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Abstract

This paper presents a model for approximating the value of a baskefanflideorrelated
assets and analyzes subordinate tranches in securitized debt obligekiemsodel is cal-
ibrated to an intensity-based simulation of correlated defaults and refsesealternative
computation method to full Monte Carlo simulation. Timing of individual obligor déta
are driven by intensity processes and collateral value is modeled with adiffagion pro-

cess where the number of jumps corresponds to the total number of défatlesasset
pool. This approach allows decomposition of subordinate obligations in tdrensallec-

tion of simpler securities and yields useful risk management information.
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1 Introduction

This article presents a method for valuation and analysssibbrdinate tranches of
structured securities backed by a pool of defaultable daifo demonstrate ideas,
we focus on collateralized debt obligations (CDOs) whichoaiot for a growing
share of all asset-backed securities issued. A CDO is a digesecurity on a port-
folio of bonds, loans, or other credit risky claims. Cash fldvesn the collateral
portfolio are divided into tranches of varying quality andlg which are then sold
to investors. Along with other credit correlation prodydtee CDO has become a
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popular vehicle for investing in and managing credit riskesset pool of a CDO
is typically a diversified portfolio of debt collateral thatay include commercial
and real-estate loans, sovereign and corporate bonds,thed asset backed se-
curities. These products are offered in response to irttbyemsurers, banks, and
fund managers who wish to efficiently redistribute, transbe speculate on risk.
For example, banks issue CDOs to reduce credit exposure@utdangly, regula-
tory capital while investors with varying constraints aaddls of risk aversion gain
access to an asset pool that would not be available otherwise

The credit correlation market has grown significantly siitsebeginnings in the
late 1980s. Below $5 billion prior to mid-1990s, by 2000 thewed global CDO
issuance grew to nearly $100 billion (Flanagan and Sam, )2@32ording to a
recent survey, correlation products accounted for abouisater of the market for
credit derivatives in 2002, which itself increased by 50%nirthe previous year
to over $2 trillion in notional outstanding value (PatelP3). The market demand
for CDOs depends on a set of structural trade-offs that detertmow the pro-
ceeds from the collateral pool are directed into severat dall equity tranches
organized by their relative seniority. Default correlatimakes evaluation of sub-
ordinated products a challenging and computationallynisite exercise. Our aim
in this article is to describe a method for efficient valuateind analysis of such
securities that offers reduced computational burden latne the essence of the
correlation structure.

Issuers of CDOs face the challenge of matching investor requeints while mini-
mizing funding costs for tranches. The issuer or sponsendells the portfolio of
debt to a special purpose vehicle (SPV) and takes an equérest. The SPV uses
these debt obligations as its asset pool to issue lialsilitiehe form of prioritized
multi-layer tranches. In a traditional SPV, senior, memzenand subordinate notes
are offered along with equity shares. Senior notes appaalatively risk averse
investors and are paid before mezzanine and lower-sulaiedimotes, but after
management, transaction, and hedging costs are subtrdetgdemaining cash
flows go to equity holders. In this paper, we propose a modapfmoximate the
value of collateralized structures by starting with the trsaordinate tranche and
working our way to the most senior liability piece.

The potential for arbitrage as a result of mispricing is a Eactical consideration
in constructing debt structures (Goodman and Fabozzi, 2¥¥). In most appli-
cations, simplifying assumptions allow a quick and rougmparison of the yield
offered on a particular tranche with other market oppottesi For example, the
rate of return on the equity tranche can be estimated by densg a static port-
folio composition and by benchmarking to market rates wadgisting for a fixed
annual default rate and recovery. However, due to the gmdbility in configur-
ing deals (subordination structure, quality of collatexadl trigger tests, leverage,
asset diversity, and delayed cash flow draw features to nade&)aa much more
detailed analysis is required to structure these secsiriier example, increasing



the amount of investment grade debt in the collateral podlices the need for
credit enhancement and requires a smaller equity shardy egpital can be also
lowered by increasing diversity in the collateral pool. Egean account for two
to fifteen percent of a typical CDO'’s capitalization depedim credit quality and
asset diversity.

1.1 Modeling default correlation

A straightforward method for building default correlatisto modify or com-
bine single-name default models in a way that allows depgrydamong entities.
Single-name default models provide the marginal defaalbability distributions
that are combined to get a joint default probability disitibn. This process con-
tains two key steps: first, selecting or developing a sugtaibdel for single-name
default; second, specifying an appropriate structure peddence that binds to-
gether the marginal distributions. Of course, the final ltestould be consistent
with market signals and, ideally, would be efficient and dassalibrate and imple-
ment.

Approximations can be made at each modeling stage to imgfticeency and ease
of use. While simpler models offer the benefit of quick analysiey often rely on
coarse assumptions about the correlation structure ohteodll assets. Although
more efficient in getting order-of-magnitude values, tmsits their usefulness in
design, valuation, and dynamic risk management. More cexnpiodels, those
with better ability to capture default correlations, teadbe computationally inten-
sive and less transparent. Here, we provide a brief (and byeens exhaustive)
review of default correlation pricing models.

In thestructuralstrand of models, pioneered by Merton (1974), default ggered

when a firm’s asset value falls below a threshold level. ZIi2Q01) proposes a
model of joint default in this vein where asset values of twmé are correlated.
Overall, parameter estimation can be challenging in thesdefs and they have
had mixed success in matching the range of observed termiistes of default
probabilities needed for pricing credit derivatives.

In response to empirical problems of traditional strudtunadels in reconciling
firm value with market rates, a related line of research abtrfrom firm value
and, instead, focuses on a continuous-time measure of queaity. Default occurs
when credit quality deteriorates to a certain thresholdllévhesdghresholdmodels

are more versatile and have had greater success in matomatigd default proba-
bilities observed from credit spreads or bond prices (s&g,Avellaneda and Zhu,
2001; Esteghamat, 2003). Hull and White (2001) introduceserdte-time version

I Many models quantify loss over a fixed horizon to focusing on risk measemerather
than pricing and dynamic hedging (see Crouhy et al. (2000) for a r@view



of the threshold model with default dependency by considgoairwise correlation
of credit qualities. The default barrier is made time-dejmm and is calibrated so
that the model is consistent with market information. Oeeikband Schmidt (2003)
extend this approach to a model that uses time-scaled atedeBrownian motion
to represent uncertainty in credit quality (or firm valuejn@ scaling is essentially
equivalent to introducing time variation in volatility ofi¢ credit quality process
and adds additional freedom in calibrating the model to maiglefault probabil-
ity distributions. Working in a continuous-time settingey obtain a quasi-analytic
expression for pairwise default distribution to mitigate high computational bur-
den of threshold models with correlated defaults.

A critical feature of default rates, supported by empiriealdence, is time varia-
tion in correlation and the importance of systemic effebisa recent study Das
et al. (2001) find significant systematic variation in defaates over time. Default
rates tend to vary with the business cycle, peaking duringssions. These effects
have been incorporated in many credit risk measurement Isdlal®ugh intro-
duction of common factor dynamics (examples include Wilg®#97) and Pesaran
et al. (2003)). However, Adelson (2003) points out thaha@lgh it is widely recog-
nized that systematic forces can drive default correlatiomost popular models do
not capture time-varying credit risk dependencies in stmed securities. Adelson
cites, as evidence, the failure of these models to accoutibi@ages among credit
risks that have led to poor performance in the securitinati@arket in recent years
including CDOs and other asset-backed securities. The teg tlating agencies,
Standard & Poor, Moody, and Fitch, use models with statiaaétorrelation to
evaluate these securities.

Intensity-basegricing models€.g, Lando, 1998; Duffie and Singleton, 1999) take
hazard rates of default as a primitive and are, by desigr;auékd to match credit
spreads. Intensity models incorporate the systemic festof default correlation
by allowing hazard rates of default to depend on a set of comfag, macroe-
conomic) state factors (see, for example, Duffie and Sioglet999; Duffie and
Garleanu, 2001). Giesecke (2003) constructs a joint expg@ienodel of default
intensities along with a common shock intensity componrerhese models, inten-
sities are often assumed to be independentitionalon the state of the economy
or factor values.

It is important to note that the assumption of conditionalependence does not
imply defaults are independent. In fact, correlation ishestrated by time-varying
dynamics of the common factors. For instance, hazard ratsfault for firms in

a particular industry sector may all increase in responsedessionary economic
pressures, in turn, increasing the likelihood of defaultdach firm in the sector.
Other firms may be affected more by oil price shocks. Someeduohd, however,
that the range of correlations achieved with intensityebdasodels may be limited.
There have been three responses to correct this weakngdsrieg models of
infectious defaultusingcopulafunctions; and reexamining factor specifications in



intensity models.

In variations of so-called contagion or infectious type mlsgdthe assumption of
conditional independence is relaxed and default intesssdre made to depend on
default events of other entities., Davis and Lo, 2001; Jarrow and Yu, 2001; Yu,
2003b). Contagion models fill an important gap but at the cbanalytic tractabil-
ity. They can be especially difficult to implement for largerfbolios.

In an alternative approach, Li (2000) and 8obucher and Schubert (2001) show
how to apply the Gaussian copula to obtain joint default tths¢ributions for pric-
ing credit correlation securities. A copula is a functiottet maps marginal dis-
tributions to a joint distribution. Very popular in pracatidor its simplicity in use,
the Gaussian copula imposes arguably unrealistic timerdigmey on the correla-
tion structure. In particular, dependency among defasilggh initially and rapidly
and monotonically decays over time for theopula family, including the Gaussian
copula. Rogge and Sohbucher (2003) overcome this drawback by considering the
Archimedean class of copulae. The copula approach isvelastraightforward to
implement, it can match a wide range of default dependeraniels as a result,
it holds obvious appeal to practitioners. This flexibiligwever, is accompanied
with loss of economic intuition about structural connecti®f default and about
choice of copula. Calibration is data intensive and simaoiegtican be very slow,
requiring large numbers of simulations to analyze baskairgees. Moreover, the
copula function and its parameters have to be reestimaterkdd events unfold,
whether due to idiosyncratic or systematic causes.

In a recent study Yu (2003a) argues that the problem of lowetaiions in intensity
models may be due to insufficient specification of commonofacand not to an
inherent feature of the approach. Building on empirical itssof Duffee (1999)
and Driessen (2005), Yu shows high correlations are passilal simple two-factor
model of default intensities.

1.2 Computational issues

Models that do well in capturing individuaind joint default behavior tend to be
computationally intensive and slow. A quick response timedspecially important
in calculating hedge positions and performing sensitiaibalysis in trading en-
vironments. Several studies address this issue. PykhtirDaw (2003) derive an
analytical approximation for tranche loss distributionsaihomogenous portfolio
of identical loans driven by a single risk factor. Definingalét intensities to be

conditionally independent functions of a low dimensionettor of latent factors,
Gregory and Laurent (2003) illustrate the efficiency gaihsalculating default

distributions through characteristic functions. Lateadtdrs are endogenously im
plied and are not connected to macroeconomic variablesatitiers give single-



factor examples but point out that extension to multipleédesis uncomplicated
for the case of Gaussian but not Archimedean copulae. Aedetsal. (2003) con-
sider copulae with conditionally independent default sménere default intensities
are time-varying but not factor dependent. They obtain agatpnally advanta-
geous semi-analytic approximations by combining factduotion techniques on
the Gaussian copula correlation matrix with a recursivesah(rather than charac-
teristic functions or simulations) for evaluating losstdsitions. Hull and White
(2004) choose a multifactor Gaussian ancbpulae under the assumption of in-
dependence of default times given the common factors. Theylay a recursive
relation to evaluate default probabilities with reducedhpatational requirements
over simulation methods.

This paper is in the spirit of these studies. We demonstraédient way of comput-
ing market prices of subordinate tranches that does notresfyll simulation anal-

ysis and does not impose oversimplifying assumptions. @praach is based on
constructing approximate dynamics for the collateral @akith a jump-diffusion

process where the diffusion piece reflects gradual changesifolio value and the
jump component captures shocks due to asset defaults ittiel. This process
is calibrated to a default model driven by a multifactor dtindally independent
vector of intensity processes. Hazard rates of defaultinked to state factors,
capturing the effect of common factor dynamics but allowfegter computations.

Simulations indicate that for a typical pool, the approxiima performs well. The
model, of course, would be recalibrated periodically agleddo increase accuracy
and for longer maturities. In addition to fast convergenoapprties, the method
provides useful information for structural analysis ansige of subordinate claims
in correlation derivatives. Based on the approximation sehewe also present
convenient formulae for tranche values which allow decaositpm of subordinated
claims in terms of call options anith-to-default derivatives. These results can be
used by issuers and potential investors to evaluate, to@&j and to hedge CDO
structures.

2 Setup and assumptions

Assume, in the usual manner, that prices can be determinaa @guivalent risk-
neutral no-arbitrage environment and there are no marigiofs. In this setting,
we consider a model of collateral default based on the Coxgsapproach of
Lando (1998) with cross-sectionabnditionalindependence of default intensities
givenvalues of a set of common factors. It should be emphasizedtmalitional
independence does not imply independence of defaults. &adhtrary, default
intensities are correlated, deriving their dependencen ftisme variation in a set
of common latent or observable state variables which malydec for example,
interest rates, energy prices, GDP, equity market prigescic industry sector



factors, and inflation. In other words, correlation of déffantensities is ascribed to
afactor model. The choice of observable factors will depemthe mix of collateral
assets in the portfolio. Our assumptions regarding credits and key features of
collateralized debt obligations are detailed below.

There is a complete probability spade, G, P*) with an increasing family of right-
continuouss-algebrasg = {G:}+>0 that characterizes uncertainty whejerep-
resents all information available at timelnformation arrives from distinct (and
independent) sourceg, = 7, V H} V H? V --- V H} whereF = {F},., and
H' = {Hi},., are filtrations generated by a Brownian motion and defaultirfto
ing) processes for entities indexed byF is the history of random shocks in the
common €.g, macroeconomic) state processisjs the default history of entity.
The F-Brownian motion is assumed also to be a Brownian motion in tiarged
filtration G.

For a given default time of obligar denotedr;, we introduce the associated jump
processly,, <, for ¢t > 0 taking on a value of zero if; > ¢ and a value of one
otherwiseP* is the risk-neutral spot martingale measure. Knowledgéabé $actor
history is not sufficient to know whether an entity has defsdibr not. To determine
that, either individual default histories or a larger higtare needed. This means

is not necessarily a stopping time with respeckialthough it is always a stopping
time with respect to the largér.

The portfolio of assets that represents the collateral pbal CDO consists of:
different obligors or names. Each obligomn the pool has a random credit event
(e.g, default) intensity of\! of the form\{(X;) : RY — R, whereX; is a state
variable taking values iR“ representing an aggregate proxy vector for economic,
financial, and political variables of consequence. Theuetane of obligori, 7;
fori =1,...,n, is governed by thé--hazard proces&! = [; \ ds. Equivalently,
the probability that a credit event occurs after timgiven no events have occurred
prior tot is P*(r; > t | F;) = ei. A default event for obligoii corresponds
to the first (and only) jump of its counting proce$sA counting processV, =
>im1 L <y keeps track of the total number of default events in the aes¢folio.
Default times are assumed conditionally independent vesipect taF; underP*,
foranys > 0,

]P*<7'1>t1,...,7’n>tn‘fs):P*(T1>t1’.,Irs) ]P)*(Tn>tn‘fs)

Default correlation arises from dependence of defaulhsitees on state vectox.
Other specifications are possible, for example, mappingimalrdefault distribu-
tions through a copula function to obtain the joint disttibo. Intensity of a firm
could be made dependent of the default history of other fiimtsoducing infec-
tious defaults). These extensions are not considereddrstdy.

2 This assumption is temporarily suspended in analyZiye 1claims below, where suc-
cessive defaults of one bond are considered.



2.1 Collateral tests and seniority

Cash flows from a diversified collateral pool are distributetio broad classes of
investors: equity holders (least subordinate) and notagnsl(remaining higher pri-
ority classes). Periodically, the note holders receive fioflars as pre-determined
coupons from the cash flows generated by the portfolio. Eduilders receive

dividends as long as note holders receive their share ofaoppyments and the
market value of the portfolio passes a certain test, for @@mequiring that port-

folio value divided by capitalization be greater than some-getermined ratio.

At maturity, note holders are entitled to receive principayments before equity
holders. Any residual portfolio value is given to equity thels.

The special purpose vehicle that is setup as a part of a exllaged debt obliga-

tion is often equipped with protective clauses to safegtfadnvestment of senior
note holders. For example, the value, quality, or diversitthe asset pool may be
periodically measured against benchmark values. A fadstl ¢an result in asset
liquidation and dissolution of the SPV. Here, we focus on l&ateral market value

test and, for illustration purposes, consider two oppcsignarios.

Type 1 claim(no collateral test): Some structures incorporate a ceftxibility
in dealing with collateral tests. Equity holders can pdslyt inject additional
capital into the structure; senior note holders may allowagg period for the
tests to be met; assets may be sold until the test requirsrasninet. In order to
allow for such contingencies, suppose no matter how thesvaluhe portfolio
fluctuates, the CDO under consideration is not liquidatettrahche disburse-
ments are collected and distributed at maturity. Pricindeurthis scenario is
discussed in Section 3.

Type 2 claim(market value structure): To avoid the risk that note hadkr not

recover their principal and accrued coupon payments, theact is terminated,
assets are liquidated, and note holders and equity holdersaal out according
to the designated prioritization as soon as the market \adltree portfolio drops

below a threshold level. The threshold level is the par value debt tranche or
any reference asset value. This more general case is déscimsSection 4.

2.2 Recovery and reinvestment

Carey (2002) shows that average credit loss rates have bgaficsintly higher
in the U.S. during recessions when compared to periods ofagoim expansion.
Frye (2003) finds that recovery rates and default rates ogether. Moreover, re-
covery rates are more sensitive to changes in the defauloament (low versus
high default years; business cycles) than default ratamgblves. Despite these
findings, most models focus on default rates and treat ldss ess constant or ex-



ogenous variables. This may be partly due to the fact thaverg rates are implied
in the corporate bond spreads used to calibrate defaulapilities. Moreover, in
intensity-based models, hazard rates can be conveniewityfied to incorporate
correlated recovery rates. In particular, if recovery ifirdml as a fraction of as-
set market value just prior to default, the hazard rate carepkaced with a “loss
adjusted” hazard rate (see, for example, Duffie and Sing)di®99).

In this paper, we treat recovery as an independent exogesoiadle. An equiva-
lent interpretation is that recovery is a fraction of mankaiue. When a collateral
asset defaults, a fractiabf of its market value is lost. We assume, for simplicity,
that L' = L is constant over all the assets in the portfolio. The defauétsset is
sold immediately at1 — L) fraction of its pre-default value. Sale proceeds are used
in one of two ways.

Type 1 claimPost-default proceeds are invested “in kind.” The recpaanount
is used to buy a similar type or class of bond governed by theesdefault
intensity process as that of the original asset. The newlgifased asset is again
subject to future default. This, in fact, is equivalent tmaing multiple credit
events for a single obligor.

Type 2 claim The proceeds from sale of defaulted asset are used to g&crea
shares of the surviving assets in the portfolio or are retackin a similar asset.
We do not make any assumptions regarding exactly how theeegcamount is
allocated except that the new portfolio contains a mix oé#ssot too drastically
different from the original portfolio.

3 Pricein the absence of collateral tests

Subordinate tranches of a collateralized obligation rdéderoall options on more
senior tranches. In this section we confirm that, absenateoll| tests, indeed the
most subordinate tranche is a default-adjusted call optidim collateral assets as
the underlying. Collateral tests introduce additional ctaxity which we shall ad-

dress in the next section. There, the call option analogyadified to reflect the

effect of default losses on the senior notes.

Consider a portfolio of: bonds with default intensities; for i = 1,...,n. We
apply no threshold tests to portfolio value and allow migtigredit events for each
bond. In reality, the bond either remains in the portfoliasoreplaced with another
bond in the same class and of the same credit quality andltdpfapensity as the
original. In either case, the portfolio always consistsh&f same number of bonds
with the same default intensity as the original portfolibefefore, successive credit
events are associated with the same intensity. Thus, thiferent default intensi-
ties can be combined so that the next credit event occumsiatdin(r, 72, . . ., 7,,)



and has intensity\, = >, A\L. We postulate the following dynamics for the ag-
gregate portfolio value process (the motivation for thisuasption is explained in
Section 4.2). FiX<2, G, P) and letV; be the aggregate portfolio value defined under
the empirical probability measui®

‘(iv‘/t = Ut dt+Ut dBt—Lt(dNt—At dt) (1)

t_

where L, > 0 is the loss rate of portfolio value ensuing a credit eventragt.

N, is an F-conditional Poisson process with intensitythat keeps count of the
number of defaultsy; ando; are drift and diffusion coefficients corresponding to
the aggregate income from the portfolio. We assume theynaoeth functions such
that the Equation (1) admits a unique and strong solution.

Proposition 1 Under assumptions of Section 2 for a type 1 claim and dynamics
(1), the value of the most subordinate tranche of the bask@tative is given by

VP = GE (G (Ve — D) | G (2)

whereD is the promised amount to be paid to note holders at fifrend

Gy = exp </Ot Tu du) 3)

with 0 < L; < 1 andr; the spot interest rate. The expectation operdiris
with respect to an equivalent martingale probability meadeir obtained from the
empirical probability measur® via

dpP*
dP

gt:exp{/otﬁudBu—/Ot%%du—i—/otln(lepu)dNu—/Ot/\upudu}

wheref,; is the market price of the diffusion risk apgis the market price of the
jump risk, satisfying

1 _'_pt >0 and Vy — T+ Utﬁt — AtptLt =0. (4)

This proposition states that, under an appropriate chahgeobability measure,
the subordinated basket claim of type 1 can be valued as ap#h on collateral
value discounted using a short rateA proof appears in the appendix.

4 Incorporating a market value test

This section presents a more general model (in the framewbtipe 2 claims
introduced in Section 2) for analyzing barrier-type basigions and collateralized
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debt obligations. In particular, we consider the valuatidrsubordinated pieces
(starting with equity) of a collateralized security thaticuidated when collateral
value fails a threshold test. Introducing a collateral ket the effect of modifying
Equation (2) so that it reflects the possibility of partiartsfer or full liquidation
of assets before maturity. Early asset transfer occurs wb#ateral value falls
below a required level and is a guarantee mechanism to saf¢hue most senior
investors. This guarantee comes at the expense of subtadmeestors and its
inclusion in pricing adds accounting complications but éipgroach is similar to
that described in the previous section. For the remaindéreopaper, we assume
all processes are specified under an equivalent martingzdsuned*.

4.1 CDO default

We refer to the asset transfer or liquidation event as stratbr CDO defaultto
distinguish it from individual collateral defaults oredit eventf obligors repre-
sented in the asset basket. To specify the trigger levelpiteaipitates asset liqui-
dation, consider a reference asset with tinpeice

3

T
Y, — DE* [exp (—/ r. ds>
t

such that at maturityf’, it grows toY; = D. The threshold leveD can be flexibly
chosen on a contract by contract basis. For exampleay be the notional debt
amount. Note holders and equity holders may negotiate onetlet D and the
corresponding reference zero coupon bond. In practic@rtfgio value is below
a certain percentage of capitalization, senior tranchderelmay be repaid to the
extent that the value of the portfolio meets the test. Thigrayement corresponds
to shifting both portfolio value}’, and reference valué;, curves downward. To
give equity holders more ‘cushion,’ the magnitude of thdtgbr the Y curve can
be made greater than thatWéfcurve. Note holders claim the assets i& 7" where

r2inf{t>0:V, <Y}.

is a stopping time of the portfolio value processVlf= Y., they recovelD almost
surely at maturityl".

4.2 Asset pool dynamics

As individual asset values change either independently ogsponse to common
economic or sectoral shocks, the value of the collaterafqr fluctuates. In our

setup, the value of the asset portfolio is affected by ranfloctuations in the state
process and by the number of default events in the obligol. fd®se variables

11



can be simulated to generate portfolio value scenarios iantrn, to evaluate
CDO claims. This procedure can be computationally intenaivé does not pro-
vide a transparent view of the impact of various design patars on the value of
a particular tranche. In this section, we propose an appraton to the dynamics
of the collateral pool that allows faster valuations andlesaway of performing

sensitivity analysis on subordinated structures.

The motivation for our approximating process is as follo&mce defaults in the
asset portfolio are guided by the default intensities oividdial obligations, there
is reason to believe that, especially for diversified pdid&) the remaining uncer-
tainty in portfolio value is mainly due to systemic risk fat .g, interest rate
movements, equity market valuations). Thus, on the agtgepartfolio value may
tend to vary in accordance with general economic conditamjastedby default
events. From this point of view, a diffusion process with mjucomponent linked
to the number of credit events in the portfolio is a naturaice. Thus, we assume
evolution of collateral value can be approximated byRhgrocess

V, = Vi exp (/Ot(ﬂs ~ Looygs 4 /Ot 0. dBS> (1 L) (5)

2 S
with corresponding stochastic differential equation
d‘/; = V;g_(,ut dt—Lt dNt+0't dBt) (6)

wherey, o,, N;, and B, are defined similarly as in Equation (3)Note that the
running number of defaults affects portfolio value throtiggncounting process that
drives V;. In other words, individual default events in the asset ase a direct
bearing on the approximated value of the portfolio. Preiany tests, outlined in
Section 5.1, provide support for this assertion, increpaiith effectiveness as for
diversified asset pools.

The value of the equity piece of the CDO is, then,
V;SUb: E* e_ft Ts ds(VT _ D) 1{T>T} | gt (7)

whereD represents the aggregate claim of note holders at maturity.

Equation (7) can be easily evaluated by Monte Carlo simulatiche underlying
default and portfolio value processes, thus bypassing ¢eel for a full simula-
tion of individual asset dynamics in the collateral poolrtRitio value, as defined

3 An intuitive mathematical argument is as follows: If each defaultable bondasten-
sity affine in the state vecto¥ where each component &f follows an independent square
root diffusion process, then it is well known that bond prices are egptial affine. A first-
order approximation, via the central limit theorem, for the value of a divedsgortfolio is

a lognormal process if the number of the bonds is sufficiently large.

12



above, can itself be considered an aggregate credit scataterprocess (follow-
ing a geometric Brownian motion with jumps or GBMJ, for shorijlicating the
overall credit quality of the CDO where threshold crossingsal credit events as
described, for example, in Avellaneda and Zhu (200BiaBger et al. (2001), and
Esteghamat (2003). The following section presents moréoixgariations of the
above valuation formula under different scenarios of raspdo impeding failure
of the collateral to meet its market value test. The vanegicely on the conditional
independence of default events under the risk neutral me&sand require fewer
simulations to evaluate.

4.3 Valuation

Section 3 developed an intuitive valuation formula basedhenwell-understood
call option-like feature of subordinated debt. In this sBattwe extend this idea
to a more general case by showing that a subordinate trarchbectreated as a
collection ofith-to-default basket derivatives plus a default-adjugtedfolio of
call options. This decomposes subordinate structuressimipler securities with
obvious pricing and hedging benefits.

Assume, momentarily, that the default timeof the CDO coincides with default
of a collateral asset. This restriction is revisited slyottlcan be equated, roughly,
with affording greater flexibility to pool managers in degiwith impending and
predictable shortages or failures of collateral tests.i##attally, to reduce the cost
of default, managers are given a grace period to meet cdlatests before note
holders assume ownership of the assets. Another situatmnpatible with the
coincident default restriction, is that of a collateral poonsisting of high-yield
debt, where individual default events most likely will dorate general economic
uncertainty. Therefore, CDO defaults will tend to be causeldige shifts in credit
yield spreads and not by gradual degradation of portfolioezalf the portfolio
consists of floating rate debt, the effect of price fluctuadiolue to interest rate
movements are mitigated, supporting the coincident-diefaenario.

Denote the-th default time byr;, its hazard process byﬁi), and its default inten-
sity by /\f). Our assumption implies that, for examp{e; = 7, 7,1 = 7} is a null
event. Using the conditional independence of default tigielsls a more explicit
formulation for Equation (7) by conditioning on the evenattthe CDO default
time 7 corresponds to theth default in the portfolio,

n T
V= B P (rg = ) + B |k m ¥ (Ve - D) | P(rey < 1) (®)
=1

with B7,[] = E[e™Jo =% (V= DY Y, 72 Py(u) M, e~ du] and Py(u) :=
Sy ey (1 — e T, e wherej_, j, are sequences of obligors de-

13



faulting before and after default of thyeth entity, respectively. The summation is
taken with respect to all such permutations. Expectafipyl-] denotes value of a
contract promising to pafi — D)* at maturityT” only if the i-th default occurs
after T’ (following the convention of Bielecki and Rutkowski (2002)he second
term in (8) corresponds to the event that collateral defaddt not cause CDO de-
fault. Now, consider the probability part of Equation (8)atis,P* (7 = 7)) =
P*(1 < 75)) — P*(7 < 75-1)). We claim the probability can be rewritten as

e ‘/;i_ —1 *
IED*(TSW):/O IP’*<Y“§(1—L) IT(i)=t> dP* () <t). (9)

(1)

To see this, consider two shadow processes: One to keepdfackypothetical
portfolio value which experiences no loss as a result ofiteabnts; another to
accumulate a loss percentage. Each time there is a defeult, @ompute post-loss
asset value by multiplying the shadow price by the accuradl&ss and check
whether it is above or below the value of the reference bohgost-loss value

is greater thary;, the reference price, let the value process continue. @tbey
declare CDO default. If thé-th default causes structural default, we combine all
the losses at that time by multiplying the shadow price(by- L)*. Since the
probability distribution ofi-th asset default is known, we can calculate

P (r < 1 z/ P (3 <=0 PN e tde o)

The probability just inside the integral has a well-knowralgtic solution when
drift and diffusion parameters are constants. Namely,

p* (‘;’; (1-1L) ) Sy (JVO _ W) e Dmgp (_% i W)
t

Vi Vi
where ® is the cumulative standard normal distribution, = IH(VOG/O)QEH(;‘W,
Ty Ty

"= ”*ﬁ vy = py — ov /2, andvy = py — oy /2.
Proposition 2 Under assumptions of Section 2 for a type 2 claim with the addi-

tional assumption that the CDO default necessarily coineiuith defaults of the
collateral pool, the value of the least senior tranche of CCid@irae zero is

%SUb: Z]P)* (7_(2) — 7_) E*

e o s (V- D)t > /Oo Pj(u) N, e du]
~ JT
j

P (1) < 7)E" { = Jo (v — Dyt (11)

where Pj(u) £ Y5 ; Tleeg (1 — e ") [iej. e ™. P*(rs) = 7) is given by
Equation (10) andP*(T(n) < T) =1- P*( T@) = T)
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Thus, with the collateral test in place, the most suboréiti@nche can be decom-
posed into a default-adjusted call option plus a serigghetio-default securities.

Remark 1 Since the sum value of all tranches must equal the value tdtecdl
(net of fees), the above pricing formula can be used suaedgdo value each
tranche of a CDO by working up from the least to the most serlamc For ex-
ample, to price a mezzanine tranche just above equity,dot® a new reference
curve, 7, such thatZ;y < Yr = D almost surely. If asset valug crosses curve
Z, at a timery; € (0,7], mezzanine and equity are both in default. This new as-
set value process yields the value of the combined mezzanith@quity pieces at
time zero,V™*. Hence we havé' = V™ — VP, Finally, the value of the
remaining senior piece at time zefg, is V¥ = 1, — VgV .

Remark 2 Removing the restriction that structural CDO default coiecwdth a
collateral default has the effect of modifying Equation)(id.account for the pos-
sibility of predictable defaults (formally, accessibldaldt times,i.e., those caused
by gradual decline of portfolio value). Note that the evdmttCDO default is
caused by the diffusion component of portfolio value andetvent that it is caused
by obligor defaults are mutually exclusive. The probapitt CDO default in the
interval between two collateral defaults is, by the stroraylkév property ofl/, on
the set{r;) < 7},

P*(T(Z) <T < T(i-i—l)) = E* []E*{/T(i) [1{O<T<T(1)}H‘ (12)

This says that, conditioning upon the pet-default value ofi/, the probability
that the CDO default occurs before the next collateral detaur be calculated by
the inner expectation. If we denote the value of the leasbs@iece from Propo-
sition 2 byV},

T n
Ve = Vi — B e Jo O (v — Dﬂ D P (7 <7 < Ty, Ty < 7)
=0

with the conventionr, £ 0 andr,,; = 7. However, evaluation of Equation
(12) necessarily involves simulating just after the default of théh asset. Hence
Monte Carlo simulation of sample paths in (7) is more efficiétdawever, the ad-
justment factor is typically small so that Proposition 2 t&wused to bypass extra
simulations.

One can identify simple hedge strategies based on Propodgti Of course, the
equity investor can reduce exposure to the most likely b$sehedging out few
of the most default-prone names. Alternatively, one canrmshe equity tranche
against first default by purchasingl at-to-default swap on the collateral or subset
thereof. The value of this strategy can be deduced from tieengrformula.
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5 Performancetests
5.1 Asset dynamics

How well does our approximation scheme work? First, to thetgerformance
of our assumption regarding portfolio value given in Eqomat{(5), we set up a
hypothetical collateral pool of = 20 zero coupon bonds and simulate the value of
each bond in the portfolio using an intensity based (IB) modlebrrelated default
for both type 1 and 2 claims. Recall for a type 1 claim salesg®ds of defaulted
bonds are reinvested in a similar bond that is subject touttedgain. For a type 2
claim, we specify how the sales proceeds of defaulted boreddistributed in the
formula for portfolio value as follows

n

T 7y

=1

gt] + 1{Ti§t}(1 - E)Pﬂ,— efTi " du) (13)

whereP,, _ is the value of theé-th bond just prior to its default. In other words, once

a bond defaultsie., 7; < t), itis sold at the price ofl — L) times its value just

prior to default and the revenue is invested in a defaut-Bavings account until
maturity.

To simulate the value of the portfolio using Equation (5) vséreated the model
with constant parameteys o and L. Recall L is the fractional loss of portfolio
given a default event; it is nat, the individual collateral loss fraction. The three
parameters were estimated by calibrating to an intensggdbanodel. A summary
of the procedure is described below.

(1) We use a multifactor intensity process for each of twémagds: = 1, ..., 20.
Driessen (2005) finds that a risk-neutral default intensithe form

Ait = Q; + Biyre + Biwve + Vit Fip + vipFor + Gig (14)

captures corporate bond spread behavior well, wheasd v, are short-rate
factors in an affine term structure modél,, and F,; are common factors
to every firm, and; ; is a firm-specific factor. Both the common and firm-
specific factors are assumed to follow independent squatalibusions and
hence specified by a triple:, 0, o) whered X; = k(0 — X;) + o/X, dB; for

X = Fi, F; or G. This model is capable of producing high default correla-
tions.

We follow the specification and calibration result of Yu (3@ for the
above parameters where the short-rate factors are ignoeed’( and g, are
set to zero). Table 1 summarizes our chosen parameter v&ltedit quality
deteriorates as indexincreases. Consistent with observations from Table 3
of Yu (2003a), values ofx, 6, o) for firm specific factors do not change when
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Table 1
Parameter values for a sample basket of 20 bonds with intensity preoafEgquation (14).

K 4 o a N

.030 .0050 .0160

.049 .0050 .0160

.017 .0065 .0170 .0054 5.80 0.78
.018 .0065 .0157 .0056 6.40 1.00
.019 .0065 .0137 .0058 7.20 0.44
.020 .0065 .0137 .0060 8.00 0.70
.021 .0065 .0147 .0062 8.60 0.20
.022 .0065 .0157 .0064 9.20 0.56
.023 .0065 .0137 .0066 9.80 1.00
.024 .0065 .0170 .0068 10.40 0.70
.025 .0065 .0157 .0070 11.00 0.90
10 .026 .0065 .0167 .0072 11.60 1.50
11 .027 .0065 .0157 .0074 12.20 1.60
12 .017 .0065 .0177 .0076 12.80 1.70
13 .018 .0065 .0147 .0078 13.40 1.90
14 019 .0065 .0137 .0080 14.00 2.10
15 .020 .0065 .0147 .0082 14.60 3.60
16 .021 .0065 .0137 .0084 15.20 3.10
17 .022 .0065 .0157 .0086 15.80 4.50
18 .023 .0065 .0167 .0088 16.40 4.90
19 .024 .0065 .0157 .0090 17.00 5.20
20 .025 .0065 .0167 .0092 17.60 4.70

©Co~NOUTAWN R T

credit quality varies but correlation parametegsand~, increase as credit
quality deteriorates. The short rate process is modeledsgsare root diffu-
sion

dr, = (0.0774 — 0.86r,) dt + 0.0348 \/r; dB;. (15)

(2) For each simulation path in Step 1, compute maximumihbkeld estimates
for the three parameters of Equation (5), namglyr, andL.

(3) Take the average of the estimatesfor, and L obtained above and denote
them, &, and L, respectively. The resulting annualized estimates, based
1000 scenarios, are listed in Table 2. Create paths baseduati&u(5) using
i, 6, andL.

(4) Compare the two sets of paths generated in Steps 1 and@BeFigshows
sample average portfolio value paths. For both type 1 ane 2/plaim, the
estimation for each is reasonably accurate. Snapshots of portfolio value dis-
tributions for the two collections (Figure 2) show that tippeoximating pro-
cess provides not only average sample paths but also a eddsalistribution
of portfolio value. This information is useful in managirigkr exposure. The
jump-diffusion approximation may be used for quick sewmgitianalysis and
risk measuremeng(g, computing value-at-risk), eliminating the necessity for
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Fig. 1. Average values of hypothetical collateral pools of zero coupon borataring in
seven years. Price paths are shown for the intensity based modelf @gjuation (14) and
the jump diffusion model (GMBJ) calibrated to intensity based simulationslefty@ot is
for a type 1 claim; the plot on the right is for a type 2 claim.
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Fig. 2. Distribution of portfolio value according to an intensity based model (dabees)
and the maximume-likelihood estimate of the GBMJ model (lighter bars). frastson is

set to 0.5.
Table 2
Parameter estimates for a sample basket of 20 bonds with intensities giy&)by
Type 1 Claim Type 2 Claim
Parameter L =05 L=0.75 L=05 L=0.75
il 0.130113 0.148487 0.127336 0.147311
o 0.010970 0.011989 0.010462 0.011646
L 0.018750 0.027002 0.026595 0.040311
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Fig. 3. Running average of prices generated by the pure intensity based aktd GBu-
lations for a collateral pool consisting of twenty bonds (left plot). Standarmate of price
estimates are shown on the right.

full simulations.

It is important to note that the relative good fit of the aboxpeximent can be
adversely affected by extreme concentration of defaudinsities. For example,
in the extreme case of 20 identical default intensitiesraaye portfolio value can
decline sharply after a certain point. This implies that a GBMocess with a con-
stant growth factor is not sufficient to describe the behavigortfolio value. The

constant-parameter model works well for standard cobétructures.

5.2 Derivative price

In this section, we use Driessen’s multifactor model to @mam equity tranche.
Again, the collateral basket consists of the twenty de#dnldt bonds defined in
Table 1 each maturing in seven years. If there are no defab#stotal value of
the basket reaches one dollar. The contract holder is padioltar if the market
value of the basket does not ever go below a reference cuheereference curve
Y is arbitrarily (but appropriately) specified as a zero coupond whose value
at time0 is $0.287 and grows in seven years $0.70. The loss rate of each bond
is L = 0.75 and the sales proceeds of defaulted bonds are used to perahas
similar bond with the same default intensity. Figure 3 shdwesrunning average
of time zero prices for this contract generated by intensdaged and by GBMJ
simulations with parameters as estimated above. Runningyalf standard errors
of prices are shown on the right. Prices from the two methpdse( simulation
versus approximation) converge to almost the same valu@.dB%s the number
of simulations increase. The GBMJ approximation, howeguires significantly
less computation time. Once jump-diffusion parameterseatenated there is no
need to run an IB-based simulation to find, for example, thegirevalue of a
contract under different reference curve scenarios or eifferent payoffs.

Continuing with the example, suppose either (a) interessrshifts up by 00 basis
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Table 3
Sensitivity analysis for model of Equation (14). Percentage changesdeal) from bench-
mark values are given in parentheses.

~

Price I o L
Benchmark values 0.480 0.148 0.0120 0.0270
Interest rate-100 bp  0.438 (9%) 0.145(2%) 0.0119 1%) 0.0275 £%)
Bond exchange 0.469-6%) 0.148 (-0%) 0.0119¢1%) 0.0297 {0%)
0.5 0.5 0.5
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
o501 015 0.2 Por 005 01 Por— 003 0,05
I o L

Fig. 4. Equity price sensitivity based on 1000 simulations.

point, or (b) the least risky bond (the first bond) is replaleg@ bond with identical
default intensity to the riskiest bond (twentieth bond)c®s shift in response and
new parameters are estimated for the GBMJ approximation@sgrsin Table 3.
The price declines in both cases as expected. Whether arshitdit spreads or a
recomposition of the collateral basket, these changesaslated into a change in
GBMJ parameters. Many factors that would influence the pyieire summarized
by the three parameters given the default intensity pammsmethe shift in price,
as each of the GBMJ parameters changes from its benchmark, valshown in
Figure 4. Likelihood of CDO default is chosen to be relativalyh in this example.
As a result, equity price is especially sensitive to shiftgliift (driven mainly by
changes in individual default intensities).

5.3 Performance of the pricing formula

In the previous section we tested the fit of the GBMJ approxonab full Monte
Carlo simulation. Here, we compare the convergence rateegbtiicing Equation
(7) via GMBJ simulation with that from formula (11) of Sectidn We consider
a simple experiment and choose parameters; darge enough to cause defaults
in the portfolio rather frequently and assume that CDO défautaused only by
jumps. In order to reduce computational time, we select #giar of five bonds
(n = 5) and a constant discount rate= 0.06. The procedure is as follows.

(1) Given intensity parametefs\, A, A3, A4, A5) which we describe below and
the parameters of the portfolio value and the reference poockss

(L, oy, piy, o, 0y ) = (0.4/m,0.095, 0.062, 0.2, 0.15),
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Fig. 5.Running average of prices generated by the pricing formula and bytdireclation

assuming a GBM process with jumps (left plot). The collateral pool corsigige bonds.
Standard errors of price estimates are shown on the right.

(2)

and initial values ofl;, = 0.85 andY, = 0.54, generate scenarios of the
underlying state variabl&, and calculate the value (at time 0) of receiving 1
dollar if portfolio value does not fall below the referenaanll price forl” =

10 years. The terminal payoff ($0 or $1) is discounted backrteetD. Initial
values ofl” andY” are chosen so that the two curves are sufficiently apart from
each other at tim®. The state proces&,, representing general economic
activity or equity market index, is geometric Brownian matwwith drift and
diffusion parameter$.1 and 0.25, respectively, and initial valug&, = 1.
The intensity processes akg,= a; + 3, X; where3,=0.07,3,=0.05,35=0.04,
(4=0.035, 35=0.03,«; = 0 for all .. On average, these values cause around
60% of the bondsi ., 3 bonds) to default.

Estimate the value of the equity tranche for each of trertvethods by using
the same parameter values to simulate asset value dynahiigsiation (5).

(3) Compare the running averages of the prices from the twbaadst

Results of this test procedure are as follows.

e The pricing formula clearly converges faster than direcidation of the GMBJ
value process. This implies that formula-based pricingthagotential to sig-
nificantly reduce computation times compared with diretgnsity based simu-
lation. Figure 5 shows that 500 scenarios are enough fordiadibased pricing
to achieve a standard error of about one percent, while cgemee in case of
GMBJ simulation pricing is much slower.

¢ Since the pricing formulae involve integration to infinighoice of a practical
upper bound can be an important technical issue for accsaeyEquation (8)).
A larger upper bound has two opposite effects on price. Itehpssitive effect
on price by increasing expected payoff; it has a negatiecefiecause the like-
lihood that no collateral default causes a structural deémclines. The two ef-
fects tend to offset each other, thus, diminishing senjtof price convergence
on the choice of upper bound.

e The pricing formula also performed well under a linear twotbr process; =
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Fig. 6. The risk-neutral probability of theh entity defaulting.

G; X1 + v; X2 whereX; and X, are described by

dx; 095X, 2X, 0 dB:
= dt + (16)
dX, 0774 — .026X5 .088+v/ X5 .055y/ X5 dB;

wheref3,=0.07,3,=0.05,3;=0.04,3,=0.035,35=0.03,71=0.05,7,=0.02,5=0.04,
74=0.035, andy;=0.03.

Figure 6 plots the (risk-neutral) probability of defaulttb&ith collateral. There is
an 80% chance that the first default occurs and a 5% chancéthéfth default
occurs by year ten. As a byproduct, the likelihood of CDO difagion and prior
to thei-th collateral default is tabulated in Table 4. The risk4naiyprobability that
the first collateral default will lead to CDO default is onlyaalh 2%; there is a 79%
chance that by the fifth default, the CDO has also defaulted.

Table 4
Likelihood of CDO default prior ta-th collateral default, denoted;

1) (2) ®3) (4) ®)
2.11% 13.68% 37.86% 64.09% 78.96%

6 Conclusion

This paper has touched on three ways of analyzing CDO stestiihese are (1)
pure intensity-based simulations of defaults, (2) simaoiet based on the asset dy-
namics of Section 4.2, and (3) valuation formulae derivedhfthe same dynamics
by assuming conditional independence of default timesgstate factors. The col-
lateral value process of Section 4.2 approximates dynaafitise asset pool and
yields a natural way of decomposing subordinated clainwspottfolios of options
and default derivatives on the underlying baskets of asketsirn, this identifies
possible risk management strategies. The approach alsaige® computational
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advantages over pure intensity-based simulation in aimg)yand designing CDOs.
Outputs and intermediate calculations of the pricing fdemzan also be used as
control variates in analyzing other structures.

Other correlation derivatives can be priced in this framdgwaélthough we have

focused on valuation of equity, it is clear that the framdwpresented here, in-
cluding the market value test specification of Section 4léwa a salient recursive
valuation of tranches above equity. For example, with ggprtced, to find the

value of a mezzanine tranche just above equity, one shiétseference (market
test) bond curve downwards so that its value at maturity aljgp® senior note
holders. The relative value of the mezzanine note is, trmmd relative to equity.

This procedure is repeated until the value of the most séraache is obtained as
the difference between total initial collateral value ane value of all the subordi-
nate portions (including all the intermediate tranches equity). In this fashion,

one computes all relative prices of tranches, enablinguati@n of each tranche
relative to others.

Section 5 compared a direct simulation of the GBMJ approximgairocess against
the pricing formulae of Section 4. The standard error of Wakions decreases
rapidly with each added simulation run when using the pgdormula, although
each run is slowet. Moreover, as a byproduct, the pricing formula provides: (a)
value ofith-to-default securities, and (b) probabilitiés(r;) = ) that theith col-
lateral default precipitates CDO default, leading to asgatdation. Both items are
valuable sources of information in risk management. Comsideexample, a fund
manager who has invested in a number of notes and equityhearaf different
CDOs. In order to reduce the prospect of concentrated dsfatiich can result in
sudden and sustained reductions in fund value, the manaagewsh to diversity
the fund’s assets in order to spread potential losses og@mtbstment horizon. The
above information can be used to adjust portfolio alloceti(as well as tune CDO
structures) to reduce the chance of large simultaneousdo3#is information is
not readily obtained from direct simulations.

A Proof of Proposition 1

By Girsanov's theorem, proce#¥ = B; — [ 3, du follows a Brownian motion for
t € [0, 7] underP*. Note that the jump direction is negative. With this pregiarg
we deflate the portfolio value procelgswith the price of the money market security

4 Run times were about the same order of magnitude for the 600 versusisafatons
shown using ni&e coding.
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G from Equation (3) to obtaift; £ V,;G; ' which has dynamics

dV; =V, (v, — r,) dt + 0, dB; — Ly AN, + L), dt)
=V, ((y — ) dt + 0, dB] + 045y dt — Ly ANy + (1 + py) LA Ot — pe Ly Ay)
=V, (0:dB} — Ly ANy + (1 4 py) LA, dt)
= Vi (0,dB" — Ly(dN, — X! dt)) . (A.1)

The third equality is due to (4) and in the last equalfy= (1 + p;)),. Since the
intensity of V; under the measur®* is \; and the compensated Poisson process
— Jo \r du is P*-martingale, Equation (A.1) shows thtis a P*-martingale

with respect tq;. Hence a pricing formula for the equity portion of the clasn i

VS = G EF (G (Ve — D)t | G

whereD is the note holder’s promised principal.
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