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Abstract

We present a method for pricing structured CAT bonds based on utility indifference pricing. The CAT
bond considered here is issued in two distinct notes called tranches, specifically senior and junior
tranches each with its own payment schedule. Our contributions to the literature of CAT bond pric-
ing are two-fold. First, we apply indifference pricing to structured CAT bonds. We find a price for the
senior tranche as a relative indifference price, that is, relative to the price of the junior tranche. Alterna-
tively, one could take the approach that the senior tranche is priced first and the price of the junior tranche
is relative to that. Second, instead of simply supposing that the “not-issue-a-CAT-bond” strategy of the
reinsurer is to do nothing, we suppose that the reinsurer reduces its risk by reinsuring proportionally less
of the claims. We assume the reinsurance claims follow a (Poisson) jump-diffusion process.

Key Words: Catastrophe (CAT) bond, structured derivative security, indifference price, exponential
utility, jump diffusion, reinsurance strategy
JEL Classification: G22, G13

1 Introduction

Catastrophe bonds (CAT bond, thereafter) are one of the most important insurance-linked financial secu-
rities. Investors purchase CAT bonds from the issuer, a special purpose vehicle that simultaneously enters
into a reinsurance contract with a reinsurance company. The coupon and principal payments depend on the
performance of a pool or index of natural catastrophe risks. The default of a CAT bond occurs when catas-
trophic events (such as earthquakes, hurricanes and floods) of some degree occurs. In a simple transaction,
if the default occurs, no cash is paid to the investor thereafter. Otherwise, the coupons and principal are paid
out to the buyer of the CAT bond. Due to the magnitude of losses caused by a large catastrophe, a CAT bond
is an innovative financial instrument by which a reinsurance company transfers the risk of a possible large
payment caused by catastrophic events to the capital market.

∗Corresponding author. Tel:+81-75-753-3430; Fax:+81-75-753-3492. Department of Mathematics, University of Michi-
gan, Ann Arbor, MI 48109, USA / Graduate School of Economics, Kyoto University, Kyoto, 606-8501, Japan. Email:
egami@econ.kyoto-u.ac.jp.

†Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, Email: vryoung@umich.edu.

1



The recent paper by Lee and Yu [5] cites McGhee [6] regarding the size of the CAT bond market,
namely a total issuance of $1.22 billion in 2002 and $1.73 billion in 2003. According to Swiss Re, 1 “the
market is growing: the volume of bonds outstanding has steadily increased since 1997 to a current level of
approximately USD 3 billion.” Due to the recent event of Hurricane Katrina in 2005, it can be reasonably
assessed that the market size of a new issuance is around $3-4 billion in recent years. To address diverse
investors with different risk-return preferences, a structured CAT bond is usually issued in the market. In
these transactions, CAT bonds are issued in separate notes (called “tranches”) with different payment sched-
ules and seniority. Senior tranches usually have investment grades from the rating agencies since the holders
of senior tranches have higher priority of being paid. On the other hand, junior tranches have speculative
grades, but the higher risk is compensated by larger coupon payments. See, for example, Shimpi [9] (page
179) for a transaction completed by Swiss Re.

In a broad sense, CAT bonds are categorized as catastrophe derivative securities. In the literature, there
are several papers with respect to catastrophe derivatives. Geman and Yor [3] analyze catastrophe options
with payoff (L(T ) − K)+ where L is the aggregate claim process modeled by a jump-diffusion process.
Dassios and Jang [2] use a doubly-stochastic Poisson process for the claim process to price catastrophe
reinsurance contract and derivatives. Jaimungal and Wang [4] study the pricing and hedging of catastrophe
put options (CatEPut) under stochastic interest rates with a compound Poisson process. Among them, only
few papers directly attempt to price CAT bonds: Cox and Pedersen [1] price a CAT bond under a term
structure model together with an estimation of the probability of catastrophic events. Lee and Yu [5] adopt
a structural approach borrowed from the literature of credit risk modeling in corporate finance (see Merton
[7] for the first model) to value the reinsurance contract. They allow the reinsurer to transfer the risk to
the capital market via CAT bonds and, in effect, to reduce the risk of the reinsurer’s default risk. Since the
payments from CAT bonds cannot be replicated by the ordinary types of securities available in financial
markets, the pricing has to be done in the incomplete market model.

One common technique used for pricing in incomplete markets is indifference pricing via expected util-
ity. Young [10] finds indifference prices under a stochastic interest rate for the case where investors receive
unity if a catastrophe does not occur and 0 otherwise; see Young [10] for further references on indifference
pricing. Our paper extends the result of [10] by incorporating a more complex payment structure. Namely,
the CAT bond is issued in two tranches, specifically senior and junior tranches each with its own payment
schedule. We price each tranche in the framework of “relative” indifference pricing. To our knowledge, this
is the first paper that deals with a structured catastrophe derivative.

The remainder of the paper is organized as follows: In Section 2, we assume that reinsurance claims
follow a (Poisson) jump-diffusion process, so the corresponding surplus process of the reinsurer also follows
a jump-diffusion because we ignore investment earnings. We also describe the structured CAT bond that the
reinsurer will issue in order to reduce its risk. In Section 3, we present our method for pricing the CAT bond;
we rely on utility indifference pricing. In Section 4, we demonstrate our method with a number of examples
while assuming that utility is exponential. First, we assume that the claims only follow a diffusion process;
that is, we assume that there is no jump risk. Second, we assume that there is only a jump risk in the claim

1http://www.swissre.com/INTERNET/pwswpspr.nsf/
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process, with no diffusion in the claim process nor the index process. We end Section 4 with a numerical
example in which there is both jump and diffusion risk in the claim process. Section 5 ends the paper.

2 Problem Description

Assume that a reinsurer faces a reinsurance contract with claim process

Ct = at− σWt +
Nt∑

i=0

Yi, C0 = 0, (2.1)

in which a and σ are positive constants, and Y1, Y2, . . . are identically distributed positive random variables
with common distribution F (dy). W is a Brownian motion, N is a Poisson process with a constant arrival
rate λ, and N is independent of the Y ’s and of the Brownian motion W . The Y ’s represent infrequent
claims, while we let the Brownian motion approximate the frequent claims.

The reinsurer receives insurance premiums continuously at the constant rate (1 + θ)(a + λEY ) with
a relative risk loading of θ > 0. We ignore investment earnings of the reinsurer. Therefore, the reinsurer’s
surplus process X has state space I = R with dynamics

Xt = x0 + (1 + θ)(a + λEY )t− at + σWt −
Nt∑

i=0

Yi =: x0 + µt + σWt −
Nt∑

i=0

Yi, (2.2)

in which
µ , (1 + θ)λEY + θa, (2.3)

and x0 is the initial surplus assigned to this contract. Note that there is positive probability that the process
X hits the ruin state 0. However, we assume that the reinsurer has a large capital (besides x0) and this
particular reinsurance contract takes up only a small percentage of the total wealth of the reinsurer. In other
words, even if the process X hits the zero state, the reinsurer has enough capital so that it does not fall into
insolvency.

There are two ways for the reinsurer to reduce its risk: First, the reinsurer could accept proportionally
less reinsurance with correspondingly proportionally less premium, so that the claim and surplus processes
become, respectively,

Cξ
t = ξCt = ξat− ξσWt + ξ

Nt∑

i=0

Yi, (2.4)

and

Xξ
t = x0 + ξµt + ξσWt − ξ

Nt∑

i=0

Yi. (2.5)

Alternatively, the reinsurer could issue a catastrophe risk bond, or CAT bond, to hedge possible large
claims caused by catastrophic events. The purchasers of CAT bonds, in turn, receive amounts at the maturity
time T , contingent upon the occurrence of these events. For example, Young [10] finds indifference prices
under a stochastic interest rate for the case where investors receive unity if a catastrophe does not occur and
0 otherwise.
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In this paper, we handle the case where the CAT bonds are issued in two tranches, senior and junior
tranches, to appeal to investors with different risk preferences. To simplify the argument, we assume that the
two tranches are both zero-coupon bonds. The actual claims C that the reinsurer experiences are measured
against an index process R whose dynamics are given by

Rt = R0 + ρt− ζWt (2.6)

with known positive constants ρ, ζ, and R0. Note that for simplicity, we assume the Brownian motion in this
index process is identical to the one in (2.1). We assume that R is a standard against which the experience
of the reinsurer can be measured. For example, it might represent the experience of all reinsurers in the
same line of business as C. Alternatively, it could be a financial index that “smoothes” the experience C.
Therefore, we assume that ζ ≤ σ; that is, R’s diffusion is less volatile than C’s.

To create a more realistic index, one could allow the diffusion in (2.6) to be correlated with the one in
(2.1), instead of identical to it. Also, one could allow for jumps, perhaps by using the same Poisson process
as in (2.1) with the jump size some fraction of Y . The differential equations in Section 3 below would retain
the same form, although the details would change.

Define a stopping time, which we call the critical time, by

τ , inf{t > 0 : Ct > Rt} (2.7)

to indicate the first time that the claim process C becomes greater than the index process R. Note that the
stopping time τ might be infinite, but this is not a problem for us because we consider a finite time horizon
T .

To simplify the notation, we define an auxiliary process Z by

Zt , Ct −Rt = z0 + (a− ρ)t− (σ − ζ)Wt +
Nt∑

i=0

Yi, (2.8)

with Z0 = C0 − R0 = −R0 =: z0 < 0. The critical time τ can be rewritten as τ = inf{t > 0 : Zt > 0}.
See Rolski et al. [8] for references concerning the problem of ruin for a classical surplus process perturbed
by a Brownian motion, as is the process Z.

If τ ≤ T , then the payoff to the junior tranche becomes zero, and the payoff to the senior tranche at
time T is a function of the overshoot Zτ = Cτ − Rτ . Recall that the claim process involves a compound
Poisson process that may cause an overshooting (namely, Zτ > 0). The larger the value of Zτ , the less the
available funds for paying the investors of the CAT bonds; thus, we set the payout function to be a decreasing
function of the overshoot. On the other hand, if C does not hit R (that is, τ > T ), then both senior and junior
tranches receive 1 at time T because there are more funds available to pay investors due to lower insurance
claims. Specifically, we define the payoff function for the senior tranche by





c(Zτ ), τ ≤ T,

1, τ > T,
(2.9)
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in which c is a piecewise linear function of the form

c(z) =





c1 − c2 · z, 0 ≤ z ≤ c1/c2,

0, otherwise.
(2.10)

with 0 < c1 ≤ 1 and c2 > 0. The constants c1 and c2 control the riskiness of the senior tranche of CAT
bond. The payoff to the junior tranche is given by





0, τ ≤ T,

1, τ > T.
(2.11)

In the next section, we describe our scheme for pricing these junior and senior tranches via indifference
pricing.

3 Indifference Pricing

We price this structured CAT bond via the following procedure. First assume that the reinsurer evaluates
risk according to expected utility theory with an increasing, concave, smooth utility function u : R→ R.

0. As an auxiliary functional, consider

W (x, t; ξ) , E[u(Xξ
T )

∣∣Xξ
t = x], (3.1)

in which Xξ is given by

Xξ
T = x + ξµ(T − t) + ξσ(WT −Wt)− ξ

NT∑

i=Nt+1

Yi, (3.2)

and ξ ∈ [0, 1]. W is the utility of terminal wealth of the reinsurer if the reinsurer reduces its coverage
to the proportion ξ. The function W solves the partial differential equation (pde)





Wt + ξµWx + 1
2ξ2σ2Wxx − λ

∫∞
0 (W (x, t)−W (x− ξy, t))F (dy) = 0,

W (x, T ; ξ) = u(x),

with the constant µ defined in (2.3).

1. In the absence of issuing CAT bonds, the reinsurer proportionally reduces its risk; that is, it chooses
some number ξ ∈ [0, 1] to maximize its expected utility of terminal wealth. Specifically, it solves

V j(x, t) , sup
ξ∈[0,1]

W (x, t; ξ). (3.3)

Let ξ∗ denote the maximizer of the right-hand side of (3.3). Note that ξ∗ might depend on x and t.
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2. Because a CAT bond has the effect of passing part of the reinsurer’s exposure (to the catastrophe risk)
to a third party (namely, the bond holders), an alternative way to reduce the exposure is to issue a CAT
bond while fully reinsuring the cedent’s claim. The expected utility of the seller of α > 0 units of the
junior tranche of the CAT bond is

U j(x, z, t; α) , E
[
u

(
XT − α1{τ>T}

) ∣∣Xt = x,Zt = z, max
0≤s≤t

Zs < 0
]

. (3.4)

Here, XT is given by (3.2) with ξ = 1. The value function U j is the unique solution of the following
integro-differential equation for (x, z, t) ∈ R× R− × [0, T ], in which we suppress arguments,





U j
t + µU j

x + (a− ρ)U j
z + 1

2σ2U j
xx − σ(σ − ζ)U j

xz + 1
2(σ − ζ)2U j

zz

−λ
∫ −z
0

(
U j(x, z, t)− U j(x− y, z + y, t)

)
F (dy)

−λ
∫∞
−z

(
U j(x, z, t)−W (x− y, t)

)
F (dy) = 0,

U j(x, 0, t; α) = W (x, t),

U j(x, z, T ; α) = u(x− α),

(3.5)

in which W (x, t) = W (x, t; ξ = 1). The boundary condition U j(x, 0, t; α) = W (x, t) holds when
σ > 0 or ζ > 0. If σ = 0 = ζ, then we have only one source of randomness, namely, the compound
Poisson process, and we can reduce the dimensionality of the problem. See Section 4.2 for an example
in which we consider this case.

3. The indifference price hj = hj(x, z, t;α) of α units of the junior tranche solves

V j(x, t) = U j(x + hj , z, t; α). (3.6)

We call hj the indifference price because the reinsurer is indifferent between reducing its risk by
selling proportionally less reinsurance or by issuing α units of the junior tranche of the CAT bond and
receiving hj in exchange.

4. To address more risk-averse investors, the reinsurer issues β units of the senior tranche, additional to
the junior tranche. The expected utility of the reinsurer in this case is

U s(x, z, t; α, β) , E
[
u

(
XT − βc(Zτ )1{τ≤T} − (α + β)1{τ>T}

) ∣∣Xt = x,Zt = z
]
, (3.7)

in which the amount c(Zτ ) is paid at time T , with the function c defined in (2.10) and with Z following
the dynamics in (2.8). As in (3.4), XT is given by (3.2) with ξ = 1. For (x, z, t) ∈ R× R− × [0, T ],
one can show that U s uniquely solves




U s
t + µU s

x + (a− ρ)U s
z + 1

2σ2U s
xx − σ(σ − ζ)U s

xz + 1
2(σ − ζ)2U s

zz

−λ
∫ −z
0 (U s(x, z, t)− U s(x− y, z + y, t))F (dy)

−λ
∫ c1/c2−z
−z (U s(x, z, t)−W (x− y − βc(z + y), t))F (dy)

−λ
∫∞
c1/c2−z (U s(x, z, t)−W (x− y, t))F (dy) = 0,

U s(x, 0, t;α, β) = W (x, t),

U s(x, z, T ;α, β) = u(x− (α + β)).

(3.8)
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Again, the boundary condition U s(x, 0, t;α, β) = W (x, t) holds when σ > 0 or ζ > 0.

5. Alternatively, instead of issuing the senior tranche, the reinsurer can reduce its reinsurance exposure
proportionally, say, to π ∈ [0, 1] of the original risk C on top of the already issued junior tranche.
Expected utility in this case becomes

J(x, z, t; α, π) , E
[
u(Xπ

T − α1{τ>T})
∣∣Xπ

t = x,Zt = z
]
, (3.9)

where Xπ
T is given in (3.2) with ξ = π. For (x, z, t) ∈ R× R− × [0, T ], J uniquely solves




Jt + πµJx + (a− ρ)Jz + 1
2π2σ2Jxx − πσ(σ − ζ)Jxz + 1

2(σ − ζ)2Jzz

−λ
∫ −z/π
0 (J(x, z, t)− J(x− πy, z + πy, t))F (dy)

−λ
∫∞
−z/π (J(x, z, t)−W (x− πy, t))F (dy) = 0,

J(x, 0, t;α, π) = W (x, t),

J(x, z, T ;α, π) = u(x− α).

(3.10)

As before, the boundary condition J(x, 0, t;α, π) = W (x, t) holds when σ > 0 or ζ > 0. Then, we
suppose the insurer finds the value of π to maximize J . We define the corresponding value function
V s by

V s(x, z, t;α) , sup
π∈[0,1]

J(x, z, t;α, π). (3.11)

6. Finally, the relative indifference price hs = hs(x, z, t; α, β) of β units of the senior tranche of the
CAT bond solves

V s(x + hj , z, t; α) = U s(x + hj + hs, z, t;α, β). (3.12)

Recall that hj is calculated in the previous steps. We call hs a relative indifference price because it is
the indifference price of the senior tranche in the presence of, or relative to, the junior tranche.

In the next section, we consider the case of exponential utility under three conditions. First, we assume
that the only source of randomness is the diffusion; second, we assume that the only source of randomness
is the compound Poisson process. Finally, we present a numerical example in which the claim process has
both a diffusion and a compound Poisson component.

4 Indifference Pricing Under Exponential Utility

Throughout this section, we assume that the utility function u is given by u(x) = −e−ηx for some η > 0.
In Section 4.1, we assume that the only source of randomness is the diffusion. In this case, we find explicit
solutions to W , V j , U j , U s, and V s; however, the indifference prices hj and hs are only available implicitly.
For that reason, we also compute the indifference prices numerically for a specific example.

In Section 4.2, we assume that the only source of randomness is the compound Poisson process. In that
case, we focus our computations on the case for which the jump size is constant. Finally, in Section 4.3, we
give a numerical example in the presence of both a diffusion and a compound Poisson process.
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4.1 Diffusion Only

In this section, we assume that λ = 0; that is, there is no source of randomness from the compound Poisson
process. In this case, given Xξ

t = x, we can determine the auxiliary process Z from x = x0 + ξµt + ξσWt

as follows:

Zt = z0 + (a− ρ)t− (σ − ζ)Wt

= z0 + (a− ρ)t− (σ − ζ)
[
x− x0

ξσ
− µ

σ
t

]

=
[
z0 − (σ − ζ)

x− x0

ξσ

]
+

[
(a− ρ) +

µ

σ
(σ − ζ)

]
t. (4.1)

Therefore, we only need to consider the one state variable Xξ
t = x, instead of both Xξ

t = x and Zt = z.

The critical time τ occurs when Zt > 0 or when x < x̃(t; ξ), in which x̃ is defined by

x̃(t; ξ) , x0 + z0
ξσ

σ − ζ
+ ξ

[
(a− ρ)

σ

σ − ζ
+ µ

]
t. (4.2)

When x < x̃(t; ξ) occurs (or actually when x first equals x̃(t; ξ) because of the presence of the diffusion
process), then the payoff to the junior tranche goes from α to 0, and the payoff to the senior tranche goes
from β to c1β ≤ β.

In what follows, we determine the various functions given in the steps in Section 3 for this special
case. After that, we present a numerical example in which we compute indifference prices for the junior and
senior tranches.

0. The value function when insuring proportion ξ of the claims, namely W , is given by

W (x, t; ξ) = − exp
(
−ηx−

(
ξµη − 1

2
ξ2σ2η2

)
(T − t)

)
. (4.3)

1. The maximizer of W is ξ∗ = 1 if µ
σ2η

> 1; otherwise, ξ∗ = µ
σ2η

. It follows that the value function
under the optimal proportional amount to insure, namely V j , is given by

V j(x, t) =




− exp

(−ηx− (
µη − 1

2σ2η2
)
(T − t)

)
, if µ

σ2η
> 1,

− exp
(
−ηx− 1

2

(µ
σ

)2 (T − t)
)

, otherwise.
(4.4)

2. The value function when issuing the junior tranche, namely U j , solves the following pde:




U j
t + µU j

x + 1
2σ2U j

xx = 0,

U j(x̃(t), t; α) = W (x̃(t), t; ξ = 1) = − exp
(−ηx̃(t)− (

µη − 1
2σ2η2

)
(T − t)

)
,

U j(x, T ; α) = −e−η(x−α),

(4.5)

in which we write x̃(t) for x̃(t; ξ = 1). Under the assumption that

a− ρ

σ − ζ
+ ση > 0, (4.6)
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the solution of (4.5) is given by

U j(x, t; α) = − exp
(
−ηx̃(T ) +

(
η
σ(a− ρ)
σ − ζ

+
1
2
σ2η2

)
(T − t)

)
Ũ j(x, t; α), (4.7)

in which Ũ j is given by

Ũ j(x, t;α) = e−(x−x̃(t))η

{
eηα + (1− eηα)Φ

(√
T − t

(
a− ρ

σ − ζ
+ ση

)
− x− x̃(t)

σ
√

T − t

)}

+ e
(x−x̃(t))

�
2(a−ρ)
σ(σ−ζ)

+η
�
(1− eηα)Φ

(
−
√

T − t

(
a− ρ

σ − ζ
+ ση

)
− x− x̃(t)

σ
√

T − t

)
, (4.8)

with Φ the cumulative distribution function of the standard normal random variable. If the inequality
(4.6) does not hold, then we have to replace some of the expressions in (4.7) by their absolute values,
but the general form of U j will still be valid.

3. To solve V j(x, t) = U j(x + hj , t; α) for the indifference price of the junior tranche hj = hj(x, t; α),
we must use numerics due to the highly nonlinear nature of x in the expression for U j . We present a
numerical example at the end of this subsection.

4. We can write the value function when issuing the senior tranche, namely U s, in terms of U j from Step
2 as follows:

U s(x, t; α, β) = E
[
u

(
XT − βc11{τ≤T} − (α + β)1{τ>T}

) ∣∣Xt = x
]

= eηβc1 E
[− exp

{−η
(
XT − (α + β(1− c1))1{τ>T}

)} ∣∣Xt = x
]

= eηβc1 U j(x, t; α + β(1− c1)). (4.9)

5. The value function of the issuer of the junior tranche who reduces its reinsurance exposure propor-
tionally to π, namely J , solves the following pde:





Jt + πµJ + 1
2π2σ2Jxx = 0,

J(x̃(t; π), t) = W (x̃(t; π), t;π) = − exp
(−ηx̃(t; π)− (

πµη − 1
2π2σ2η2

)
(T − t)

)
,

J(x, T ) = −e−η(x−α).

(4.10)

Under the assumption in (4.6), one can show that J is given by

J(x, t; α, π) = − exp
(
−ηx̃(T ; π) +

(
πη

σ(a− ρ)
σ − ζ

+
1
2
π2σ2η2

)
(T − t)

)
J̃(x, t; α, π), (4.11)

in which J̃ is given by

J̃(x, t; α, π) = e−(x−x̃(t;π))η

{
eηα + (1− eηα)Φ

(
π
√

T − t

(
a− ρ

σ − ζ
+ ση

)
− x− x̃(t;π)

πσ
√

T − t

)}

+ e
(x−x̃(t;π))

�
2(a−ρ)
σ(σ−ζ)

+η
�
(1− eηα)Φ

(
−π
√

T − t

(
a− ρ

σ − ζ
+ ση

)
− x− x̃(t; π)

πσ
√

T − t

)
.

(4.12)

Then, one finds π∗ ∈ [0, 1] to maximize J , and the corresponding value function is V s.
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6. Finally, to solve V s(x + hj , t; α) = U s(x + hj + hs, t; α, β) for the relative indifference price of the
senior tranche hs = hs(x, t; α, β), we must use numerics due to the highly nonlinear nature of x in
the expression for U s.

Often under exponential utility, indifference prices are independent of the value of the wealth (or sur-
plus) process; see, for example, Young [10]. However, our prices of the CAT bonds depend on the value
of the surplus process because the payment schedule of the tranches depends on surplus process X via the
claim process C and how it relates to the index process R. For the same reason, as the risk parameter
η → 0+, the indifference prices cannot be express as expectations of the payouts of the CAT bonds. For
example, one can show that as η → 0+, the price for the junior tranche solves the following non-linear
equation:

1
α

x̃(t) = Φ
(√

T − t
a− ρ

σ − ζ
+

x + hj − x̃(t)
σ
√

T − t

)
− Φ

(√
T − t

a− ρ

σ − ζ
− x + hj − x̃(t)

σ
√

T − t

)
. (4.13)

To end this section, we present a numerical example in which we compute indifference prices for the
junior and senior tranches of a CAT bond when diffusion is the only source of randomness. The bond
parameters are (T, α, β, c1) = (10, 1, 1, 0.3). For stochastic processes C and R, we use (a, ρ, θ, σ, ζ) =
(0.3, 0.15, 0.1667, 0.275, 0.225). For the exponential utility, η = 0.25. In this case, it turns out that ξ∗ = 1
and π∗ = 1. Hence, the function V s identically equals U j . The figures below show (a) the value functions
V j , U j = V s, and U s, (b) the indifference price of junior tranche, hj and the relative indifference price
of senior tranche, hs, all as functions of the current surplus value, x. We evaluate the functions at t = 1,
with x0 = 2 and z0 = −2. For the junior price, we observe that Xξ

t = x increases, hj(x, 1) increases and
becomes flat at hj(x, 1) = 1. It is because Zt = z decreases when x increases (see (4.1)) and accordingly
the probability of CAT bond default gets smaller. However, hj(x, 1) is in essence insensitive to the value of
x. In case of the senior price, it is effectively one, that is, hs(x, 1) = 1 for all x > 0.

4.2 Compound Poisson Process Only

In this section, we assume that σ = ζ = 0; that is, there is no source of randomness from the diffusion. In
this case, as in Section 4.1, given Xξ

t = x, we can determine the auxiliary process Z from x = x0 + ξµt−
ξ
∑Nt

i=1 Yi as follows:

Zt = z0 + (a− ρ)t +
Nt∑

i=1

Yi = z0 + (a− ρ)t +
[
µt− x− x0

ξ

]
=

[
z0 − x− x0

ξ

]
+ (a− ρ + µ)t.

(4.14)

Therefore, we only need to consider the one state variable Xξ
t = x, instead of both Xξ

t = x and Zt = z.
The critical time τ occurs when Zt > 0 or when x < x̄(t; ξ), in which x̄ is defined by

x̄(t; ξ) , x0 + ξ(z0 + (a− ρ + µ)t). (4.15)

Additionally, in this section, we assume that the jumps are of a fixed size, that is, F (dy) = δydy for
some fixed y ∈ R+.
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Figure 1: (a) the value functions V j (solid black), V s (dashed black), U j (red, same as Vs) and Us (bold purplle), (b)
junior tranche price at t = 1, hj(x, 1).

0. The value function when insuring proportion ξ of the claims, namely W , is given by

W (x, t; ξ) = − exp(−ηx + b(ξ)(T − t)), (4.16)

where b(ξ) is given by

b(ξ) = −ξµη + λ(eξηy − 1). (4.17)

1. Next, we find V j(x, t) = supξ∈[0,1]−e−ηx+b(ξ)(T−t). The optimal proportion retained, namely ξ∗, is
the value of ξ that minimizes b(ξ). Simple differentiation with respect to ξ gives us b′(ξ) = −µη +
ληyeξηy with b′′(ξ) > 0 for all ξ ∈ [0, 1]. Hence, there are three possible cases: (1) ξ∗ = 0 if
ln

(
µ
λy

)
≤ 0, (2) ξ∗ = 1

ηy ln
(

µ
λy

)
if 0 < ln

(
µ
λy

)
< ηy, and (3) ξ∗ = 1 if ln

(
µ
λy

)
≥ ηy. The
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resulting V j is given by

V j(x, t) =





−e−ηx, if ln
(

µ
λy

)
≤ 0,

−e
−ηx+

h
λ
�

µ
λy
−1
�
−µ

y
ln
�

µ
λy

�i
(T−t)

, if 0 < ln
(

µ
λy

)
< ηy,

−e−ηx+(λ(eηy−1)−µη)(T−t), if ln
(

µ
λy

)
≥ ηy.

(4.18)

2. The junior tranche pays zero if a jump of size y takes Xt− = x and moves it to Xt = x−y < x̄(t; ξ =
1) = (x0 + z0) + (a− ρ + µ)t, or equivalently,

y > x− (x0 + z0)− (a− ρ + µ)t = x− x̄(t), (4.19)

in which we write x̄(t) = x̄(t; ξ = 1). Accordingly, for any jump distribution F (dy), equations (3.4)
and (3.5) become

U j(x, t; α) = E
[
u

(
XT − α1{τ>T}

) ∣∣Xt = x, max
0≤s≤t

Xs ≥ x̄(t; ξ = 1)
]

(4.20)

and




U j
t + µU j

x − λ
∫ x−x̄(t)
0

(
U j(x, t)− U j(x− y, t)

)
F (dy)

−λ
∫∞
x−x̄(t)

(
U j(x, t)−W (x− y, t)

)
F (dy) = 0,

U j(x, T ; α) = u(x− α),

(4.21)

respectively. In the particular case of F (dy) = δydy, (4.21) becomes




U j
t + µU j

x − λ(U j(x, t)− 1{y≤x−x̄(t)}U j(x− y, t)− 1{y>x−x̄(t)}W (x− y, t)) = 0,

U j(x, T ; α) = u(x− α),
(4.22)

Since (4.22) does not allow an explicit solution, we resort to numerics to solve this equation.

3. To solve V j(x, t) = U j(x + hj , t; α) for the indifference price of the junior tranche hj = hj(x, t; α),
we must use numerics due to the nature of the equation for U j , namely (4.21). We present a numerical
example at the end of this subsection.

4. In the pure jump case for a jump distribution F (dy), the value function when issuing the senior
tranche, namely U s, solves the following integro-differential equation:





U s
t + µU s

x − λ
∫ x−x̄(t)
0 (U s(x, t)− U s(x− y, t))F (dy)

−λ
∫ c1/c2+x−x̄(t)
x−x̄(t) (U s(x, t)−W (x− y − βc(−x + x̄(t) + y), t))F (dy)

−λ
∫∞
c1/c2+x−x̄(t) (U s(x, t)−W (x− y, t))F (dy) = 0,

U s(x, T ; α, β) = u(x− (α + β)).

(4.23)

In the particular case of F (dy) = δydy, this equation simplifies appropriately.
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5. The value function of the issuer of the junior tranche who reduces its reinsurance exposure propor-
tionally to π, namely J , solves the following pde:




Jt + πµJx − λ
∫ (x−x̄(t;π))/π
0 (J(x, t)− J(x− πy, t))F (dy)

−λ
∫∞
(x−x̄(t;π))/π (J(x, t)−W (x− πy, t))F (dy) = 0,

J(x, T ;α, π) = u(x− α).

(4.24)

Then, one finds π∗ ∈ [0, 1] to maximize J , and the corresponding value function is V s.

6. Finally, to solve V s(x + hj , t; α) = U s(x + hj + hs, t; α, β) for the relative indifference price of the
senior tranche hs = hs(x, t; α, β), we must use numerics.

We present a numerical example in the next section in which both diffusion and jump components are
incorporated.

4.3 Diffusion and Compound Poisson Process

In this section, we present a numerical example, in which we use the (numerical) model in Section 4.1 and
add a jump component. Specifically, assume that the bond parameters are (T, α, β, c1, c2) = (10, 1, 1, 0.3, 1).
For stochastic processes C and R, we use (a, ρ, θ, σ, ζ) = (0.3, 0.15, 0.1667, 0.275, 0.225). For the expo-
nential utility, η = 0.25. Note that the parameters up to this point are exactly the same as in the diffusion-
only case. For this example, we evaluate at t = 0 with z0 = −4 to obtain the initial prices hj(x, z0, 0) and
hs(x, z0, 0) as function of initial surplus X0 = x. Here we write X0 by x to make it clear that our indiffer-
ence prices are plotted as functions of the initial surplus level. At t = 0, we can treat x and z independently
for the purpose of looking into the pure effects of additional jump risk on the prices for a given value of the
index process R, that is z0 = −R0 = −4. At this level, if there is no jump component (λ = 0), both junior
and senior prices are hj(x, z0, 0) = hs(x, z0, 0) = 1 for all X0 = x > 0.

Now we add jump parameters λ = 0.02 and constant jump size of y = 1. In this case, it also turns out
that ξ∗ = 1 and π∗ = 1. Hence the function V s identically equals U j . The pictures in Figure 2 below at the
last page are (a) the utility functions V j , V s = U j and U s and (b) the indifference prices hj(x, z0, 0) and
hs(x, z0, 0). The horizontal distance between V j and U j is narrow, reflecting the lower junior price due to
the significant increase of the probability of CAT bond default. Note that the prices are insensitive to the
initial surplus level, a similar observation to the case of diffusion only. Owing to the more favored payoff
to the senior tranche, the price is not significantly affected. We observe how the additional risk component
of the jump process significantly influences the price of the junior tranche in this example. This explains
one of the reasons for the reinsurance company issuing distinct tranches in accordance with the investor’s
risk-reward preference.

5 Summary

We present a method for pricing structured CAT bonds based on utility indifference pricing, as in Young
[10]. Our contributions to the literature of CAT bond pricing are two-fold. First, we apply indifference
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pricing to structured CAT bonds. We find a price for the senior tranche as a relative indifference price, that
is, relative to the price of the junior tranche. Alternatively, one could take the approach that the senior tranche
is priced first and the price of the junior tranche is relative to that. Second, instead of simply supposing that
the “not-issue-a-CAT-bond” strategy of the reinsurer is to do nothing, we suppose that the reinsurer reduces
its risk by reinsuring proportionally less of the claims, as modeled by the value functions V j and V s in this
paper.

For future research in this area, we encourage the interested reader to consider a more realistic index
process in (2.6). As we mentioned earlier, one could allow the diffusion in (2.6) to be correlated with the
one in (2.1), instead of identical to it. Also, one could allow for jumps, perhaps by using the same Poisson
process as in (2.1) with the jump size some fraction of Y . Additional numerical work would prove useful.
For example, if the jump size Y has a heavy tail, then the payoff of the senior tranche will match that of the
junior tranche much of the time, so we expect their prices to be close. Conversely, if the jump size Y has a
light tail, as in our example in Section 4.3, then we expect the price of the senior tranche to be greater than
that of the junior tranche, as we observed in our example.
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Figure 2: Jump-diffusion case: (a) the value functions V j (solid blue), V s (solid green, same as U j and overridden),
U j (solid black) and Us (dashed magneta), (b) junior tranche price at t = 0, hj(x,−4, 0) (solid blue), and senior
tranche price, hs(x,−4, 0) (dashed red).

15


