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ABSTRACT. One encounters options involving not only the stock price but also its running maximum.
We provide, in a fairly general setting, explicit solutions for optimal stopping problems concerned with
diffusion process and its running maximum. Our approach is to use the excursion theory for Markov
processes and rewrite the original two-dimensional problem as an infinite number of one-dimensional ones.
Our method is rather direct without presupposing optimal threshold or imposing the smooth-fit condition.
We present a systematic solution method by illustrating it through classical and new examples.
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1. INTRODUCTION

We let X = (Xt , t ≥ 0) be one-dimensional diffusion and denote by Y the reflected process,

Yt = St −Xt

where St = supu∈[0,t] Xu∨ s with s = S0. Hence Y is the excursion of X from its running maximum S. We consider
an optimal stopping problem that involves both X and S. That is,

V̄ (x,s) = sup
τ

Ex,s
[∫

τ

0
e−qt f (Xt ,St)dt + e−qτg(Xτ ,Sτ)

]
(1.1)

where f and g are reward functions from R2 to R+. The rigorous mathematical definition of this problem is
presented in Section 2. In this paper, we shall solve for optimal strategy and corresponding value function along
with optimal stopping region in the (x,s)-plane.

For American option pricing that involve both S and X , we mention pioneering works of Shepp and Shiryaev
[20] and Peskir [15]. In the former paper, the Russian option is solved and in the latter the author established the
“maximum principle”. There is also Ott [14] where the author solves problems including a capped version of the
Shepp-Shiryaev [20]. We should mention Guo and Zervos [10], which makes another extension of [20] by treating
the reward function g(x,s) = (xasb−K)+ with a,b,K ≥ 0. This reward function includes perpetual call, lookback
option, etc. as special cases. In many solved problems, Brownian motion or geometric Browninan motion is used
as underlying process in an effort to obtain tractable solutions. A recent development in this area includes Alvarez
and Matoäki [2] where a discretized approach is taken to find optimal solutions and a corresponding numerical
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algorithm is presented. In the context of risk management, an excursion from the running maximum is sometimes
called drawdown. See Hadjiliadis and Zhang [22] and Zhang [21]. For example, the joint Laplace transform of the
last visit time of the maximum of a process preceding the drawdown and the maximum of the process is calculated
in the former, while a perturbation approach for obtaining the Laplace transform is used in the latter.

The idea of our solution method is the following: we look at excursions that occur from each level of S, during an
excursion from level St = s, the value of St is fixed until X returns to s. By the dynamic programming principle the
value there is V (s,s). Using this, the problems reduce to an infinite number of one-dimensional optimal stopping
problems. Note that this idea is mentioned in Ott [13] when the author argued the existence of optimal stopping
time of hitting-time type. Then the author uses the smooth-fit principle for optimal stopping problems driven by
spectrally negative Lévy processes. In this spirit, we attempt to rewrite the problem equation (1.1) in the form of
sequences of excursions.

The difficulty is in finding V (s,s). To this end, we employ the theory of excursion of Markov processes, in
particular the excursion measure (also called characteristic measure for excursion) that is related to the height of
excursions. (Refer to Bertoin [4] as a general reference.) The outcome is the representation of V (s,s) in Proposition
3.1. To make it more explicit, we implement some limit-taking operation in Proposition 4.1. This part of the article
(Sections 3 and 4) consists of the main contribution, describing a new solution method. For the excursion theory
for spectrally negative Lévy processes (that have only downward jumps), we mention Avram et al. [3], Pistorius
[18] [19] and Doney [8] where, among others, an exit problem of the reflected process Y is studied.

Having done that, we solve, at each level of S, one-dimensional optimal stopping problems by using the exces-
sive characterization of the value function. This corresponds to the concavity of the value function after certain
transformation, by which we can treat problems in a systemic way. We provide a kind of solution recipe in Section
5. We briefly review the aforementioned transformation in Section 2.2. See Dynkin[9], Alvarz[1] and Dayanik and
Karatzas [7] for more details.

Our contributions in this paper may advance the literature in several respects: we do not assume any specific
forms or properties in the reward functions (except for mild ones), and we provide explicit forms of the value
function and illustrate the procedure of the solution method. In contrast to the literature, our approach is rather
direct since we do not impose the smooth-fit principle in deciding optimal boundary. Accordingly, one does
not have to prove so-called “verification lemma” (that is important in showing the presupposed candidate value
function is in fact a solution) and hence may handle a broader set of problems.

The rest of the paper is organized as follows. In Section 2, we formulate a mathematical model with a review
of some important facts of linear diffusions, and then find an optimal solution. The key step is to represent and
compute the value V (s,s), which is handled in Sections 3 and 4. Under the mild assumptions (Assumption 4.1), we
present V (s,s) in an explicit form. The next step is to find V (x,s) in Section 5. Moreover, we shall demonstrate the
methodology by using a new problem (Section 5.1) as well as some problems in the literature (Section 4.4.1 and
4.4.2). Let us stress that the new problem might not be easily handled by the conventional methods. The Appendix
includes a proof of the technical lemma.
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2. MATHEMATICAL MODEL

2.1. Setup. Let the diffusion process X = {Xt ; t ≥ 0} represent the state variable defined on the probability space
(Ω,F ,P), where Ω is the set of all possible realizations of the stochastic economy, and P is a probability measure
defined on F . The state space of X is given by (l,r) := I ⊆ R, where l and r are natural boundaries. That is, X
cannot start from and exit from l or r. We denote by F= {Ft}t≥0 the filtration with respect to which X is adapted
and with the usual conditions being satisfied. We assume that X satisfies the following stochastic differential
equation:

dXt = µ(Xt)dt +σ(Xt)dBt , X0 = x,

where B = {Bt : t ≥ 0} is a standard Brownian motion and µ : I 7→ R and σ : I 7→ (0,∞) satisfy the usual
Lipschitz conditions ensuring the existence and uniqueness of a solution given an initial condition. The running
maximum process S = {St ; t ≥ 0} with s = S0 is defined by St = supu∈[0,t] Xu ∨ s. In addition, we write Y for
the reflected process defined by Yt = St −Xt . We consider the following optimal stopping problem and the value
function V̄ : R2 7→ R associated with initial values X0 = x and S0 = s;

V̄ (x,s) = sup
τ∈S

Ex,s
[∫

τ

0
e−qt f (Xt ,St)1l{τ<+∞}dt + e−qτg(Xτ ,Sτ)1l{τ<+∞}

]
(2.1)

where Px,s( ·) :=P( · |X0 = x,S0 = s) and Ex,s is the expectation operator corresponding to Px,s, q≥ 0 is the constant
discount rate and S is the set of all F-adapted stopping times. The payoff is composed of two parts; the running
income to be received continuously until stopped, and the terminal reward part. The running income function
f : R2 7→ R is a measurable function that satisfies

(2.2) Ex,s
[∫

∞

0
e−qt | f (Xt ,St)|dt

]
< ∞.

Regarding the integrability condition, it is worth mentioning that if f is continuous and satisfies the linear growth
condition

| f (x,s)| ≤C1(1+ |s|)

for some strictly positive constant C1 < ∞, then it is guaranteed that

Ex,s
[∫

∞

0
e−qt | f (Xt ,St)|dt

]
≤C2(1+ |s|)

for some C2 when the discount rate is large enough (see Pham [16] page 191). The reward function g : R2 7→ R+

is assumed to be measurable and satisfied the linear growth condition. See also Pham [17] for these assumptions
on f and g. Our main purpose is to calculate V̄ and to find the stopping time τ∗ which attains the supremum.

2.2. Reduction to One-Dimensional Problem. We will reduce the problem (2.1) to an infinite number of one-
dimensional optimal stopping problem and discuss the optimality of the proposed strategy (2.12). Let us denote
by f̄ : R2 7→R the q-potential of f , that is, f̄ (x,s) := Ex,s [

∫
∞

0 e−qt f (Xt ,St)dt]. From the strong Markov property of
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(X ,S), we have

Ex,s
[∫

τ

0
e−qt f (Xt ,St)1l{τ<+∞}dt

]
= Ex,s

[∫
∞

0
e−qt f (Xt ,St)dt−

∫
∞

τ

e−qt f (Xt ,St)1l{τ<+∞}dt
]

= f̄ (x,s)−Ex,s
[
E
[∫

∞

τ

e−qt f (Xt ,St)1l{τ<+∞}dt
∣∣∣Fτ

]]
= f̄ (x,s)−Ex,s

[
e−qτEXτ ,Sτ

[∫
∞

0
e−qt f (Xt ,St)dt

]
1l{τ<+∞}

]
= f̄ (x,s)−Ex,s [e−qτ f̄ (Xτ ,Sτ)1l{τ<+∞}

]
.

Hence the value function V̄ can be written as

V̄ (x,s) = f̄ (x,s)+V (x,s),

where

V (x,s) := sup
τ∈S

Ex,s [e−qτ(g− f̄ )(Xτ ,Sτ)1l{τ<+∞}
]
.(2.3)

Since f̄ (x,s) has nothing to do with the choice of τ , we concentrate on V (x,s).
Let us first define the first passage times of X :

Ta := inf{t ≥ 0 : Xt > a} and T−a := inf{t ≥ 0 : Xt < a}.(2.4)

Under the assumptions on f and g in the last subsection, by the dynamic programming principle, we can write
V (x,s) as

V (x,s) = sup
τ∈S

Ex,s
[
1l{τ<θ}e

−qτ(g− f̄ )(Xτ ,Sτ)+1l{θ≤τ<+∞}e
−qθV (Xθ ,Sθ )

]
,(2.5)

for any stopping time θ ∈S . See, for example, Pham [17] page 97. Now we set θ = Ts in (2.5). For each level
S = s from which an excursion Y = S−X occurs, the value S does not change during the excursion. Hence, during
the first excursion interval from S0 = s, we have St = s for any t ≤ Ts, and (2.5) can be written as the following
one-dimensional problem for the state process X ;

V (x,s) = sup
τ∈S

Ex,s [1l{τ<Ts}e
−qτ(g− f̄ )(Xτ ,s)+1l{Ts≤τ<+∞}e

−qTsV (s,s)
]
.(2.6)

Now we can look at only the process X and find τ∗ ∈ S . In relation to (2.6), we consider the following one-
dimensional optimal stopping problem as for X and its value function V̂ : R2 7→ R;

V̂ (x,s) = sup
τ∈S

Ex,s [1l{τ<Ts}e
−qτ(g− f̄ )(Xτ ,s)+1l{Ts≤τ<+∞}e

−qTsK
]
,(2.7)

where K ≥ 0 is a constant. Note that V = V̂ holds when K =V (s,s), and we shall present how to characterize and
compute V (s,s) in Sections 3 and 4.

Before presenting the solution method, we recall the fundamental facts about one-dimensional diffusions; let
the differential operator A be the infinitesimal generator of the process X defined by

A v(·) = 1
2

σ
2(·)d2v

dx2 (·)+µ(·)dv
dx

(·)
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and consider the ODE A v− qv = 0. This equation has two fundamental solutions: ψ(·) and ϕ(·). We set ψ(·)
to be the increasing and ϕ(·) to be the decreasing solution. They are linearly independent positive solutions and
uniquely determined up to multiplication. It is well known that

Ex[e−ατz ] =


ψ(x)
ψ(z) , x≤ z,

ϕ(x)
ϕ(z) , x≥ z.

(2.8)

For the complete characterization of ψ(·) and ϕ(·), refer to Itô and McKean [11]. Let us now define

F(x) :=
ψ(x)
ϕ(x)

, x ∈I .(2.9)

Then F(·) is continuous and strictly increasing. Next, following Dynkin (pp. 238, [9]), we define concavity of a
function with respect F as follows: A real-valued function u is called F-concave on I if, for every x ∈ [l,r]⊆I ,

u(x)≥ u(l)
F(r)−F(x)
F(r)−F(l)

+u(r)
F(x)−F(l)
F(r)−F(l)

.

Now consider the optimal stopping problem:

V (x) = sup
τ∈S

Ex[e−qτh(Xτ)]

where h: [c,d] 7→ R+. Let W (·) be the smallest nonnegative concave majorant of

(2.10) H :=
h
ϕ
◦F−1 on [F(c),F(d)]

where F−1 is the inverse of F . Then we have V (x) = ϕ(x)W (F(x)) and the optimal stopping region Γ is

Γ := {x ∈ [c,d] : V (x) = h(x)} and τ
∗ := inf{t ≥ 0 : Xt ∈ Γ}.

Note that for the rest of this article, the term “transformation” should be understood as (2.10).
When both boundaries l and r are natural, V (x)<+∞ for all x ∈ (l,r) if and only if

ξl := limsup
x↓l

h+(x)
ϕ(x)

and ξr := limsup
x↑r

h+(x)
ψ(x)

(2.11)

are both finite.

2.3. Optimal Strategy. We reproduce (2.7) here:

V̂ (x,s) = sup
τ∈S

Ex,s [1l{τ<Ts}e
−qτ(g− f̄ )(Xτ ,s)+1l{Ts≤τ<+∞}e

−qTsK
]
,x ∈ (−∞,s].

Note that the right absorbing boundary is s where one receives reward K. Then we can use the general theory of
one-dimensional optimal stopping problem:

Proposition 2.1. The optimal stopping region Γ(s) and optimal strategy τ∗(s) for each s fixed in (2.7) are

Γ(s) := {x < s : V (x) = (g− f̄ )(x,s)} and τ
∗(s) := inf{t ≥ 0 : Xt ∈ Γ(s)}.

Proof. Apply Proposition 4.4 of Dayanik and Karatzas [7]. �
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In the (x,s)-plane, for a Borel measurable set D ∈B(R2) and m ∈ R, define a set D(m) ∈B(R) such that

D(m)×{m}= (R×{m})∩D

holds where B(Rd) denotes the Borel σ -algebra in Rd . Hence D(m) is the section of D by the horizontal line
s = m in the (x,s)-plane and we hence write D =

⋃
s(D(s)×{s}) now. Define a set of strategies

(2.12) τ(D) := inf{t ≥ 0 : St −Xt ∈ D(St)}.

In other words, τ(D) is the first time the excursion S−X from level, say S = s, enters the region D(s). We collect
this type of strategies to form a set

S ′ := {τ(D)}D∈R2 ⊂S .

In particular, suppose that D(m) = (c,+∞) for any m ∈ R, we write

τc := inf{t ≥ 0 : St −Xt > c}.

Then, from Proposition 2.1, by setting D(s) = Γ(s) for each s, we can obtain an optimal stopping strategy τ∗ ∈S ′.
As for the calculation of V̂ , the following propositions are available also from [7]:

Proposition 2.2. Fix s ∈ R. The value function V̂ (·) of (2.7) is the smallest nonnegative majorant of (g− f̄ )(·)
and the point (s,K) such that V̂ (·)/ϕ(·) is F-concave.

Proposition 2.3. Fix s ∈ R. Let W (·) be the smallest nonnegative concave majorant of H := ((g− f̄ )/ϕ) ◦F−1

and the point (F(s),K/ϕ(s,s) on [F(−∞),F(s)]. Then V̂ (x) = ϕ(x)W (F(x)), for every x < s.

Once we have K = V (s,s), we can compute the global solution V (x,s) from these propositions. However, the
real difficulty lies in how to obtain V (s,s).

3. REPRESENTATION OF V (s,s)

Now we look to an explicit solution of V̄ in S ′. The first step is to find K =V (s,s) in (2.7). That is, we consider
the case S0 = X0 and want to compute the right-hand side of (2.3) with s = x. Set stopping times Tm = inf{t ≥ 0 :
Xt > m} as in (2.4). and define a function lD : R+ 7→ R+ by

(3.1) lD(m) := infD(m).

for which τ(D) ∈S ′. Since we have shown that optimal strategy belongs to threshold strategies in the previous
section, we now focus on the set of τ(D) in (2.12). Hence we can write from (2.3)

(3.2) V (s,s) = sup
τ(D)∈S ′

Es,s[1l{τ(D)<+∞}e
−qτ(g− f̄ )(Xτ(D),Sτ(D))]

and try to simplify the expectation on the right-hand side. This is done in the next proposition. Note that at this
stage we do not specify the values of lD, which we shall do in Section 4.

Proposition 3.1. When S0 = X0, the function V (s,s), finite or infinite, for τ ∈S can be represented by

V (s,s) = sup
lD

∫
∞

s

ϕ(s)
ϕ(m− lD(m))

exp
(
−
∫ m

s

F ′(u)du
F(u)−F(u− lD(u))

)
(3.3)

×F ′(m)(g− f̄ )(m− lD(m),m)

F(m)−F(m− lD(m))
dm.
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Proof. The notation in (3.1) is to identify an exact point of stopping. In other words, if S0 = X0, given a threshold
strategy τ = τ(D) where D(m) is in the form of [a,c] ⊂ [0,+∞), the value lD(m) is equal to a. Accordingly,
SτlD(m)

= Sτa on the set {SτlD(m)
∈ dm}. Due to the continuity of sample paths of X and X0 = S0, we are looking at

continuous paths of excursion from S0 = s. It follows that Xτ(D) = m− lD(m) on {Sτ(D) = m} and therefore, for the
purpose of computing V (s,s), it suffices to look to these points lD(m).

From the strong Markov property of (X ,S), when τ(D) ∈S ′ and S0 = X0 = s, it becomes

Es,s
[
1l{τ(D)<+∞}e

−qτ(D)(g− f̄ )(Xτ(D),Sτ(D))
]

(3.4)

=
∫

∞

s
Es,s

[
1l{τ(D)<+∞,Sτ(D)∈dm}e

−qτ(D)(g− f̄ )(Xτ(D),Sτ(D))
]

=
∫

∞

s
Es,s

[
1l{Tm≤τ(D)}e

−qTmEm,m
[
e−qτlD(m)(g− f̄ )(XτlD(m)

,SτlD(m)
)

×1l{SτlD(m)
∈dm}

]]
=

∫
∞

s
Es,s

[
1l{Sτ(D)≥m}e

−qTm
]
(g− f̄ )(m− lD(m),m)

×Em,m
[
e−qτlD(m)1l{SτlD(m)

∈dm}

]
.

Now we calculate these expectations by changing probability measure. We introduce the probability measure Pϕ,q
x,s

defined by

(3.5) Pϕ,q
x,s (A) :=

1
ϕ(x)

Ex,s [e−qt
ϕ(Xt)1lA

]
, for every A ∈F .

Then under the new measure Pϕ,q
x,s , the scale function of X is equal to F , which means that

Pϕ,q
x,s (τa < τb) =

F(b)−F(x)
F(b)−F(a)

, for a < x < b,

and in other words that the process F(X) is in natural scale. Note that processes in natural scale include a standard
Brownian motion. See Borodin and Salminen [5] (page 33) and Dayanik and Karatzas [7] (Chapter 8) for detailed
explanations. Since F(X) is a diffusion, we can define the process η := {ηt ; t ≥ 0} of the height of the excursion
as

ηu := sup{(S−X)Tu−+w : 0≤ w≤ Tu−Tu−}, if Tu > Tu−,

and ηu = 0 otherwise, where Tu− := inf{t ≥ 0 : Xt ≥ u}= limm→u−Tm. Then η is a Poisson point process, and we
denote its excursion measure under Pϕ,q

x,s by ν : F 7→ R+ of F(X). It is well known that

ν [u,∞) =
1
u
, for u ∈ R+\{0}.
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See, for example, Çinlar [6] (pp. 416), where we used the fact that f (X) is in natural scale under Pϕ,q
x,s . By using

these notations, we have1

Pϕ,q
s,s (Sτ(D) > m) = exp

(
−
∫ F(m)

F(s)
ν [y−F(F−1(y)− lD(F−1(y))),∞)dy

)
= exp

(
−
∫ m

s

F ′(u)du
F(u)−F(u− lD(u))

)
.(3.6)

On the other hand, from the definition of the measure Pϕ,q
x,s , we have

Pϕ,q
s,s (Sτ(D) > m) =

1
ϕ(s)

Es,s
[
e−qTmϕ(XTm)1l{Sτ(D)>m}

]
=

ϕ(m)

ϕ(s)
Es,s

[
e−qTm1l{Sτ(D)>m}

]
.

Combining these two things together,

(3.7) Es,s
[
e−qTm1l{Sτ(D)>m}

]
=

ϕ(s)
ϕ(m)

exp
(
−
∫ m

s

F ′(u)du
F(u)−F(u− lD(u))

)
.

Similarly, by changing the measure and noting that XτlD(m)
= m− lD(m), we have

Em,m
[
e−qτlD(m)1l{SτlD(m)

∈dm}

]
(3.8)

=
ϕ(m)

ϕ(m− lD(m))
· 1

ϕ(m)
Em,m

[
e−qτlD(m)ϕ(XτlD(m)

)1l{SτlD(m)
∈dm}

]
=

ϕ(m)

ϕ(m− lD(m))
Pϕ,q

m,m(F(SτlD(m)
) ∈ dF(m))

To compute the last probability, differentiate (3.6) with respect to m, multiply by (−1), and let s→ m to obtain

(3.9) Pϕ,q
m,m(F(SτlD(m)

) ∈ dF(m)) =
F ′(m)dm

F(m)−F(m− lD(m))
.

Plugging (3.7), (3.8), and (3.9) in (3.4), we have (3.3) in view of (3.2). �

Note that the probability (3.9) coincides with the result derived from Theorem 2 in Pistorius [19].

The representation of V (s,s) in (3.3) applies to general cases. Given s, the integrand of (3.3) represents the
expected reward that one receives when he stops the during the excursion of X from the level m ≥ s. In the next
section, we shall use (3.3) to derive explicit formula of V (s,s) for various locations of s ∈R. Let us stress that this
representation is new in the literature and a key to direct solution method (without the smooth-fit principle).

1Note that when the diffusion X is a standard Brownian motion B, then F(x) = x and the right-hand side reduces to
exp
(
−
∫ m

s
du

lD(u)

)
.



PRICING OPTIONS WITH MAXIMUM PROCESS 9

4. COMPUTING V (s,s) AND l∗(s)

In solving an optimal stopping problem involving S and X , one of the aims is to draw a diagram like Figure 3.
For distinct values in the (x,s)-diagram, we need to determine whether a point in R2 is in the continuation region
(C) or stopping region (Γ). The task in this subsection2 is to compute the value V (s,s) at a point (s,s) on the
diagonal and to determine whether it belongs to C or Γ.

As stressed before, once we fix S = s, the problem reduces to one-dimensional problems in X . Accordingly, as
an intermediate step, we set S = s and attempt to find the smallest nonnegative concave majorant ws(·) of

(4.1) Hs(y) :=
(g− f̄ )(F−1(y),s)

ϕ(F−1(y))
, y ∈ F(I )

in the neighborhood of s. Recall that F is defined in (2.9).
Let us denote by Σs ⊆ R (resp. Cs) the stopping region (resp. continuation region) with respect to the reward

Hs(y) in (4.1), corresponding to this s. Let us emphasize that that this Σs (resp. Cs) should be distinguished from
the stopping region Γ⊆ R2 (resp. C) of the problem (2.1), the final object to figure out. Note that this part (i.e., to
find the smallest concave majorant ws of Hs and to identify (Σs,Cs) pair) can be easily done by Propositions 2.1 to
2.3 with the transformation (2.10). Indeed, once we make the transformation, we just check if F(s) belongs in

Σs = {y : Hs(y) = ws(y)} or Cs = {y : ws(y)> Hs(y)}, y ∈ F(I ).

See Dayanik and Karatzas [7] and note that it contains a number of examples of obtaining optimal policy by this
geometric method.

Fix s ∈R and denote by x∗(s) the threshold point, if exists, which separates Cs and Σs with respect to the reward
Hs associated with this s. The difficulty here is that due to the dependence of the reward on s, however, there are
certain situations where we need to be careful. To discuss, we shall hereafter (for the rest of this section) assume
the following:

Assumption 4.1. Then we assume

(i) (g− f̄ )(x,s) is increasing in s, and
(ii) (2.11) holds with h+ replaced by H+

s .

The first assumption is merely to restrict our problems to practical ones because we are solving maximization
problems. For the second, since our main concern is to find a finite value function, we shall consider the case
where (2.11) holds.

Although it is easy to find Σs and Cs, and hence x∗(s), as exemplified in Chapter 6 of [7], there are so many pat-
terns depending on the shape of Hs function in the transformed space. Hence it may not be practical to go through
all of them. Rather, to present our solution method clearly in a general setting, we shall show building-block cases.
More specifically, for s∈I = (l,r), we work on the case where the continuation region Cs corresponding to Hs(y)
in (4.1) is in the form of As := (x∗(s),r) or Bs := (l,x∗(s)):

Case (1): s ∈ Σs, Case (2): s ∈ As = (x∗(s),r), and Case (3): s ∈ Bs = (l,x∗(s))

2Once this is done, then the next task is to examine the points (x,s) by moving leftwards to x = 0 from the diagonal s = x.
We take this in Section 5 and solve an example in 5.1.
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based on whether s belongs to Σs or Cs. For each case, we shall provide a direct way of solution. In fact, Case
(1) is the most challenging of those, and hence significant part of this section is devoted to the explanation for this
case.

While we consider here the cases in which there are at most one x∗(s), these are building-block cases in the
sense that more complex structure (e.g. multiple x∗(s)) can be handled by combinations of them: Suppose that we
have two x∗(s)′s for a particular s, say x∗1(s) and x∗2(s) in the ascending order. Then another case s ∈ (x∗1(s),x

∗
2(s))

should arise. Since (x∗1(s),x
∗
2(s)) = (x∗1(s),r)∩ (l,x∗2(s)), this case is seen as the combination of Case (2) and Case

(3), so that one can compare two values derived from each case and take the greater one as V (s,s) for this s. If we
were to have another x∗3(s), we again simply split the real line into segments and do the same tasks for s in each
segment.

4.1. Case (1): s ∈ Σs. If s belongs to Σs, we have ws(y) = Hs(y); however, instead of stopping immediately, there
is a possibility that a greater value can be attained if one stops X during the excursion from some upper level s′ > s.
Recall that Proposition 3.1 has incorporated this. See also Remark 4.2 below. Now we wish to obtain more explicit
formulae for V (s,s) from the general representation (3.3). For this purpose, let us denote

P(u; lD) :=
F ′(u)

F(u)−F(u− lD(u))
, and G(u; lD) := (g− f̄ )(u− lD(u),u),

to avoid the long expression and rewrite (3.3) in the following way: for any ε > 0,

V (s,s) = sup
lD

[∫ s+ε

s

ϕ(s)
ϕ(m− lD(m))

exp
(
−
∫ m

s
P(u; lD)du

)
P(m; lD)G(m; lD)dm

+
ϕ(s)

ϕ(s+ ε)
exp
(
−
∫ s+ε

s
P(u; lD)du

)
×
∫

∞

s+ε

ϕ(s+ ε)

ϕ(m− lD(m))
exp
(
−
∫ m

s+ε

P(u; lD)du
)

P(m; lD)G(m; lD)dm
]

= sup
lD

[∫ s+ε

s

ϕ(s)
ϕ(m− lD(m))

exp
(
−
∫ m

s
P(u; lD)du

)
P(m; lD)G(m; lD)dm

+
ϕ(s)

ϕ(s+ ε)
exp
(
−
∫ s+ε

s
P(u; lD)du

)
V (s+ ε,s+ ε)

]
where in the last equation we used the form of V (·, ·) in (3.3) and evaluate at (s+ ε,s+ ε) by recalling that the
right-hand side of (3.3) looks at all the levels of m≥ s in finding optimal l∗D(m). This expression naturally motivates
us to set Vε : R 7→ R as

(4.2) Vε(s) := sup
lD(s)

[
ϕ(s)

ϕ(s+ ε)
exp(−εP(s; lD))V (s+ ε,s+ ε)+

ϕ(s)
ϕ(s− lD(s))

· εP(s; lD)G(s; lD)
]

and we have limε↓0Vε(s) = V (s,s). Now the problem has reduced in such a way that we only need to determine
one maximizer l∗D(s) at level s. Divide both sides by ϕ(s) and set a maximizer l∗D(s) ∈ [0,∞) of the right hand side
of (4.2) to obtain the equality for any s and ε > 0:

(4.3)
Vε(s)
ϕ(s)

=

[
V (s+ ε,s+ ε)

ϕ(s+ ε)
e−εP(s;l∗D)+

G(s; l∗D)
ϕ(s− l∗D(s))

εP(s; l∗D)
]
.
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To see what has been done, let us recall the transformation of a Borel function z defined on−∞≤ c≤ x≤ d ≤∞

through

(4.4) Z(y) :=
z
ϕ
◦F−1(y)

on [F(c),F(d)] where F−1 is the inverse of the strictly increasing F(·) in (2.9). If we evaluate Z at y = F(x), we
obtain Z(F(x)) = z(x)

ϕ(x) , which is the form that appears in (4.3). Note that

(4.5) Z′(y) = q′(x) where q′(x) =
1

F ′(x)

(
z
ϕ

)′
(x)

Hence, in view of (3.7), the intuitive meaning of (4.3) is that if stopping occurs before the maximum is renewed
from s to s+ ε , we receive G(s, lD) but otherwise, we continue with value V (s+ ε,s+ ε). An optimal choice of
lD(s) brings us the value Vε(s) and, by letting ε ↓ 0, V (s,s).

Proposition 4.1. Fix s ∈I . If (1) the reward function (g− f̄ )(x,s) is increasing in the second argument and (2)
if logϕ(·) is strictly convex on I , we have

(4.6) V (s,s) =
ϕ(s)

ϕ(s− l∗D(s))
·Q(s; l∗D) · (g− f̄ )(s− l∗D(s),s),

where

Q(u; lD) :=
F ′(u)ϕ ′(u)

ϕ ′′(u)[F(u)−F(u− l∗D(u))]+F ′(u)ϕ ′(u)
and l∗D(s) is the maximizer of the map

(4.7) z 7→ ϕ(s)
ϕ(s− z)

· F ′(s)ϕ ′(s)
ϕ ′′(s)[F(s)−F(s− z)]+F ′(s)ϕ ′(s)

· (g− f̄ )(s− z,s) on [0,∞).

If (2)’ logϕ(·) is linear on I , then Q(·; lD) is to be replaced by

Q̃(u; lD) :=
F ′(u)ϕ(u)

(ϕ ′(u)−ϕ(u))[F(u)−F(u− l∗D(u))]+F ′(u)ϕ(u)
.

Remark 4.1. (i) If we evaluate at lD(s) = 0, then Q(u;0) (and Q̃(u;0)) becomes 1 and the right-hand side of
(4.6) is (g− f̄ )(s,s) as expected.

(ii) The strict convexity of logϕ(·) implies

(4.8)
ϕ(s)

ϕ(s+ ε)

ϕ ′(s+ ε)

ϕ ′(s)
< 1 ∀s ∈I and ∀ε > 0.

On the other hand, if logϕ(·) is linear, then the inequality in (4.8) is replaced by the equality:

(4.9)
ϕ(s)

ϕ(s+ ε)

ϕ ′(s+ ε)

ϕ ′(s)
= 1 ∀s ∈I and ∀ε > 0.

We shall use this property in the proof of Lemma 4.1. Note that it is easily proved that geometric Brownian
motion satisfies (4.8) and Brownian motion (with or without drift) does the other one. The ϕ(·) functions
of Orstein-Uhlenbeck process dXt = k(m−Xt)dt+σdBt (with k > 0,σ > 0 and m∈R) and its exponential
version dXt = µXt(α−Xt)dt +σXtdBt (where µ,α,σ are positive constant) involve special functions; the
parabolic cylinder function and the confluent hypergeometric function of the second kind, respectively
(see Lebedev [12]). While it is hard to prove the log convexity of these special functions, it is numerically
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confirmed that both processes satisfy (4.8). Moreover, the equality condition (4.9) implies that (logϕ(s+
ε))′ = (logϕ(s))′ so that ϕ(s) is an exponential function. Hence it is confirmed that this case includes
Brownian motion.

Proof. (of Proposition 4.1) Let us first take the strictly convex case of logϕ(·). For taking limits of ε ↓ 0 in (4.2),
we need the following lemma whose proof is postponed to Appendix A:

Lemma 4.1. Under the assumption of Proposition 4.1 with convex logϕ(·), for ε > 0 sufficiently close to zero, we
have

(4.10)
Vε(s)
ϕ(s)

= αs(ε) ·
V (s+ ε,s+ ε)

ϕ(s+ ε)
where αs(ε) :=

ϕ ′(s+ ε)

ϕ ′(s)
.

Note that αs(ε) ∈ (0,1) for all s ∈I and ε > 0 and that αs(ε) ↑ 1 for all s ∈I .

Suppose that the lemma is proved, let us continue the proof of Proposition 4.1. By using (4.10) in Lemma 4.1,
we can write, for ε small,

(4.11) Vε(s)−
ϕ(s)

ϕ(s+ ε)
exp(−εP(s; l∗D))V (s+ ε,s+ ε) =

(
1− ϕ ′(s)

ϕ ′(s+ ε)
exp(−εP(s; l∗D))

)
Vε(s).

Moreover, since limε↓0V (s+ ε,s+ ε) =V (s,s), the optimal threshold l∗D(s) should satisfy

V (s,s) = lim
ε↓0

Vε(s) = lim
ε↓0

[
ϕ(s)

ϕ(s+ ε)
exp(−εP(s; l∗D))V (s+ ε,s+ ε)+

ϕ(s)
ϕ(s− l∗D(s))

· εP(s; l∗D)G(s; l∗D)
]
,

from which equation, in view of (4.11), we obtain

V (s,s) = lim
ε↓0

Vε(s)− ϕ(s)
ϕ(s+ε) exp(−εP(s; l∗D))V (s+ ε,s+ ε)

1− ϕ ′(s)
ϕ ′(s+ε) exp(−εP(s; l∗D))

= lim
ε↓0

ϕ(s)
ϕ(s−l∗D(s))

· εP(s; l∗D)G(s; l∗D)

1− ϕ ′(s)
ϕ ′(s+ε) exp(−εP(s; l∗D))

=
ϕ(s)

ϕ(s− l∗D(s))
F ′(s)ϕ ′(s)

ϕ ′′(s)[F(s)−F(s− l∗D(s))]+F ′(s)ϕ ′(s)
(g− f̄ )(s− l∗D(s),s),

where the last equality is obtained by L’Hôpital’s rule. From the last equality, l∗D(s) must give the supremum to
ϕ(s)

ϕ(s−z)Q(s;z)(g− f̄ )(s− z,s) since l∗D(s) was set to be a maximizer of Vε(s) in (4.2) and V (s,s) = limε↓0Vε(s) =
limε↓0V (s+ ε,s+ ε). Hence the claim of the proposition is proved.

When logϕ(·) is linear, in lieu of (4.10), we claim that

(4.12)
Vε(s)
ϕ(s)

=
1

1+ ε
· V (s+ ε)

ϕ(s+ ε)

for ε > 0 sufficiently small. The intuition here is the following: since αs(ε) in Lemma 4.1 can be written as(
1+ ε · ϕ ′′(s)

ϕ ′(s)

)
↑ 1 (as ε ↓ 0) and in case of Brownian motion, ϕ ′′(s)

ϕ ′(s) = (const), the factor should be independent of
s. It can be easily seen that the proof of Lemma 4.1 holds in this case, too. Accordingly, instead of (4.2), we have

Vε(s)−
ϕ(s)

ϕ(s+ ε)
exp(−εP(s; l∗D))V (s+ ε,s+ ε) =

(
1− ϕ(s)

ϕ(s+ ε)
(1+ ε)exp(−εP(s; l∗D))

)
Vε(s).
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For the rest, we just proceed as in the proof of Proposition 4.1 to obtain Q̃(·; lD). �

In summary, in Case (1), we should resort to Proposition 4.1 to compute V (s,s). If l∗D(s)≥ 0 for this s, we shall
have (g− f̄ )(s,s)≤V (s,s).

Remark 4.2.
(i) Let us slightly abuse the notation by writing F ′(s)ϕ ′(s)

ϕ ′′(s)[F(s)−F(s−z)]+F ′(s)ϕ ′(s) = Q(s;z) to avoid the long expression.

Note that ϕ(s)
ϕ(s−z)Q(s;z)(g− f̄ )(s−z,s) is the value corresponding to the strategy D with lD(s)= z and lD(m)= l∗D(m)

for every m > s; that is, this amount is obtained when we stop if X goes below s− z in the excursion at level S = s
and behave optimally at all the higher levels S > s.

(ii) Note that there may be several maximizers for the maps in Proposition 4.1. In that case, every maximizer is
indifferent in the sense that every local maximizer leads to the identical optimal value, so we can choose any of
those as l∗D(s).

4.2. Case (2): s ∈ As = [x∗(s),r). Recall that As is defined in Assumption 4.1. In this case, similar to Case (1),
a positive l∗D(s) may lead to improvement of the value of V (s,s), so that we use Proposition 4.1. While the next
example does not have s explicitly in the reward function, it should be beneficial to see how to treat problems in a
general setting.

4.3. Case (3): s ∈ Bs = (l,x∗(s)]. Bs is defined in Assumption 4.1. For this case, the typical situation is that x∗(s)
is monotonically decreasing in s. See Figure 3. The curve separating the region Γ and C2 corresponds to the
function x∗(s). Then define the point ŝ such that

s = x∗(s)

holds. One receives (g− f̄ )(x∗(ŝ), ŝ) = (g− f̄ )(ŝ, ŝ) when stops there. In contrast to the previous Cases (1) and
(2), s is located to the left of x∗(s), we are not supposed to stop during the excursions from the level u ∈ [s, ŝ).
Mathematically, it means that we let u− l∗D(u)→ l in (3.3) of Proposition 3.1. The left boundary l is assumed to
be natural and hence F(u− l∗D(u))→ 0 and SτlD (m) ∈ dm = δŝdm, the Dirac measure sitting at ŝ. Now, from (3.9),
(3.3) simplifies to

V (s,s) =
∫

∞

s

ϕ(s)
ϕ(m)

exp
(
−
∫ m

s

F ′(u)
F(u)

du
)
(g− f̄ )(m,m)δŝdm =

ψ(s)
ψ(ŝ)

(g− f̄ )(ŝ, ŝ),(4.13)

which is, in view of (2.8), simply the expected discounted value of (g− f̄ )(ŝ, ŝ). Note that for s ≤ ŝ, the reward
(g− f̄ )(x∗(ŝ), ŝ) does not depend on s and thereby with respect to this reward, x∗(s) = x∗(ŝ) for s≤ ŝ.
An example that involves this case is presented in Section 5.1.

Up to this point, we have shown how to find V (s,s) in (2.6). Before presenting the complete solution to (2.6)
and hence to (2.1), we illustrate our method by solving classical problems.

4.4. Examples. Before moving, it should be beneficial to briefly review some special cases in finding V (s,s). In
this section, the diffusion X is geometric Brownian motion dXt = µXtdt +σXtdBt and (A −q)v(x) = 0 provides
ϕ(x) = xγ0 and ψ(x) = xγ1 with γ0 < 0 and γ1 > 1. The parameters are (µ,σ ,q,K,k) = (0.05,0.25,0.15,5,0.5).
The values of the options here are computed under the physical measure P.
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4.4.1. Lookback Option. The reward function is (g− f̄ ) = s− kx where k ∈ [0,1]. Set s = 5. By setting y = F(x)
in (4.1), Hs(F(x)) = s−kx

ϕ(x) . The graph of s−kx
ϕ(x) against the horizontal axis F(x) is in Figure 1-(a). It can be seen

that s ∈ Σs and that Case (1) applies for the entire region x ∈ R+. The optimal threshold l∗D(s) can be found
by Proposition 4.1: the optimal level x∗ is given by x∗ = β s where β = 0.701636, independent of s, so that
l∗D(s) = (1−β ) · s.

Once l∗D(s) is obtained, we can compute V (s,s) from (4.6). While we shall discuss the general method of
computing V (x,s) for x ≤ s in Section 5, it is appropriate to touch upon this issue here. For this fixed s = 5, we
examine the smallest concave majorant of Hs(y). But the majorant must pass the point(

F(s),
V (s,s)
ϕ(s)

)
and

(
F(s− l∗D(s)),Hs(s− l∗D(s))

)
.

The red line Ls is drawn connecting these points with a positive slope. In fact, the smooth-fit principle holds at
F(s− l∗D(s)) as is discussed in [20]. Accordingly, (s− l∗D(s),s) ⊂ R is in the continuation region. Let us stress
again that we do not assume the smooth-fit condition.

4.4.2. Perpetual Put. The reward function is (g− f̄ )(x,s) = g(x) = (K− x)+ which does not depend on s. The
graph of g(x)/ϕ(x) is in Figure 1-(b) which is drawn against the horizontal axis of y = F(x) when s = x = 5. For
this s, Case (2) applies. The function Hs(F(x)) attains unique maximum at F(x∗) where x∗ = 3.57604, so that
l∗D(s) = s− x∗ = 1.42396. Since g is independent of s, so is x∗.

By using this fact, we can use Proposition 3.1 and compute V (s,s) easily. In fact, an observation of (3.3) reveals
that if F(u− lD(u)) is constant for u > s, then we have

exp
(
−
∫

∞

s

F ′(u)
F(u)−F(u− lD(u))

du
)
= 0,

which in turn makes ∫
∞

s
exp
(
−
∫ m

s

F ′(u)du
F(u)−F(u− lD(u))

)
F ′(m)

F(m)−F(m− lD(m))
dm = 1.

Then (3.3) reduces to

(4.14) V (s,s) = sup
lD(s)

ϕ(s)
ϕ(s− lD(s))

(g− f̄ )(s− lD(s),s),

and l∗D(s) is the maximizer of the map z 7→ ϕ(s)
ϕ(s−z)(g− f̄ )(s− z,s).

At this point the tangent line has slope zero. See the red horizontal line connecting two points (F(x∗),Hs(x))
and (F(s), V (s,s)

ϕ(s) ). At F(x∗), we have the smooth-fit principle hold and (x∗,s)⊂ R is in the continuation region.

5. GLOBAL SOLUTION V (x,s)

Since we calculated V (s,s), we can represent V (x,s) by (2.6), which we recall here

V (x,s) = sup
τ∈S

Ex,s [1l{τ<Ts}e
−qτ(g− f̄ )(Xτ ,s)+1l{Ts<τ<+∞}e

−qTsV (s,s)
]
.

As we noted in Section 2, this can be seen as just an one-dimensional optimal stopping problem for the process X .
In terms of the (x,s)-diagram like Figure 3, we fix s = s̄, say and use the information of V (s̄, s̄), compute V (x, s̄)



PRICING OPTIONS WITH MAXIMUM PROCESS 15

200 400 600 800 1000 1200
FHxL

50

100

150

200

HsHxLL

(a) Lookback Option (k = 1/2)
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(b) Perpetual Put (K = 5)

FIGURE 1. The graphs of g(x,s)/ϕ(x) against the horizontal axis F(x) : We fix s = 5 in
both problems. The vertical lines show the position of ϕ(s). In the perpetual put case, the optimal
exercise threshold is well-known: x∗ = γ0K

γ0−1 = 3.57604, which does not depend on s.

and tell, by moving down from the diagonal point (s̄, s̄), whether a point (s̄,x) belongs to C or Γ. After discussing
generality here, we shall study an example in Section 5.1 by showing how to implement the method.

Now suppose that we have found V (s,s) for each s ∈R+. The next step is to solve (2.6). Consider an excursion
from the level S = s. Recall that V (s,s) represents the value that one would obtain when X would return to that level
s. If there is no absorbing boundary, we can let the height of excursions arbitrarily large. Since we are assuming
(2.11), by Proposition 5.12 in [7], the value function in the transformed space must pass the points:(

0,ξl

)
and

(
F(s),

V (s,s)
ϕ(s)

)
.

We shall summarize how one can solve (2.6). While Step 1 and 2 were already discussed in Section 4, we
nonetheless repeat here to make our recipe complete.

Step 1: For each s, solve an auxiliary problem. That is, to find the smallest concave majorant ws(y) of

Hs(y) :=
(g− f̄ )(F−1(y),s)

ϕ(F−1(y))

in (4.1) and to identify the region {y : Hs(y) = ws(y)} as Σs.
Step 2: Once we identify Σs and Cs for each s, the next step is to tell which Case (1), (2), or (3) applies. For

example, if Case (1) does, refer to Proposition 4.1 where we presented how to find V (s,s) and l∗D(s). This provides
the local solution in the neighborhood of s.

Step 3: Let us stress that up to Step 2, we have found local solution around s. By Propsitions 2.1 to 2.3, for all
Cases (1), (2) and (3), the global solution, denoted by Ws, must satisfy the following conditions:

(i) Ws(y)≥ Hs(y) on [0,F(s)],
(ii) Ws(F(s)) = V (s,s)

ϕ(s) ,
(iii) Ws(0) = ξl ,
(iv) Ws is concave on [0,F(s)], and
(v) for any functions W s which satisfies four conditions above, Ws ≤W s on [0,F(s)].
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F(x*(s')) F(s'-l*(s))

V(s',s')

�(s')
______

F(s')

FIGURE 2. A typical example of Ws and Hs. Fix s = s′. Find V (s,s) and then specify the
optimal strategy on (l,s] based on Hs′ .

Now once we have done with one s, we then move on to another s̃, say, and find Ws̃ in the new interval [0,F(s̃)].
As seen from this discussion, Ws(y) = ws(y) does not hold in general.

Figure 2 illustrates a typical example of the graphs of Ws and Hs in transformed space. Fix s = s′. Note that in
the neighborhood of F(s′), the reward function Hs(y) is concave and we have s ∈ Σs (Case (1)). We find V (s′,s′)
and l∗D(s

′) at the same time by Proposition 4.1.
Now take the point F(s′) on the horizontal axis and find Ws′(y) that satisfies the above conditions. For this

purpose, three vertical lines are drawn at y = F(x∗(s′)),F(s′− l∗D(s
′)), and F(s′) from the left to right. Starting

with the point
(

F(s′), V (s′,s′)
ϕ(s′)

)
, the concave majorant near that point is the line that is tangent to Hs′(y). The

tangency point is (F(s′− l∗D(s
′),Hs′(F(s′− l∗D(s

′))). In the region [F(x∗(s′),F(s′− l∗D(s
′)], the value function is the

reward function itself. On the other hand, the smallest concave majorant of Hs′(y) on (0,F(x∗(s′)) is the line, from
the origin, tangent to Hs′(y) at F(x∗(s′)).

For this s′, optimal strategy reads as follows: If it happens that x ∈ (0,s′) belongs to (s′− l∗D(s
′),s′), one should

see if X reaches s′− l∗D(s
′) or s′, whichever comes first. If the former point is the case, one should stop and receive

the reward, otherwise one should continue with s > s′. If x ∈ (0,s′) belongs to (x∗(s′),s′− l∗D(s
′)), one should

immediately stop X and receive g(x,s′). Finally, in x ∈ (0,x∗(s′)), one should wait until X reaches x∗(s′).

5.1. Illustration: A New Problem. To illustrate how to implement the solution method for a problem that in-
volves both S and X , we postulate the reward function as

(5.1) g(x,s) = sa + kxb−K, a,b,k,K > 0
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and f (x,s) ≡ 0. For concreteness, we set a = 1/2,b = 1,k = 1/2, and K = 5. We assume that the underlining
process X is geometric Brownian motion:

dXt = µXtdt +σXtdBt , t ∈ R,

where µ and σ are constants and B is a standard Brownian motion under P. In this case,

ψ(x) = xγ1 and ϕ(x) = xγ0

where

γ0 =
1
2

−(2µ

σ2 −1
)
−

√(
2µ

σ2 −1
)2

+
8q
σ2

< 0,

and

γ1 =
1
2

−(2µ

σ2 −1
)
+

√(
2µ

σ2 −1
)2

+
8q
σ2

> 1.

For this reward g− f̄ , the value of ξl in (2.11) is zero for any s ∈I .

ŝ

�

s

s
_

_

x=s

C3

C2

C1

s

x

FIGURE 3. The solution (x,s)-diagram to the reward function (5.1) in a schematic presentation
(left) and in the real scale (right).

It should be helpful to preview the entire state space at the beginning. See Figure 3 for optimal strategy:
continuation and stopping region in the two-dimensional diagram. The left panel is for presenting in a schematic
drawing. For different values of (x,s), we see continuation regions C1,C2,C3 and stopping region Γ. The right
panel is the real solution for this problem with parameters (µ,σ ,q) = (0.05,0.25,0.15). According to the values
of s, we have four regions: (i) s > s̄, (iii) s ≤ s ≤ s̄, (ii) ŝ < s < s, and (iv) s ≤ ŝ. We shall explain how to find
the value function and optimal strategy for each region. Note that for the ease of exposition, we handle ŝ < s < s
before we do s≤ s≤ s̄.
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(i) Let us start with s > s̄. First we need to find V (s,s). Plug this s in (5.1) and examine the reward function in the
transformed space:

Hs(y) =
(g− f̄ )(F−1(y),s)

ϕ(F−1(y))
=

√
s+ ky

1
γ1−γ0 −K

y
γ0

γ1−γ0

, y ∈ (0,∞).

Figure 4 -(i) shows the function Hs(y) on [0,F(s)]. For this s, Hs(y) is concave in the neighborhood of F(s) and
Case (1) in Section 4 applies. The map

A(l) : l 7→ ϕ(s)
ϕ(s− l)

· F ′(s)ϕ ′(s)
ϕ ′′(s)[F(s)−F(s− l)]+F ′(s)ϕ ′(s)

·g(s− l,s)

in (4.6) is in Figure 4-(b) and l∗D(s) = 0.5371 when s = 35.
Now we can find V (x,s) for x ∈ [0,s]. Following Section 5, we shall find the smallest concave majorant of Hs(y)

that passes the origin and
(

F(s), V (s,s)
ϕ(s)

)
. For this particular s, a diagram similar to Figure 1-(a) can be drawn: see

Figure 4-(c). The value function on the continuation region C1 (red line in the graph) is

V (x,s) =W (F(x))ϕ(x) =
(

β1(F(x)−F(s− l∗D(s)))+Hs(F(s− l∗D(s)))
)
·ϕ(x)

where β1 =
dHs(y)

dy

∣∣∣
y=F(s−l∗D(s))

.

In summary, the value function is

V (x,s) =

g(x,s), x ∈ (0,s− l∗D(s)),(
β1(F(x)−F(s− l∗D(s)))+Hs(F(s− l∗D(s)))

)
·ϕ(x), x ∈ [s− l∗D(s),s].

1´ 106 2´ 106 3´ 106 4´ 106 5´ 106 6´ 106
y

20 000

40 000

60 000

80 000

100 000

120 000

140 000

(a) Graph of Hs(y) when s = 35

10 20 30
lHsL

5

10

15

(b) The map A(l) to find
l∗D(s) = 0.5371.

6.60´ 106 6.65´ 106 6.70´ 106
y

136 000

136 500

137 000

137 500

138 000

138 500

139 000

(c) The value function V (x,s)
(red) and Hs(y) (blue)

FIGURE 4. The region s ∈ (s̄,+∞). Note in panel (c) for a better picture, the lower-left corner of
the graph is not the origin.

(ii) Let us move on to the region ŝ < s < s (before we examine s≤ s≤ s̄). See Figure 5-(a) for the graph of Hs(y)
in the transformed space. In the neighborhood of F(s), the reward Hs(y) is concave, i.e., s ∈ Σs and hence Case
(1) applies. But We have l∗D(s) = 0 for s in this region, so that V (s,s) = g(s,s). On the other hand, for the reward
function g(x,s) with this fixed s ∈ (ŝ,s], there is a point x∗(s) such that (0,x∗(s)) is the continuation region. Let
us see this situation in the transformed space. See Figure 5-(a) again. At the point F(x∗(s)) > F(s), the smallest
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concave majorant Ws(y) of Hs(y) is the line, from the origin, tangent to Hs(y). Hence the value function is

V (x,s) =

(β2F(x)) ·ϕ(x) = β2ψ(x), x ∈ (0,x∗(s)],

g(x,s), x ∈ (x∗(s),s],

where β2 =
dHs(y)

dy

∣∣∣
y=F(x∗(s))

. Hence β2ψ(x) is the value function in region C2 in Figure 3.

(iii) For s ≤ s ≤ s̄, we have l∗D(s) = 0 so that the point (s,s) is in the stopping region. Moreover, there exist no
points x∗(s) where the line from the origin becomes tangent to Hs(y). Accordingly, the value function is

V (x,s) = g(x,s) x ∈ (0,s].

In our parameters, s = 25 and s̄ is very close; s̄ > 25.
(iv) Now we shall examine s ≤ ŝ. As explained in Case (3) in Section 4, this ŝ = 8.6420 satisfies ŝ = x∗(ŝ). See
(4.13). Following the argument there, V (s,s) = ψ(s)

ψ(ŝ)g(x
∗(ŝ), ŝ). Accordingly, the value function is

(5.2) V (x,s) =
ψ(x)
ψ(ŝ)

g(x∗(ŝ), ŝ), x ∈ (0,s].

This corresponds to region C3 in Figure 3.

5 10 15 20 25
y

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) Graph of Hs(y) and the tangent line Ws(y) when
s = 20. x∗(s) = 2.1242.

2000 4000 6000 8000 10 000 12 000 14 000
y

100

200

300

400

500

(b) Graph of Hŝ(y) and the tangent line Wŝ(y) with
ŝ = x∗(ŝ) = 8.6420

FIGURE 5. The region s ∈ (ŝ,s) (left) and s ∈ (0, s̄] (right).

APPENDIX A. PROOF OF LEMMA 4.1

Lemma 4.1 is the following claim: Under the assumption of Proposition 4.1 with convex logϕ(·), we have

(A.1)
Vε(s)
ϕ(s)

= αs(ε) ·
V (s+ ε,s+ ε)

ϕ(s+ ε)
where αs(ε) :=

ϕ ′(s+ ε)

ϕ ′(s)
.

Proof. (of the lemma) Recall (3.1) for the definition of lD(s). In view of (3.6), the probabilistic meaning of (4.2) is
that Vε(s) is attained when one chooses the excursion level lD(s) optimally in the following optimal stopping:

(A.2) Vε(s) = sup
lD(s)

Es,s[e−qTs+ε 1l{Ts+ε≤τs−lD(s)}V (s+ ε,s+ ε)+ e−qτs−lD(s)1l{Ts+ε>τs−lD(s)}(g− f̄ )(s− lD(s),s)],
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that is, if the excursion from s does not reach the level of lD(s) before X reaches s+ε , one shall receive V (s+ε,s+
ε) and otherwise, one shall receive the reward. By using the transformation (4.4), one needs to consider the function
(g− f̄ )(x,s)

ϕ(x) and the point
(

F(s+ ε), V (s+ε,s+ε)
ϕ(s+ε)

)
in the (F(x),z(x)/ϕ(x))-plane. Then the value function of (A.2) in

this plane is the smallest concave majorant of (g− f̄ )(x,s)
ϕ(x) which passes through the point

(
F(s+ ε), V (s+ε,s+ε)

ϕ(s+ε)

)
.

It follows that Vε (s)
ϕ(s) ≤

V (s+ε,s+ε)
ϕ(s+ε) . As ε ↓ 0, it is clear that V (s+ε,s+ε)

ϕ(s+ε) ↓ V (s,s)
ϕ(s) and Vε (s)

ϕ(s) ↓
V (s,s)
ϕ(s) . Suppose, for a

contradiction, that we have

(A.3) αs(ε)
V (s+ ε,s+ ε)

ϕ(s+ ε)
<

Vε(s)
ϕ(s)

<
V (s+ ε,s+ ε)

ϕ(s+ ε)
,

for all ε > 0. This implies that the first term in (A.3) goes to V (s,s)
ϕ(s) from below and the third term goes to the same

limit from above. While the second inequality always hold, the first inequality leads to a contradiction to the fact
that the function ε 7→ (1−αs(ε))

V (s+ε,s+ε)
ϕ(s+ε) is continuous for all s.

Indeed, due to the monotonicity of αs(ε)
V (s+ε,s+ε)

ϕ(s+ε) in ε , we would have Vε (s)
ϕ(s) > V (s,s)

ϕ(s) > αs(ε)
V (s+ε,s+ε)

ϕ(s+ε) for

all ε > 0. Hence one cannot make the distance between V (s+ε,s+ε)
ϕ(s+ε) and αs(ε)

V (s+ε,s+ε)
ϕ(s+ε) arbitrarily small without

violating (A.3). This shows that there exists an ε ′ = ε ′(s) such that ε < ε ′ implies that Vε (s)
ϕ(s) ≤ αs(ε)

V (s+ε,s+ε)
ϕ(s+ε) .

On the other hand, in (A.2), one could choose a stopping time τlD(s) that visits the left boundary l, then by
reading (3.6) with lD(u) = u and m = s+ ε , (A.2) becomes

Vε(s)≥
ϕ(s)

ϕ(s+ ε)
exp
(
−
∫ s+ε

s

F ′(u)du
F(u)−F(0+)

)
V (s+ ε,s+ ε)

>
ϕ(s)

ϕ(s+ ε)
exp
(
−
∫ s+ε

s

F ′(u)du
F(u)

)
V (s+ ε,s+ ε)

>
ϕ(s)

ϕ(s+ ε)

F(s)
F(s+ ε)

V (s+ ε,s+ ε) =
ψ(s)

ψ(s+ ε)
V (s+ ε,s+ ε) = Es,s(e−qTs+ε )V (s+ ε,s+ ε)

for any ε > 0. Since s ∈I is a regular point, the last expectation can be arbitrarily close to unity, monotonically
in ε (see page 89 [11]). Now suppose that there were no ε’s such that Vε(s) ≥ V (s+ ε,s+ ε). It follows that for
any ε , we would have

Vε(s)> Es,s(e−qTs+ε )V (s+ ε,s+ ε)> Es,s(e−qTs+ε )Vε(s).

Then by letting ε ↓ 0, it would be V (s) > V (s) for all s ∈ I , which is absurd. Since the convergence of
Es,s(e−qTs+ε ) ↑ 1 is monotone in ε , there exists an ε ′′ = ε ′′(s) > 0 such that ε < ε ′′ implies that Vε(s) ≥ V (s+
ε,s+ ε). By using the second assumption in the statement of Proposition, in particular (4.8), for any s, we have
Vε (s)
ϕ(s) ≥ αs(ε)

V (s+ε,s+ε)
ϕ(s+ε) for ε < ε ′′. This completes the proof of Lemma 4.1. �
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