times,i.e., those caused
by gradual decline of portfolio value). Note that the event that CDO default is
caused by the diffusion component of portfolio value and theevent that it is caused
by obligor defaults are mutually exclusive. The probability of CDO default in the
interval between two collateral defaults is, by the strong Markov property ofV , on
the set{τ(i) < τ},

P
∗(τ(i) < τ < τ(i+1)) = E

∗[E∗
Vτ(i)

[1{0<τ<τ(1)}]]. (12)

This says that, conditioning upon the post-ith default value ofV , the probability
that the CDO default occurs before the next collateral default can be calculated by
the inner expectation. If we denote the value of the least senior piece from Propo-
sition 2 byV ∗

0 ,

V sub
0 = V ∗

0 − E
∗
[
e−
∫ T

0
rs ds(VT − D)+

] n∑

i=0

P
∗(τ(i) < τ < τ(i+1), τ(i) < τ)

with the conventionτ0 , 0 and τn+1 , T . However, evaluation of Equation
(12) necessarily involves simulatingV just after the default of theith asset. Hence
Monte Carlo simulation of sample paths in (7) is more efficient. However, the ad-
justment factor is typically small so that Proposition 2 canbe used to bypass extra
simulations.

One can identify simple hedge strategies based on Proposition 2. Of course, the
equity investor can reduce exposure to the most likely losses by hedging out few
of the most default-prone names. Alternatively, one can insure the equity tranche
against first default by purchasing a1st-to-default swap on the collateral or subset
thereof. The value of this strategy can be deduced from the pricing formula.
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5 Performance tests

5.1 Asset dynamics

How well does our approximation scheme work? First, to test the performance
of our assumption regarding portfolio value given in Equation (5), we set up a
hypothetical collateral pool ofn = 20 zero coupon bonds and simulate the value of
each bond in the portfolio using an intensity based (IB) modelof correlated default
for both type 1 and 2 claims. Recall for a type 1 claim sales proceeds of defaulted
bonds are reinvested in a similar bond that is subject to default again. For a type 2
claim, we specify how the sales proceeds of defaulted bonds are distributed in the
formula for portfolio value as follows

Vt =
n∑

i=1

(
1{τi>t}E

∗
[
e−
∫ T

t
(L̃λi

u+ru) du
∣∣∣∣Gt

]
+ 1{τi≤t}(1 − L̃)Pτi−

e
∫ t

τi
ru du

)
(13)

wherePτi− is the value of thei-th bond just prior to its default. In other words, once
a bond defaults (i.e., τi ≤ t), it is sold at the price of(1 − L̃) times its value just
prior to default and the revenue is invested in a default-free savings account until
maturity.

To simulate the value of the portfolio using Equation (5) we estimated the model
with constant parametersµ, σ andL. RecallL is the fractional loss of portfolio
given a default event; it is not̃L, the individual collateral loss fraction. The three
parameters were estimated by calibrating to an intensity based model. A summary
of the procedure is described below.

(1) We use a multifactor intensity process for each of twentybondsi = 1, ..., 20.
Driessen (2005) finds that a risk-neutral default intensityof the form

λi,t = αi + βi,rrt + βi,vvt + γi,1F1,t + γi,2F2,t + Gi,t (14)

captures corporate bond spread behavior well, wherert andvt are short-rate
factors in an affine term structure model,F1,t andF2,t are common factors
to every firm, andGi,t is a firm-specific factor. Both the common and firm-
specific factors are assumed to follow independent square root diffusions and
hence specified by a triple(κ, θ, σ) wheredXt = κ(θ − Xt) + σ

√
Xt dB∗

t for
X = F1, F2 or G. This model is capable of producing high default correla-
tions.

We follow the specification and calibration result of Yu (2003a) for the
above parameters where the short-rate factors are ignored (i.e., βr andβv are
set to zero). Table 1 summarizes our chosen parameter values. Credit quality
deteriorates as indexi increases. Consistent with observations from Table 3
of Yu (2003a), values of(κ, θ, σ) for firm specific factors do not change when
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Table 1
Parameter values for a sample basket of 20 bonds with intensity processes of Equation (14).

κ θ σ α γ1 γ2

F1 .030 .0050 .0160
F2 .049 .0050 .0160
1 .017 .0065 .0170 .0054 5.80 0.78
2 .018 .0065 .0157 .0056 6.40 1.00
3 .019 .0065 .0137 .0058 7.20 0.44
4 .020 .0065 .0137 .0060 8.00 0.70
5 .021 .0065 .0147 .0062 8.60 0.20
6 .022 .0065 .0157 .0064 9.20 0.56
7 .023 .0065 .0137 .0066 9.80 1.00
8 .024 .0065 .0170 .0068 10.40 0.70
9 .025 .0065 .0157 .0070 11.00 0.90
10 .026 .0065 .0167 .0072 11.60 1.50
11 .027 .0065 .0157 .0074 12.20 1.60
12 .017 .0065 .0177 .0076 12.80 1.70
13 .018 .0065 .0147 .0078 13.40 1.90
14 .019 .0065 .0137 .0080 14.00 2.10
15 .020 .0065 .0147 .0082 14.60 3.60
16 .021 .0065 .0137 .0084 15.20 3.10
17 .022 .0065 .0157 .0086 15.80 4.50
18 .023 .0065 .0167 .0088 16.40 4.90
19 .024 .0065 .0157 .0090 17.00 5.20
20 .025 .0065 .0167 .0092 17.60 4.70

credit quality varies but correlation parametersγ1 andγ2 increase as credit
quality deteriorates. The short rate process is modeled as asquare root diffu-
sion

drt = (0.0774 − 0.86rt) dt + 0.0348
√

rt dB∗
t . (15)

(2) For each simulation path in Step 1, compute maximum likelihood estimates
for the three parameters of Equation (5), namely,µ, σ, andL.

(3) Take the average of the estimates forµ, σ, andL obtained above and denote
themµ̂, σ̂, andL̂, respectively. The resulting annualized estimates, basedon
1000 scenarios, are listed in Table 2. Create paths based on Equation (5) using
µ̂, σ̂, andL̂.

(4) Compare the two sets of paths generated in Steps 1 and 3. Figure 1 shows
sample average portfolio value paths. For both type 1 and type 2 claim, the
estimation for eacht is reasonably accurate. Snapshots of portfolio value dis-
tributions for the two collections (Figure 2) show that the approximating pro-
cess provides not only average sample paths but also a reasonable distribution
of portfolio value. This information is useful in managing risk exposure. The
jump-diffusion approximation may be used for quick sensitivity analysis and
risk measurement (e.g., computing value-at-risk), eliminating the necessity for
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Fig. 1. Average values of hypothetical collateral pools of zero coupon bondsmaturing in
seven years. Price paths are shown for the intensity based model (IB) of Equation (14) and
the jump diffusion model (GMBJ) calibrated to intensity based simulations. Theleft plot is
for a type 1 claim; the plot on the right is for a type 2 claim.
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Fig. 2.Distribution of portfolio value according to an intensity based model (darkerbars)
and the maximum-likelihood estimate of the GBMJ model (lighter bars). Lossfraction is
set to 0.5.

Table 2
Parameter estimates for a sample basket of 20 bonds with intensities given by(14).

Type 1 Claim Type 2 Claim

Parameter L̃ = 0.5 L̃ = 0.75 L̃ = 0.5 L̃ = 0.75

µ̂ 0.130113 0.148487 0.127336 0.147311
σ̂ 0.010970 0.011989 0.010462 0.011646
L̂ 0.018750 0.027002 0.026595 0.040311
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Fig. 3. Running average of prices generated by the pure intensity based and GBMJ simu-
lations for a collateral pool consisting of twenty bonds (left plot). Standard errors of price
estimates are shown on the right.

full simulations.

It is important to note that the relative good fit of the above experiment can be
adversely affected by extreme concentration of default intensities. For example,
in the extreme case of 20 identical default intensities, average portfolio value can
decline sharply after a certain point. This implies that a GBMJ process with a con-
stant growth factor is not sufficient to describe the behavior of portfolio value. The
constant-parameter model works well for standard collateral structures.

5.2 Derivative price

In this section, we use Driessen’s multifactor model to price an equity tranche.
Again, the collateral basket consists of the twenty defaultable bonds defined in
Table 1 each maturing in seven years. If there are no defaults, the total value of
the basket reaches one dollar. The contract holder is paid one dollar if the market
value of the basket does not ever go below a reference curve. The reference curve
Y is arbitrarily (but appropriately) specified as a zero coupon bond whose value
at time0 is $0.287 and grows in seven years to$0.70. The loss rate of each bond
is L̃ = 0.75 and the sales proceeds of defaulted bonds are used to purchase a
similar bond with the same default intensity. Figure 3 showsthe running average
of time zero prices for this contract generated by intensitybased and by GBMJ
simulations with parameters as estimated above. Running values of standard errors
of prices are shown on the right. Prices from the two methods (pure simulation
versus approximation) converge to almost the same value of $0.48 as the number
of simulations increase. The GBMJ approximation, however, requires significantly
less computation time. Once jump-diffusion parameters areestimated there is no
need to run an IB-based simulation to find, for example, the present value of a
contract under different reference curve scenarios or withdifferent payoffs.

Continuing with the example, suppose either (a) interest rates shifts up by100 basis
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Table 3
Sensitivity analysis for model of Equation (14). Percentage changes (rounded) from bench-
mark values are given in parentheses.

Price µ̂ σ̂ L̂

Benchmark values 0.480 0.148 0.0120 0.0270
Interest rate+100 bp 0.438 (−9%) 0.145 (−2%) 0.0119 (−1%) 0.0275 (2%)
Bond exchange 0.469 (−3%) 0.148 (−0%) 0.0119(−1%) 0.0297 (10%)
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Fig. 4. Equity price sensitivity based on 1000 simulations.

point, or (b) the least risky bond (the first bond) is replacedby a bond with identical
default intensity to the riskiest bond (twentieth bond). Prices shift in response and
new parameters are estimated for the GBMJ approximation as shown in Table 3.
The price declines in both cases as expected. Whether a shift in credit spreads or a
recomposition of the collateral basket, these changes are translated into a change in
GBMJ parameters. Many factors that would influence the pricing are summarized
by the three parameters given the default intensity parameters. The shift in price,
as each of the GBMJ parameters changes from its benchmark value, is shown in
Figure 4. Likelihood of CDO default is chosen to be relativelyhigh in this example.
As a result, equity price is especially sensitive to shifts in drift (driven mainly by
changes in individual default intensities).

5.3 Performance of the pricing formula

In the previous section we tested the fit of the GBMJ approximation to full Monte
Carlo simulation. Here, we compare the convergence rate of the pricing Equation
(7) via GMBJ simulation with that from formula (11) of Section4. We consider
a simple experiment and choose parameters ofλi large enough to cause defaults
in the portfolio rather frequently and assume that CDO default is caused only by
jumps. In order to reduce computational time, we select a portfolio of five bonds
(n = 5) and a constant discount rater = 0.06. The procedure is as follows.

(1) Given intensity parameters(λ1, λ2, λ3, λ4, λ5) which we describe below and
the parameters of the portfolio value and the reference bondprocess

(L, µV , µY , σV , σY ) = (0.4/n, 0.095, 0.062, 0.2, 0.15),
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Fig. 5.Running average of prices generated by the pricing formula and by direct simulation
assuming a GBM process with jumps (left plot). The collateral pool consistsof five bonds.
Standard errors of price estimates are shown on the right.

and initial values ofV0 = 0.85 and Y0 = 0.54, generate scenarios of the
underlying state variableXt and calculate the value (at time 0) of receiving 1
dollar if portfolio value does not fall below the reference bond price forT =
10 years. The terminal payoff ($0 or $1) is discounted back to time 0. Initial
values ofV andY are chosen so that the two curves are sufficiently apart from
each other at time0. The state processXt, representing general economic
activity or equity market index, is geometric Brownian motion with drift and
diffusion parameters0.1 and 0.25, respectively, and initial valueX0 = 1.
The intensity processes areλi,t= αi +βiXt whereβ1=0.07,β2=0.05,β3=0.04,
β4=0.035,β5=0.03,αi = 0 for all i. On average, these values cause around
60% of the bonds (i.e., 3 bonds) to default.

(2) Estimate the value of the equity tranche for each of the two methods by using
the same parameter values to simulate asset value dynamics of Equation (5).

(3) Compare the running averages of the prices from the two methods.

Results of this test procedure are as follows.

• The pricing formula clearly converges faster than direct simulation of the GMBJ
value process. This implies that formula-based pricing hasthe potential to sig-
nificantly reduce computation times compared with direct intensity based simu-
lation. Figure 5 shows that 500 scenarios are enough for formula-based pricing
to achieve a standard error of about one percent, while convergence in case of
GMBJ simulation pricing is much slower.

• Since the pricing formulae involve integration to infinity,choice of a practical
upper bound can be an important technical issue for accuracy(see Equation (8)).
A larger upper bound has two opposite effects on price. It hasa positive effect
on price by increasing expected payoff; it has a negative effect because the like-
lihood that no collateral default causes a structural default declines. The two ef-
fects tend to offset each other, thus, diminishing sensitivity of price convergence
on the choice of upper bound.

• The pricing formula also performed well under a linear two-factor processλi =
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βiX1 + γiX2 whereX1 andX2 are described by

 dX1

dX2


 =


 .095X1

.0774 − .026X2


 dt +


 .2X1 0

.088
√

X2 .055
√

X2




 dB∗

1

dB∗
2


 (16)

whereβ1=0.07,β2=0.05,β3=0.04,β4=0.035,β5=0.03,γ1=0.05,γ2=0.02,γ3=0.04,
γ4=0.035, andγ5=0.03.

Figure 6 plots the (risk-neutral) probability of default oftheith collateral. There is
an 80% chance that the first default occurs and a 5% chance thatthe fifth default
occurs by year ten. As a byproduct, the likelihood of CDO defaulting on and prior
to thei-th collateral default is tabulated in Table 4. The risk-neutral probability that
the first collateral default will lead to CDO default is only about 2%; there is a 79%
chance that by the fifth default, the CDO has also defaulted.

Table 4
Likelihood of CDO default prior toi-th collateral default, denoted (i).

(1) (2) (3) (4) (5)

2.11% 13.68% 37.86% 64.09% 78.96%

6 Conclusion

This paper has touched on three ways of analyzing CDO structures. These are (1)
pure intensity-based simulations of defaults, (2) simulations based on the asset dy-
namics of Section 4.2, and (3) valuation formulae derived from the same dynamics
by assuming conditional independence of default times given state factors. The col-
lateral value process of Section 4.2 approximates dynamicsof the asset pool and
yields a natural way of decomposing subordinated claims into portfolios of options
and default derivatives on the underlying baskets of assets. In turn, this identifies
possible risk management strategies. The approach also promises computational
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advantages over pure intensity-based simulation in analyzing and designing CDOs.
Outputs and intermediate calculations of the pricing formula can also be used as
control variates in analyzing other structures.

Other correlation derivatives can be priced in this framework. Although we have
focused on valuation of equity, it is clear that the framework presented here, in-
cluding the market value test specification of Section 4.1, allows a salient recursive
valuation of tranches above equity. For example, with equity priced, to find the
value of a mezzanine tranche just above equity, one shifts the reference (market
test) bond curve downwards so that its value at maturity appeals to senior note
holders. The relative value of the mezzanine note is, then, found relative to equity.
This procedure is repeated until the value of the most seniortranche is obtained as
the difference between total initial collateral value and the value of all the subordi-
nate portions (including all the intermediate tranches andequity). In this fashion,
one computes all relative prices of tranches, enabling evaluation of each tranche
relative to others.

Section 5 compared a direct simulation of the GBMJ approximating process against
the pricing formulae of Section 4. The standard error of calculations decreases
rapidly with each added simulation run when using the pricing formula, although
each run is slower.4 Moreover, as a byproduct, the pricing formula provides: (a)
value ofith-to-default securities, and (b) probabilitiesP

∗(τ(i) = τ) that theith col-
lateral default precipitates CDO default, leading to asset liquidation. Both items are
valuable sources of information in risk management. Consider, for example, a fund
manager who has invested in a number of notes and equity tranches of different
CDOs. In order to reduce the prospect of concentrated defaults which can result in
sudden and sustained reductions in fund value, the manager may wish to diversity
the fund’s assets in order to spread potential losses over the investment horizon. The
above information can be used to adjust portfolio allocations (as well as tune CDO
structures) to reduce the chance of large simultaneous losses. This information is
not readily obtained from direct simulations.

A Proof of Proposition 1

By Girsanov’s theorem, processB∗
t = Bt −

∫ t
0 βu du follows a Brownian motion for

t ∈ [0, T ] underP∗. Note that the jump direction is negative. With this preparation,
we deflate the portfolio value processVt with the price of the money market security

4 Run times were about the same order of magnitude for the 600 versus 5000 simulations
shown using näıve coding.

23



G from Equation (3) to obtaiñVt , VtG
−1
t which has dynamics

dṼt = Ṽt ((νt − rt) dt + σt dBt − Lt dNt + Ltλt dt)

= Ṽt ((νt − rt) dt + σt dB∗
t + σtβt dt − Lt dNt + (1 + pt)Ltλt dt − ptLtλt)

= Ṽt (σt dB∗
t − Lt dNt + (1 + pt)Ltλt dt)

= Ṽt (σt dB∗
t − Lt( dNt − λ∗

t dt)) . (A.1)

The third equality is due to (4) and in the last equalityλ∗
t , (1 + pt)λt. Since the

intensity ofNt under the measureP∗ is λ∗
t and the compensated Poisson process

Nt −
∫ t
0 λ∗

u du is P
∗-martingale, Equation (A.1) shows thatṼ is a P

∗-martingale
with respect toG. Hence a pricing formula for the equity portion of the claim is

V sub
t = Gt E

∗[G−1
T (VT − D)+ | Gt]

whereD is the note holder’s promised principal.
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