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Abstract. An asset manager invests the savings of some investors in a portfolio of defaultable

bonds. The manager pays the investors coupons at a constant rate and receives management fee

proportional to the value of portfolio. She also has the right to walk out of the contract at any time

with the net terminal value of the portfolio after the payment of investors’ initial funds, but is not

responsible for any deficit. To control the principal losses, investors may buy from the manager

a limited protection which terminates the agreement as soon as the value of the portfolio drops

below a predetermined threshold. We assume that the value of the portfolio is a jump-diffusion

process and find optimal termination rule of the manager with and without a protection. We also

derive the indifference price of a limited protection. We describe numerical algorithms to calculate

expected maximum reward and nearly optimal terminal rules for the asset manager and illustrate

them on an example. The motivation comes from the collateralized debt obligations.

1. Introduction

We study two optimal stopping problems of an institutional asset manager hired by ordinary

investors who do not have access to certain asset classes. The investors entrust their initial funds in

the amount of L to the asset manager. As long as the contract is alive, the investors receive coupon

payments from the asset manager on their initial funds at a fixed rate (higher than the risk-free

interest rate). In return, the asset manager collects dividend or management fee (at a fixed rate

on the market value of the portfolio). At any time, the asset manager has the right to terminate

the contract and to walk away with the net terminal value of the portfolio after the payment of

the investors’ initial funds. However, she is not financially responsible for any amount of shortfall.

The asset manager’s first problem is to find a nonanticipative stopping rule which maximizes her

expected discounted total income.

Under the original contract, investors face the risk of losing all or some part of their initial funds.

Suppose that the asset manager offers the investors a limited protection against this risk, in the

form that the new contract will terminate as soon as the market value of the portfolio goes below

a predetermined threshold. The asset manager’s second problem is to find the fair price for the

limited protection and the best time to terminate the contract under this additional clause.

We assume that the market value X of the asset manager’s portfolio follows a geometric Brownian

motion subject to downward jumps which occur according to an independent Poisson process.

As explained in detail in the next section, both the problems and the setting are motivated by

those faced by the managers responsible for the portfolios of defaultable bonds, for example, as in
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collateralized debt obligations (CDOs). For a detailed description and the valuation of CDOs, we

refer the reader to Duffie and Gârleanu [11], Goodman and Fabozzi [18], Egami and Esteghamat

[13] and Hull and White [14]. Briefly, a CDO is a derivative security on a portfolio of bonds,

loans, or other credit risky claims. Cash flows from a collateral portfolio are divided into various

quality/yield tranches which are then sold to investors. In our setting, for example, the times of the

(downward) jumps in the portfolio value process can be thought as the default times of individual

bonds in the portfolio.

The difference between the real-world CDOs and our setting is that a CDO has a pre-determined

maturity while we assume an infinite time horizon. However, a typical CDO contract has a term

of 10-15 years (much longer than, for example, finite-maturity American-type stock options) and

is often extendable with the investors’ consent. Hence our perpetuality assumption is a reasonable

approximation of the reality. We believe that our analysis is also applicable in certain other financial

and real-options settings with no fixed maturity, e.g., open-end mutual funds, outsourcing the

maintenance of computing, printing or internet facilities in a company or in a university.

To find the solutions of the asset manager’s aforementioned problems, we first model them as

optimal stopping problems for a suitable jump-diffusion process under a risk-neutral probability

measure. By separating the jumps from the diffusion part by means of a suitable dynamic program-

ming operator, similarly to the approach used by Dayanik, Poor, and Sezer [8] and Dayanik and

Sezer [9] for the solutions of sequential statistics problems, we solve the the optimal stopping prob-

lems by means of successive approximations, which not only lead to accurate and efficient numerical

algorithms but also allow us to establish concretely the form of optimal stopping strategies.

Without any protection, the optimal rule of the asset manager turns out to terminate the contract

if the market value of the portfolio X becomes too small or too large; i.e., as soon as X exits an

interval (a, b) for some suitable constants 0 < a < b <∞.

In the presence of limited protection (provided to the investors by the asset manager for a fee)

at some level ` ∈ (a, L], it is optimal for the asset manager to terminate the contract as soon

as the value X of the portfolio exits an interval (`,m) for some suitable m ∈ [`, b). Namely, if

the protection is binding, i.e., ` ∈ (a, b), then the asset manager’s optimal continuation region

shrinks. In other words, investors can have limited protection only if they are also willing to give

up in part from the upside-potential of their managed portfolio. “Total protection” (i.e, the case

` = L) wipes out the upside-potential completely since the optimal strategy of the asset manager

becomes “stop immediately” in this extreme case (i.e., ` = m = L). Incidentally, a contract with

a protection at some level is less valuable than an identical contract without a protection. The

difference between these two values gives the fair price of the investors’ protection. The investors

must pay this difference to the asset manager in order to compensate for the asset manager’s lost

potential revenues due to “suboptimal” termination of the contract in the presence of the protection.

In other words, the asset manager will be willing to provide the protection only if the difference

between the expected total revenues with and without the protection is cleared by the investors.
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Our model also sheds some light on the default timing problem of a single firm. Note that the lower

boundary l of the optimal continuation region in the first problem’s solution may be interpreted as

the “optimal default time” of a CDO. Instead of the value of a portfolio, if X represents the market

value of a firm subject to unexpected “bad news” (downward jumps), then the asset manager’s

first problem and its solution translate into the default and sale timing problem of the firm and

its solution. An action (default or sale) is optimal if the value X of the firm leaves the optimal

continuation region (a, b). It is optimal to default if X reaches (0, a], and optimal to sell the firm if

X reaches [b,∞). Our solution extends the work of Duffie [10, Chapter 11] who calculates (based

on the paper by Leland [17]) the optimal default time for a single firm whose asset value is modeled

by a geometric Brownian motion.

Let us also mention that optimal stopping problems (especially, pricing American-type options)

for Lévy processes have been extensively studied; see, for example, Chan [3], Pham [21], Mordecki

[20, 19], Boyarchenko and Levendroskǐi [2], Kou and Wang [16] and Asmussen et al. [1].

The problems are formulated in Section 2. The solutions of first and second problems are studied

in Sections 3 and 4, respectively. Numerical algorithms are described in Section 5 and illustrated

on a numerical example in Section 6.

2. The problem description

Let (Ω,F ,P) be a probability space hosting a Brownian motion B = {Bt, t ≥ 0} and an inde-

pendent Poisson process N = {Nt, t ≥ 0} with the constant arrival rate λ, both adapted to some

filtration F = {Ft}t≥0 satisfying usual conditions.

An asset manager borrows L dollars from some investors and invests in some risky asset X =

{Xt, t ≥ 0}. The process X has the dynamics

dXt

Xt−
= (µ− δ)dt+ σdBt − y0 [dNt − λdt], t ≥ 0(2.1)

for some constants µ ∈ R, σ > 0, δ > 0 and y0 ∈ (0, 1). We denote by δ the dividend rate or the

management fee received by the asset manager. Note that the absolute value of relative jump sizes

are equal to y0, and the jumps are downwards. Therefore, the asset price

Xt = X0 exp

{(
µ− δ − 1

2
σ2 + λy0

)
t+ σBt

}
(1− y0)Nt , t ≥ 0.

is a geometric Brownian motion subject to downward jumps with constant relative jump sizes.

An interesting example of our setting is a portfolio of defaultable bonds as in the collateralized

debt obligations. Let Xt be the value of a portfolio of k defaultable bonds. After every default,

the portfolio loses y0 percent of its market value. The default times of each bond constitutes a

Poisson process with the intensity rate λi independent of others. Therefore, defaults occur at the

rate λ ,
∑k

i=1 λi at the level of the portfolio. The loss ratio upon a default is the same constant y0

across the bonds. The defaulted bond is immediately sold at the market, and a bond with a similar

default rate is bought using the sales proceeds. Under this assumption, defaults occur at the fixed

rate λ because the number of bonds in the portfolio is maintained at k. Egami and Esteghamat
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[13] showed that the dynamics in (2.1) are a good approximation of the dynamics of the aggregate

value of individual defaultable bonds when priced in the “intensity-based” modeling framework

(see, e.g., Duffie and Singleton [12]). The jump size y0 on the portfolio level has to be calibrated.

Suppose that the asset manager pays the investors a coupon of c percent on the face value of the

initial borrowing L on a continuously compounded basis. We assume c < δ. The asset manager

has the right to terminate the contract at any time τ ∈ R+ and receive (Xτ − L)+. Dividend and

coupon payments to the parties cease upon the termination of the contract. Let 0 < r < c be the

risk-free interest rate, and S be the collection of all F-stopping times. The asset manager’s first

problem is to find her maximum expected discounted total income

U(x) , sup
τ∈S

Eγx
[
e−rτ (Xτ − L)+ +

∫ τ

0
e−rt(δXt − cL)dt

]
, x ∈ R+(2.2)

and a stopping time τ∗ ∈ S which attains the supremum (if such τ∗ exists) under the condition

0 < r < c < δ.

In (2.2), the expectation Eγ is taken under the equivalent martingale measure Pγ for a specified

market price γ of the jump risk.

In the real CDOs, the dividend payment is often subordinated to the coupon payment. But since

we allow the possibility that the asset manager’s net running cash flow δXt− cL becomes negative,

our formulation has more stringent requirement on the asset manager than a simple subordination.

In the asset manager’s second problem, the investors’ assets have limited protection. In the

presence of the limited protection at level ` > 0, the contract terminates at time τ̃(`,∞) , inf{t ≥ 0 :

Xt 6∈ (`,∞)} automatically. The asset manager wants to maximize her expected total discounted

earnings as in (2.2), but now the supremum has to be taken over all F-adapted stopping times

τ ∈ S which are less than or equal to τ̃(`,∞) almost surely.

3. The solution of the asset manager’s first problem

In the no-arbitrage pricing framework, the value of a contract contingent on the asset X is

the expectation of the total discounted payoff of the contract under some equivalent martingale

measure. Since the dynamics of X in (2.1) contain jumps, there are more than one equivalent

martingale measure. The restriction to Ft of every equivalent martingale measure Pγ in a large

class admits a Radon-Nikodym derivative in the form of

dPγ

dP

∣∣∣∣
Ft
, ηt and

dηt
ηt−

= βdBt + (γ − 1)[dNt − λdt], t ≥ 0 (η0 = 1),(3.1)

which has the solution ηt = exp
{
βBt − 1

2β
2t + Nt log γ − (γ − 1)λt

}
, t ≥ 0 for some constants

β ∈ R and γ > 0. The constants β and γ are known as the market price of the diffusion risk and

the market price of the jump risk, respectively, and satisfy the drift condition

γ > 0 and µ− r + σβ − λy0(γ − 1) = 0.(3.2)
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Then the discounted value process {e−(r−δ)tXt : t ≥ 0} before the dividends are paid is a (Pγ ,F)-

martingale; see, e.g., Pham [21], Colwell and Elliott [4], Cont and Tankov [5]. Girsanov theorem

implies that Bγ
t , Bt − βt, t ≥ 0 is a standard Brownian motion, and Nt, t ≥ 0 is a homogeneous

Poisson process with intensity λγ independent of Bγ under the new measure Pγ . The dynamics of

X can be rewritten as

dXt

Xt−
= [µ− δ + βσ − λy0(γ − 1)]dt+ σdBγ

t − y0 [dNt − λγdt],

= (r − δ)dt+ σdBγ
t − y0 [dNt − λγdt], t ≥ 0,(3.3)

where the equality µ− δ + βσ − λy0(γ − 1) = r− δ follows from the drift condition in (3.2). Using

Itô’s rule, one can also easily verify that

Xt = X0 exp

{(
r − δ − 1

2
σ2 + λγy0

)
t+ σBγ

t

}
(1− y0)Nt , t ≥ 0.(3.4)

The infinitesimal generator of the process X under the probability measure Pγ coincides with the

second order differential-difference operator

(Aγf)(x) , (r − δ + λγy0)x f
′(x) +

1

2
σ2 x2 f ′′(x) + λγ[f(x(1− y0))− f(x)](3.5)

on the collection of twice-continuously differentiable functions f(·).
Because {e−(r−δ)tXt, t ≥ 0} is a martingale under Pγ , we have Eγx[

∫∞
0 δXte

−rtdt] =
∫∞
0 δxe−δtdt =

x, and for every stopping time τ ∈ S, the strong Markov property implies that Eγx[
∫ τ
0 δXte

−rtdt] =

Eγx
[∫ ∞

0
δXte

−rtdt

]
− Eγx

[∫ ∞
τ

δXte
−rtdt

]
= x− Eγx

[
e−rτ

∫ ∞
0

δXτ+s e
−rsds

]
= x− Eγx

[
e−rτ EγXτ

(∫ ∞
0

δXs e
−rsds

)]
= x− Eγx

[
e−rτXτ

]
, x ∈ R+.

Because Eγx[
∫ τ
0 cLe

−rtdt] = cL
r − Eγx[ cLr e

−rτ ] for every τ ∈ S and x ∈ R+, we can rewrite the asset

manager’s first problem in (2.2) as

U(x) = V (x) + x− cL

r
, x ∈ R+,(3.6)

where

V (x) , sup
τ∈S

Eγx
[
e−rτ

(
(Xτ − L)+ −Xτ +

cL

r

)]
, x ∈ R+.(3.7)

is a discounted optimal stopping problem with the terminal reward function

h(x) , (x− L)+ − x+
cL

r
, x ∈ R+.(3.8)

We fix the market price γ of jump risk, and the market price β is determined by the drift condition

in (3.2). In the remainder, we shall describe the solution of the optimal stopping problem (3.7).

Let T1, T2, . . . be the arrival times of process N . Observe that XTn+1 = (1− y0)XTn+1− and

XTn+t

XTn

= exp

{(
r − δ + λγy0 −

σ2

2

)
t+ σ(Bγ

Tn+t
−Bγ

Tn
)

}
, 0 ≤ t < Tn+1 − Tn, n ≥ 1.
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Le us define for every n ≥ 0 the standard Brownian motion Bγ,n
t := Bγ

Tn+t
−Bγ

Tn
, t ≥ 0 and Poisson

process T
(n)
k := Tn+k − Tn, k ≥ 0, respectively, under Pγ and the one-dimensional diffusion process

Y y,n
t , y exp

{(
r − δ + λγy0 −

σ2

2

)
t+ σBγ,n

t

}
, t ≥ 0,(3.9)

which has dynamics

Y y,n
0 = y and dY y,n

t = Y y,n
t [(r − δ + λγy0)dt+ σdBγ,n

t ] , t ≥ 0(3.10)

and infinitesimal generator (under Pγx)

(Aγ0f)(y) =
σ2y2

2
f ′′(y) + (r − δ + λγy0)yf

′(y)(3.11)

acting on twice-continuously differentiable functions f : R+ 7→ R. Then X coincides with Y XTn ,n

on [Tn, Tn+1) and jumps to (1− y0)Y
XTn ,n
Tn+1−Tn at time Tn+1 for every n ≥ 0; namely,

XTn+t =

Y
XTn ,n
t , 0 ≤ t < Tn+1 − Tn,

(1− y0)Y
XTn ,n
Tn+1−Tn , t = Tn+1 − Tn.

For n = 0, we shall write Y y,0 ≡ Y y = y exp
{

(r − δ − λγy0 − σ2/2)t+ σBγ
t

}
and Y X0,0 ≡ Y X0 .

3.1. A dynamic programming operator. Let SB denote the collection of all stopping times of

the diffusion process Y X0 , or equivalently, Brownian motion B. Let us take any arbitrary but fixed

stopping time τ ∈ SB and consider the following stopping strategy toward the solution of (3.7):

(i) on {τ < T1} stop at time τ ,

(ii) on {τ ≥ T1}, update X at time T1 to XT1 = (1− y0)Y X0
T1

and continue optimally thereon.

The value of this new strategy is Eγx[e−rτh(Xτ )1{τ<T1} + e−rT1V (XT1)1{τ≥T1}] and equals

Eγx
[
e−rτh(Y X0

τ )1{τ<T1} + e−rT1V ((1− y0)Y X0
T1

)1{τ≥T1}

]
= Eγx

[
e−(r+λγ)τh(Y X0

τ ) +

∫ τ

0
λγe−(r+λγ)tV ((1− y0)Y X0

t )dt

]
.

If for every bounded function w : R+ 7→ R+ we introduce the operator

(Jw)(x) , sup
τ∈SB

Eγx
[
e−(r+λγ)τh(Y X0

τ ) +

∫ τ

0
λγe−(r+λγ)tw((1− y0)Y X0

t )dt

]
, x ≥ 0,(3.12)

then we expect that the value function V (·) of (3.7) to be the unique fixed point of operator J ;

namely, V (·) = (JV )(·), and that V (·) is the pointwise limit of the successive approximations

v0(x) , h(x) = (x− L)+ − x+
cL

r
, x ≥ 0,

vn(x) , (Jvn−1)(x), x ≥ 0, n ≥ 1.

Lemma 1. Let w1, w2 : R+ 7→ R be bounded. If w1(·) ≤ w2(·), then (Jw1)(·) ≤ (Jw2)(·). If w(·) is

nonincreasing convex function such that h(·) ≤ w(·) ≤ cL/r, then (Jw)(·) has the same properties.
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The proof easily follows from the linearity of y 7→ Y y
t for every fixed t ≥ 0 and the definition of

the operator J . The next proposition guarantees the existence of unique fixed point of J .

Proposition 2. For every bounded w1, w2 : R+ 7→ R, we have ‖Jw1 − Jw2‖ ≤ λγ
r+λγ ‖w1 − w2‖,

where ‖w‖ = supx∈R+
|w(x)|; namely, J acts as a contraction mapping on the bounded functions.

Proof. Because w1(·), w2(·) are bounded, (Jw1)(·) and (Jw2)(·) are finite, and for every ε and x > 0,

there are ε-optimal stopping times τ1(ε, x) and τ2(ε, x), which may depend on ε and x, such that

(Jwi)(x)− ε ≤ Eγx
[
e−(r+λγ)τi(ε,x)h(Y X0

τi(ε,x)
) +

∫ τi(ε,x)

0
λγe−(r+λγ)twi((1− y0)Y X0

t )dt
]
, i = 1, 2.

Therefore, (Jw1)(x) − (Jw2)(x) ≤ ε + ‖w1 − w2‖
∫∞
0 λγe−(r+λγ)tdt = ε + ‖w1 − w2‖ λγ

r+λγ . Inter-

changing the roles of w1(·) and w2(·) gives |(Jw1)(x) − (Jw2)(x)| ≤ ε + ‖w1 − w2‖ λγ
r+λγ for every

x > 0 and ε > 0. Taking the supremum of both sides over x ≥ 0 completes the proof. �

Lemma 3. The sequence (vn)n≥0 of successive approximations is nondecreasing. Therefore, the

pointwise limit v∞(x) , limn→∞ vn(x), x ≥ 0 exists. Every vn(·), n ≥ 0 and v∞(·) are nonincreas-

ing, convex, and bounded between h(·) and cL/r.

Lemma 3 follows from repeated applications of Lemma 1. Proposition 4 below shows that the

unique fixed point of J is the uniform limit of successive approximations.

Proposition 4. The limit v∞(·) = limn→∞ vn(·) = supn≥0 vn(·) is the unique bounded fixed point

of operator J . Moreover, 0 ≤ v∞(x)− vn(x) ≤ cL
r ( λγ

r+λγ )n for every x ≥ 0.

Proof. Since vn(·) ↗ v∞(·) as n → ∞, and every vn(·) is bounded from below by c−r
r L, and

Eγ·
[ ∫ τ

0 e
−(r+λγ)t c−r

r Ldt
]
<∞ for every τ ∈ SB, the monotone convergence theorem implies that

v∞(x) = sup
n≥0

vn(x) = sup
τ∈SB

lim
n→∞

Eγx
[
e−(r+λγ)τh(Y X0

τ ) +

∫ τ

0
λγe−(r+λγ)tvn((1− y0)Y X0

t )dt
]

= sup
τ∈SB

Eγx
[
e−(r+λγ)τh(Y X0

τ ) +

∫ τ

0
λγe−(r+λγ)tv∞((1− y0)Y X0

t )dt
]

= (Jv∞)(x).

Thus, v∞(·) is the bounded fixed point of contraction mapping J . Lemma 3 implies 0 ≤ v∞(·)−vn(·),
and ‖v∞ − vn‖ = ‖Jv∞ − Jvn−1‖ ≤ λγ

r+λγ ‖v∞ − vn−1‖ ≤ . . . ≤ ( λγ
r+λγ )n cLr for every n ≥ 1. �

3.2. The solution of the optimal stopping problem in (3.12). We shall next solve the optimal

stopping problem Jw in (3.12) for every fixed w : R+ 7→ R which satisfies the following assumption:

Assumption 5. Let w : R+ 7→ R be nonincreasing, convex, bounded between h(·) and cL/r, and

w(+∞) = c−r
r L and w(0+) = c

rL.

We shall calculate the value function (Jw)(·) and explicitly identify an optimal stopping rule.

Because w(·) is bounded, we have

Eγx
[∫ ∞

0
e−(r+λγ)t|w((1− y0)Y X0

t )|dt
]
≤ ‖w‖

∫ ∞
0

e−(r+λγ)tdt =
‖w‖
r + λγ

<∞ x ≥ 0,
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and for every stopping time τ ∈ SB, the strong Markov property of Y X0 at time τ implies that

(Hw)(x) , Eγx
[∫ ∞

0
e−(r+λγ)tw((1− y0)Y X0

t )dt

]
(3.13)

= Eγx
[∫ τ

0
e−(r+λγ)tw((1− y0)Y X0

t )dt

]
+ Eγx

[
e−(r+λγ)τ (Hw)(Y X0

τ )
]
.

Therefore, Eγx[
∫ τ
0 e
−(r+λγ)tw((1 − y0)Y X0

t )dt] = (Hw)(x) − Eγx[e−(r+λγ)τ (Hw)(Y X0
τ )], and we can

write the expected payoff Eγx[e−(r+λγ)τh(Y X0
τ ) +

∫ τ
0 λγe

−(r+λγ)tw((1 − y0)Y
X0
t )dt] in (3.12) as

λγ(Hw)(x) + Eγx
[
e−(r+λγ)τ {h− λγ(Hw)} (Y X0

τ )
]

for every τ ∈ SB and x > 0. If we define

(Gw)(x) , sup
τ∈SB

Eγx
[
e−(r+λγ)τ {h− λγ(Hw)} (Y X0

τ )
]
, x > 0,(3.14)

then the value function in (3.12) can be calculated by

(Jw)(x) = λγ(Hw)(x) + (Gw)(x), x > 0.(3.15)

Let us first calculate (Hw)(·). Let ψ(·) and ϕ(·) be, respectively, the increasing and decreasing

solutions of the second order ordinary differential equation (A0f)(y) − (r + λγ)f(y) = 0, y > 0

with boundary conditions, respectively, ψ(0+) = 0 and ϕ(+∞) = 0, where A0 is the infinitesimal

generator in (3.11) of diffusion process Y X0 ≡ Y X0,0. One can easily check that

ψ(y) = yα1 and ϕ(y) = yα0 for every y > 0,(3.16)

with the Wronskian

W (y) = ψ′(y)ϕ(y)− ψ(y)ϕ′(y) = (α0 + α1)y
α0+α1−1, y > 0,(3.17)

where α0 < α1 are the roots of the characteristic function g(α) = σ2

2 α(α− 1) + (r − δ + λγy0)α−
(r + λγ) of the above ordinary differential equation. Because both g(0) < 0 and g(1) < 0, we have

α0 < 0 < 1 < α1.

Let us denote the hitting and exit times of diffusion process Y X0 , respectively, by

τa , inf{t ≥ 0; Y X0
t = a}, a > 0,

τab , inf{t ≥ 0; Y X0
t 6∈ (a, b)}, 0 < a < b <∞,

and define operator

(Habw)(x) , Eγx
[∫ τab

0
e−(r+λγ)tw((1− y0)Y X0

t )dt+ 1{τab<∞}e
−(r+λγ)τabh(Y X0

τab
)

]
(3.18)

and

ψa(y) , ψ(y)− ψ(a)

ϕ(a)
ϕ(y) and ϕb(y) , ϕ(y)− ϕ(b)

ψ(b)
ψ(y) for every y > 0,
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which are, respectively, the increasing and decreasing solutions of (A0f)(y) − (r + λγ)f(y) = 0,

a < y < b with boundary conditions, respectively, f(a) = 0 and f(b) = 0. The Wronskian of ψa(·)
and ϕa(·) becomes

Wab(y) = ψ′a(y)ϕb(y)− ψa(y)ϕ′b(y) =

[
1− ψ(a)

ϕ(a)

ϕ(b)

ϕ(b)

]
W (y), y > 0(3.19)

in terms of the Wronskian W (·) in (3.17) of ψ(·) and ϕ(·).

Lemma 6. We have

(i) Eγx
[
e−(r+λγ)τa1{τa<τb}

]
= ϕb(x)

ϕb(a)
for every 0 < a ≤ x ≤ b <∞.

(ii) Eγx
[
e−(r+λγ)τb1{τa>τb}

]
= ψb(x)

ψb(a)
for every 0 < a ≤ x ≤ b <∞.

(iii) Eγx
[
e−(r+λγ)τabh(Y X0

τab
)1{τab<∞}

]
= ϕb(x)

ϕb(a)
h(a) + ψa(x)

ψa(b)
h(b) for every 0 < a ≤ x ≤ b <∞.

All three expectations are twice continuously differentiable on (a, b) and unique such solution of the

ordinary differential equation (A0f)(y)−(r+λγ)f(y) = 0, y ∈ (a, b) subject to boundary conditions

(i) f(a) = 1, f(b) = 0, (ii) f(a) = 0, f(b) = 1, (iii) f(a) = h(a), f(b) = h(b), respectively.

Lemma 7. For every bounded function g : R+ 7→ R and 0 < a ≤ x ≤ b <∞, we have

(3.20) Eγx
[∫ τab

0
e−(r+λγ)tg(Y X0

t )dt+ 1{τab<∞}e
−(r+λγ)τabh(Y X0

τab
)

]
=

∫ b

a

2ψa(x ∧ ξ)ϕb(x ∨ ξ)g(ξ)

p2(ξ)Wab(ξ)
dξ +

ϕb(x)

ϕb(a)
h(a) +

ψa(x)

ψa(b)
h(b)

= ϕb(x)

∫ x

a

2ψa(ξ)g(ξ)

p2(ξ)Wab(ξ)
dξ + ψa(x)

∫ b

x

2ϕb(ξ)g(ξ)

p2(ξ)Wab(ξ)
dξ +

ϕb(x)

ϕb(a)
h(a) +

ψa(x)

ψa(b)
h(b),

which is twice-continuously differentiable on (a, b) and uniquely solves the boundary value problem

(A0f)(y)− (r + λγ)f(y) + g(y) = 0, a < y < b with f(a) = h(a) and f(b) = h(b), where

p(ξ) = σξ and q(ξ) = (r − δ + λγy0)ξ

are the diffusion and drift coefficients of diffusion Y in (3.10).

Corollary 8. We have

(Habw)(x) = ϕb(x)

∫ x

a

2ψa(ξ)w((1− y0)ξ)
p2(ξ)Wab(ξ)

dξ + ψa(x)

∫ b

x

2ϕb(ξ)w((1− y0)ξ)
p2(ξ)Wab(ξ)

dξ

+
ϕb(x)

ϕb(a)
h(a) +

ψa(x)

ψa(b)
h(b), 0 < a ≤ x ≤ b <∞,

which is twice-continuously differentiable on (a, b) and uniquely solves the boundary value problem

(A0f)(x)− (r + λγ)f(x) + w((1− y0)x) = 0, a < x < b with f(a) = h(a) and f(b) = h(b).

The proofs of Lemmas 6 and 7 can be checked by direct calculation and Itô’s lemma; see also

Karlin and Taylor [15, Chapter 15], and Corollary 8 immediately follows from Lemma 6 and 7.

Finally, Lemma 9 follows from Corollary 8 by passing to limit as a ↓ 0 and b ↑ ∞ because 0 and ∞
are natural boundaries of diffusion Y X0 .
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Lemma 9. For every x > 0, we have

(Hw)(x) , Eγx
[∫ ∞

0
e−(r+λγ)tw((1− y0)Y X0

t )dt

]
= lim

a↓0,b↑∞
(Habw)(x)

= ϕ(x)

∫ x

0

2ψ(ξ)w((1− y0)ξ)
p2(ξ)W (ξ)

dξ + ψ(x)

∫ ∞
x

2ϕ(ξ)w((1− y0)ξ)
p2(ξ)W (ξ)

dξ,

which is twice-continuously differentiable on R+ and satisfies the ordinary differential equation

(A0f)(x)− (r + λγ)f(x) + w((1− y0)x) = 0.

Using the potential theoretic direct methods of Dayanik and Karatzas [7] and Dayanik [6], we

shall now solve the optimal stopping problem (Gw)(·) (3.14) with payoff function (h−λγ(Hw))(x) =

(x− L)+ − x+
cL

r
− λγ

[
ϕ(x)

∫ x

0

2ψ(ξ)w((1− y0)ξ)
p2(ξ)W (ξ)

dξ + ψ(x)

∫ ∞
x

2ϕ(ξ)w((1− y0)ξ)
p2(ξ)W (ξ)

dξ
]

= (x−L)+−x+
cL

r
− 2λγ

σ2(α1 − α0)

[
xα0

∫ x

0
ξ−1−α0w((1−y0)ξ)dξ+xα1

∫ ∞
x

ξ−1−α1w((1−y0)ξ)dξ
]
,

where ψ(x) = xα1 , ϕ(x) = xα0 , p2(ξ) = σ2ξ2, W (ξ) = ψ′(ξ)ϕ(ξ)− ψ(ξ)ϕ′(ξ) = (α1 − α0)ξ
α0+α1−1.

We observe that 0 ≤ (Hw)(x) = Eγx[
∫∞
0 e−(r+λγ)tw((1 − y0)Y

X0
t )dt] ≤ cL

r

∫∞
0 e−(r+λγ)tdt =

cL
r(r+λγ) <∞. Hence, (h− λγ(Hw))(·) is bounded, and because ψ(+∞) = ϕ(0+) = +∞, we have

lim sup
x↓0

(h− λγ(Hw))+(x)

ϕ(x)
= 0 and lim sup

x↑∞

(h− λγ(Hw))+(x)

ψ(x)
= 0.

By Propositions 5.10 and 5.13 of Dayanik and Karatzas [7], value function (Gw)(·) is finite; the set

Γ[w] , {x > 0; (Gw)(x) = (h− λγ(Hw))(x)} = {x > 0; (Jw)(x) = h(x)}(3.21)

is the optimal stopping region, and

τ [w] , inf{t ≥ 0; Y X0
t ∈ Γ[w]}(3.22)

is an optimal stopping time for (3.14)—and for (3.12) because of (3.15). According to Proposition

5.12 of Dayanik and Karatzas [7], we have

(Gw)(x) = ϕ(x)(Mw)(F (x)), x ≥ 0, and Γ[w] = F−1({ζ > 0; (Mw)(ζ) = (Lw)(ζ)}),

where F (x) , ψ(x)/ϕ(x) and (Mw)(·) is the smallest nonnegative concave majorant on R+ of

(Lw)(ζ) ,


h− λγ(Hw)

ϕ
◦ F−1(ζ), ζ > 0,

0, ζ = 0.

(3.23)

To describe explicitly the form of the smallest nonnegative concave majorant (Mw)(·) of (Lw)(·),
we shall firstly identify a few useful properties of function (Lw)(·). Because Y X0 ≡ X0Y

1 by (3.9)

and w(·) is bounded, the bounded convergence theorem implies that

lim
x↑∞

(Hw)(x) = Eγ1

[∫ ∞
0

e−(r+λγ)t lim
x↑∞

w((1− y0)xY 1
t )dt

]
=
w(+∞)

r + λγ
≤ cL

r
,
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and limx↑∞(h− λγ(Hw))(x) = limx↑∞((x− L)+ − x+ cL
r − λγ(Hw)(x)) ≥ c−r

r+λγL > 0. Therefore,

(Lw)(+∞) = lim
x↑∞

(h− λγ(Hw))(x)

ϕ(x)
= +∞.(3.24)

Note also that

(Lw)′(ζ) =
d

dζ

(
h− λγ(Hw)

ϕ
◦ F−1(ζ)

)
=

[
1

F ′

(
h− λγ(Hw)

ϕ

)′]
◦ F−1(ζ).

Because F (·) is strictly increasing, we have F ′ > 0. Because w(·) is nonincreasing, the mapping

x 7→ Eγx[
∫∞
0 e−(r+λγ)tw((1− y0)Y X0

t )dt] = Eγx[
∫∞
0 e−(r+λγ)tw((1− y0)X0Y

1
t )dt] is decreasing. Then

for x > L, because h(·) ≡ cL/r is constant, the mapping x 7→ (h−λγ(Hw)ϕ )(x) is increasing.

For every 0 < x < L, we can calculate explicitly that [ 1
F ′ (

h−λγ(Hw)
ϕ )′](x) =

x−α1

α1 − α0

[
(−α0)

cL

r
− (1− α0)x−

λγ(−α0)α1

r + λγ
xα1

∫ ∞
x

ξ−1−α1w((1− y0)ξ)dξ
]
,

and because limx↓0 x
α1
∫∞
x ξ−1−α1w((1− y0)ξ)dξ = w(0+)

α1
and α1 > 1, we have

lim
x↓0

[
1

F ′

(
h− λγ(Hw)

ϕ

)′]
(x) = +∞.

Let us also study the sign of the second derivative (Lw)′′(·). For every x 6= L, Dayanik and

Karatzas [7, page 192] show that

(Lw)′′(F (x)) =
2ϕ(x)

p2(x)W (x)F ′(x)
(A0 − (r + λγ))(k − λγ(Hw))(x)(3.25)

and ϕ(·), p2(·),W (·), F ′(·) are positive. Therefore,

sgn[(Lw)′′(F (x))] = sgn[(A0 − (r + λγ))(h− λγ(Hw))(x)].

Recall from Lemma 9 that (A0 − (r + λγ))(Hw)(x) = −w((1 − y0)x) and because h(x) = (−x +
cL
r )1{x<L} + (c−r)L

r 1{x>L}, we have (A0 − (r + λγ))(h− λγ(Hw))(x) =[
λγ(1− y0)x− (r + λγ)

cL

r
+ λγw((1− y0)x)

]
1{x≤L}

+
[
λγw((1− y0)x)− (r + λγ)

(c− r)L
r

]
1{x>L}.

Note that limx↓0(A0 − (r + λγ))(h − λγ(Hw))(x) = −cL < 0 and limx↑∞(A0 − (r + λγ))(h −
λγ(Hw))(x) = −(c− r)L < 0. Note also that x 7→ (A0 − (r + λγ))(h− λγ(Hw))(x) is convex and

continuous on x ∈ (0, L) and x ∈ (L,∞). Therefore, (A0 − (r + λγ))(h − λγ(Hw))(x) is strictly

negative in some open neighborhoods of 0 and +∞, and in the complement of their unions, whose

closure contains L if it is not empty, it is nonnegative. Therefore, (3.25) implies that (Lw)(ζ) is

strictly concave in some neighborhood of ζ = 0 and ζ =∞, and in the complement of their unions,

whose closure contains F (L) if it is not empty, this function is convex. Earlier we also showed that

ζ 7→ (Lw)(ζ) is increasing at every ζ > F (L) and (Lw)(+∞) = (Lw)′(0+) = +∞. Moreover,

(Lw)′(F (L)−)− (Lw)′(F (L)+) = − L1−α1

α1 − α0
< 0;
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concave

(Lw)(ζ)

(Mw)(ζ)

ζ1[w] ζ2[w]F (L) ζ0

concave concave

(Lw)(ζ)

(Mw)(ζ)

ζ1[w] ζ2[w]F (L) ζ0

concave convex

Figure 1. The sketches of two possible forms of (Lw)(·) and their smallest non-

negative concave majorants (Mw)(·).

namely, (Lw)′(F (L)−) < (Lw)′(F (L)+). Two possible forms of ζ 7→ (Lw)(ζ) and their smallest

nonnegative concave majorants ζ 7→ (Mw)(ζ) are depicted by two pictures of Figure 1.

The properties of the mapping ζ 7→ (Lw)(ζ) imply that there are unique numbers 0 < ζ1[w] <

F (L) < ζ2[w] <∞ such that

(Lw)′(ζ1[w]) =
(Lw)(ζ2[w])− (Lw)(ζ1[w])

ζ2[w]− ζ1[w]
= (Lw)′(ζ2[w]),

and the smallest nonnegative concave majorant (Mw)(·) of (Lw)(·) on (0, ζ1[w]] ∪ [ζ2[w],∞) coin-

cides with (Lw)(·), and on (ζ1[w], ζ2[w]) with the straight-line that majorizes (Lw)(·) everywhere

on R+ and is tangent to (Lw)(·) exactly at ζ = ζ1[w] and ζ2[w]; see Figure 1. More precisely,

(Mw)(ζ) =


(Lw)(ζ), ζ ∈ (0, ζ1[w]] ∪ [ζ2[w],∞),

ζ2[w]− ζ
ζ2[w]− ζ1[w]

(Lw)(ζ1[w]) +
ζ − ζ1[w]

ζ2[w]− ζ1[w]
(Lw)(ζ2[w]), ζ ∈ (ζ1[w], ζ2[w]).

Let us define x1[w] , F−1(ζ1[w]) and x2[w] , F−1(ζ2[w]). Then by Proposition 5.12 of Dayanik

and Karatzas [7], the value function of the optimal stopping problem in (3.14) equals

(3.26) (Gw)(x) = ϕ(x)(Mw)(F (x))

=



(h− λγ(Hw))(x), x ∈ (0, x1[w]] ∪ [x2[w],∞),

(x2[w])α1−α0 − xα1−α0

(x2[w])α1−α0 − (x1[w])α1−α0
(h− λγ(Hw))(x1[w])

+
xα1−α0 − (x1[w])α1−α0

(x2[w])α1−α0 − (x1[w])α1−α0
(h− λγ(Hw))(x2[w]),

x ∈ (x1[w], x2[w]).
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The optimal stopping region in (3.21) becomes Γ[w] = {x > 0; (Gw)(x) = (h − λγ)(Hw)(x)} =

(0, x1[w]] ∪ [x2[w],∞), and the optimal stopping time in (3.22) becomes

τ [w] = inf{t ≥ 0; Y X0
t ∈ (0, x1[w]] ∪ [x2[w],∞)}.

Proposition 10. The value function x 7→ (Gw)(·) of (3.14) is continuously differentiable on R+

and twice-continuously differentiable on R+ \ {x1[w], x2[w]}. Moreover, (Gw)(·) satisfies

(i) (A0 − (r + λγ))(Gw)(x) = 0, x ∈ (x1[w], x2[w]),

(ii) (Gw)(x) > h(x)− λγ(Hw)(x), x ∈ (x1[w], x2[w]),

(iii) (A0 − (r + λγ))(Gw)(x) < 0, x ∈ (0, x1[w]) ∪ (x2[w],∞),

(iv) (Gw)(x) = h(x)− λγ(Hw)(x), x ∈ (0, x1[w]] ∪ [x2[w],∞).

The differentiability of (Gw)(·) is clear from (3.26). The variational inequalities can be verified

directly. For (iii) note that, if x ∈ (0, x1[w]) ∪ (x2[w],∞), then sgn{(A0 − (r + λγ))(Gw)(x)} =

sgn{(A0 − (r + λγ))(h− λγ(Hw))(x)} = sgn{(Lw)′′(F (x))} < 0.

Because (Hw)(·) is twice-continuously differentiable and (A0−(r+λγ)(Hw))(x) = −w((1−y0)x)

for every x > 0 by Proposition 9, Proposition 10 and (3.15) lead directly to the next proposition.

Proposition 11. The value function x 7→ (Jw)(·) of (3.12) is continuously differentiable on R+

and twice-continuously differentiable on R+ \ {x1[w], x2[w]}. Moreover, (Jw)(·) satisfies

(i) (A0 − (r + λγ))(Jw)(x) + λγw((1− y0)x) = 0, x ∈ (x1[w], x2[w]),

(ii) (Jw)(x) > h(x), x ∈ (x1[w], x2[w]),

(iii) (A0 − (r + λγ))(Jw)(x) + λγw((1− y0)x) < 0, x ∈ (0, x1[w]) ∪ (x2[w],∞),

(iv) (Jw)(x) = h(x), x ∈ (0, x1[w]] ∪ [x2[w],∞).

By Lemma 3, every vn(·), n ≥ 0 and v∞(·) are nonincreasing, convex, and bounded between

h(·) and cL/r. Moreover, by using induction on n, we can easily show that vn(0+) = cL/r and

vn(+∞) = (c − r)L/r for every n ∈ {0, 1, . . . ,∞}. Therefore, Proposition 11, applied to w = v∞,

and Proposition 4 directly lead to the next theorem.

Theorem 12. The function x 7→ v∞(x) = (Jv∞)(x) is continuously differentiable on R+ and

twice-continuously differentiable on R+ \ {x1[v∞], x2[v∞]} and satisfies the variational inequalities

(i) (A0 − (r + λγ))v∞(x) + λγv∞((1− y0)x) = 0, x ∈ (x1[v∞], x2[v∞]),

(ii) v∞(x) > h(x), x ∈ (x1[v∞], x2[v∞]),

(iii) (A0 − (r + λγ))v∞(x) + λγv∞((1− y0)x) < 0, x ∈ (0, x1[v∞]) ∪ (x2[v∞],∞),

(iv) v∞(x) = h(x), x ∈ (0, x1[v∞]] ∪ [x2[v∞],∞),
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which can be expressed in terms of the generator Aγ in (3.5) of the jump-diffusion process X as

(i)′ (Aγ − r)v∞(x) = 0, x ∈ (x1[v∞], x2[v∞]),

(ii)′ v∞(x) > h(x), x ∈ (x1[v∞], x2[v∞]),

(iii)′ (Aγ − r)v∞(x) < 0, x ∈ (0, x1[v∞]) ∪ (x2[v∞],∞),

(iv)′ v∞(x) = h(x), x ∈ (0, x1[v∞]] ∪ [x2[v∞],∞).

The next theorem identifies the value function and an optimal stopping time for the optimal

stopping problem in (3.7). For every w : R+ 7→ R satisfying Assumption 5 let us denote by τ̃ [w]

the stopping time of jump-diffusion process X defined by

τ̃ [w] , inf{t ≥ 0; Xt ∈ (0, x1[w]] ∪ [x2[w],∞)}.

Theorem 13. For every x ∈ R+, we have V (x) = v∞(x) = Eγx
[
e−rτ̃ [v∞]h(Xτ̃ [v∞])

]
, and τ̃ [v∞] is

an optimal stopping time for (3.7).

Proof. Let τ̃ab = inf{t ≥ 0; Xt ∈ (0, a] ∪ [b,∞)} for every 0 < a < b <∞. By Itô’s rule, we have

e−r(t∧τ∧τ̃ab)v∞(Xt∧τ∧τ̃ab) = v∞(X0) +

∫ t∧τ∧τ̃ab

0
e−rs(Aγ − r)v∞(Xs)ds

+

∫ t∧τ∧τ̃ab

0
e−rsv∞(Xs)σXsdB

γ
s +

∫ t∧τ∧τ̃ab

0
e−rs[v∞((1− y∞)Xs−)− v∞(Xs−)](dNs − λγds)

for every t ≥ 0, τ ∈ S, and 0 < a < b <∞. Because v∞(·) and v′∞(·) are continuous and bounded

on every compact subinterval of (0,∞), both stochastic integrals are square-integrable martingales,

and taking expectations of both sides gives

Eγx[e−r(t∧τ∧τ̃ab)v∞(Xt∧τ∧τ̃ab)] = v∞(x) + Eγx
[ ∫ t∧τ∧τ̃ab

0
e−rs(Aγ − r)v∞(Xs)ds

]
.(3.27)

Because (Aγ − r)v∞(·) ≤ 0 and v∞(·) ≥ h(·) by the variational inequalities of Theorem 12, we

have Eγ [e−r(t∧τ∧τ̃ab)v∞(Xt∧τ∧τ̃ab)] ≤ v∞(x) for every t ≥ 0, τ ∈ S, and 0 < a < b < ∞. Because

lima↓0,b↑∞ τ̃ab = ∞ a.s. and h(·) is continuous and bounded, we can take limits of both sides as

t ↑ ∞, a ↓ 0, b ↑ ∞ and use the bounded convergence theorem to get Eγ [e−rτv∞(Xτ )] ≤ v∞(x) for

every τ ∈ S. Taking supremum over all τ ∈ S gives V (x) = supτ∈S Eγ [e−rτv∞(Xτ )] ≤ v∞(x).

In order to show the reverse inequality, we replace in (3.27) τ and τ̃ab with τ̃ [v∞]. Because

(Aγ − r)v∞(x) = 0 for every x ∈ (x1[v∞], x2[v∞]) by Theorem 12 (i)′, we have

Eγx[e−r(t∧τ̃ [v∞])v∞(Xt∧τ̃ [v∞])] = v∞(x) + Eγx
[ ∫ t∧τ̃ [v∞]

0
e−rs(Aγ − r)v∞(Xs)ds

]
= v∞(x)

for every t ≥ 0. Since v∞ is bounded and continuous, taking limits as t ↑ ∞ and the bounded

convergence theorem gives v∞(x) = Eγx[e−rτ̃ [v∞]v∞(Xτ̃ [v∞])] = Eγx[e−rτ̃ [v∞]h(Xτ̃ [v∞])] ≤ V (x) by

Theorem 12 (iv)′, which completes the proof. �
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Proposition 14. The optimal stopping regions Γ[vn] = {x > 0; (Jvn)(x) ≤ h(x)} = (0, x1[vn]] ∪
[x2[vn],∞), n ∈ {0, 1, . . . ,∞} are decreasing; namely, Γ[v0] ⊇ Γ[v1] ⊇ . . . ⊇ Γ[v∞], and 0 <

x1[v∞] ≤ . . . ≤ x1[v1] ≤ x1[v0] ≤ L ≤ x2[v0] ≤ x2[v1] ≤ . . . ≤ x2[v∞] < ∞. Moreover, x1[v∞] =

limn→∞ x1[vn] and x2[v∞] = limn→∞ x2[vn].

The proof follows from the monotonicity of operator J and that vn(x) ↑ v∞(x) as n → ∞
uniformly in x > 0. The next proposition and its corollary identify the optimal expected reward

and nearly optimal stopping strategies for the asset manager in the first problem.

Proposition 15. For all n ≥ 0, we have v∞(x) ≤ Eγx[e−rτ̃ [vn]h(Xτ̃ [vn])] + cL
r ( λ

r+λγ )n+1. Hence, for

every ε > 0 and n ≥ 0 such that cL
r ( λ

r+λγ )n+1 ≤ ε, the stopping time τ̃ [vn] is ε-optimal for (3.7).

Proof. Recall that τ̃ [vn] = inf{t ≥ 0; Xt ∈ Γ[vn]} = inf{t ≥ 0; Xt ∈ (0, x1[vn]] ∪ [x2[vn],∞). If we

replace τ and τ̃ab in (3.27) with τ̃ [vn], then for every t ≥ 0 we obtain

Eγx[e−r(t∧τ̃ [vn])v∞(Xt∧τ̃ [vn])] = v∞(x) + Eγx
[ ∫ t∧τ̃ [vn]

0
e−rs(Aγ − r)v∞(Xs)ds

]
= v∞(x),

because, for every 0 < t < τ̃ [vn] we have Xt ∈ (x1[vn], x2[vn]) ⊆ (x1[v∞], x2[v∞]), at every element

x of which (Aγ − r)v∞(x) equals 0 according to 12 (i)′. Because v∞(·) is continuous and bounded,

taking limits as t ↑ ∞ and the bounded convergence theorem give v∞(x) = Eγx[e−rτ̃ [vn]v∞(Xτ̃ [vn])].

By Proposition 4,

v∞(x) ≤ Eγx
[
e−rτ̃ [vn]

(
vn+1(Xτ̃ [vn]) +

cL

r

( λγ

r + λγ

)n+1)]
≤ Eγx

[
e−rτ̃ [vn]

(
(Jvn)(Xτ̃ [vn])

)]
+
cL

r

( λγ

r + λγ

)n+1
= Eγx

[
e−rτ̃ [vn]

(
h(Xτ̃ [vn])

)]
+
cL

r

( λγ

r + λγ

)n+1
,

because (Jvn)(·) = h(·) on Γ[vn] 3 Xτ̃ [vn] on {τ̃ [vn] <∞}. �

Corollary 16. The maximum expected reward of the asset manager is given by U(x) = x − cL
r +

V (x) = x− cL
r + v∞(x) for every x ≥ 0. The stopping rule τ̃ [v∞] is optimal, and τ̃ [vn] is ε-optimal

for every ε > 0 and n ≥ 0 such that cL
r ( λγ

r+λγ )n+1 < ε, in the sense that for every x > 0

U(x) = Eγx
[
e−rτ̃ [v∞](Xτ̃ [v∞] − L)+ +

∫ τ̃ [v∞]

0
e−rt(δXt − cL)dt

]
,

U(x)− ε ≤ Eγx
[
e−rτ̃ [vn](Xτ̃ [vn] − L)+ +

∫ τ̃ [vn]

0
e−rt(δXt − cL)dt

]
.

4. The solution of the asset manager’s second problem

In the asset manager’s second problem, the investors’ assets have limited protection. In the

presence of the limited protection at level ` > 0, the contract terminates at time τ̃`,∞ , inf{t ≥ 0 :

Xt /∈ (`,∞)} automatically. The asset manager wants to maximize her expected total discounted

earnings as in (2.2), but now the supremum has to be taken over all stopping times τ ∈ S which
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are less than or equal to τ̃`,∞ almost surely. Namely, we would like to solve the problem

U`(x) , sup
τ∈S

Eγx
[
e−r(τ̃`,∞∧τ)(Xτ̃`,∞∧τ − L)+ +

∫ τ̃`,∞∧τ

0
e−rt(δXt − cL)dt

]
, x ∈ R+.(4.1)

If ` < x1[v∞], then U`(x) = U(x) = Eγx[e−r(τ̃ [v∞])(Xτ̃`,∞[v∞] − L)+ +
∫ τ̃ [v∞]
0 e−rt(δXt − cL)dt] for

every x > 0. On the one hand, because for every τ ∈ S, τ̃ [v∞] ∧ τ also belongs to S, we have

U`(x) ≤ U(x). On the other hand, because ` ≤ x1[v∞], we have τ̃ [v∞] = τ̃`,∞ ∧ τ̃ [v∞] a.s. and

U`(x) ≥ Eγx
[
e−r(τ̃`,∞∧τ̃ [v∞])(Xτ̃`,∞∧τ̃ [v∞] − L)+ +

∫ τ̃`,∞∧τ̃ [v∞]

0
e−rt(δXt − cL)dt

]
= Eγx

[
e−rτ̃ [v∞](Xτ̃ [v∞] − L)+ +

∫ τ̃ [v∞]

0
e−rt(δXt − cL)dt

]
= U(x) for every x.

Therefore, U`(x) = U(x) for every x > 0 if ` ≤ x1[v∞].

Assumption 17. In the remainder, we shall assume that the protection level ` satisfies the in-

equalities x1[v∞] < ` ≤ L.

The strong Markov property of X can be used to similarly show that

U`(x) = x− cL

r
+ V`(x), x ≥ 0,(4.2)

where

V`(x) , sup
τ∈S

Eγx
[
e−r(τ̃`,∞∧τ)h(Xτ̃`,∞∧τ )

]
, x > 0(4.3)

is the discounted optimal stopping problem for the stopped jump-diffusion process Xτ̃`,∞∧t, t ≥ 0

with the same terminal payoff function h(·) as in (3.8).

Let us define stopping time

τ`,∞ , inf{t ≥ 0; Y X0
t /∈ (`,∞)}

of diffusion process Y X0 and the operator

(4.4) (J`w)(x) , sup
τ∈SB

Eγx
[
e−rτh(Xτ`,∞∧τ )1{τ`,∞∧τ<T1} + e−rT1w(XT1)1{τ`,∞∧τ≥T1}

]
= sup

τ∈SB
Eγx
[
e−(r+λγ)(τ`,∞∧τ)h(Y X0

τ`,∞∧τ ) +

∫ τ`,∞∧τ

0
λγe−(r+λγ)tw((1− y0)Y X0

t )dt
]
, x ≥ 0.

We expect that V`(·) = (JV`)(·); namely, that V`(·) is one of the fixed points of operator J`. We

can find one of the fixed points of J` by taking limit of successive approximations defined by

v`,0(x) , h(x) ≡ (x− L)+ − x+
cL

r
, x > 0,

v`,n(x) , (J`v`,n−1)(x), x > 0, n ≥ 1.

The results of previous section can be adapted to the new problem, and we state only the

differences.
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(M`w)(ζ) ≡ (Mw)(ζ)

ζ`,1[w] ≡ ζ1[w] ζ`,2[w] ≡ ζ2[w]

F (`)

(Mw)(ζ)

ζ1[w] ζ2[w]F (L) ζ0

(Lw)(ζ)

ζ`,2[w]

(M`w)(ζ)

F (`) ≡ ζ`,1[w]

F (L) ζ0

(Lw)(ζ)

Figure 2. The sketches of (Lw)(·) and (M`w)(·). On the left, because F (`) ≤ ζ1[w],

ζ`,1[w] ≡ ζ1[w] and ζ`,2[w] ≡ ζ2[w] and (M`w)(·) ≡ (Mw)(·). On the right, because

ζ1[w] < F (`) ≤ F (L), ζ1[w] < F (`) = ζ`,1[w] < ζ`,2[w] < ζ2[w], and (M`w)(x) <

(Mw)(x) for every x ∈ (ζ1[w], ζ2[w]).

Lemma 18. Let w1, w2 : R+ 7→ R be bounded. If w1(·) ≤ w2(·), then (J`w1)(·) ≤ (J`w2)(·). If w(·)
is nonincreasing and convex such that h(·) ≤ w(·) ≤ cL/r, then (J`w)(·) has the same properties.

Proposition 19. For every bounded w1, w2 : R+ 7→ R, we have ‖J`w1 − J`w2‖ ≤ λγ
r+λγ ‖w1 − w2‖;

namely, J` acts as a contraction mapping on the collection of bounded functions.

Lemma 20. The sequence (v`,n)n≥0 of successive approximations is increasing. Therefore, the

pointwise limit v`,∞(x) = limn→∞ v`,n(x), x > 0 exists. Every v`,n(·), n ≥ 0 and v`,∞(·) are

nonincreasing, convex, and bounded between h(·) and cL/r.

Proposition 21. The limit v`,∞(·) = limn→∞ v`,n(·) = supn≥0 v`,n is the unique bounded fixed

point of J`. Moreover, 0 ≤ v`,∞(x)− v`,n(x) ≤ cL
r ( λγ

r+λγ )n for every x > 0 and n ≥ 0.

Let w : R+ 7→ R be a function as in Assumption 5. Then

(J`w)(x) = λγ(Hw)(x) + (G`w)(x), x > 0,(4.5)

where (G`w)(·) is the value function of the discounted optimal stopping problem

(G`w)(x) , sup
τ∈SB

Eγx
[
e−(r+λγ)τ`,∞∧τ {h− λγ(Hw)} (Y X0

τ`,∞∧τ )
]
, x > 0,(4.6)

for the stopped diffusion process Y X0
τ`,∞

, t ≥ 0 at stopping time τ`,∞.

We obviously have (G`w)(x) = h(x) for every x ∈ (0, `]. If the initial state X0 of Y X0
τ`,∞

, t ≥ 0 is

in (`,∞), then ` becomes an absorbing left-boundary for the stopped process Y X0
τ`,∞

, t ≥ 0.
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Let (M`w)(·) be the smallest concave majorant on [F (`),∞) of (Lw)(·) defined by (3.23) and

equal on (0, F (`)) identically to (Lw)(·). Then by Proposition 5.5 of Dayanik and Karatzas [7]

(G`w)(x) = ϕ(x)(M`w)(F (x)), x > 0 and Γ`[w] = F−1({ζ > 0; (M`w)(ζ) = (Lw)(ζ)})

are value function and optimal stopping region for (4.6). The analysis of the shape of (Lw)(·) prior

to Figure 1 implies that there are unique numbers 0 < ζ`,1[w] < F (L) < ζ`,2[w] <∞ such that
(Lw)′(ζ`,1[w]) =

(Lw)(ζ`,2[w])− (Lw)(ζ`,1[w])

ζ`,2[w]− ζ`,1[w]
= (Lw)′(ζ`,2[w])

namely, ζ`,1[w] ≡ ζ1[w] and ζ`,2[w] ≡ ζ2[w]

 if F (`) ≤ ζ1[w],

ζ`,1[w] = ` and
(Lw)(ζ`,2[w])− (Lw)(ζ`,1[w])

ζ`,2[w]− ζ`,1[w]
= (Lw)′(ζ`,2[w]) if F (`) > ζ1[w],

and

(M`w)(ζ) =



(Lw)(ζ), ζ ∈ (0, ζ`,1[w]] ∪ [ζ`,2[w],∞),

ζ`,2[w]− ζ
ζ`,2[w]− ζ`,1[w]

(Lw)(ζ`,1[w])

+
ζ − ζ`,1[w]

ζ`,2[w]− ζ`,1[w]
(Lw)(ζ`,2[w]),

ζ ∈ (ζ`,1[w], ζ`,2[w]).

Let us define x`,1[w] = F−1(ζ`,1[w]) and x`,2[w] = F−1(ζ`,2[w]). Then the value function equals

(4.7) (G`w)(x) = ϕ(x)(M`w)(F (x))

=



(h− λγ(Hw))(x), x ∈ (0, x`,1[w]] ∪ [x`,2[w],∞),

(x`,2[w])α1−α0 − xα1−α0

(x`,2[w])α1−α0 − (x`,1[w])α1−α0
(h− λγ(Hw))(x`,1[w])

+
xα1−α0 − (x`,1[w])α1−α0

(x`,2[w])α1−α0 − (x`,1[w])α1−α0
(h− λγ(Hw))(x`,2[w]),

x ∈ (x`,1[w], x`,2[w])

and the optimal stopping time becomes

Γ`[w] = {x > 0; (G`w)(x) = (h− λγ(Hw))(x)} = (0, x`,1[w]] ∪ [x`,2[w],∞),(4.8)

and an optimal stopping time is given by

τ`[w] , inf{x > 0; Y X0
t ∈ Γ`[w]} = inf{x > 0; Y X0

t ∈ (0, x`,1[w]] ∪ [x`,2[w],∞)}(4.9)

for the problem in (4.6). A direct verification together with the chain of equalities sgn{(A0 −
(r + λγ))(G`w)(x)} = sgn{(A0 − (r + λγ))(h − λγ(Hw))(x)} = sgn{(Lw)′′(F (x))} < 0 for every

x ∈ (`, x`,1[w])∪ (x`,2[w],∞) from Dayanik and Karatzas [7, page 192] proves the next proposition.

Proposition 22. The value function x 7→ (G`w)(x) is continuously differentiable on [`,∞) and

twice-continuously differentiable on [`,∞) \ {x`,1[w], x`,2[w]}. The function (G`w)(x), x ∈ [`,∞)
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solves the variational inequalities

(i) (A0 − (r + λγ))(G`w)(x) = 0, x ∈ (x`,1[w], x`,2[w]),

(ii) (G`w)(x) > h(x)− λγ(Hw)(x), x ∈ (x`,1[w], x`,2[w]),

(iii) (A0 − (r + λγ))(G`w)(x) < 0, x ∈ (`, x`,1[w]) ∪ (x`,2[w],∞),

(iv) (G`w)(x) = h(x)− λγ(Hw)(x), x ∈ [`, x`,1[w]] ∪ [x`,2[w],∞).

Because (J`w)(x) = λγ(Hw)(x) + (G`w)(x) for every x > 0, (Hw)(·) is twice-continuously

differentiable, and (A0 − (r + λγ))(Hw)(x) = −w((1− y0)x) for every x > 0, the next proposition

immediately follows from Proposition 22.

Proposition 23. The value function x 7→ (J`w)(x) in (4.4) is continuously differentiable on [`,∞),

twice-continuously differentiable on [`,∞) \ {x`,1[w], x`,2[w]}, and satisfies

(i) (A0 − (r + λγ))(J`w)(x) + λγw((1− y0)x) = 0, x ∈ (x`,1[w], x`,2[w]),

(ii) (J`w)(x) > h(x), x ∈ (x`,1[w], x`,2[w]),

(iii) (A0 − (r + λγ))(J`w)(x) + λγw((1− y0)x) < 0, x ∈ (`, x`,1[w]) ∪ (x`,2[w],∞),

(iv) (J`w)(x) = h(x), x ∈ [`, x`,1[w]] ∪ [x`,2[w],∞).

As in the asset manager’s first problem, the successive approximations v`,n(·), n ≥ 0 and their

limit v`,∞(·) satisfy Assumption 5. Therefore, Propositions 21 and 23 lead to the next theorem.

Theorem 24. The function x 7→ v`,∞(x) = (Jv∞)(x) is continuously differentiable on [`,∞),

twice-continuously differentiable on [`,∞) \ {x`,1, x`,2} and satisfies the variational inequalities

(i) (A0 − (r + λγ))v`,∞(x) + λγv`,∞((1− y0)x) = 0, x ∈ (x`,1[v`,∞], x`,2[v`,∞]),

(ii) v`,∞(x) > h(x), x ∈ (x`,1[v`,∞], x`,2[v`,∞]),

(iii) (A0 − (r + λγ))v`,∞(x) + λγv`,∞((1− y0)x) < 0, x ∈ (`, x`,1[v`,∞]) ∪ (x`,2[v`,∞],∞),

(iv) v`,∞(x) = h(x), x ∈ [`, x`,1[v`,∞]] ∪ [x`,2[v`,∞],∞),

which can be expressed in terms of the generator Aγ in (3.5) of the jump-diffusion process X as

(i)′ (Aγ − r)v`,∞(x) = 0, x ∈ (x`,1[v`,∞], x`,2[v`,∞]),

(ii)′ v`,∞(x) > h(x), x ∈ (x`,1[v`,∞], x`,2[v`,∞]),

(iii)′ (Aγ − r)v`,∞(x) < 0, x ∈ (`, x`,1[v`,∞]) ∪ (x`,2[v`,∞],∞),

(iv)′ v`,∞(x) = h(x), x ∈ [`, x`,1[v`,∞]] ∪ [x`,2[v`,∞],∞).

Note again that the second part follows from the first part and from the equality (A0 − (r +

λγ))v`,∞(x) + λγv`,∞((1− y0)x) = (Aγ − r)v`,∞(x) for every x ∈ (`,∞) \ {x`,1[v`,∞], x`,2[v`,∞]}.
By the next theorem, optimal stopping time for asset manager’s second problem is of the form

τ̃`[w] , inf{t ≥ 0; Xt ∈ (0, x`,1[w]] ∪ [x`,2[w],∞)}.
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Theorem 25. For every x ∈ R+, we have V`(x) = v`,∞(x) = Eγx
[
e−rτ̃`[v`,∞]h(Xτ̃`[v`,∞])

]
, and

τ̃`[v`,∞] is an optimal stopping time for (4.3).

Since v`,∞(x) = h(x) = V (x) for every x ∈ (0, `], Theorem 25 has to be proved on (`,∞), which

can be done as in the proof of Theorem 13 but with localizing stopping rules τ̃`b for b > `.

The proof of the next proposition is similar to that of Proposition 14.

Proposition 26. The optimal stopping regions Γ`[v`,n] = {x > 0; (Jv`,n)(x) ≤ h(x)} = (0, x`,1[v`,n]]∪
[x`,2[v`,n],∞), n ∈ {0, 1, . . . ,∞} are decreasing; namely, Γ`[v`,0] ⊇ Γ`[v`,1] ⊇ . . . ⊇ Γ`[v`,∞], and

0 < x`,1[v`,∞] ≤ . . . ≤ x`,1[v`,1] ≤ x`,1[v`,0] ≤ L ≤ x`,2[v`,0] ≤ x`,2[v`,1] ≤ . . . ≤ x`,2[v`,∞] < ∞.

Moreover, x`,1[v`,∞] = limn→∞ x`,1[v`,n] and x`,2[v`,∞] = limn→∞ x`,2[v`,n].

Proposition 27. For every n ≥ 0, we have v`,∞(x) ≤ Eγx[e−rτ̃`[v`,n]h(Xτ̃`[v`,n])] + cL
r ( λ

r+λγ )n+1.

Hence, for every ε > 0 and n ≥ 0 such that cL
r ( λ

r+λγ )n+1 ≤ ε, τ̃`[v`,n] is ε-optimal for (4.3).

The proof is similar to that of Proposition 15 if we replace localizing stopping times τ̃ab with

τ̃`b. Finally, Corollary 28 identifies the maximum expected reward and nearly optimal stopping

strategies of the asset manager for the second problem.

Corollary 28. The maximum expected reward of the asset manager is given by U`(x) = x− cL
r +

V`(x) = x − cL
r + v`,∞(x) for every x ≥ 0. The stopping rule τ̃`[v`,∞] is optimal, and τ̃`[v`,n] is

ε-optimal for every ε > 0 and n ≥ 0 such that cL
r ( λγ

r+λγ )n+1 < ε, in the sense that for every x > 0

U`(x) = Eγx
[
e−rτ̃`[v`,∞](Xτ̃`[v`,∞] − L)+ +

∫ τ̃`[v`,∞]

0
e−rt(δXt − cL)dt

]
,

U`(x)− ε ≤ Eγx
[
e−rτ̃`[v`,n](Xτ̃`[v`,n] − L)+ +

∫ τ̃`[v`,n]

0
e−rt(δXt − cL)dt

]
.

We expect that the value of the limited protection at level ` to increase as ` decreases. We also

expect that the asset manager quits early as the protection limit ` increases to L. This expectations

are validated later, and they are backed up by the findings of the next lemma.

Lemma 29. Let w : R+ 7→ R be as in Assumption 5. Suppose that 0 < ` < u < L. Then

(i) (M`w)(·) ≥ (Muw)(·) on R+,

(ii) 0 < ζ`,1[w] < ζu,1[w] < F (L) < ζu,2[w] < ζ`,2[w] <∞,

(iii) (J`w)(·) ≥ (Juw)(·) on R+,

(iv) 0 < x`,1[w] < xu,1[w] < L < xu,2[w] < x`,2[w] <∞.

Recall that (M`w)(·) and (Muw)(·) coincide, respectively, on (0, F (`)] and (0, F (u)] with (Lw)(·)
and on (F (`),∞) and (F (u),∞) with the smallest nonnegative concave majorants of (Lw)(·),
respectively, over (F (`),∞) and (F (u),∞). Therefore, (i) and (ii) of Lemma 29 immediately

follow; see Figure 2. Finally, (iii) and (iv) follow from (i) and (ii) by the relation (4.5): (J`w)(x) =
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(Lw)(ζ)
ζu,2[w]

(M`w)(ζ)
(Muw)(ζ)

F (u) ≡ ζu,1[w]

F (`) ≡ ζ`,1[w]

(Mw)(ζ)

0 ζ1[w] F (L) ζ2[w] ζ

ζ`,2[w]

Figure 3. Comparison of (M`w)(·) and (Muw)(·) for ζ1[w] < F (`) < F (u) < F (L).

Observe that ζ1[w] < ζ`,1[w] < ζu,1[w] < F (L) < ζu,2[w] < ζ`,2[w] and (M`w)(·) ≥
(Muw)(·).

λγ(Hw)(x) + (G`w)(x) = λγ(Hw)(x) + ϕ(x)(M`w)(F (x)) for every x; x`,1[w] = F−1(ζ`,1[w]),

x`,2[w] = F−1(ζ`,2[w]), and that F (·) is strictly increasing.

Proposition 30 shows that demanding higher portfolio insurance or limiting more severely the

downward risks or losses also limits the upward potential and reduces the total value of the portfolio.

Proposition 30. For every 0 < ` < u < L, we have

(i) v`,n(x) ≥ vu,n(x), x ∈ R+, n ∈ {0, 1, . . . ,∞},

(ii) U`(x) ≥ Uu(x), x ∈ R+,

(iii) 0 < x`,1[v`,n] ≤ xu,1[vu,n] < L < xu,2[vu,n] ≤ x`,2[v`,n] <∞.

Proof. Note first that v`,0(x) = h(x) = vu,0(x) for every x ∈ R+. Suppose that for some n ≥ 0

we have v`,n(·) ≥ vu,n(·) on R+. Then by Lemmas 18 and 29 (iii), v`,n+1(·) = (J`v`,n)(·) ≥
(J`vu,n)(·) ≥ (Juvu,n)(·) = vu,n+1(·). Therefore, for every n ≥ 0, we have v`,n(·) ≥ vu,n(·) and

v`,∞(·) = limn→∞ v`,n(·) ≥ limn→∞ vu,n(·) = vu,∞(·), which proves (i). By (4.2), U`(x) = x− cL
r +

v`,∞(x) ≥ x− cL
r + vu,∞(x) = Uu(x) for every x > 0, and (ii) follows. Finally, (4.8) and (i) imply

(0, x`,1[v`,∞]]∪[x`,1[v`,∞],∞) = Γ`[v`,∞] = {x > 0; (J`v`,∞)(x) ≤ h(x)} = {x > 0; v`,∞(x) ≤ h(x)}

⊆ {x > 0; vu,∞(x) ≤ h(x)} = {x > 0; (Juvu,∞)(x) ≤ h(x)} = (0, xu,1[vu,∞]] ∪ [xu,1[vu,∞],∞).

Hence, 0 < x`,1[v`,∞] ≤ xu,1[vu,∞] < L < xu,2[vu,∞] ≤ x`,2[v`,∞] <∞. Similarly,

(0, x`,1[v`,n]]∪[x`,1[v`,n],∞) = Γ`[v`,n] = {x > 0; (J`v`,n)(x) ≤ h(x)} = {x > 0; v`,n+1(x) ≤ h(x)}

⊆ {x > 0; vu,n+1(x) ≤ h(x)} = {x > 0; (Juvu,n)(x) ≤ h(x)} = (0, xu,1[vu,n]] ∪ [xu,1[vu,n],∞),

which implies 0 < x`,1[v`,n] ≤ xu,1[vu,n] < L < xu,2[vu,n] ≤ x`,2[v`,n] <∞ for every finite n ≥ 0. �
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5. Numerical algorithms

The following algorithm describes how one can calculate maximum expected reward and optimal

stopping strategy of the asset manager in the first problem.

Initialization. Set n = 1, v0(x) = h(x), x ≥ 0. Calculate ϕ(x) = xα0 , ψ(x) = xα1 , F (x) =

ψ(x)/ϕ(x) = xα1 − xα0 , where

α0,1 =
−(r − δ + λγy0 − σ2

2 )∓
√

(r − δ + λγy0 − σ2

2 )2 + 2σ2(r + λγ)

σ2
, α0 < α1.(5.1)

Step 1. Calculate

(Lvn)(ζ) =


h− λγ(Hvn)

ϕ
◦ F−1(ζ), ζ > 0,

0, ζ = 0.

Step 2. Calculate the critical boundaries ζ1[vn] < F (L) < ζ2[vn], which are unique solutions of

(Lvn)′(ζ1[vn]) =
(Lvn)(ζ2[vn])− (Lvn)(ζ2[vn])

ζ1[vn]− ζ1[vn]
= (Lvn)′(ζ2[vn]),

and the smallest nonnegative concave majorant (Mvn)(·) of (Lvn)(·) on R+ by

(Mvn)(ζ) =



(Lvn)(ζ), ζ ∈ (0, ζ1[vn]] ∪ [ζ2[vn],∞),

ζ2[vn]− ζ
ζ2[vn]− ζ1[vn]

(Lvn)(ζ1[vn])

+
ζ − ζ1[vn]

ζ2[vn]− ζ1[vn]
(Lvn)(ζ2[vn]),

ζ ∈ (ζ1[vn], ζ2[vn]).

Step 3. Calculate x1[vn] = F−1(ζ1[vn]), x2[vn] = F−1(ζ2[vn]), and

(Gvn)(ζ) =



(h− λγ(Hvn))(x), x ∈ (0, x1[vn]] ∪ [x2[vn],∞),

(x2[vn])α1−α0 − xα1−α0

(x2[vn])α1−α0 − (x1[vn])α1−α0
(h− λγ(Hvn))(x1[vn])

+
xα1−α0 − (x1[vn])α1−α0

(x2[vn])α1−α0 − (x1[vn])α1−α0
(h− λγ(Hvn))(x2[vn]),

x ∈ (x1[vn], x2[vn]).

Step 4. Calculate vn+1(x) = λγ(Hvn)(x) + (Gvn)(x) for every x > 0.

Step 5. If some stopping criterion has not yet been satisfied (for example, the uniform bound
cL
r ( λγ

r+λγ )n+1 on ‖v∞ − vn‖ has not yet been reduced below some desired error level), then set n to

n+ 1 and got to Step 1, otherwise stop.

Outcome. After the algorithm terminates with vn+1, x1[vn], and x2[vn],

(i) we have x− cL
r + vn(x) ≤ U(x) ≤ x− cL

r + vn(x) + cL
r ( λγ

r+λγ )n for every x > 0,

(ii) the stopping time τ̃ [vn] = inf{t ≥ 0; Xt 6∈ (x1[vn], x2[vn])} is ε-optimal for every ε >
cL
r ( λγ

r+λγ )n for the portfolio manager’s first problem; namely, for every x > 0

U(x)− cL

r

(
λγ

r + λγ

)n
≤ Eγx

[
e−rτ̃ [vn](Xτ̃ [vn] − L)+ +

∫ τ̃ [vn]

0
e−rt(δXt − cL)dt

]
≤ U(x).
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The following algorithm calculates the maximum expected reward and optimal stopping strategy

of the asset manager in the second problem with portfolio protection level set at some 0 < ` < L.

Initialization. Set n = 1, v`,0 = h(x), x > 0. Calculate ϕ(x) = xα0 , ψ(x) = xα1 , F (x) =

ψ(x)/ϕ(x) = xα1 − xα0 , where α0 and α1 are as in (5.1).

Step 1. Calculate

(Lv`,n)(ζ) =


h− λγ(Hv`,n)

ϕ
◦ F−1(ζ), ζ > 0,

0, ζ = 0.

Step 2. Calculate (M`v`,∞)(·), which equals (Lv`,n)(·) on (0, F (`)] and coincides on (F (`),∞)

with the smallest nonnegative concave majorant of the restriction of (Lv`,n)(·) to [F (`),∞). Let

0 < ζ`,1[v`,n] < F (L) < ζ`,2[v`,n] be the endpoints of interval {ζ; (M`v`,∞)(ζ) > (Lv`,n)(ζ). Then

(M`v`,n)(ζ) =



(Lv`,n)(ζ), ζ ∈ (0, ζ`,1[v`,n]] ∪ [ζ`,2[v`,n],∞),

ζ`,2[v`,n]− ζ
ζ`,2[v`,n]− ζ`,1[v`,n]

(Lv`,n)(ζ`,1[v`,n])

+
ζ − ζ`,1[v`,n]

ζ`,2[v`,n]− ζ`,1[v`,n]
(Lv`,n)(ζ`,2[v`,n]),

ζ ∈ (ζ`,1[v`,n], ζ`,2[v`,n]).

Step 3. Calculate x`,1[v`,n] = F−1(ζ`,1[v`,n]), x`,2[v`,n] = F−1(ζ`,2[v`,n]), and (Gv`,n)(ζ) =

(h− λγ(Hv`,n))(x), x ∈ (0, x`,1[v`,n]] ∪ [x`,2[v`,n],∞),

(x`,2[v`,n])α1−α0 − xα1−α0

(x`,2[v`,n])α1−α0 − (x`,1[v`,n])α1−α0
(h− λγ(Hv`,n))(x`,1[v`,n])

+
xα1−α0 − (x`,1[v`,n])α1−α0

(x`,2[v`,n])α1−α0 − (x`,1[v`,n])α1−α0
(h− λγ(Hv`,n))(x`,2[v`,n]),

x ∈ (x`,1[v`,n], x`,2[v`,n]).

Step 4. Calculate v`,n+1(x) = λγ(Hv`,n)(x) + (Gv`,n)(x) for every x > 0.

Step 5. If some stopping criterion has not yet been satisfied (for example, the uniform bound
cL
r ( λγ

r+λγ )n+1) on ‖v`,∞− v`,n‖ has not yet been reduced below some desired error level), then set n

to n+ 1 and got to Step 1, otherwise stop.

Outcome. After the algorithm terminates with v`,n+1, x`,1[v`,n], and x`,2[v`,n],

(i) we have x− cL
r + v`,n(x) ≤ U`(x) ≤ x− cL

r + v`,n(x) + cL
r ( λγ

r+λγ )n for every x > 0,

(ii) the stopping time τ̃`[v`,n] = inf{t ≥ 0; Xt 6∈ (x`,1[v`,n], x`,2[v`,n])} is ε-optimal for every

ε > cL
r ( λγ

r+λγ )n for the portfolio manager’s second problem; namely, for every x > 0

U`(x)− cL

r

(
λγ

r + λγ

)n
≤ Eγx

[
e−rτ̃`[v`,n](Xτ̃`[v`,n] − L)+ +

∫ τ̃`[v`,n]

0
e−rt(δXt − cL)dt

]
≤ U`(x).

6. Numerical illustration

For illustration, we take L = 1, σ = 0.275, r = 0.03, c = 0.05, δ = 0.08, λγ = 0.01, y0 = 0.03.

Observe that 0 < r < c < δ. We obtain α0 = −0.3910 and α1 = 2.7054. We implemented the

numerical algorithms of Section 5 in R in order to use readily available routines to calculate the

smallest nonnegative concave majorants of functions. We have used gcmlcm function from the R
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Figure 4. Numerical illustration of the solution of the auxiliary optimal stopping

problem (3.7) in the first problem.

package fdrtool developed by Korbinian Strimmer for that purpose. The approximation functions

approxfun and splinefun were also useful to compactly represent the functions we evaluated on

appropriate grids placed on state space and its F -transformation. By trial-and-error, we find

out that optimal continuation region lies strictly inside [0, 10L]. Because F (L) turns out to be

significantly smaller than the upper bound 10L, for the accuracy of the results it proved useful to

put a grid on the interval [0, F (L)] one hundred times finer than the grid put on [F (L), F (10L)].

In the implementation of Step 5 of the numerical algorithms of Section 5, we decided to stop

the iterations as soon as the maximum absolute difference between the last two approximations on

the grid placed on [0, 10L] is less than 0.01. The first algorithm stops after three iterations with

the maximum absolute difference ‖v3 − v2‖ ≈ 0.0011 and returns v3(·), (0, x1[v2]] ∪ [x2[v2],∞) =

(0, 0.3874] ∪ [4.7968,∞), and τ̃ [v3] = inf{t ≥ 0; Xt /∈ (0, 0.3874] ∪ [4.7968,∞)} as the approximate

value function, approximate stopping region, and nearly optimal stopping rule for (3.7). The bound

in (i) on page 5 also guarantees that ‖V (·)− v3(·)‖ ≤ cL
r ( λγ

r+λγ )3 = 0.026. The leftmost picture in

Figure 4 suggests that the algorithm actually converges faster than what this upper bound suggests.

The middle and rightmost pictures illustrate how the solution of each auxiliary problem is found by

constructing the smallest nonnegative concave majorants M of the transformations with operator

L. The insets give closer look over the small interval [0, F (L)] at the same pictures which are

otherwise harder to identify. All of the pictures in Figure 4 are consistent with the general form

sketched in Figure 1.
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Figure 5. Numerical illustration of the solution of the auxiliary optimal stopping

problem (4.3) in the second problem when the protection level equals ` = 0.69.

Figure 5 similarly illustrates the solution of the second problem of the asset manager when the

investors hold a limited protection of their assets with lower bound ` = 0.69 on the market value

of the asset manager’s portfolio. Because x1[v∞] ≈ x1[v2] = 0.3874 < ` < 4.7968 = x2[v2] ≈
x2[v∞], the unconstrained solution of Problem 1 (corresponding to ` = 0) is not any more optimal.

Therefore, we run the second algorithm of Section 5, which converges in two iterations because

‖v`,2 − v`,1‖ ≈ 0.0063 < 1/100. Hence, v`,2(·), (0, x`,1[v`,1]]∪ [x`,2[v`,1],∞) = (0, 0.69]∪ [3.4724,∞),

and τ̃`[v`,1] = inf{t ≥ 0; Xt 6∈ (0, 0.69] ∪ [3.4724,∞)} are approximate value function, approximate

stopping region, and nearly optimal stopping rule for (4.3).

Observe that the stopping region of Problem 2 contains the stopping region of Problem 1:

(0, x`,1[v`,1]] ∪ [x`,2[v`,1],∞) = (0, 0.69] ∪ [3.4724,∞) ⊃ (0, x1[v2]] ∪ [x2[v2],∞) = (0, 0.3874] ∪
[4.7968,∞). Thus, asset manager stops early in the presence of portfolio protection at level

` = 0.69. Because U(x) ≈ x − cL
r + v2(x) and U`(x) ≈ x − cL

r + v`,1(x) are approximately

the value functions of Problems 1 and 2, the value of the limited protection at level ` when

stock price is x equals U(x) − U(`)(x) ≈ v3(x) − v`,2(x), which is plotted on the left in Fig-

ure 6. Therefore, the no-difference price of this protection at the initiation of the contract equals

U(L)−U(`)(L) ≈ v3(L)−v`,2(L) = 0.087. The plot on the right in Figure 6 shows the no-difference

prices of the protection at levels ` changing between 0 and L = 1. The protection has no value at

the protection levels less than or equal to x1[v∞] ≈ x1[v2], because the optimal policy, even in the
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Figure 6. On the left, the value of the limited protection at level ` = 0.69 as

the market value of portfolio changes, and on the right, no-difference prices of the

protections for different protection limits.

absence of protection clause, instructs the asset manager to quit as soon as the market value of the

portfolio goes below x1[v∞] ≈ x1[v2].
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