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Abstract

We consider a firm that operates a single plant and has an sxpaoption to invest in a new plant.

This setup leads to two-sided optimal stopping problems. analyze optimal expansion timing

and quantify the value of the loan commitment that the etolyer obtained from the lender and
associated agency costs incurred on the lender’s side.dMergve incorporate construction period
for the new plant, which throws another layer of uncertaintp the model: the parties cannot
tell price level of the firm’s product when the constructiammpletes. This analysis contrasts with
the conventional one-sided stopping models in corporataia literature. We can study expansion
options by viewing a firm’s existing operation, bankruptusetat, and financing decisions all together.
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1 Introduction

Conflicts of interest between bond and equity holders anédemcy costs associated with use of debt
have long been recognized in economic literature. To shditiaockal light on this topic, we formulate an
optimal stopping problem where managers/equityholdeve bha option to expand a plant using either
debt or equity financing and seek an optimal exercise timexémcising the expansion option, there are
three cases: (A) the firm uses debt-financing with a view toimiaing the equity value (rather than
the firm value); (B) the firm uses debt-financing to maximize finm value; and (C) the firm equity-
finances the expansion. Note that we use the terms, debttesiddender interchangeably and similarly,
equityholder, borrower, and manager indicate the saméyemior practical use, we attempt to answer
the following questions:

- how to compute the optimal timing of expansion in each of (B) and (C) and how much are the
equity and debt values?

- how to compute the value of the commitment letter (from #reler to the borrower) and the value
lost to the lender due to the lack of control over investmetigions?

*An earlier version of this paper is circulated under the tiCorporate Investment Policy Distortion and Indirect Cafs
Bankruptcy” (First version: May 2006). We thank Kian Estagtat and Wenlong Weng for valuable comments and discussions
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what if the level of uncertainty regarding price fluctuasdncreases?

- what if one needs to wait for completion of the plant conginn; how much would the risk level
increase?

- how do these numbers vary with different initial outputcprievels?

what are the possible economic explanations behind thasders?

Based on numerical values provided by our analysis, thetydepider (borrower) finds the optimal ex-
pansion strategy and the lender can negotiate with thewerrthe terms and conditions of the proposed
debt. We provide a unified approach and framework to the estparand financing problem. When
different assumptions about underlying price process awenthe analysis can be modified easily since
our method works for general linear diffusions.

1.1 Background

It is often stated that, lacking countervailing incentivesnagers of levered firms prefer risky projects to
stable cash flows. Acting on behalf of shareholders, firm marsatend to underinvest in safer projects
and overinvest in risky ones. In this paper, we aalérinvestmena situation where the firm uses its
expansion optiorearlier in Case (A) than in Case (B) or (C). Similarly, we catiderinvestmenivhen
the firm does the opposite in Case (A) than in Case (B) or (QJaBse of the limited liability feature of
corporate borrowing, shareholders benefit from highertgqailues as volatility increases, even though
the value of existing debt may diminish. The model of the firsmmemploy incorporates an endogenous
bankruptcy trigger whereby equityholders choose the tyhdefault on debt obligations (Black and
Cox [1], Mello and Parsons [20], Leland [15], Mella-BarraldaPerraudin [19]).

Various agency problems can affect shareholders, managsisdebtholders of a firm. To focus on
the role of bankruptcy risk, we restrict our attention, imsthtudy, to limited liability as a source of
agency cost. We summarize what would be issues when the debt holder ddesaxe control over
investment decisions and the equityholder has limitedliigb Since shareholders are not personally
liable for the firm’s debt obligations, they collectively ldaeembedded call options on asset value. The
option is exercised by transferring the firm to creditorsafue of assets falls below debt obligations.
Black and Scholes [2] and Merton [21] point out the importao€ limited liability in determining the
value of corporate debt but, in accord with the view that @dysitructure is irrelevant, they assume firm
value is exogenous. Challenging this assumption, Jens&iMankling [13] describe the potential for
reduction in firm value through “asset substitution.” Thesamine agency costs including incentive
effects of debt on investment choices of equityholder-rganand assert that equityholders can extract
value from debtholders by using existing debt funds to owest in risky projects. It is limited liability
that produces greater value for shareholders from an isergarisk exposure. Firm value is reduced
and wealth is transferred from creditors to equityholderdankruptcy risk grows. On the other hand,
since shareholders are residual claimants to firm value a@dtet is paid, debtholders benefit more from
a safe positive net value project than shareholders. Arverdd firm considers only the project cost.
With leverage, managers invest in an equity-financed prajés value exceeds the sum of project cost
and payments promised to creditors. Thus, a higher hurdidchbe overcome before a new project is

For a review of corporate finance and related agency protdem8rennan[3] and Zingales [26]. In this paper, equityhold
ers are managers who make those decisions. Therefore wet tiavemanager-equityholder conflicts. See Cadenillas et al
[5] and Morellec [22] for discussion on manager-equityleoldonflicts.



undertaken. Myers [23] argues that for this reason levetagses a debt overhang or underinvestment
problem and views the firm as a collection of existing asd@ibijlities, and growth opportunitie.
When financed with equity, the connection between assetdiatitities in this arrangement inhibits
value-maximizing use of growth options.

Only relatively recently have attempts been made to quattié impact of this problem and early
evidence has been mixed. Employing a model in which firm marsagaximize equity value after debt
is in place, Leland [16] finds that the magnitude of agencyscdae to asset replacement is small. Par-
rino and Weisbhach [24] simulate the effect of shareholaerdholder conflicts on a levered firm using
discounted cash flow analysis where the growth option is & ‘aonever’ equity-financed investment
in a risky project. They compute the expected transfer ofitivdsetween bondholders and shareholders
and conclude that, for most firms, the effect is small. Séympers explore the interplay of financing
and investment/operating policies in a dynamic decisiorirenment and arrive at a different conclu-
sion. Mello and Parsons [20] build on the contingent clainmdet of Brennan and Schwartz [4] of
a mine to investigate how debt financing influences operataasions and find that agency costs are
comparable or greater than underwriting and other directimidtrative expenses of leverage. Using a
flexible discrete time, discrete state, finite horizon mp@dlilds et al. [6] show that the agency costs
of asset substitution and underinvestment have a sulmtaffeect on optimal leverage and firm value.
In the construction of [6], the firm optimizes its initial kerage ratio. Titman and Tsyplakov [25] study
the incentive to underinvest by allowing managers to dycaltyi adjust the firm’s leverage and observe
significantly higher agency costs in comparison to valuggssted by static debt models. To study the
overinvestment problem, Mauer and Sarkar [17] considemavihose only asset is a real option in the
form of an opportunity to invest in a production facility. @hoptimize leverage, debt maturity, and
timing of exercise of the option to find that the agency costaift is a significant fraction of firm value.
Recently, Hennessy [12] empirically finds a statisticaliyngficant relationship between debt overhang
and investment distortion.

1.2 Contributions to the literature

We consider a firm that operates a single plant and has an&rpaoption to invest in an identical plant.
This setup naturally leads to two-sided optimal stoppingbfams which have been rarely considered
in the corporate finance literature. Our objective goes béybe extensively discussed overinvestment/
underinvestment issues. Our approach here is to clariiyntbglay between the equityholder (borrower)
and the lender by comparing various value functions. Mogeei§ipally, first, we quantify the value of
the loan commitment that the equityholder obtained froml¢neler. Upon receiving a commitment to
debt financing, the equityholder becomes entitled to tagldhiSecondly, from the lender’s point of
view, the lack of control over investment decisions may eaaigency cost. That is, the agency cost
can be defined as the difference in values between two ogliiniz policies: firm value versus equity
value maximization. Our framework allows one to quantifis thalue at all the initial output price levels.
Furthermore, we consider the case when there exists a mooaastruction period in implementing the
firm’s expansion plan. This assumption is realistic andviisradditional uncertainty into the model since
the parties do not know price level of the product at the tihmedonstruction is completed. As we shall
see, for example in the third and fourth bullet points in tegtrpage, risk factors (output price volatility
and construction period) affect the debt value as well agtjuty value. Hence the overall impact of the
increased risk level on the agency cost should be underfptaking this matter into account.

2\We adopt a slight restatement of this definition and treaffitne as a collection of existing assets, liabilities, andl rea
options to emphasize that, in addition to growth opportesjtother operating and investment options are availalleet firm.



What makes the above analysis possible is the fact that we astociated optimal stopping problems
in a mathematically rigorous manner, proving the existeao# uniqueness of the solutions. Since we
compute all the associated value functions, we can viewahevof equity (coupled with the expansion
option) at all the initial output price levels and, therefograsp the entire picture about what is happen-
ing. Here we stress that, in contrast, most papers relyysolelnumerical implementations in finding
solutions. Accordingly, the analysis we perform here cowdtibe easily handled, especially the case of
a positive construction period. Another difference from éxtant literature is that similar setups usually
involve one-sided optimal stopping. In their usual setufismais assumed to have an investment option
but it is unclear how the new investment is positioned agairisting operations and capital structure.
We contrast these models with our two-sided problems thatwa more comprehensive study of real
options by viewing a firm’'s existing operation, expansionian bankruptcy threat and financing de-
cisions all together. One of the practical merits of thisrfeavork is that it provides numerical values
(equity, debt, loan commitment and agency cost) based ochvthé equity and bond holders can negoti-
ate over financing terms. We believe that the aforementipogats are unique contributions in the field
of expansion options and financial decisions. Here let usligigt some results that are newly obtained
by our model and its implementation:

e Without tax shield, whether the firm’s expansion timing witbbt financing is earlier (overin-
vestment) or not, relative to equity financing, dependsinently to uncertainty measured by the
volatility parameter in the output markets. (Table 1, th&uecms withd = 0 as well as Fig-
ure 1). Note also that the potential for early investmentim debt financing is greater in small
investments.

¢ In the presence of tax shield, we confirm that overinvestrtetite likely outcome (Table 1, the
columns withé = 0.3) because the tax shield makes debt financing more attrasntideorompts
the managers to exercise the expansion option early. Itithwoting that while the coupon levels
¢ in this case are higher than those in the casg of 0, the differences are very small across all
volatility levels. This implies that debt value does notrg®se much.

e We quantify the value of the loan commitment that the equikyér obtained and associated
agency cost (Figure 2). It is observed that the agency cashall relative to the value of the
loan commitment. Further, we perform a sensitivity analysy raising the volatility level and
find that the value of having loan commitment increases anitithl output prices as the volatility
becomes higher. However, the agency cost is reduced inwheutput price range (Figure 3). A
possible explanation is that when the output price is low,vhlue of the debt is also low due to
the increased risk of default and this situation should besemed by the increased volatility. This
leads to a lower value dirm valuemaximization policy and results in lower agency cost.

e If we incorporate a positive construction period into thedlp the value of the equity (with the
expansion option) declines due to the increased uncertinel. We find that the agency cost
shrinks. An explanation similar to the previous paragraphdssible here. This phenomenon is
observed more clearly when the volatility level is higheze$igures 4 and 5.

The structure of the paper is as follows: We present our mod&ection 2, solve the two-sided
optimal stopping problem and explain how to implement thedehdo compute the value of having
loan commitment and associated agency cost. In Section Bravede numerical results and empirical
implications. Mathematical proofs are saved for the appetiét follows concluding remarks.



2 Model

Let (Q, F, (F:)e>0,P) be a complete filtered probability space with a standard BrawmotionWV =
{W;t > 0}. Consider a firm that owns one plant and produces a unit ofubwthich it sells forP,
at timet. For simplicity, assume the market pri¢& evolves exogenously over time as a geometric
Brownian motion

dP; = pP;dt + o P, dW; (2.1)

wherep, ando are constant parameters. Denotingéliye unit cost of output produced, the firm’s profit
flow is P, — £. Given a positive production cog > 0), the firm liquidates all assets the first time output
price falls below some constant low level. At closure, thefiras a salvage value of

The firm has an opportunity to expand operations by addingvgptent at cosi. The new plant, which
produces one unit of output identical to the original plafgp has a salvage valgeat closure. The firm’s
decision problem is to determine when to invest in the aoigigi plant. Once made, the investment is
irreversible except that the firm can permanently ceasaadlyction activity by simultaneously shutting
down both plants. Of course, equityholders may liquidate fthrm before investment is made in the
new plant if profits of the single plant are too low. The invesnt, if made, can be funded by issuing
equity or debt. The firm has no preexisting debt. In additisa,assume that managers of the firm are
its equityholders and do not distinguish between sharehsldnd managers. Once in operation, a plant
must be run at full capacity. There is no possibility of seglback production other than shutting down
all operations and liquidating the firm. If funded by debtntibolders immediately liquidate the firm
upon bankruptcy. This effectively means that the direct obbankruptcy is sufficiently high to warrant
closing down the plant.

2.1 Debt Financing

Let us consider the firm’s decision if investment where to udly ffunded (00%) debt. This analysis
can be easily extended to the case where investment is Ipaftinded by debt and partially by equity
(see Section 4Debt is issued just prior to investment in the new plant. Vigeia®e debtholders are fully
informed about the financial state of the firm and its prospant are, thus, able to determine the correct
value of debt.

We work backwards, starting the analysis watlirm that already owns two plants, has a profit flow
of 2P, — 2¢, and has issued perpetual debt with principgl- and a contractual coupon flow per
period of time Managers operate the firm in order to maximize shareholgeityevalue (rather than
the combined value of equity and debt, i.e, the firm value)caBse of limited liability, managers have
some flexibility in choosing a default policy that maximizeguity value. Operationally, we assume
that the equityholder-managers can choose to cover thesfoperating losses by providing their own
capital. Bankruptcy occurs when equity holders decidedp sijecting additional capital. They do this
by selecting a bankruptcy trigger leve] so as to maximize the value of equity by declaring bankruptcy
the first timeP, < P, after adoption of the second plant. We assume that in batdyugebtholders
receive their share of tangible assets with the valugyond shareholders receive the rest. Given the
assumption that debt is risky€., the debtholders may not be able to recover the whole amdurit-i
equity holders will receive zero. Under these assumptitorseach coupon level, the equityholder-
manager’s value function is

Va(p, ¢) := sup EP {/T e "(2Ps — 2 — (1 —0)c)ds (2.2)
TES 0



whereEP[-] is expectation under the probability law withy = p andS is a set of 7 (the natural
filtration generated by proce$?) stopping times§ is a corporate tax rate with < 6 < 1 so thatc6 is

the tax shield on debt. This formulation is similar to therapée in Chapter 11 of Duffie [10]. Equation
(2.2) indicates that, for a given debt level @fr, the managers will choose the bankruptcy threshold
in order to maximize equity value. This problem has an expdiclution. Consider the infinitesimal
generatord of P: Au(p) £ (¢2/2)p*u” (p) + upu'(p) acting on a smooth function(-). The o.d.e.
(A — r)u(p) = 0 provides the fundamental solutiongp) = p* andy(p) = p*? with A\; > 1 and

A2 < 0, which are the two roots ok(\ — 1)0?/2 + Ay — r = 0 and play an important role in the
analysis. Denote := min(A1, A\2) = A2 when there is no risk of ambiguity.

Proposition 2.1. For a given contractual coupon leve|l the bankruptcy level,(c) is given by
A 26+ (-0 —p)

1—A 2r
and the equity value ofP,(c), o) and debt value 0P, (c), o) are

200 (202410 (P;zc))ﬂ (2.4

Py(c) = (2.3)

Va(p, c) =

and

A
_¢ _ ¢ P

D)= £+ (21~ %) (55 ) 25)

respectively. Om € (0, Py(c)), we haveVa(p,c) = 0 and D(p, c) = 2.

Now let us go back to the original firm that owns one plant withagtion to invest in an identical
plant at costl. Investment can be made at any time and, if made, is financezkipetual debt with
principal ¢/r. For each coupon rate level managers wish to maximize equity valdé,(p, ¢), of the
firm by solving the following two-boundary optimal stoppipgoblem for eacl,

Tm/NA\Tq
Vilpc) = sup B { / TPy — €)ds + €L oy + €V (Pryy sy |
Tm ,TdE< 0
(2.6)

In other words, if the output pric& reaches some valug,, (c) before it reache®;(c), managers will
close the current plant and collect scrap vajueOtherwise, they will build a new plant at castwhen
time 7, comes. In this event, the original firm borrows an amount dftd¢r. This one-plant firm,
thereby, becomes the firm whose equity value should be equeél(tP;,c) in Equation (2.4). The
optimal threshold value$,,, and P; maximize equity value. One may be tempted here to conclude
I = . However, it is important to recall thdtis debt value at the time of investment. See Equation
(2.7).

Proposition 2.2. If we haver > pandc¢(1 — 6)/r > 2+, there exists an intervdlP,,(c), Py(c)) € R,
for givenc € Ry such thatr;, = {t > 0: P, < Py(c)} and7) = {t > 0: P, > Py(c)} are optimal
closing and investment times, respectively, for (2.6). vidhge function to problem (2.6) is continuous in
R, and is of the form

’77 p S Pm(C),
Vi(p,¢) = { Bi(c)p™ + Ba(c)p™? + i £ Pu(c) <p< Pyo),
Va(p, c), Py(c) < p,

where B;(c) and By(c) along with P,,,(c), and P,(c) are uniquely determined. The computation for
these values is described in Section 5.2 with the proof sftfuposition.

6



Note thatV;(p,c) depends on the debt level€ R, (a family of functions parameterized hy.
Appropriate accounting of bankruptcy risk requires equainvestment cost with debt value at the
investment threshold (see, for example, Mella-Barrel aadddin [19]). Since the value of the debt
D(p, c) is given by (2.5), this requirement is written as

_c e\ ( Palc) A
I=2+(n-7) <Pb(c)> ' 2.7)
Thus, amongP;(c) (that solve the optimal stopping problem (2.6) for a givigrwe findc = ¢ that also

satisfies (2.7). That is, for this leve] (2.6) and (2.7) are simultaneously solved and we ob&jiic)
and P;(¢) along withV; (p) := Vi(p, ¢).

Remark 2.1. When the debt principat/r, is less than the salvage value of ass2{s bankruptcy does
not occur. Timing of firm closure is then efficient, leveraggbses no agency costs, and the value of
the firm is the same as it would be under pure equity financiimelebt would be free of risk, the firm
is effectively operated as an all-equity interest. Equdiue is given by

Vi(p) = Ui(p) and Va(p,c) = Uas(p) — D(p,c)

where debt valueD(p,c) = I. Conversely, whenever(1 — 6)/r > 2v as in Proposition 2.2, debt is
risky.

2.2 Equity Financing

To complete our model formulation, we now turn to investmenrder pure equity financing. If profits are
too low, the firm could be shut down before there is a chanaevisst in the second plant. The firm owns
several real options in the form of liquidation and plantaxgon and exercises them such that equity
value is maximized. Lel/; denote the value of the pure equity firm that already owns tantp and has
an income flon2 P, — 2¢. Firm value is contingent on output price. The pure equityn'Brproblem is to
find an optimal closure policy,

Us(p) := supE? [/ e "P(2Ps — 2§)ds + €_TT2’}/:| . (2.8)
TES 0
At closure, the total value of firm assets must equal salvage2~y.
Proposition 2.3. The closure leveP, is obtained byP. = —ﬁw and the value of the pure
equity firm with two plants is
2 2 P, A
Us(p) = — ——§+2<’y——+§> <£> , (2.9)
r— r r—pu T P,

on[P.,o0) andUz(p) = 2y on (0, P,).
Proof. The proof is similar to that of Proposition 2.1 and is omitted O

Next, let us consider a firm that owns one plant and an optionvisst in an identical plant at cost
This time we assume the investment is entirely financed bityedthe value of this firm, denotedy, is
the solution to the optimal stopping problem

TiN\Te
Ui(p) = sup B [ / e (P — &) ds+ e g epy + € (U(Pr) = Doy | -
Tl,Tee 0
(2.10)



In other words, if the output pricé& reaches some valug before it reaches’., the equityholder-
manager will close the current plant and recejveOtherwise, the managers will build a new plant at
cost/. The proof of the following assertion is similar to Propmsit2.2 and is omitted.

Proposition 2.4. If » > p, there exists an intervdlP;, P.) € R, such thatr; = inf{t > 0: P, < B}
and7} = inf{t > 0 : P, > P,.} are optimal closing and investment times, respectivelye Vidue
function of the problem (2.10) is

Vs p< P,
Ui(p) = { Aip™ + Aop™ + 722 =%, P <p<P,
UQ(p)_Iv Peép?

whereA; and A, along with P, and P. are uniquely determined.

2.3 Value of Loan Commitments and Agency Cost

One can argue that, due to the existence of tax shield onfdebtich initial price leveb, max(0, V1 (p)—

Ui (p)) represents the value of the loan commitment equity holdmsived from the lender. This must be
so since without the loan commitment, equityholder-man&gs no other ways to finance the planned
expansion except through equity financing (see Section théocase of mixed debt and equity funding).
This value is mainly due to the tax shield but it partiallyides from an added expense to the lender, as
discussed in the next paragraph.

As presented later in Table 1, the tax shield makes debt fimgmaeore attractive and prompts overin-
vestment. The lender could claim that a part of the valugedday the loan commitment is at its expense
and, therefore, it is entitled to a share of the benefit thaetduityholder receives. One way to quantify
this compensation is as follows. As argued in the literatsirece the rational debtholder will value debt
under the assumption that equityholders will exercise fiteon to maximizeequity value debt will be
priced as in Section 2.1 (by solving Equations (2.6) and))2li return, the debtholder could argue that
some value is lost due to the manager’s action of maximizingtg value instead ofirm value If the
manager were to maximize firm value, the corresponding @btatopping problem would be

_ Tm/N\Tq
i(p) = sup E? [ [ e gas
0

Tm,T4ES

(2.11)
+6_TT”L71{T7,L<T(1} + e_er{VQ(PTdv 6) + D(PTd> 5) - I}I{Tm>7'd}] 5

given debt is priced atas in Section 2.1. Equation (2.11) yields the liquidatiod emestment threshold
levels P, and Pz, respectively. We claim the following proposition mustdhol

Proposition 2.5. Suppose > p ande(l — 0)/r > 2. For value functiond/; (p) = Vi (p,¢) in (2.6)
andV; (p) in (2.11), we havé/; (p) < Vi (p) for p € R,

Consequently, the lender may argue that, for amyR .,

(Vi(p) — Ur(p)) — (Vi(p) — Ui(p)) = Vi(p) — Vi(p) > 0 (2.12)

represents the agency cost that is incurred since the finstte the right hand side is the value of having
the loan commitment that could have been added if managetismzaad firm value.



2.4 Positive Construction Period

We further consider a more realistic case when the congirudf the second plant requires certain
period of timeA > 0. For the purpose of simplicity and comparison with the pdéug analysis, we
assume that the construction period is constant and théybqglder seeks an optimal threshold strategy
as in previous sections. As a result of this non-zero cootétm period, the original problem becomes

TmA(Tqg+A)
/ e (P, — €) ds
0

+6_TTm71{Tm<Td+A} + e_er‘/Q(PTd-FAv C)l{Tm>Td+A}] s
whereT, is the time when the equityholder decides to exercise tharesipn option and start the con-
struction. Note that the new plant is available for productat timer; + A. Let us denote the optimal
time to start the construction hby,a and the price of the product at that time Bya . It is reasonable to
assume the following:

Assumption 2.1. (a) The debt ipriced at timerdA with Py(c) = Pja(c) in (2.7).

Vi*(p.e) = sup EP

Tm,T4€ES

(2.13)

(b) Once the construction begins, the construction musbbgpteted and thereby the equityholder is
not allowed to declare bankruptcy (until completion).

As to the first assumption, this is because the bank does ndheurisk of unknown price level at time
T2 + A. Then the debt isssuedat timer2* + A and the construction costis paid simultaneously. The
second assumption also makes sense because the lendetspitoegr interest and avoids the manager
(equityholder) throwing away the new plant under constomct As we see below in the numerical
experiments with typical parameters, this leads to a réalucif the value of the loan commitment and
agency cost. Our assumptions above pertain to contractiaign matters about which party assumes
costs involved in additional uncertainty.

Now to study the agency cost in this case, we need the coamterpf (2.10) and (2.11), which are

TIN(Te+A)
Up )= s B [ (P, — £) ds
0

7 €S (2.14)
+e_rTl’71{Tl<Te+A} + e_r(Te+A)(U2(PTe+A) - I)]‘{’Tl>7'e+A}:| )
and
A TmA(Tqg+A)
Vi*(p) := sup EP / e (P — &) ds + ey <ryrn)
7_77L77-d€S 0 (215)

+e_r(Td+A){‘/2(PTd+A7 6) + D(PTd-l-A» E) - I}I{Tm>7'd+A}:| )

respectively. While the value functions become very compileese problems are still tractable. See
Section 5.4 for computations of the solution.

3 Results

In this numerical example, first, let us look at the overitrent/underinvestment issgale can single
out the role of bankruptcy risk by comparing the investménésholdP,; (under threat of bankruptcy)

3The comparison here is, in terms of Case (A), (B) and (C) irintreduction section, between (A) and (C).



Table 1: Investment threshold3 and P, for an investment cost = 30
0=0 0=0.3
o | .| P PFR% e Py % e | By

0.01] 1.55| 1.55 0.00 1.20

005|177 1.78 —-0.28 1.36/ 1.30 36.16 1.3 1.31

0.10| 2.09| 2.11 -1.14 140, 1.54 35.71 1.41 1.59

0.15] 246| 249 -1.31 147 1.81 35.91 1.48 1.92

0.20| 2.88| 2.90 -0.95 154 211 36.50 1.55 2.29

0.25] 3.35| 3.36 —-0.36 1.63| 244 37.30 1.64 2.69

0.30| 3.87| 3.86 0.27 1.72 2.80 38.21 1.73 3.14

0.35] 4.45| 4.42 0.86 182 3.20 39.06 1.83 3.63

0.40| 5.09| 5.03 1.37 193 3.63 40.22 1.94 4.17
P, andP; are investment threshold levels for equity, and debt findmoeestments, respectively. The firm invests
in the additional plant as soon as output price reaches thresponding investment threshold level. The last
columnP; is the investment threshold if the firm maximized the entima fialue rather than the equity value.

andP, (without bankruptcy risk). To do so, we change price vdtgtiholding other parameters constant.
Specifically, letr vary from 10 percent to 40 percent and fix other parameterslas/s: a salvage value,
v, of 2, arisk-free interest rate of 4.5 percent, and a flow £est0.15. Finally, we sefu = 0 andl = 30.

Let us first examine the case with corporate tax fate 0 to obtain insight intgoure effect of the
bankruptcy threat Table 1 shows values of investment thresholds for varigiee prolatilities.  All
values of investment thresholds are higher thanrI (= 1.5), the full cost of investing and operating
the additional plant (Dixit [8]). This is due to the effectmfofit uncertainty on the investment option. In
addition, investment thresholds increase as volatilitygases. This is consistent with the general finding
in real options literature that the higher the uncertaititg, higher the investment threshold (McDonald
and Siegel [18] and Dixit and Pindyck [9]). Comparing thgder prices for adopting the second plant
with and without the risk of bankruptcy, we find that, whenatdity is low, P. < P;. There is a
crossover level where the investment threshold for debndimg starts lower than the equity financing
threshold ag increases (around = 0.275 in this example). As increases, the negative gap between
P. and P; reaches an apex before narrowing to zero and changing sige.p@rcentage difference in
investment thresholds between the debt and equity finansiflyistrated in Figure 1. It implies that
the prospect of bankruptcy distorts real investment dexessin a direction that depends on the level of
volatility.* Investment threshold levels for equity and debt financirgcampared in the center picture
of Figure 1 for different interest rate and production castrarios. An even more interesting picture
emerges when the amount of financing is considered. The gnaphe right shows that a levered firm
may be either more or less likely to make an irreversiblestwment than a pure equity firm depending on
the level of uncertainty and the amount of capital at riskjgut size minus salvage value, or market-to-
book value of the firm). The combination of these two factatednines whether debt induces early or
late investment compared with equity financing. It is inséirg that early investments diminish in very
highly volatile environments.

Next, we examine the case with tax r#@te= 0.3 in Table 1. In the presence of the tax shield, the
situation is very different. For all levels of volatility, avobserve overinvestment phenomena with
being substantially smaller thaf. As expected, the tax shield makes debt financing more ateand

“In contrast,P. > P,_ as long as debt is risky, where pri&a_ is the threshold level assuming debt financing treats the
project as risk-free, corresponding to overinvestmentlinases. This is to be expected since bankruptcy risk is watieed
in obtainingP;_.
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Figure 1:Investment threshold levels.Left: Percentage differencé4z2 x 100) between equity and debt
financed investment thresholds fbr= 30 as a function of price volatility£). Center: It compares investment
threshold levels®, and P; under equity and debt financing, respectively. Right: campéhe percentage differ-
ence between equity and debt financed investment threstowldsall and large capital requirements. When the
investment amount does not exceed salvage value of assets € 4), debt and equity financing are interchange-
able. All curves approach zero for sufficiently high pricéatiities.

prompts the managers to exercise the expansion option éarfyworth noting that while the coupon
levels ¢ in this case are higher as compared to the @ase 0, the differences are very small across
all volatility levels. This implies that debt value does mutrease much. We now focus on the closely
related issue, namely the value of the loan commitment thaityholder obtained from the lender in
the presence of tax shields. Figure 2 illustrates the oeiahiip of the three value functiong;, U, and
V1. The first graph (a) shows the equity valug In graph (b), we see thaf, > U; and the vertical
distance (= the value of the loan commitment) is plotted iapr(c). To compute the agency cost
involved here, we find/;, the value function of firm value maximization problem. Theeshold levels
(P, P;) = (0.100615, 2.68965). We confirm tha{ Py, P;) D (P, Py) = (0.100661,2.43567) so that
the equity value maximization policy tends to overinvesiir(as compared to firm value maximizatién)
The agency cost associated (definedipy- 17) is plotted in graph (d). In this particular example, the
relative size of the agency cost to the value of the loan camenit is small.

Loan Commitmer Agency Cost

vy, Uy of
150 0.20-
125 4
100 af 0.15+

75

50 % e i //

25 1f P e 0.051 . ////

i 7 3 i P S ‘ ‘ R ‘ ‘ .
( ) 1.0 15 20 1.0 15 2.0
a
(b) (©)

Figure 2: The value functions: With ¢ = 0.25 andf = 0.3, (a) the value function of the equity financing
U1 (p) situated below thé; function, (b) the vertical distance between the two curegsesents the value of the
loan commitment and (c) the agency costs representéd ty — Vi (p).

Now let us raise the uncertainty lewelfrom 0.25 to 0.4 to see how the loan commitment value and
the agency costs will change. Note first that we observe dabainonsistent resulf0.05883, 3.6333) =
(P, Pi) C (Pm, Pj) = (0.05878,4.16677). With the higher volatility, the value of the loan commit-
ment increases across almost all the price levels. Seed-8j(&). This is consistent with the general
belief that the borrower takes advantage of higher vahatilia debt financing. The problem of agency

5This comparison here is, in terms of Case (A), (B) and (C) anititroduction section, between (A) and (B).
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Figure 3:Comparative statics: We raised the uncertainty levelfrom 0.25 to 0.4. (a) The above (red) curve
represents the value of the loan commitment correspondimgt 0.40 which is greater than that corresponding to
o = 0.25 for all initial price level. (b) The agency cost is not stiatifprward. For lower output prices, the agency
cost is higher with the lower volatility leveb(= 0.25). This is reversed in the higher output price range.

costs is more interesting. As seen form Figure 3-(b), in loittal prices, the agency cost incurred on
the lender is greater when the volatility level is lower=€ 0.25). This relationship is reversed in higher
price levels. Since the agency cost is defined via (2.11) 2ri®), a possible explanation is as follows:
When the output price is low (around= 1.0), the value of the dehb(p, ¢) is low as well and should
be aggravated (i.e., greater risk of default) by the higldatility (o = 0.4). Hence thé/; value tends
to be lower and accordingly the agency cesti(; — V;) results in lower levels in this price range.

Figure 4 displays the effect of construction period on tHee/dunctions. First, graph (a) shows that
the value of the equity drops froii (z) to VlA as expected. Graph 4-(b) shows that the value of loan
commitment obtained by the equityholder (from the lendetjich is VlA — UlA does not change much
from the originall;, — U;. Since

Vi—U)— (V2 -UR) =W - V) — (U1 = UP), (3.1)

this means that the drop of the value (due to the delay) isgwificantly different between debt financing
and equity financing. It is understandable since the defdyaifects the equity value almost equally in
debt and equity financing (i.e¥; — VlA ~ U} — UlA). The amount of agency cost with positive
construction periodf/lA — VlA is also smaller than the origin&, — V; (see graph (c)). The mechanism
is rather complicated: We note first that

V-V —(VE-VA>0e (W -VE) - (V1 —VA) <o. (3.2)

The last inequality shows that the drop in the valu&pffirm value maximization) is greater than that of
V1 inthe presence of delay. Itis partly because that the déibévgalso hit by the increased uncertainty.
As a consequence of this effect, the agency cost incurretieolender’s side shrinks.

Finally, we examine the case of positive construction geviith o = 0.4 (Figure 5). The difference
betweenV; and VlA is greater in this case, reflecting that the increased wmngrtcaused by a higher
volatility (graph (a)) further reduces the equity value. gimph (c), we can see the vertical distances
between two lines become wider. This means that a largetilitgl@oupled with positive construction
period further reduces the agency costs from the originakeva
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Figure 4: The value functions with positive construction period in eyansion ¢ = 0.25). With

o =0.2560=0.3andA = 0.5, (a) Vi(p) — Vi®(p) is plotted for eactp. The continuation region shifts shrinks
from the original(0.10066, 2.43567) to (0.100771, 2.42461) with A = 0.5. (b) the value of the loan commitment
VA — U (below, blue dashed) does not change much from the origenal V; — U, (above, red solid). (c) the
agency cost¥> — V2 decreased (below, blue dashed) from the original- V; (above, red solid).

V1-VID Loan Commi Agency Cos
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Figure 5:The value functions with positive construction period in epansion (¢ = 0.40). With o =
0.40 andé = 0.3, (@) V1 (p) — V;>(p) is plotted for eaclp. The continuation region shrinks froff.05883, 3.6333)

to (0.058993, 3.59528). (b) the value of the loan commitmeht® — U2 (below, blue dashed) does not change
much from the original valu&; — U, (above, red solid). (c) the agency cois — V2 decreased (below, blue
dashed) from the original; — V; (above, red solid).

4 Concluding Remarks

Our model can be extended in several ways. First, the debtye@tio can be considered in our model.
Suppose that the lender commits to provide only partial fimanof the investment cost so that the
investment cost can be split into a debt financed pagnd an equity financed pakt. Equations (2.6)
and (2.7) become

Tm/A\Tq
Vl(p, C) = sup SEP |:/ e_rs(Ps - 5) ds + e_rTm71{7m<Td} + e_TTd{‘é(PTd 5) - Ie}l{Tm>Td} ’
Tm,,TdE 0
(4.1)

and

nefe o) () “

respectively. Hence one can find the threshold levels forcanybinations ofl; and I.. Alternatively,
for a given coupon level, one can compute the investment threshold Ié¥¢t) and i, that satisfy both
Equations (4.1) and (4.2) and find the optimal debt levelethjo a desired condition, for example,
maximizing firm value at a certain level pf
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We have assumed that default leads to liquidation of firmtasse practice, a financially distressed
firm may either liquidate its assets or decide to renegotigigebt obligations. Including this possibility
in the analysis will affect investment decisions. In admfti policy distortions may be even greater if
conflicts of interest between managers and shareholddng &ftn are taken into account. Choice of debt
maturity is yet another variable that firm managers can us&tease equity value at the expense of firm
value. In case of positive construction period, we could enather assumptions regarding which party
assumes the risk involved in additional uncertaintiesAssumption 2.1). We note that our Assumption
2.1isreasonable in light of real business conventionseamdsl to a mathematically tractable formulation.

5 Appendix

5.1 Proof of Proposition 2.1

Consider the performance measureR ; xR, — RwhereJ (p,c) £ EP [ [ e (2P, — 2§ — (1 — 6)c) ds]
and use the strong Markov property Bf

[e.9]

J(p,c) =EP UOOO e (2P, — 26 — (1 — 6)c)ds — /T
_ I _(XH0200) g [e‘”IEXT UOOO e (2P —2( — (1 - 0)c) ds”

e "(2Ps — 2§ — (1 —0)c) ds]

_ 2}2 e+ é 09 [_ <r2i NCETE e>c>>] |

Since the first term is independent of we consider only the second term to maximize over all the
possibler € S. This is a straightforward problem and can be solved by thalusriational arguments.

In the continuation region, the value function has the forithwomeA(c) € R, Va(p, ¢) = A(c)p* for

a givenc. By the first method, we can easily verify that, at the boupdai(c), the smooth-fit principle
works. The optimal stopping policy is* = inf{t > 0: P, < Py(c)}.

On the other hand, the debt value can be calculated, agdirthatstrong Markov property,

JE? [,

The last expectation is equal fp* for someB ¢ R. Applying the boundary condition & (c), we
havel = BP,(c)*, which leads to our formula (2.5).

.
D(p,c) =FP {/ e "eds + e_”27] =S <27 -
0 T

r

5.2 Proof of Proposition 2.2

Let us prove that for a given € R, that satisfies:(1 — 0)/r > 2, there exists a unique vector
(Bi(c), Ba(c), P (c), Py(c)) as a solution to (2.6). Similar to the proof for Propositioft,2ve use the
strong Markov property oP to obtain:

Tm/N\Tq
Ji(p,c) :=FEP [/0 e "(Ps—&)ds+ e_”"wl{qu} +e "V, (P, C)l{'rm>7'd}

=[E? [e_rTm]‘{Tm<Td} (7 - g(PTm)) + e_er]‘{Tm>Td} (%(PTd7 C) - g(PTd))] + g(p)
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whereg(p) := Tfu - § Sinceg(p) is independent of optimal stopping rules, we shall find

J]. (pJ C) = Sup Ep [e_rT"L 1{7—'nL<Td}fl(P7'7n) + e_er1{7'7rL>Td}f2(PTd7 C)]

Tm,TdES
where i (z) := 5 — g(x) and fa(w, ¢) = Va(w,c) — g(x).

Consider the infinitesimal generatdrof the process : Au(p) := (02/2)p*u” (p) + pp’(p) acting
on a smooth function(-). The o.d.e. (A — r)u(p) = 0 will provide us the fundamental solutions
Y(p) == pM andy(p) := p*2 with \; > 1 and), < 0. Let us define an increasing functidi(p) :=
¥(p)/e(p), more explicitly

1
F(p)=p"™™ and F'(y) =y~ .

Hence for each coupon level managers need to solve Equation (2.6) while satisfyinglitiom (2.3).
This is a two-sided optimal stopping problem where one hdstbtwo threshold levels together with
the value function. To proceed, we employ the charactéoizatf the value function along the lines
of Dynkin [11] and Dayanik and Karatzas [7]. Namely, if we fitilte smallest nonnegative concave
majorantiV (y) of H(y) := max(H(y), H2(y, c)) wherey = F(p), and

Hi(y) = [i(F () /e(F~'(y)) and Ha(y,c) = fo(F ' (y),c)/o(F'(y)),

then the value function’; (p, ¢) can be obtained by (p,c) = ¢(p)W (F(p)). Moreover, the optimal
stopping region is given wherg, : H(y) = W (y)}. Hence we find the points whel& and H match
for optimal threshold values. For the purpose of findifidy), we directly examine the functioH; (y)
increasing (concave), takes the local maximum at point,ysayy, and decreases o, o). It also
becomes convex at poigt= y; > yo.

71 77>\2 . . . .
and Hy(y). We haveH,(y) = (7 — ﬁykrkz + 5) y*1—*2 and this function passes the origin, starts

On the other hand, recall th&}(p) function has two parts ip € [0, P,(c)) andp € [P,(c),00) and
accordingly,H,(-) is written, for anyc > 0,

N =kt Al VEFOFROL g,
Aoynits - S0 ST (o) (1/R)2, g € [F(Ph(c)), 00),
h
where Ko 2Py (c) 26+ (1—-0)c\ 264+ (1-0)c 0 -
(C)'_<r—u_ r >__ r(1—2X\) < (®-2)

It is clear thatHa(y,c) < Hi(y) ony € [F(0),F(Py(c))]. Let us investigate the two functions in

1
A=Az

this region. The sole critical poinfy of Hi(y) is explicitly available:py := F~1(yo) = v

— 3 _ _ N
—lei)gﬂ). A simple algebra shows thatdf1 — 0)/r > ~, thenpy < P,(c). This implies the local

maximum of H(-) is attained byyy € [F'(0), F'(Py(c))] where we have?; (y) > Ha(y, ¢).

Let us look into the other region, € (F(Py(c)),00). The second branch dfiz(y) starts with de-
creasing (convex), takes the local minimum at pgirt y» and increases ofy, o) to +occ. It becomes
concave at poiny = y3 > y2. SinceH;(y) is decreasing ofyg, o), it is clear that there exists a point
y* € (F(Py(c),o0) such thatd (y) < Ha(y,c) on (y*, c0).

It follows that all we need is to find the linear function

W (y,c) = Bi(c)y + Ba(c) (5.3)
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that meets smoothlyf; (y) and Hs(y) together with the respectitangencypoints, sayy, andy,. Once
found, the value function in the transformed space is

Hl(y)v Y€ [F(O)>ya(c)]
W(y, C) = Bl(c)y + B2(C)7 Y€ (ya(c)v yb(c))
Hs(y,c), y € [y(c), 00).

Then the value function otP,,(c), Py(c)) (in the original space) is

Ji(p,¢) = p(p)W(F(p),c) = Bi(c)¥(p) + Ba(c)p(p) = Bi(c)p™ + Ba(c)p™ (5.4)

and the threshold levels are given By, (c) = F~!(y,(c)) and Py(c) = F~(ys(c)). Finally, Vi(-) =

J1(+) + g(-). This completes the proof to (2.6) for any givethat satisfieg:(1 — §)/r > ~. Note that
one can solve the other problems in this paper in the same ywagibg the appropriatél; functions all
computed in this section.

5.3 Proof of Proposition 2.5

The proof of the existence and uniqueness of the value fametnd the optimal threshold levels for this
problem is similar to that of Proposition 2.2. We have

(V4000 + D) 1) Vi) = 1+ (- %) (25)

In light of the debt value equation (2.7), the right hand siflthe last equation is positive if > P; and
negative ifp < P, sincedD(p,c)/dp > 0if ¢/r > 2v. Note that the last inequality always holds under
the assumption an&; := P,;(¢). Now consider the function

fa(x,¢) £ Va(w, ) + D(w,c) — I — g(x)

and its transformed functiofl3(y, c) = f3(F~1(y),c)/o(F~1(y))

mm@{rzﬁf”(”+flk“&’ 7 y € [F(0), F(R,(0))],
Aoy = (S 1) TN 4 (<K () + 27 - S(A/R()P, y € [F(R(@), ).

From the above argument, we hai#®(y,c) > Hs(y,¢) on [F(0), F(P;)] and Hay(y,¢) < Hs(y,¢c)

on (F(P;),0c0). This together with the fact thd¥s(y,¢) becomes concave and increasing eventually,
implies that the smallest linear majorant & and Hs must dominatéV (y,¢) (which is the smallest
concave majorant aff; and H in the proof of Proposition 2.2). That i&; (p,¢) < Vi(p,¢) forp € R,.

5.4 Analysis of Equations (2.13), (2.14) and (2.15)

First, Assumption 2.1-(b) means that on the et < 7,,,}, we set that the evertA o 6(7y) < 7}
has probability one. Heré(-) is the shift operator (see, e.g. Karatzas and Shreve [14])oing the
similar method to the proof of Proposition 2.2, equatioi82.becomes

VA (p,c) —g(p) = sup EP|e "R (Vy(Pr i as€) — 9(Pryra))LirysAcrn)

Tm,TdES

+ e Tm (7 - g(PTm))l{Td+A>T7yL}] . (5.5)
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Since we assume thaf; is a hitting time of the diffusion to some state (i.e., thadhstrategy), by
conditioning upon the value d?,, the first term on the right-hand side of (5.5) becomes

EP [Ep[e—r (rat2) (‘/2( Ta+A, C ) g(PTd+A))1{Td+A<Tm}|de]

= [EP [6 4] ey BP[€TT A (Vo (Prys s €) — 9(Prysen)) 1y 2ct(rg)<rm} | Fra]
= BPle” 1y, ) B0 [e 772 (Va(Pa, €) — 9(Pa))1{acr,)]
= BP[e™" 17, <7, ) E 70 [e 772 (Va(Pa, €) — g(Pa))]]
where the last line is due to Assumption 2.1-(b). Hence fram)(the reward function at time; is

falz,c) i = e A (L .mE[qu-i—oBA] B M
r—p

r
:e—rA<M1 x_é"i'(l_e)c
r—u r

LK) (1/P(e)) xAE[eMWBA])

LK) (1B Mzﬁ)

onx € [Py(c),00) whereq := p — %02, My = exp (qA + C#TA>, Ms = exp (q)\A + (0>\2)2A), and
K(c) as in (5.2). This equation is of the same formfaér, c) except for the constant multiplief&/;
andM-. Since both constants are positive, the analysigfor, c) in Appendix 5.2 applies to this case:
Similarly to H, defineHy(y, c) £ f4(F~1(y),c)/o(F~*(y)) which is

1—Xo —A2
M,y Af,\_|_§/\—A e |F(0), F'(P,
A (g )= TR T NG
TM—_Ly*lﬂz — &(i«i—(ﬂcy“*& — K(c)M2(1/P)*2, y € [F(Py(c)),00).

On the other hand, the second term on the right-hand side®)fi{ecome&? [e™"™ (y—g(Xr,, ) 17,571
due to Assumption 2.1-(b) again:

Lirrasr) = Yrson) T Lru<mm 3 1{a00(r)>mm} = L{ra>mm}-

Thus, the reward function at timsg, is the same ag; (z, ¢) in the proof of Proposition 2.2. The similar
analysis of (2.15) leads to the reward function stoppeq at

2 fola ) = {MM v (i) v e 0.8,
=T (5 ” + I) + (27 = K(c) = £) My(1/Py(c)*a?,  z € [Py(c), 00),
which is, after the transformation,
"AHo(y.c) = { "Ml*‘f; S (i I)A y € [F(0), F(Py(c))],
Py (5 = ”) SR 4 (29— K(0) - ©)Ma(1/Py(), y € [F(Py(c)), 00).

The reward at time;,, is againf; (z, c).

Finally, in the case of (2.14), the function we need aftertthesformation is

M, 2 A=
T’AH5( ) _ 7,_1 ij\)\: Py - (2’7 + ;)%:1A27 y € [F(O),F(PC)],
r]\i[_uyxlfxg — (% + I) y>\'1:>\2 + 2M, (fy — Tlic“ + %) (1/Pc))\27 ye [F(Pc),oo).
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