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Abstract
We consider stochastic impulse control problems where the process is driven by one-dimensional diffu-
sions. Impulse control problems are widely applied to financial engineering and decision-making prob-
lems including dividend payout problem, portfolio optimization with transaction costs, and inventory
control. We shall show a new mathematical characterization of the value function in the continuation
region as a linear function in certain transformed space. The merits of our approach are as follows: (1)
one does not have to guess optimal strategies or verify the optimality via a verification lemma, (2) the
method of finding the solution (based on the new characterization of the value function) is simple and
direct and thereby (3) one can handle a broader class of reward and cost functions than the conventional
methods that use quasi-variational inequalities.
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1 Introduction

This paper proposes a general solution method of stochastic impulse control problems for one dimensional
diffusion processes. Stochastic impulse control problems have attracted a growing interest of many re-
searchers for the last two decades. Under a typical setting, the controller faces some underlying process and
reward/cost structure. There exist continuous and instantaneous components of reward/cost functions. By
exercising impulse controls, the controller moves the underlying process from one point to another. At the
same time, the controller receives rewards associated with the instantaneous shifts of the process. Then the
controller’s objective is to maximize the total discounted expected net income.

The mathematical framework to these types of problems is in Bensoussan and Lions (1984). Im-
pulse control has been studied widely in inventory control (Harrison et al.(1983)), exchange rate problem
(Jeanblanc-Picqué (1993), Mundaca and Øksendal (1998), Cadenillas and Zapatero (2000)), dividend payout
problems (for example, Jeanblac-Picqué and Shiryaev (1995)) and portfolio optimization with transaction
costs (Korn (1998), Morton and Pliska (1995)). It is worth mentioning Korn (1999) surveys the applications
in mathematical finance. Also see Chancelier et al.(2002) for a combination of optimal stopping and impulse
control problems. In many economic and financial applications where the controlled process is described as
an Itô diffusion, the solution to the problem demands a through study of a related Hamilton-Jacobi-Bellman
equation and quasi-variational inequalities. The method based on quasi-variational inequalities is the fol-
lowing: One guesses the form of (a) continuation region and intervention region, (b) associated optimal
policy, and (c) the value function. Then one specifies the value function by using appropriate boundary
conditions and verifies optimality of the candidate policy. Both steps are often very difficult and the success
depends heavily on the form of the controlled process, reward and cost functions.
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Alternatively, an impulse control problem can be viewed as a sequence of optimal stopping problems.
The connection between impulse control and optimal stopping has been investigated by Davis (1992) and
Øksendal and Sulem (2002) among others. In this setting, the value functions of a sequence of optimal
stopping problems converge to the value function of the impulse control problem under suitable conditions.
In this regard, we utilize the results of Dynkin (1965) (see e.g. Theorem 16.4) about the functional concavity
characterization of α-excessive mappings and Dayanik and Karatzas (2003) that give a general characteri-
zation of optimal stopping times of one dimensional diffusions. We use these results to identify a new and
useful characterization of the solution of the original impulse control problem. At the end, we get rid of the
sequence of optimal stopping problems altogether and directly find the value function: the new characteri-
zation allows us to propose a new direct solution method for impulse control problems. Other works similar
to our approach include Alvarez (2004), Alvarez and Lempa (2004) and Alvarez and Virtanen (2006).

Similar recursive formulations for one-dimensional diffusions appear in multiple stopping problems in
the context of swing options, for example, Carmona and Dayanik (2003). See also Carmona and Touzi
(2003) and Dahlgren and Korn (2005) for the valuation of swing options. It is worth pointing out the
differences of this article from Carmona and Dayanik (2003), where given a reward function, the controller
can exercise their options n times under the condition that the controller has to wait at least certain units
of time between two exercising times. Using a recursive formulation, we are able to obtain the result
that the value function has to be linear in the continuation region of the transformed space. This linear
characterization enables us to present the three-step optimization procedure (described in section 3.3) that
does not require us to use the recursive stopping scheme, while Carmona and Dayanik (2003) do not have
this kind of geometric specification due to the nature of their problem; one needs to solve multiple stopping
problems.

In the next section, we briefly go over the solution method for optimal stopping problems of one-
dimensional diffusions. We describe the impulse control problem and its solution in Section 3. Examples
are presented in Section 4. Finally, extensions and concluding remarks are in Section 5.

2 Summary of the Key Results of Optimal Stopping

Let (Ω,F ,P) be a complete probability space with a standard Brownian motion W = {Wt; t ≥ 0} and
consider the diffusion process X0 with state pace I ⊆ R and dynamics

dX0
t = µ(X0

t )dt + σ(X0
t )dWt (2.1)

for some Borel functions µ : I → R and σ : I → (0,∞). We emphasize here that X0 is an uncontrolled
process. We assume that I is an interval with endpoints −∞ ≤ c < d ≤ +∞, and that X0 is regular
in (c, d); in other words, X0 reaches y with positive probability starting at x for every x and y in (c, d).
We shall denote by F = {Ft} the natural filtration generated by X0 and assume that the usual condition is
satisfied.

Let α ≥ 0 be a real constant and h(·) a Borel function such that Ex[e−ατh(X0
τ )] is well-defined for

every F-stopping time τ and x ∈ I. We first consider

V (x) , sup
τ∈S

Ex[e−ατh(X0
τ )], x ∈ I (2.2)

the value function of the optimal stopping problem with the reward function h(·) : I → R where the
supremum is taken over the class S of all F-stopping times.

Let z ∈ I be a fixed point of the state space and τz be the first hitting time of z ∈ I by X0. Let us
denote the infinitesimal generator of X0 by A and consider the ODE (A− α)v(x) = 0. This equation has
two fundamental solutions, ψ(·) and ϕ(·). We set ψ(·) to be the increasing and ϕ(·) to be the decreasing
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solution. They are linearly independent positive solutions and uniquely determined up to multiplication. It
is well known that

Ex[e−ατz ] =

{
ψ(x)
ψ(z) , x ≤ z,
ϕ(x)
ϕ(z) , x ≥ z.

For the complete characterization of ψ(·) and ϕ(·) corresponding to various types of boundary behavior,
refer to Itô and McKean (1974). Let us now define

F (x) , ψ(x)
ϕ(x)

, x ∈ I. (2.3)

Then F (·) is continuous and strictly increasing. Next, following Dynkin (1965)(see pp. 238), we define
concavity of a function with respect F as follows: A real valued function u is called F -concave on I if, for
every x ∈ [l, r] ⊆ I,

u(x) ≥ u(l)
F (r)− F (x)
F (r)− F (l)

+ u(r)
F (x)− F (l)
F (r)− F (l)

.

We will use the notion of F -concavity to provide a new characterization of the value function of stochastic
impulse control problems. Before doing that, the first step is to present the following results of optimal
stopping problems, the proofs of which we refer to Dayanik and Karatzas (2003).

Proposition 2.1. The value function V (·) of (2.2) is the smallest nonnegative majorant of h(·) such that
V (·)/ϕ(·) is F -concave on I.

Proposition 2.2. Let W (·) be the smallest nonnegative concave majorant of H , (h/ϕ)◦F−1 on [F (c), F (d)],
where F−1(·) is the inverse of the strictly increasing function F (·) in (2.3). Then V (x) = ϕ(x)W (F (x))
for every x ∈ I.

Proposition 2.3. Define

S , {x ∈ [c, d] : V (x) = h(x)}, and τ∗ , inf{t = 0 : X0
t ∈ S}. (2.4)

If h(·) is continuous on I, then τ∗ is an optimal stopping rule.

3 Impulse control problems and its solution

Suppose that at any time t ∈ R+ and any state x ∈ I, we can intervene and give the system an impulse
ξ ∈ R. Once the system gets intervened, the point moves from x to y ∈ R. An impulse control for the
system is a double sequence,

ν = (T1, T2, ....Ti....; ξ1, ξ2, ...ξi....)

where 0 ≤ T1 < T2 < .... are an increasing sequence of F-stopping times and ξ1, ξ2... are FTi-measurable
random variables representing impulses exercised at the corresponding intervention times Ti with ξi ∈ Z
for all i where Z ∈ R is a given set of admissible impulse amounts. The controlled process is, in general,
described as follows:

dXt = µ(Xt)dt + σ(Xt)dWt, Ti−1 ≤ t < Ti (3.1)

XTi = Γ(XTi−, ξi) (3.2)

with some mapping Γ : R× R→ R.
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Let 0 be the absorbing state, without loss of generality, and τ0 , inf{t : Xt = 0} the ruin time. With
the absorbing state at 0, it is natural to consider a set of problems where Z ∈ R+ (i.e., ξi = xi − yi > 0 for
all i) and XTi = XTi− − ξi. (We shall comment on cases where interventions are allowed in both positive
and negative directions in section 5.)

With each pair (Ti, ξi), we associate the intervention reward

K(XTi−, XTi) (3.3)

where K(x, y) : I × R → R is a given function continuous in the first and second argument. Our result
below does not depend on the specification of K(·). We assume that, for any point x ∈ I,

K(x, x) < 0. (3.4)

due to the existence of fixed costs. We consider the following performance measure with ν ∈ V , a collection
of admissible strategies,

Jν(x) = Ex




∫ τ0

0
e−αsf(Xs)ds + e−ατ0P +

∑

Ti<τ0

e−αTiK(XTi−, XTi)


 (3.5)

where P ∈ R− is a constant penalty 1 at the ruin time and f : R→ R is a continuous function, satisfying :

Ex

[∫ ∞

0
e−αs|f(Xs)|ds

]
< ∞. (3.6)

We also assume the standard polynomial growth condition on f(·) and K(x, y) = K(z) by setting z :=
x− y: That is, there exist constants Ci and mi (i = 1, 2) such that, for all x, z ∈ R,

|f(x)| ≤ C1(1 + |x|m1) and |K(z)| ≤ C2(1 + |z|m2). (3.7)

Our goal is to find the optimal strategy ν∗(Ti, ξi)i≥0 and the corresponding value function,

v(x) , sup
ν∈V

Jν(x) = Jν∗(x). (3.8)

Let us briefly go over our plan. In section 3.1 we introduce a recursive optimal stopping scheme that
eventually solves the original impulse control problem as in Øksendal and Sulem (2002). In section 3.2,
we consider a special case where the mapping x → K

ϕ (x) : I → R is F -concave. We show, under this
assumption, that the optimal intervention times Ti are characterized as exit times from an interval, say
(0, b∗), for every i. Then we characterize the value function for impulse control problems and present a
solution method based on the characterization of the intervention times and value function. In section 3.4,
we consider the general case where the F -concavity assumption above does not hold.

3.1 A sequence of optimal stopping problems

In this subsection, we consider a recursive optimal stopping with a view to characterizing intervention times
for the impulse control problems. Here we assume that no absorbing boundary exists. As we will see in the

1Equation (3.5) can be rewritten as Jν(x) = P + Ex
[∫ τ0

0
e−αs(f(Xs)− αP )ds +

∑
Ti<τ0

e−αTiK(XTi−, XTi)
]
. Hence

we could define f̃(x) , f(x) − αP to get rid of P . We, however, maintain the original formulation to make the penalty term
explicit.
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next subsection, the existence of an absorbing state is easily incorporated. Hence by using the same v(x),
we consider the problem,

v(x) = sup
ν∈V

Ex

[∫ ∞

0
e−αsf(Xs)ds +

∑

i

e−αTiK(XTi−, XTi)

]
. (3.9)

Let us also define the set Sn and the objective function vn as follows:

Sn , {ν ∈ S; ν = (T1, T2, ...Tn+1; ξ1, ξ2, ...ξn);Tn+1 = +∞},
and

vn(x) , sup
ν∈Sn

Ex




∫ ∞

0
e−αsf(Xs)ds +

∑

Ti

e−αTiK(XTi−, XTi)


 . (3.10)

In other words, we are allowed to make at most n interventions. For this recursive approach, see, for
example, Davis (1992) and Øksendal and Sulem (2002). We use the following notation for convenience:

g(x) , Ex

[∫ ∞

0
e−αsf(X0

s )ds

]
. (3.11)

Let H denote the space of all Borel functions. Define the two operators M : H → H and L : H → H as
follows:

Mu(x) , sup
y∈R

[K(x, y)− (g(x)− g(y)) + u(y)], (3.12)

and
Lu(x) , sup

τ∈S
Ex[e−ατMu(Xτ−)], (3.13)

for u ∈ H. From the definition of the two operators, a1(x) ≤ a2(x) for x ∈ R, a1(·), a2(·) ∈ H implies
Ma1(x) ≤Ma2(x) and La1(x) ≤ La2(x) for all x ∈ R.

On the other hand, consider the following recursive formula:
{

w0(x) = g(x)
wn(x) = supτ∈S,ξ∈R+

Ex
[∫ τ

0 e−αsf(Xs)ds + e−ατ (K(Xτ−, Xτ ) + wn−1(Xτ ))
] (3.14)

for n = 1, 2, 3, .... It should be noted that, for each n, this is an optimal stopping problem over τ . The
second line of (3.14) is equivalent to

wn+1(x)− g(x) = sup
τ∈S,ξ∈R+

Ex[e−ατ (K(Xτ−, Xτ )− g(Xτ−) + wn(Xτ ))] (3.15)

by applying the strong Markov property (with (3.6)) at time τ to the integral term. Note that on {ω : 0 ≤ t ≤
τ(ω)−}, we have X(ω) = X0(ω) almost surely. In fact, this derivation is explained in detail in subsection
3.2. By defining

φ , w − g,

and adding and subtracting g(Xτ ) on the right hand side of (3.15), it becomes

φn+1(x) = sup
τ∈S

Ex[e−ατMφn(Xτ−)].

Then it can be further simplified, by using the operator L defined in (3.13),

φn+1(x) = Lφn(x). (3.16)
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Let us start this recursive scheme with w0(x) = g(x) (i.e., no interventions are allowed, equivalently
φ0(x) = 0) and define recursively φn(x) , wn(x)− g(x) = L(wn−1(x)− g(x)) = Lφn−1. Clearly,

φ1(x) = Lφ0(x) = sup
τ∈S

Ex[e−ατ (M(w0(Xτ−)− g(Xτ−))]

= sup
τ∈S,ξ∈R+

Ex[e−ατ {K(Xτ−, Xτ )− g(Xτ−) + g(Xτ )}].

On the other hand, by looking at the first (and the sole) intervention time,

v1(x)− g(x) = sup
ν∈S1

Ex

[∫ ∞

0
e−αsf(Xs)ds + e−ατK(Xτ−, Xτ )

]
− Ex

[∫ ∞

0
e−αsf(X0

s )ds

]

= sup
τ∈S,ξ∈R+

Ex
[ ∫ τ

0
e−αsf(Xs)ds + e−ατ

(
EXτ

[∫ ∞

0
e−αsf(Xs)ds

]
+ K(Xτ−, Xτ )

)

−
∫ τ

0
e−αsf(X0

s )ds− e−ατg(Xτ−)
]

= sup
τ∈S,ξ∈R+

Ex[e−ατ {K(Xτ−, Xτ )− g(Xτ−) + g(Xτ )}].

The last equation is due to the fact that only one intervention is allowed. Hence we have w1(x) = v1(x).
By the definition of the recursive scheme, wn is an increasing sequence (i.e, w1(x) ≤ w2(x) ≤ .... for all
x ∈ R). In fact, we shall prove that wn = vn for all n in Lemma 3.2. Before that, we need the following
lemma to relate this recursive scheme with the method described in Section 2.

Lemma 3.1. The mapping x → Lφ(x)
ϕ(x) : I → R is F -concave.

Proof. We shall fix some x ∈ (l, r) ⊆ I. Since Mφ(·) is bounded there, for a given ε > 0, there are
admissible ε-optimal intervention pairs (σl

ε, ξ
l
ε) and (σr

ε , ξ
r
ε) such that

El[e−ασl
εMφ(Xσl

ε
)] > Lφ(l)− ε, and Er[e−ασr

εMφ(Xσr
ε
)] > Lφ(r)− ε.

Define another stopping time σlr
ε ∈ S with

σlr
ε ,

{
τ l + σl

ε ◦ θτ l , if τ l < τ r,

τ r + σr
ε ◦ θτr , if τ l > τ r.

Putting all together, with the strong Markov property of X , which is X0 a.s. until the stopping time τ ,

Lφ(x) ≥ Ex[e−ασlr
ε Mφ(Xσlr

ε
)]

> (Lφ(l)− ε)Ex[e−ατ l
1{τ l<τr}] + (Lφ(r)− ε)Ex[e−ατr

1{τ l>τr}]

≥ Lφ(l)
ϕ(l)

ϕ(x)
F (r)− F (x)
F (r)− F (l)

+
Lφ(r)
ϕ(r)

ϕ(x)
F (x)− F (l)
F (r)− F (l)

− ε.

Since ε is arbitrary, we have an F -concavity.

This lemma guarantees that we can use Proposition 2.1 to 2.3 to identify the value function and an
optimal stopping rule for each of the recursive optimal stopping problems (3.14).
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3.2 Characterization of the Intervention Times and the Value Function: F -Concave Re-
ward Case

Based on the results in the previous subsection, we first consider a special case where the mapping x →
K̄
ϕ (x) : I → R is F -concave. Let us define, for notational convenience,

K̄(x, y) , K(x, y)− (g(x)− g(y)). (3.17)

Further, we prove the following properties of the recursive optimization scheme.

Lemma 3.2. If we define wn by (3.14) (with w0 = g) and vn by (3.10), then

wn(x) = vn(x) for each n and v(x) = lim
n→∞wn(x).

Moreover, w(x) , limn→+∞wn(x) is the smallest solution majorizing g of the functional equation w−g =
L(w − g).

Proof. The proof is given in Appendix.

Hence if we solve the optimal stopping problem

φn+1(x) = sup
τ∈S

Ex[e−ατMφn(Xτ−)] (3.18)

recursively for each n, then we obtain φ(x) , limn→∞ φn(x) = limn→∞ vn(x) − g(x) = v(x) − g(x).
Summarizing the above argument, we have the following proposition:

Proposition 3.1. The value function v(x) for (3.9) is given by the smallest solution majorizing g of the
functional equation v − g = L(v − g), and v−g

ϕ (= φ
ϕ) is always F -concave.

Proof. The first statement comes from Lemma 3.2. By the recursive method that we described above, we
are solving a series of optimal stopping problems for each φn. Hence Lemma 3.1 and Proposition 2.1 give
the second statement.

Note that the functional equation v − g = L(v − g) is in essence the same as (2.8) in Alvarez (2004)
where the optimal boundary is found by ordinary optimization techniques in a case where the size of the
control is exogenously given. Similar ideas are also in Alvarez and Virtanen (2006) and Alvarez ad Lempa
(2004) that extend Alvarez (2004) by finding optimal size of control as well under some practically reason-
able assumptions on the reward and cost function. These papers identify the function (along with optimal
control) that satisfies this relationship, using the idea of α-excessive mappings and proving optimality with
the verification of a weaker version of quasi-variational inequalities under the assumptions on the reward
function. Now we consider different paths to reach the solution and develop a new method.

The argument in the previous subsection is modified to incorporate the existence of the ruin state. Instead
of (3.10) and (3.14), we define, respectively,

vn(x) , sup
ν∈Sn

Ex




∫ τ0

0
e−αsf(Xs)ds + e−ατ0P +

∑

Ti<τ0

e−αTiK(XTi−, XTi)




wn+1(x) , sup
τ∈S,ξ

Ex
[ ∫ τ0∧τ

0
e−αsf(Xs)ds + e−ατ0P1{τ0<τ}

+ e−ατ{K(Xτ−, Xτ ) + wn(Xτ )}1{τ<τ0}
]
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with

w0(x) = Ex

[∫ ∞

0
e−αsf(X0

s )1{s<τ0}ds + e−ατ0P

]
, g0(x).

Then by defining the operator L : H → H instead of (3.13),

Lu(x) , sup
τ∈S

Ex[e−ατMu(Xτ−)1{τ<τ0} + e−ατ0(P − g(0))1{τ0<τ}], (3.19)

we have the same recursion formula as in (3.16). We can obtain the same results as in Lemma 3.1 and
Lemma 3.2. Proposition 3.1 also holds with one change that the value function is given by the smallest
solution majorizing g0 of the functional equation v − g = L(v − g) where L : H → H is given by (3.19).
Now we consider the characterization of the intervention times.

Proposition 3.2. If the mapping x → K̄
ϕ (x) : R+ → R is F -concave and 0 is an absorbing state, then the

optimal intervention times T ∗i are given, for some b∗ ∈ R+, by

T ∗i = inf{t > T ∗i−1; Xt /∈ (0, b∗), i = 1, 2, ....}.

Proof. Our proof is constructive, describing the procedure of recursive optimization steps. For any n ≥ 1,
in view of Lemma 3.1, φn(x)/ϕ(x) is the smallest F -concave majorant of Lφn−1(x)/ϕ(x). We claim that
this majorant (that passes (F (0), P−g(0)

ϕ(0) ) in the transformed space) always exists. Indeed, since we consider
the case of ξi > 0, i.e, x > y for K(x, y) and

Mφ0(x) = sup
y∈R+

[K(x, y)− (g(x)− g(y)) + φ0(y)] = sup
y∈R+

[K(x, y)− (g(x)− g(y)) + (g0(y)− g(y))],

we should check whether the concave majorant exists, namely,

lim
x↓0

(K(x, y)− g(x) + g0(y)) < P − g(0) (3.20)

holds when y ↓ 0. Note that limy↓0 g0(y) = P and g(x) → g(0) as x → 0 due to the continuity of f . Hence
(3.20) holds in the neighborhood of y = 0 because of (3.4). In the subsequent iterations, we consider

Mφ1(x) = sup
y∈R+

[K(x, y)− (g(x)− g(y)) + φ1(y)].

We should check if the expression inside the supremum operator becomes less than P − g(0) as x ↓ 0
and y ↓ 0. Since limy↓0 φ1(y) = φ1(0) = P − g(0) by the concavity (hence continuity) of φ1 and since
limx↓0 g(x) = limy↓0 g(y), we have in the neighborhood of y = 0,

lim
x↓0

K(x, 0) + P − g(0) < P − g(0)

holds. Hence the concave majorant always exist also in the subsequent iterations.
Now the F -concavity of φn is obviously maintained for all n. The limit function of the increasing

sequence of functions, φ(x) = limn→∞ φn(x) exists and is also F -concave. Accordingly, K̄(x, y)/ϕ(x) +
φ(y)/ϕ(x) is F - concave for all y. Hence φ(x)/ϕ(x) and (K̄(x, y) + φ(y))/ϕ(x) meet once and only once
in the transformed space. Recall that the value function satisfies φ = Lφ. This implies that the continuous
region is in the form of (0, b∗) for some b∗ ∈ R+, which completes the proof.
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By using the above characterization of intervention times, we next want to characterize the value function
and reduce the impulse control problem (3.8) to some optimal stopping problem. Moreover, we shall present
a method that does not have to go through the iteration scheme. Let us first simplify Jν :

Jν(x) = Ex




∫ τ0

0
e−αsf(Xs)ds + e−ατ0P +

∑

Ti<τ0

e−αTiK(XTi−, XTi)


 . (3.21)

This is just a reproduction of (3.5). Let us split the right hand side of (3.21) into pieces and use the strong
Markov property of the uncontrolled process X0 at the first intervention time T1 (together with the shift
operator θ(·)) to each of them. Note that on {ω : 0 ≤ t ≤ T1(ω)−}, we have X(ω) = X0(ω) almost surely.
The first term becomes

Ex

[∫ τ0

0
e−αsf(Xs)ds

]
= Ex

[
1{T1<τ0}

{∫ T1

0
e−αsf(Xs)ds + e−αT1EXT1

∫ ∞

0
e−αsf(Xs)1{s<τ0}ds

}]

+ Ex

[
1{T1>τ0}

∫ τ0

0
f(Xs)ds

]

since
∫ T1

T1− e−αsf(Xs)ds = 0. The second and third terms become

Ex[e−ατ0P ] = Ex
[
1{T1<τ0}e

−αT1Ex[e−α(τ0−T1)P |FT1 ]
]

+ Ex
[
1{T1>τ0}e

−ατ0P
]

= Ex
[
1{T1<τ0}e

−αT1Ex[e−α(τ0◦θ(T1))P |FT1 ]
]

+ Ex
[
1{T1>τ0}e

−ατ0P
]

= Ex
[
1{T1<τ0}e

−αT1EXT1 (e−ατ0P )
]
+ Ex

[
1{T1>τ0}e

−ατ0P
]

and

Ex


 ∑

Ti<τ0

e−αTiK(XTi−, XTi)




= Ex

[
1{T1<τ0}

{
e−αT1K(XT1−, XT1) + e−αT1

∑

i=2

e−α(Ti−T1)K(XTi−, XTi)1{Ti<τ0}

}]

= Ex


1{T1<τ0}



e−αT1K(XT1−, XT1) + e−αT1Ex


 ∑

Ti<τ0

e−α(Ti◦θ(T1))K(XSi− , XSi) | FT1











= Ex

[
1{T1<τ0}e

−αT1

{
K(XT1−, XT1) + EXT1

∑

i=1

e−αTiK(XTi−, XTi)1{Ti<τ0}

}]
,

where Si , T1 + Ti ◦ θ(T1) and the index i runs from 1 for the sum in the second equality. Combining the
three terms and rearranging, we have

Jν(x) = Ex

[
1{T1<τ0}

{∫ T1

0
e−αsf(Xs)ds + e−αT1K(XT1−, XT1) + e−αT1Jν(XT1)

}]

+ Ex

[
1{T1>τ0}

{∫ τ0

0
e−αsf(Xs)ds + e−ατ0P

}]
. (3.22)

For any F stopping time τ , the strong Markov property of X0, with our assumption (3.6), gives us

Ex

[∫ τ

0
e−αsf(X0

s )ds

]
= g(x)− Ex

[
e−ατg(X0

τ )
]
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where g(·) is defined as in (3.11). We apply this result to (3.22) by reading τ = T1 and τ = τ0 to derive

Jν(x) = Ex
[
1{T1<τ0}e

−αT1{K(XT1−, XT1)− g(X0
T1

) + Jν(XT1)}
]

+ Ex
[
1{T1>τ0}e

−ατ0{P − g(Xτ0)}
]
+ g(x). (3.23)

Noting that g(X0
T1

) = g(XT1−), adding and subtracting g(XT1) and further defining

u(x) , Jν(x)− g(x),

(3.23) finally becomes

u(x) = Ex
[
1{T1<τ0}e

−αT1{K(XT1−, XT1) + u(XT1)− g(XT1−) + g(XT1)}
]

+ Ex
[
1{T1>τ0}e

−ατ0{P − g(Xτ0)}
]
, (3.24)

and we consider the maximization of this u(·) function and add back g(x) since supu(x) = sup{Jν(x) −
g(x)} = supJν(x) − g(x). Note that this simplification leading to (3.24) does not depend on the F -
concavity assumption.

Since we have confirmed that optimal intervention times are exit times of the process from an interval,
let us use a simpler notation: XTi− = b and XTi = a for all i = 0, 1, 2.... We can denote Ti− = τb ,
inf{t > Ti−1; Xt ≥ b}. By observing (3.24),

u(b) = u(XT1−) = K(XT1−, XT1) + g(XT1)− g(XT1−) + u(XT1)
= K(b, a) + g(a)− g(b) + u(a) = K̄(b, a) + u(a) (3.25)

u(0) = u(Xτ0) = P − g(Xτ0) = P − g(0)

we have

u(x) =

{
u0(x), x ∈ [0, b)
K̄(x, a) + u0(a), x ∈ [b,∞).

(3.26)

where
u0(x) , Ex[1{τb<τ0}e

−ατbu(b)] + Ex[1{τb>τ0}e
−ατ0u(0)].

The second equation of (3.26) is obtained from (3.24) by noticing that, on x ∈ [b,∞), Px(T1 < τ0) = 1.
Indeed, in this case, we immediately jump to a, so that XT1− = x and XT1 = a. Since a ∈ (0, b),
u(a) = u0(a). Now let us note that we have the following representations in (3.24)

Ex[e−ατr1{τr<τl}] =
ψ(l)ϕ(x)− ψ(x)ϕ(l)
ψ(l)ϕ(r)− ψ(r)ϕ(l)

, x ∈ [l, r]

where τl , inf{t > 0;Xt = l} and τr , inf{t > 0;Xt = r} and ϕ(·) and ψ(·) defined in the previous
section. Finally, with F (·) being defined as in (2.3), we have a characterization of u(x) in the continuation
region,

u(x)
ϕ(x)

=
u(b)(F (x)− F (0))
ϕ(b)(F (b)− F (0))

+
u(0)(F (b)− F (x))
ϕ(0)(F (b)− F (0))

, x ∈ [0, b]. (3.27)

Define the transformation

W , u

ϕ
◦ F−1 (3.28)
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(3.27) becomes, for any a > 0 and b > 0,

W (F (x)) = W (F (b))
F (x)− F (0)
F (b)− F (0)

+ W (F (0))
F (b)− F (x)
F (b)− F (0)

, x ∈ [0, b], (3.29)

which represents a linear function that passes a fixed point, (F (0),W (F (0))).
To discuss how to find the optimal pair (a∗, b∗), we write u(x) as ua,b(x) to emphasize the dependence

on a, b, then on x ∈ [0, b],

sup
a∈R+b∈R+

ua,b(x) = sup
a∈R+

sup
b∈R+

{Ex[1{τb<τ0}e
−ατb(K̄(b, a) + ua,b(a))] + Ex[1{τb>τ0}e

−ατ0ua,b(0)]}.
(3.30)

This can be considered as a two-stage optimization problem. First, let a be fixed. For each a, the inner
maximization of (3.30) becomes

Va(x) , sup
τb∈S

{Ex[1{τb<τ0}e
−ατb(K̄(b, a) + Va(a))] + Ex[1{τb>τ0}e

−ατ0(P − g(0))]} (3.31)

and, among a′s, choose an optimal a in the sense, ṽ(x) , supa Va(x) for any x. It should be pointed out
that Va(x) may take negative values if P − g(0) does. Now, we discuss a solution method of the first stage
optimization (3.31). For this purpose, we need a technical lemma:

Lemma 3.3. If we define

G(x, γ) , sup
τ∈S

Ex[e−ατ (h(X0
τ ) + γ)], x ∈ R, γ ∈ R

for some Borel function h : R→ R and with condition (3.6), then, for γ1 > γ2 ≥ 0,

G(x, γ1)−G(x, γ2) ≤ γ1 − γ2, (3.32)

for any x.

Proof. The left hand side of (3.32) is well-defined due to (3.6). It is clear that G(x, γ) is convex in γ for any
x. Then D+

γ G(x, γ0) , limγ↓γ0

G(x,γ0)−G(x,γ)
γ0−γ exists at every γ0 ∈ R, and

G(x, γ1)−G(x, γ2)
γ1 − γ2

≤ D+
γ G(x, γ1). (3.33)

Consider the bound of G(x, γ) for x fixed:

G(x, γ) ≤ sup
τ∈S

Ex[e−ατ |h(X0
τ )|] + |γ| sup

τ∈S
Ex[e−ατ ].

The first term on the right hand side is constant in γ and the second term is linear in γ and theEx[e−ατ ] ≤
1 for any τ ∈ S. Due to the convexity of G(x, γ) in γ, for the above inequality to hold, D+

γ G(x, γ) ≤ 1 for
all γ ∈ R. On account of (3.33), we have (3.32).

Coming back to (3.31), we need some care because the value function Va(x) contains its value at a, i.e.,
Va(a) in the definitive equation. Let us consider a family of optimal stopping problem parameterized by
γ ∈ R.

V γ
a (x) , sup

τ∈S

{
Ex[1{τ<τ0}e

−ατ (K̄(Xτ , a) + γ)] + Ex[1{τ>τ0}e
−ατ0(P − g(0))]

}

= sup
τ∈S

Ex[e−ατrγ(Xτ , a)] (3.34)
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where

rγ(x, a) =

{
P − g(0), x = 0,

K̄(x, a) + γ, x > 0.

Obviously, this parameterized problem can be solved by using Proposition 2.1 to 2.3. Now we link this
parameterized optimal stopping problem to (3.31).

Lemma 3.4. For a > 0 given, if there exists a solution to (3.34), then there always exists unique γ such that
γ = V γ

a (a) holds, provided that (3.4) holds.

Proof. Without loss of generality, we need only to consider the case where

sup
x∈R+

K̄(x, a) > 0 (3.35)

for some a > 0. Indeed, suppose that there is no such a and let us consider a sequence of optimal stopping
scheme. In each iteration, the value function for the optimal stopping problem takes negative values, so
that φn(·) < 0 for all n. Then in the next iteration, K̄(x, y) function will be shifted downwards, leading to
φn+1(·) < 0. Hence the “no interventions” strategy is trivially optimal.

In (3.34), since γ is some constant parameter, we benefit from Proposition 2.1 and claim that V γ
a (x) is

characterized as the smallest F -concave majorant of rγ(·, a) that passes
(
F (0), P−g(0)

ϕ(0)

)
. In terms of the

notation of Proposition 2.3, if we define W γ
a (·) such that

V γ
a (x) = ϕ(x)W γ

a (F (x)),

then W γ
a (·) passes through the fixed point A = (F (0), W γ

a (F (0))) and is the smallest concave majorant of
Hγ(·, a) , rγ(F−1(·),a)

ϕ(F−1(·)) = K̄(F−1(·),a)
ϕ(F−1(·)) + γ

ϕ(F−1(·)) .
Now fix a. Our approach here is by starting with γ = 0, we move γ upwards and evaluate V γ

a (a) and
try to find γ such that γ = V γ

a (a). Due to (3.35), we have W 0
a (F (a)) > 0. By the monotonicity of F , it is

equivalent to saying that V 0
a (a) > 0 = γ. As γ increases, W γ

a (F (a)) increases monotonically: see the right
hand side of (3.34).

Lemma 3.3 implies that for γ1 > γ2 ≥ 0,

V γ1
a (x)− V γ2

a (x) ≤ γ1 − γ2 (3.36)

for any x ∈ R+. Note that W γ
a (F (a)) ≥ Hγ(F (a), a). However, since V γ

a has less than the linear growth
in γ as demonstrated by (3.36), there is a certain γ

′
large enough such that W γ

a (F (a)) = Hγ(F (a), a) for
γ ≥ γ

′
. This implies

ϕ(a)W γ
′

a (F (a)) = ϕ(a)Hγ′(F (a), a)

⇔ V γ′
a (a) = K̄(a, a) + γ′ < γ′

where the inequality is due to the assumption (3.4). For this γ
′
, we have V γ

′
a (a) < γ

′
.

The monotonicity and continuity of W γ(F (a)) (due to the convexity of V γ
a (·)) with respect to γ, to-

gether with (3.36), implies that, for any a, there exists one and only one γ such that V γ
a (a) = γ.
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3.3 Methodology to find v(x) and (a∗, b∗)

Using (3.27), namely the characterization of ua,b, we describe an optimization procedure based on Proposi-
tions 2.2 and 2.3.

1. Fix a > 0. Consider the function

R(·, a) , K̄(F−1(·), a)
ϕ(F−1(·)) (3.37)

Define Wa(·) such that Va(x) = ϕ(x)Wa(F (x)) and by the linear characterization (3.29), it is a
straight line with a slope, say β(a) and passes through (F (0),Wa(F (0))) =

(
F (0), P−g(0)

ϕ(0)

)
. We

can write the linear majorant, in general,

Wa(y) = β(a)y + δ. (3.38)

2. First stage optimization: For each slope β(a), we can calculate the value of Wa(F (a)), but we have
to find the Wa(·) function such that, at some point F (b(a)), we have

Wa(F (b)) = R(F (b), a) + Wa(F (a))
ϕ(a)
ϕ(b)

. (3.39)

where we write b(a) ≡ b for notational simplicity. This requirement is equivalent to finding γ in
(3.34) in Lemma 3.4 such that

γ

ϕ(a)
= W γ

a (F (a)).

Let us denote the right hand side of (3.39) by

Φ(y, a) , R(y, a) + Wa(F (a))
ϕ(a)

ϕ(F−1(y))
, y ∈ (F (c), F (d)). (3.40)

By Proposition 3.2, (0, b(a)) is the continuation region. If R is a differentiable function with respect
to the first argument, we can find the optimal point b(a) analytically. In fact, it is to find a point
b(a) such that the linear majorant and the shifted function Φ(y, a) have a tangency point. This is
equivalent to calculating the smallest linear majorant of Φ(y, a) (due to Proposition 3.1 and the linear
characterization (3.29)). Explicitly, we solve

(
K̄(b, a)
ϕ(b)

)′
− ϕ′(b)ϕ(a)

ϕ(b)2
δ = β(a)

(
F ′(b) +

ϕ′(b)ϕ(a)
ϕ(b)2

F (a)
)

(3.41)

for b(a) where β(a) is

β(a) =
ϕ(b)R(F (b), a)− δ(ϕ(b)− ϕ(a))

F (b)ϕ(b)− F (a)ϕ(a)
. (3.42)

For the absorbing boundary case, these equations can be easily modified. Let us denote D ,
Wa(F (0)) = (P − g(0))/ϕ(0). Then (3.41) and (3.42) become, by substituting

δ = D − β(a)F (0) (3.43)

in (3.41),
(

K̄(b, a)
ϕ(b)

)′
− ϕ′(b)ϕ(a)

ϕ(b)2
D = β(a)

(
F ′(b) +

ϕ′(b)ϕ(a)
ϕ(b)2

(F (a)− F (0))
)

(3.44)

and

β(a) =
ϕ(b)R(F (b), a)−D(ϕ(b)− ϕ(a))

(F (b)− F (0))ϕ(b)− (F (a)− F (0))ϕ(a)
, (3.45)

respectively. Note that ϕ(b)R(F (b), a) = K̄(b, a) from (3.37).
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3. Second stage optimization: To summarize up to this point, we set a and find b(a) and in turn β(a).
Now, let a vary and choose, among β(a), find the largest slope β∗ , maxa∈R+ β(a), if exists, and
also the corresponding a∗ and b(a∗). Due to the characterization of the value function with (3.30),
these a∗ and b∗ , b(a∗) must be the solution to (3.8).

If K̄(x, y) is a differentiable function with respect to both the first and second arguments, then we can
find a∗ analytically. If, for any a ∈ R+, Φ(y, a) is strictly concave in y at F (b), a∗ must satisfy
(

∂K̄(b, a)
∂a

+ δϕ′(a)
)

(ψ(b)− ψ(a)) = − (
K̄(b, a)− δ(ϕ(b)− ϕ(a))

)
(F ′(a)ϕ(a) + F (a)ϕ′(a)).

(3.46)

Therefore, in this case, our non-linear optimization procedure is just to solve (3.41) and (3.46) with
(3.42), simultaneously. We postpone the derivation of (3.46) to Appendix.

In particular, for our case of absorbing boundary, the corresponding condition is
(

∂K̄(b, a)
∂a

+ Dϕ′(a)
) (

(F (b)− F (a))ϕ(b)− (F (a)− F (0))ϕ(a)
)

= − (
K̄(b, a)−D(ϕ(b)− ϕ(a))

) (
F ′(a)ϕ(a) + (F (a)− F (0))ϕ′(a)

)

to be solved simultaneously with (3.44) and (3.45). For the case of natural boundary, δ is obtained in
Section 3.5.

Remark 3.1. With respect to the third point of the proposed method above, we should check if there exists
a concave majorant as a ↓ 0. Namely, we consider whether

lim
x↓0

(K(x, a)− (g(x)− g(a)) + u(a)) < P − g(0)

holds in the neighborhood of a = 0. Since limx↓0 g(x) = lima↓0 g(a) and lima→0 u(a) = u(0) = P − g(0)
by the continuity of u, the last inequality holds due to (3.4). ♦

3.4 Characterization of the Intervention Times and the Value Function: General Case

Let us move on to a general case where the mapping x → K̄
ϕ (x) : R+ → R+ is not necessarily F -concave.

First, we extend Proposition 3.2 to characterize optimal intervention times.

Proposition 3.3. The value function v(x) for (3.8) is given by the smallest solution majorizing g of v− g =
L(v − g) and optimal intervention times T ∗i are given by exit times from an interval if and only if, for all
y ∈ R+,

x → K̄(x, y) is continuous and q , lim sup
x→∞

D−
(

K̄

ϕ
◦ F−1

)
(x) is finite. (3.47)

where D−f(x0) , lim supx↑x0

f(x)−f(x0)
x−x0

.

Proof. For any given a ∈ R+, if we can find the smallest linear majorant of K̄(F−1(·),a)+γ
ϕ(F−1(·)) for an arbitrary

γ ∈ R+, we can find γ = ϕ(a)Wa(F (a)) by Lemma 3.4. Due to the constancy of γ, it suffices to show
that condition (3.47) is necessary and sufficient for the existence of concave majorant of K̄

ϕ ◦ F−1 on F (I).
The sufficiency is immediate. For the necessity, we assume that q = +∞. We can take a sequence of
points {xk} ⊂ R such that xk → ∞ and D−

(
K̄
ϕ ◦ F−1

)
(xk) → ∞ as k → ∞. If necessary, by
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taking a subsequence, we can make this sequence {xk} monotone. Consider the smallest concave majorant
of K̄

ϕ ◦ F−1 on [F (0), F (xk)]. Call it vk(x). It is clear that vk(x) is monotone increasing in k for all
x ∈ [F (0), F (xk)]. As k → ∞, xk → ∞ and v(x) ≥ vk(x). We thus have v(x) = limk→∞ vk(x) = ∞
for all x ∈ R+. There is no optimal intervention policy.

Suppose that the F -concavity of the reward function is violated, so that the intervention point may be
multiple. For the rest of this subsection, as is practically the case (see our examples in Section 4), we study
the case where Φ(y, a) with y = F (x) is increasing to infinity and becomes eventually concave and then
derive linear characterization as in Section 3.2.

Let us consider a strategy that we have two intervention points, b1 and b2 being arbitrarily chosen such
that 0 < b1 < b2. We want to characterize function Jν(x) as in (3.5) again. Recall that there are no controls
in a way that the process is pulled up to avoid ruin. In other words, Px[τ0 < ∞] = 1. Assume, for the
moment, that we always apply control at these boundaries b1 and b2 and then, once applied, the process
moves to a1 < b1 and a2 < b2, respectively.

If we start with a point x ∈ [0, b1], the problem is equivalent to the case we considered already, since the
process cannot go beyond the level b1. Hence following (3.26), we have for x ∈ [0, b1]

Jν
1 (x) , Ex




∫ τ0

0
e−αsf(Xs)ds + e−ατ0P +

∑

Ti<τ0

e−αTiK(XTi−, XTi)




and

u1(x) = Ex[1{τb1
<τ0}e

−ατb1u1(b1)] + Ex[1{τb1
>τ0}e

−ατ0u1(0)], x ∈ [0, b1]

by defining u1(x) , Jν
1 (x)− g(x). If we start with a point x ∈ [b1, b2], there are two strategies available:

(A) Let Xt move along. (It either hits b1 or b2 first.)

(B) Apply the control immediately (t = 0) by moving the process from x to a1 (the post-control point
that corresponds to b1) and let the process start at a1. (Recall that we do not let X enter into (b1,∞)
after moving to a1.)

Consider strategy (A) first. Let us define

Jν
2 (x) , Ex




∫ τb1

0
e−αsf(Xs)ds +

∑

Ti<τb1

e−αTiK(XTi−, XTi)


 x ∈ [b1, b2].

Using the strong Markov property at the first intervention, we can reduce Jν
2 to a simpler form. For any

(a1, b1) and (a2, b2), we have

Jν
2 (x) = Ex[1{τb1

<τb2
}e−ατb1K(Xτb1− , Xτb1

)− g(Xτb1
) + Jν

1 (Xτb1
) + g(Xτb1

)− g(Xτb1−)

+ Ex[1{τb1
>τb2

}e−ατb2K(Xτb2− , Xτb2
)− g(Xτb2

) + Jν
2 (Xτb2

) + g(Xτb2
)− g(Xτb2−)] + g(x).

We shall use u1(x) = Jν
1 (x) − g(x) in the first term. Now let us define u2(x) , Jν

2 (x) − g(x). Then the
last equation becomes

u2(x) = Ex[1{τb1
<τb2

}e−ατb1K(Xτb1− , Xτb1
) + u1(Xτb1

) + g(Xτb1
)− g(Xτb1−)

+ Ex[1{τb1
>τb2

}e−ατb2K(Xτb2− , Xτb2
) + u2(Xτb2

) + g(Xτb2
)− g(Xτb2−)]

= Ex[1{τb1
<τb2

}e−ατb1 (K̄(b1, a1) + u1(a1))] + Ex[1{τb1
>τb2

}e−ατb2 (K̄(b2, a2) + u2(a2))] (3.48)
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on x ∈ [b1, b2]. By identifying K̄(b2, a2) + u2(a2) = u2(b2) and u2(b1) = K̄(b1, a1) + u1(a1) = u1(b1)
(the latter shows u1(x) and u2(x) are connected at x = b1),

u2(x) =
ϕ(x)
ϕ(b1)

F (b2)− F (x)
F (b2)− F (b1)

u2(b1) +
ϕ(x)
ϕ(b2)

F (x)− F (b1)
F (b2)− F (b1)

u2(b2), x ∈ [b1, b2]. (3.49)

To summarize this result, if we define Wi(·) , ui
ϕ ◦ F−1(·) for i = 1, 2 on F (I), this is again a linear

function for each i. Hence by defining

WA(F (x)) ,
{

W1(F (x)) = W1(F (0))F (b1)−F (x)
F (b1)−F (0) + W1(F (b1))

F (x)−F (0)
F (b1)−F (0) , x ∈ [0, b1]

W2(F (x)) = W2(F (b1))
F (b2)−F (x)
F (b2)−F (b1) + W2(F (b2))

F (x)−F (b1)
F (b2)−F (b1) , x ∈ [b1, b2],

we have a piecewise linear function on F (I).
Next consider strategy (B), whose value function is

WB(F (x)) ,
{

W1(F (x)), 0 ≤ x ≤ b1

W1(F (x)) , ϕ(a1)
ϕ(x) W1(F (a1)) + R(F (x), a1), b1 < x.

(3.50)

Lemma 3.5. (A) is better than (B) only if

β1 , W (F (b1))−W (F (0))
F (b1)− F (0)

<
W (F (b2))−W (F (b1))

F (b2)− F (b1)
, β2.

Proof. Since the value function of strategy (B) is (3.50), choosing (A) over (B) is equivalent to

W1(F (x)) < W2(F (x)) on x > b1.

If W1(F (x)) majorizes W1(F (x)) on x ∈ [0,∞), then this problem reduces to F -concavity case discussed
in the previous subsection. Hence we consider the case where there exists some x ∈ [b1,∞) such that

W1(F (x)) < W1(F (x)).

Now suppose that we have β1 ≥ β2. Then it is clear that we cannot have W2(F (x)) > W1(F (x)) on
x ∈ [b1,∞).

There are two cases to consider:

(1) If W2(F (x)) majorizes W1(F (x)) on x ∈ [b1,∞), then we adopt the point b2 as an intervention
point. In this case, β2 > β1 holds. However, this implies that if we connect A , (F (0),W1(F (0)))
and C , (F (b2),W2(F (b2)), then this line segment AC is above the line segment connecting, piece
by piece, points A, B , (F (b1),W1(F (b1)) and C. We can show that there exists a point b′ ≥ b2

such that its corresponding linear majorant W ′(F (x)) satisfies W ′(F (x)) > W1(F (x)) on x ∈ [0, b1]
and W ′(F (x)) > W2(F (x)) on [b1, b2]. The proof of the existence of a post-intervention point a′

corresponding to this point b′ follows in a similar manner to Lemma 3.4.

(2) If W2(F (x)) does not majorize W1(F (x)), we can find another point b̄, instead of b1, such that the lin-
ear (not piecewise linear) function W (F (x)) corresponds to b̄ majorizes R(F (x), ā)+W (F (ā))ϕ(ā)

ϕ(x)
on x ∈ R+ by Proposition 3.3.

In either case, the value function in the transformed space should be a linear function that attains the largest
slope among all the possible linear majorant. This argument holds true for any b1 and b2 with b1 < b2. We
can continue this argument inductively to the case of n intervention points, (b1, ...bn). We here summarize
our argument up to this point as a main proposition:
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Proposition 3.4. Suppose that (3.47) holds and the optimal continuation region is connected. The value
function corresponding to (3.5) of the impulse problem described in (3.3)∼ (3.8) is written as

v(x) =

{
v0(x) , ϕ(x)W ∗(F (x)) + g(x), 0 ≤ x ≤ b∗

v0(a∗) + K(x, a∗), b∗ ≤ x.
(3.51)

where W ∗(·) is the line segment connects (F (0),W ∗(F (0))) and (F (b∗),W ∗(F (b∗))) and satisfy the fol-
lowing:

1. W ∗(F (·)) is the smallest linear majorant of W ∗(F (a∗))ϕ(a∗)
ϕ(·) +R(F (·), a∗) and meets with W ∗(F (a∗))+

R(F (·), a∗)ϕ(a∗)
ϕ(·) at point F (b∗) and passes (F (0), P−g(0)

ϕ(0) ). If R is differentiable, (a∗, b∗) satisfy
(3.41).

2. The slope of W ∗(·), denoted as β∗, is the largest slope among β(a)’s of all the possible linear majo-
rants Wa(·).

Moreover, if the mapping x → K̄
ϕ (x) : R+ → R+ is F -concave, then the optimal continuation region (0, b∗)

is uniquely determined.

Note that, at x = 0,

v(0) = ϕ(0)W ∗(F (0)) + g(0) = ϕ(0)
P − g(0)

ϕ(0)
+ g(0) = P

as expected.

Remark 3.2. If the F -concavity of K̄/ϕ is violated, there are at least two possible cases (and combination
of them) where we have multiple continuation regions with linear value function in the continuation region
of the transformed space.

1. For some a∗i with i = 1, 2, ..., we have the common β∗. This is the case which we shall show in
the next example. In this case, the continuation region is C = {(0, b∗1), (b∗1, b∗2), (b∗2, b∗3)...} where b∗i
corresponds to a∗i for each i, and the intervention region is Γ = {{b∗1}, {b∗2}, {b∗3}...}. Each time the
process hits one of the points {b∗i }, the control pulls the process back to the corresponding a∗i .

2. Another case is that, for the unique optimal a∗, there exists non-unique b∗1 and b∗2. In this case, the
continuation region is C = {(0, b∗1), (b

∗
1, b

∗
2)}, and the stopping region is Γ = {{b∗1}, [b∗2,∞)}. If the

process hits b∗1 or b∗2, then the control pulls the process back to a∗ in either situation. It makes sense to
continue in the region (b∗1, b

∗
2) because there is positive probability that one can extract K̄(b∗2, a

∗)(>
K̄(b∗1, a

∗)) within a finite time.

3.5 No absorbing boundary case

Next, we extend our argument to a problem without the absorbing boundary. Hence the process can move
along in the state space in an infinite amount of time. The problem becomes

Jν(x) = Ex

[∫ ∞

0
e−αsf(Xs)ds +

∑

i=1

e−αTiK(XTi−, XTi)

]
(3.52)
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We can characterize intervention times as exit times from certain boundary and simplify the performance
measure (3.52)

Jν(x) = Ex

[∫ ∞

0
e−αsf(Xs)ds +

∑

i=1

e−αTiK(XTi−, XTi)

]

= Ex[e−αT1{K(XT1−, XT1)− g(XT1−) + Jν(XT1)}] + g(x).

The second equation is easily obtained in the same way as in the previous section by noting Px(T1 < ∞) =
1. The last term does not depend on controls, so we define u(x) , Jν(x)− g(x):

u(x) = Ex[e−αT1{K(XT1−, XT1)− g(XT1−) + g(XT1) + u(XT1)}].

Again, we consider the F -concave case with the notation Ti− = τb for all i and we have

u(x) = Ex[e−ατb(K(b, a)− g(b) + g(a) + u(a))] = Ex[e−ατb(K̄(b, a) + u(a))].

By defining W = (u/ϕ) ◦ F−1, we have

W (F (x)) = W (F (c))
F (b)− F (x)
F (b)− F (c)

+ W (F (b))
F (x)− F (c)
F (b)− F (c)

, x ∈ (c, b].

We should note that F (c) , F (c+) = ψ(c+)/ϕ(c+) = 0 and

W (F (c)) = lc , lim sup
x↓c

K̄(x, a)+

ϕ(x)

for any a ∈ (c, d]. For more detailed mathematical meaning of this value lc, we refer the reader to Dayanik
and Karatzas(2003). We can effectively consider (F (c), lc) as the absorbing boundary.

4 Examples

In this section, we work out some examples from financial engineering problems. As described in Section
3.3, the main task to find solutions now reduces to analyzing the reward function in the transformed space
and find the smallest linear majorant. Let us recall that for given a ∈ R, the shifted reward function in the
transformed space is (3.40), that is,

Φ(y, a) = R(y, a) + Wa(F (a))
ϕ(a)

ϕ(F−1(y))
, y ∈ (F (c), F (d)) (4.1)

in which R(·, a) is given by (3.37) and Wa(·) is given by (3.38). For the purpose of analyzing Φ(·, a), we
recall some useful observations: If h(·) is twice-differentiable at x ∈ I and y , F (x), then H

′
(y) = m(x)

and H
′′
(y) = m

′
(x)/F

′
(x) with

m(x) =
1

F ′(x)

(
h

ϕ

)′

(x), and H
′′
(y)(A− α)h(x) ≥ 0, y = F (x) (4.2)

with strict inequality if H
′′
(y) 6= 0. These identities are of practical use in identifying the concavities of

H(·) when it is hard to calculate its derivatives explicitly. Before the transformation defined by (3.28), (4.1)
is of the form K̄(x, a) + u(a). Hence, for a fixed a, we read h(x) = K̄(x, a) for the first term of (4.1) and
h(x) = constant for the second term of (4.1) to apply (4.2).
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Remark 4.1. It is worth examining h(x) = k where k ∈ R+ is a constant. The first equation of (4.2) is
m(x) = − kϕ′(x)

F ′(x)ϕ(x)2
> 0 since ϕ′(x) < 0 and F ′(x) > 0 for all x ∈ I. As to the second inequality of (4.2),

(A− α)k = −αk < 0. These facts imply that the second term of (4.1) is always increasing and concave in
the transformed space for an a that makes Wa(F (a)) > 0.

Example 4.1. Øksendal (1999) considers the following problem:

Jν
o (x) = Ex

[∫ ∞

0
e−αsX2

s ds +
∞∑

i

e−αTi(c + λξi)

]
(4.3)

where X0
t = Bt is a standard Brownian motion and c > 0 and λ ≥ 0 are constants. The Brownian

motion represents the exchange rate of some currency and each impulse represents an interventions taken
by the central bank in order to keep the exchange rate in a given target zone. Here we are only allowed to
give the system impulses ζ with values in (0, +∞). By reducing a level from b to a (i.e., b > a) through
interventions, one can save continuously incurred cost (which is high if the process is at a high level). The
problem is to minimize the expected total discounted cost vo(x) = infν Jν

o (x). We want to solve its sup
version and change the sign afterwards (i.e. vo(x) = −v(x)):

v(x) = sup
ν
Ex

[∫ ∞

0
e−αs(−X2

s )ds−
∞∑

i

e−αTi(c + λξi)

]
.

Data: The continuous cost rate f(x) = −x2 and the intervention cost is K(x, y) = −c − λ(x − y) in
our terminology. By solving the equation (A−α)v(x) = 1

2v
′′
(x)−αv(x) = 0, we find ψ(x) = ex

√
2α and

ϕ(x) = e−x
√

2α. Hence F (x) = e2x
√

2α and F−1(x) = log x

2
√

2α
. g(x) can be calculated by Fubini’s theorem:

g(x) = Ex

[∫ ∞

0
−e−αs(x + Bs)2ds

]
= −

(
x2

α
+

1
α2

)
.

Note that when b > a, g(a)−g(b) > 0 is the source of cost savings. Hence K̄(x, a) = −c−λ(x−a)+x2−a2

α .

Analysis of the reward function: Let us fix a > 0 and consider h(x) , K̄(x, a) = −c − λ(x −
a) + x2−a2

α and H(y) , (h/ϕ)(F−1(y)), y > 0. By the first equation in (4.2), the sign of
(

h
ϕ

)′
(x) will

lead us to conclude that H(F (x)) is increasing to infinity from a certain point, say x = p on (p,∞), so is
H(F (x)). Also, by direct calculation, H ′(+∞) = 0, from which we can assert that the value function is
finite by Proposition 3.3.

If we set p(x) , −x2 + a2 + λα(x − a) + αc + 1/α, then (A − α)h(x) = p(x) for every x >
0. This quadratic function p(x) possibly has one or two positive roots. Let k be the largest one. Since
limx→∞ p(x) = −∞, by the second inequality in (4.2), H(·) is concave on (F (k), +∞). Hence H(y, a)
is increasing (to infinity) and concave on y ∈ (F (k),∞). Since it is obvious that there exists a such that
W (F (a)) > 0, due to Remark 4.1, the second term of (4.1) is increasing and concave on R+.

Since the cost function in the transformed space is increasing and concave from a certain point on, there
is a linear majorant that touches the cost function once and only once. We can conclude that for any a > 0
and the parameter set, we have a connected continuation region in the form of (0, b∗).

Solution: For a fixed a, let us define Wa(·) such that Va(x) = ϕ(x)Wa(F (x)) and r(x, a) = −c if
x < a and r(x, a) = h(x) = −c− λ(x− a) + x2

α − a2

α if x ≥ a. Then we have for any a > 0,

l−∞ = lim sup
x↓−∞

r(x, a)+

ϕ(x)
= 0. (4.4)
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Recall that the left boundary −∞ is natural for a Brownian motion. Hence Wa(y) that passes the origin
of the transformed space is the straight-line majorant of R(·, a) + Wa(F (a))/ϕ(F−1(·)) where R(·, a) is
defined in (3.37):

R(y, a) =

{
−c
√

y, 0 ≤ y ≤ F (a),

H(y, a) =
√

y
(
−c− λ

2
√

2α
log y + λa + (log y)2

8α2 − a2

α

)
, y > F (a).

We can represent Wa as W (y) = βy. Since R(x, a) is differentiable with respect to x on x ≥ a, we can use
(3.41) with δ = 0 in (3.38) to find b(a) and corresponding β(a). Then varying a, one can find the optimal
(a∗, b∗, β∗). Going back to the original space, on x ∈ (−∞, b∗]

ṽ(x) , supu(x) = ϕ(x)W ∗(F (x)) = ϕ(x)(β∗)F (x) = β∗ex
√

2α.

To get v(x) = supν Jν(x), we add back g(x),

v(x) = ṽ(x) + g(x) = β∗ex
√

2α −
(

x2

α
+

1
α2

)
.

Finally, flip the sign and obtain the optimal cost function

vo(x) =

{
v̂o(x) ,

(
x2

α + 1
α2

)
− β∗ex

√
2α, 0 ≤ x ≤ b∗,

v̂o(a∗) + c + λ(x− a∗). b∗ ≤ x.

which coincides with the solution given by Øksendal (1999). Figure 1 displays the solution with parameters
(c, λ, α) = (150, 50, 0.2).

Example 4.2. This example is a dividend payout problem where the underlying process follows an Ornstein-
Uhlenbeck process. This problem was originally studied by Cadenillas et al. (2007). Suppose that X0 has
the dynamics

dX0
t = δ(m−Xt)dt + σdWt, t ≥ 0,

where δ > 0, σ > 0 and m ∈ R. Only positive impulse is allowed in this problem. We consider the impulse
control problem,

v(x) , sup
ν∈S

Ex




∞∑

Ti<τ0

e−αTi(−K + kξγ
i )




with some positive constant K, k and the risk-aversion parameter γ ∈ (0, 1].
Data: x = 0 is an absorbing boundary. Since ξ ∈ R+, we have

K̄(x, y) = k(x− y)γ −K, x > y > 0.

Since f(x) = 0 for all x ∈ R, we have g(x) = 0. The functions ψ(·) and ϕ(·) are positive, increasing and
decreasing solutions of the differential equation (A−α)v(x) = (1/2)σ2v

′′
(x)+δ(m−x)v

′
(x)−αv(x) = 0.

We denote, by ψ̃(·) and ϕ̃(·), the functions of the fundamental solutions for the auxiliary process Zt ,
(Xt −m)/σ, t ≥ 0, which satisfies dZt = −δZtdt + dWt. For every x ∈ R,

ψ̃(x) = eδx2/2D−α/δ(−x
√

2δ) and ϕ̃(x) = eδx2/2D−α/δ(x
√

2δ),
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Figure 1: (a) The plot of β(a) against a, the former being maximized at a∗ = 5.077 with β∗ = 0.0492. (b) The
functions R(F (·), a∗) shifted by the amount Wa∗(F (a∗))ϕ(a)

ϕ(x) (lower curve) and the majorant Wa∗(F (·)) (upper
curve) corresponding to a∗, giving us b∗ = 12.261. (c) The cost function vo(x). (d) The derivative of vo(x), showing
that the smooth-fit principle holds at b∗.

and ψ(x) = ψ̃((x−m)/σ) and ϕ(x) = ϕ̃((x−m)/σ), whereDν(·) is the parabolic cylinder function; (see
Borodin and Salminen (2002, Appendices 1.24 and 2.9) and Carmona and Dayanik (2003, Section 6.3)). By
using the relation

Dν(z) = 2−ν/2e−z2/4Hν(z/
√

2), z ∈ R (4.5)

in terms of the Hermite function Hν of degree ν and its integral representation

Hν(z) =
1

Γ(−ν)

∫ ∞

0
e−t2−2tzt−ν−1dt, Re(ν) < 0, (4.6)

(see for example, Lebedev(1972, pp. 284, 290)).

Analysis of the reward function: Let us consider the function

h(x) , k(x− a)γ −K, x > 0, γ ∈ (0, 1].

Since the function h(·) is positive when x is large enough and it is increasing to infinity on the whole real
line, so is the function H(y) = (h/ϕ) ◦ F−1(y), y ∈ (0,∞).

Since it is obvious that there exists a such that W (F (a)) > 0, due to Remark 4.1, the second term of
(4.1) is increasing and concave on (F (0),∞). Let us concentrate on the first term and define the function

p(x) , 1
2
σ2kγ(γ − 1)xγ−2 + mδkγxγ−1 − k(δγ + α)xγ + αK

which satisfies (A − α)h(x) = p(x). By using (4.2), H
′′
(y) and p(F−1(y)) have the same sign at every

y where h is twice-differentiable. Hence we study the (positive) roots of p(x) = 0. We have to divide two
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cases: (1) γ = 1 and (2) γ < 1. In either case, it can be shown that H
′
(+∞) < ∞ by using (4.5) and (4.6)

and the identity H′ν(z) = 2νHν−1(z), z ∈ R. Therefore, the finiteness of the value function is proved.

(1) γ = 1: h(·) reduces to a linear function and the p(x) = 0 always has a one positive root, say p > 0.
H(·) function is convex on [0, F (p)) and concave on (F (p), +∞). Hence we have a connected
continuation region (0, b∗).

(2) γ < 1: We observe that limx↓0 p(x) = −∞, limx↑+∞ p(x) = −∞, limx↓0 p′(x) = +∞, and
limx↑+∞ p(x) = 0−. A direct analysis of p

′
(x) shows that there is only one stationary point in

(0,∞) and the number of the roots of p(x) = 0 is either 0, 1 or 2. Hence in the first two cases, H(·) is
concave on [0,∞) and the continuation region is connected. In the last case where there are two roots,
say 0 < p1 < p2. The H(·) function is then concave on [0, F (p1)) ∪ (F (p2), +∞) and is convex
on (F (p1), F (p2)). Since H(·) increases and concave on y ∈ (F (p2),∞), we can conclude that the
continuation region is connected in this case as well.

Solution: Let us move on to finding an optimal continuation region. Unlike the previous example, it
is not easy (at least analytically) to find F−1(y) explicitly. But it is not necessary. We can solve (3.44) for
b(a) with D = 0:

(
K̄(b, a)
ϕ(b)

)′
=

K̄(b, a)
ϕ(b)(F (b)− F (0))− ϕ(a)(F (a)− F (0))

(
F ′(b) +

ϕ′(b)ϕ(a)
ϕ(b)2

(F (a)− F (0))
)

.

As in the previous examples, Wa(·) is a straight line passing (F (0), 0) in the form of Wa(y) = β(y−F (0)).
The value function v(x) in x ∈ (0, b∗) is

v̂(x) = ϕ(x)W (F (x)) = β(F (x)− F (0))ϕ(x)

= β∗(ψ(x)− F (0)ϕ(x)) = β∗e
δ
2

(x−m)2

σ2

{
D−α/δ

(
−

(
x−m

σ

)√
2δ

)
− F (0)D−α/δ

((
x−m

σ

)√
2δ

)}
.

Therefore, the solution to the problem is

v(x) =

{
v̂(x), 0 ≤ x ≤ b∗,
v̂(a∗) + k(x− a∗)γ −K, b∗ ≤ x.

This solves the problem. See Figure 2-(b) for the value function in case of parameters δ = 0.1, m = 0.9,
σ = 0.35, α = 0.105 for the diffusions. As for the reward/cost function parameters, k = 0.7, K = 0.1 and
γ = 0.75. The solution is (a∗, b∗, β) = (0.2192, 0.6220, 0.5749).

Example 4.3. We show a simple example where we have multiple continuation regions, the first case of
Remark 3.2. Let the uncontrolled process is a standard Brownian motion Bt and let α = 0, f = 0 and

K(x, y) = −c(sinx− sin y)− δ

with c ∈ R+ and δ ∈ R+ being some constant parameters. We want to solve

v(x) = sup
ν∈S

Ex


 ∑

Ti<τ0

(ξi − δ)


 .

In this case F (x) = x and let us define

R(x, a) = r(x, a) =

{
0, x = 0,

−c(sinx− sin a)− δ, x > 0.
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Figure 2: (a) The value function for Cadenillas et al.(2007) problem and (b) its derivative.

By solving (3.41) with some parameter (c, δ) = (10, 0.35), we find that a∗k = 2.75 + 4kπ and b∗k =
3.52 + 4kπ with k = 0, 1, 2.... For all these pairs, β∗ has a common value of 9.30. Hence all these pairs are
optimal. This implies that if the initial state x ∈ (b∗k, b

∗
k+1), then we let the process move until it reaches b∗k

or b∗k+1. If it reaches b∗k first, then an intervention is made to a∗k. Now we are in the interval (b∗k−1, b
∗
k). We

continue until the process is absorbed at x = 0.

5 Conclusions

Before we conclude this article, we shall mention an immediate extension to two boundary impulse control
problems:

Jν(x) = Ex




∫ ∞

0
e−αsf(Xs)ds +

∑

i=1

e−αTiC1(XTi−, XTi) +
∑

j=1

e−αSjC2(XSj−, XSj )


 (5.1)

and
v(x) = sup

ν
Jν(x) = Jν∗(x) (5.2)

for all x ∈ R, where
ν = (T1, T2, ....; ζ1, ζ2, ....; S1, S2, ....; η1, η2, .....)

with ζi > 0 corresponds to interventions at the upper boundary at intervention time Ti and ηj < 0 at the
lower boundary at intervention time Sj .

Examples of this type include the storage model analyzed by Harrison et al. (1983) and foreign exchange
rate model studied by Jeanblanc-Picqué (1993). The former problem, for example, is that a controller
continuously monitors the inventory so that the inventory level will not fall below the zero level. He is
allowed to make interventions by increasing and decreasing the inventory by paying costs associated with
interventions. In this case, the process remains within some band(s). In other words, the optimal intervention
times are characterized as exit times from an interval in the form of (p∗, b∗) for 0 ≤ p∗ < b∗. See Korn
(1999) for a survey.

Under suitable assumptions, we can develop an argument similar to the previous chapters. Among
others, the intervention times can be characterized as exit times from an interval (p∗, b∗). We can also
simplify the performance measure,

Jν(x) = Ex[1{T1<S1}e
−αT1{C1(XT1−, XT1)− g(XT1−) + Jν(XT1)}]

+ Ex[1{T1>S1}e
−αS1{C2(XS1−, XS1)− g(XS1−) + Jν(XS1)}] + g(x)
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where g(x) = Ex
∫∞
0 e−αsf(X0

s )ds as usual. Again, the last term does not depend on controls, we define
u(x) as u(x) = Jν(x)− g(x),

u(x) = Ex[1{τb<τp}e
−ατbu(b)] + Ex[1{τb>τp}e

−ατpu(p)], x ∈ [p, b] (5.3)

where T1 = τb and S1 = τp and it follows that

u(x)
ϕ(x)

=
u(b)(F (x)− F (p))
ϕ(b)(F (b)− F (p))

+
u(p)(F (b)− F (x))
ϕ(p)(F (b)− F (p))

, x ∈ [p, b]. (5.4)

Hence if we define W , u
ϕ ◦ F−1, we have linear characterization again in the transformed space;

W (F (x)) = W (F (b))
F (x)− F (p)
F (b)− F (p)

+ W (F (p))
F (b)− F (x)
F (b)− F (p)

, x ∈ [p, b], (5.5)

and the solution to the problem is described as

u(x) =





C̄2(x, q) + u0(q), x ≤ p,

u0(x) , Ex[1{τb<τp}e
−ατbu(b)] + Ex[1{τb>τp}e

−ατpu(p)], p ≤ x ≤ b,

C̄1(x, a) + u0(a), b ≤ x,

where C̄i(x, y) = Ci(x, y)− g(x) + g(y) for i = 1 and 2.

We have studied impulse control problems. The intervention times are characterized as exit times of
the process from a finite union of disjoint intervals on the real line. A sufficient condition is given for
the connectedness of the continuation region. The value function is shown to be linear in the continuation
region of the transformed space and a direct calculation method is described. This method can handle
impulse control problems with non-smooth reward and cost functions. The finiteness of the value function
is shown to be equivalent to the existence of a concave majorant of the suitable transformed reward function.
The latter is easier to check by using elementary geometric arguments.

The new characterization of the value function and optimal strategies can be extended to other optimiza-
tion problems, such as optimal switching and combined problems of optimal stopping and impulse control.
If an optimal strategy exists in the class of exit times, then the problem can be reduced to a sequence of
optimal stopping problems and an effective characterization of the value function is possible.

6 Appendix

6.1 Proof of Lemma 3.2

To make the proof more intuitive, we will work with (3.14) rather than with (3.15) where the integration
part is converted to g functions. For this purpose, it is convenient to define the following two operators
Mo : H → H and Lo : H → H:

Mou(x) = sup
y∈R

[K(x, y) + u(y)] (6.1)

and

Lou(x) = sup
τ∈S

Ex

[∫ τ

0
e−αsf(Xs)ds + e−ατMou(Xτ−)

]
. (6.2)
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Hence we can proceed with the arguments developed in Davis (1992). In terms of the two operators just
defined, (3.14) becomes

wn+1(x) = sup
τ∈S

Ex

[∫ τ

0
e−αsf(Xs)ds + e−ατMown(Xτ−)

]
(6.3)

= Lown(x). (6.4)

(1) wn = vn for all n: Note that F -concavity of the function K̄/ϕ guarantees the value u(y) in (3.12)
is a finite number as is shown in Proposition 3.2. Hence f and Mwn satisfies the condition (polynomial
growth) of Theorem 3.2 in Øksendal and Sulem (2002), which shows wn = vn.

(2) v(x) = limn→∞wn(x): Since wn is monotone increasing, the limit w(x) = limn→wn(x) exists.
Since Sn ⊂ S, wn(x) ≤ v(x). Hence w(x) ≤ v(x). To show the reverse inequality, we define S∗ be a set
of interventions such that

S∗ = {ν ∈ S : Jν(x) < ∞ for all x ∈ R}.

Let us assume that v(x) < +∞ and consider strategy ν∗ ∈ S∗ such that

Jν∗(x) ≥ v(x)− ε (6.5)

for some ε > 0 and another strategy νn that coincides with ν∗ up to and including time Tn and then takes
no further interventions.

Jν∗(x)− Jνn(x) = Ex




∫ ∞

Tn

e−αs(f(Xs)− f(X0
s ))ds +

∑

i≥n+1

e−αTiK(XTi−, XTi)


 ,

which implies

|Jν∗(x)− Jνn(x)| ≤ Ex




∫ ∞

Tn

e−αs(|f(Xs)|+ |f(X0
s )|)ds +

∑

i≥n+1

e−αTi |K(XTi−, XTi)|

 .

As n → +∞, Tn → +∞ and the first term of the right hand side can be arbitrary small due to (3.6) and so
is the second term by the finiteness of v(x) with (3.7). Hence it is shown |Jν∗(x)− Jνn(x)| < ε for n large
enough, which implies with (6.5) that

lim inf
n→+∞ Jνn(x) ≥ Jν∗(x)− ε ≥ v(x)− 2ε

so that v(x) ≤ limn→+∞ vn(x) since ε is arbitrary. Now we have established v(x) = limn→wn(x) when
v(x) < +∞. Next, consider the case of v(x) = +∞. Then by the recursive method described in Section
3.1, we see that v1(x) = w1(x) = ∞. By the first statement of this lemma, we can conclude vn(x) =
wn(x) = ∞ for all n ∈ N, obtaining v(x) = limn→∞wn(x). This completes the proof of the second
statement.

(3) w = Low : Since wn ↑ w, we have the following chain of equalities:

Mow(x) = sup
y∈R

[K(x, y) + w(y)] = sup
y∈R

sup
n∈N

[K(x, y) + wn(y)]

= sup
n∈N

sup
y∈R

[K(x, y) + wn(y)] = sup
n∈N

Mown(x).
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In view of this, if we take the limit on the both sides of (6.3) as n → ∞, by the monotone convergence
theorem,

w(x) = sup
τ∈S

Ex

[∫ τ

0
e−αsf(Xs)ds + e−ατMow(Xτ−)

]
.

This shows that w = Low. Suppose w′(x) satisfies w′ = Low
′ and majorizes g(x) = v0(x). Then

w′ = Low
′ ≥ Lov0 = w1. If we assume that w′ ≥ vn, then

w′ = Low
′ ≥ Lovn = vn+1 = wn+1.

This shows that, by the induction argument, we have w′ ≥ wn for all n, leading to w′ ≥ limn→∞wn = w.
Thus it shows that w is the smallest solution majorizing g of the functional equation, w − g = L(w − g).
This completes the third statement of the lemma.

6.2 Derivation of (3.46)

The first order condition of the optimality with respect to a is

dβ(a)/da = dβ/db× db/da = 0. (6.6)

For a fixed a, from (3.41) by viewing β as a function of state x = F−1(y), that is, β = β(F−1(y)), it is
clear that dβ(F−1(y))/dy = 1

F ′(x)dβ/dx. Since F ′(x) > 0 for all x ∈ I, we have dβ(F−1(y))/dy = 0 if
and only if dβ/dx = 0. But dβ(F−1(y))/dy = 0 at x = F−1(y) = b implies the following: At x = b(a),
where the shifted function Φ(y, a) becomes tangent to the linear function Wa(F (x)) = β(a)F (x) + δ, the
second derivative of the shifted function vanishes. But it is clearly impossible if Φ(y, a) is strictly concave
at F (b). Hence in view of (6.6), we can claim that dβ(a)/da = 0 only if db/da = 0, provided that Φ(y, a)
is strictly concave at y = F (b). Now we differentiate (3.42) with respect to a with noting db/da = 0, we
obtain (3.46).
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