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Abstract

We consider an optimal reinsurance strategy in which the insurance company (1) monitors the dy-
namics of its surplus process, (2) optimally chooses a time to begin negotiating with a reinsurer to
buy quota-share, or proportional, reinsurance, which introduces an implementation delay (denoted
by ∆ ≥ 0), (3) chooses the optimal proportion at the beginning of the negotiation period, and (4)
pays a fixed transaction cost when the contract is signed (∆ units of time after negotiation begins).
This setup leads to a combined problem of optimal stopping and stochastic control. We obtain a solu-
tion for the value function and the corresponding optimal strategy, while demonstrating the solution
procedure in detail. It turns out that the optimal continuation region is a union of two intervals, a
rather rare occurrence in optimal stopping. Numerical examples are given to illustrate our results and
we discuss relevant economic insights from this model.
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1 Introduction

The optimal quota-share, or proportional, reinsurance is one of the well-studied subjects in the literature.
We mention Browne [3], Promislow and Young [14], Schmidli [16], and Taksar and Markussen [18].
These researchers study the minimization of the probability of ruin when claims follow a Brownian
motion with drift, while Højgaard and Taksar [10] and Choulli et al. [5] analyze the maximization of
dividend payout. Here we study an insurer who wants to maximize its total discounted value of surplus
until the surplus process hits the ruin state. We consider an insurer facing a claim process modeled by a
Brownian motion with drift and contemplating reinsurance subject to a fixed cost for buying reinsurance
(in addition to a proportional load on the premium) and a time delay in completing the reinsurance
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transaction. It is expected that, even without any delay, the existence of a fixed transaction cost will force
the insurer to postpone buying reinsurance until its surplus process hits a certain level. Therefore, the
insurer’s controls involve (1) the level of quota-share reinsurance and (2) the timing of when it will buy
that reinsurance.

The insurer, after deciding on the level of reinsurance, spends a fixed length of time before the contract
is signed. This delay time is necessitated by negotiating and other administrative work associated with
implementing the reinsurance policy. Considering such a delay period makes the problem’s model more
realistic. Recently, delay has been explicitly addressed in the stochastic control literature, and we mention
a few papers of interest: Peura and Keppo [13] consider the problem of a bank’s recapitalization with a
regulatory delay period. Bar-Ilan and Strange [1] study two-stage investment decision problems subject
two sources of delay: one due to market analysis and the other due to construction of a production
facility. Subramanian and Jarrow [17] consider a trader’s problem where she is not a price taker and
wants to liquidate her position and encounters execution delays in an illiquid market. Bayraktar and
Egami [2] propose a direct solution method for delayed impulse control problems of one-dimensional
diffusions and solve an optimal labor force problem with firing delay. We mention another paper that
handles delay, while the set up is different from ours: Elsanosi et al. [8] study a harvesting problem
where the dynamics of the controlled process depend on its own historical value as well as the present
state.

It is expected that, even without fixed costs, the existence of delay makes the insurer’s problem com-
plicated because there is a positive probability that the process hits the ruin state during the delay period.
We will explicitly write a reward function under fixed cost and implementation delay and solve the com-
bined problem of optimal stopping and stochastic control. For this purpose, we rely on the work on
Dynkin [7] (see, e.g., Theorem 16.4) and Dayanik and Karatzas [6] (Propositions 4.3 and 4.4). In this
way, unlike arguments that rely on quasi-variational inequalities, we can avoid proving a verification
lemma and the related guesswork in determining the optimal strategy.

We solve the problem in the following way: After defining the problem in Section 2.1, we calculate the
necessary functionals involving delay time in Section A.1. We solve the problem completely in Section
2.2. In Section 3, we perform some numerical analysis and observe how the optimal solution changes as
the length of the delay period changes. We discuss some economic implications concerning the fixed cost
and delay. Furthermore, we extend to the case for which the insurer can purchase reinsurance infinitely
many times and conclude with a summary of the results.
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2 Optimal reinsurance strategy

2.1 Problem description

Let (Ω,F ,P) be a complete probability space with a standard Brownian motion W = {Wt; t ≥ 0}. We
model the claim process C by a Brownian motion with drift:

dCt = adt− σdWt, (2.1)

where a and σ are positive constants. As is often assumed in the literature, this diffusion process ap-
proximates a compound Poisson model; see, for example, [9], [14], [16], and [18]. We assume that the
premium is paid continuously at the constant rate c = (1 + θ)a with θ > 0. Therefore, before introduc-
ing reinsurance, the surplus process X0 has state space I = R (for Brownian motion with drift) with
dynamics

dX0
t = cdt− dCt = θadt + σdWt, (2.2)

and with the initial value X0
0 = x ∈ R+. We use “0” as a superscript to indicate that X0 is the

uncontrolled surplus process. The insurer reinsures a proportion of its claims to a reinsurer. Reinsurance
is available for a proportional loading of η > θ. In the literature, the reinsurance problem is often treated
as a stochastic control problem for which the insurer determines the reinsurance level at time 0 with
no delay in implementing the reinsurance and with no fixed transaction cost levied. (See Taksar and
Markussen [18] and the references therein.) However, it is more realistic if we assume that the insurer
pays a fixed transaction cost (whether the cost is due to dollars actually spent or employee hours used),
and after the insurer decides on the reinsurance level, a certain length of time is required before the actual
contract takes effect due to the time it takes to initialize the policy.

An admissible reinsurance strategy is a pair,

π = (τ, ξ),

in which 0 ≤ τ is an F-stopping time and ξ is a Fτ -measurable random variable representing the
proportion reinsured at time τ +∆. The proportion ξ is chosen at time τ , given the information available
at that time, and at that time, is a specific number between 0 and 1. However, the reinsurance will not be
implemented until time τ + ∆ due to the existence of a delay period. The state 0 is the absorbing state
(ruin) without loss of generality and τ0 is defined as the ruin time:

τ0 , inf{t ≥ 0 : Xt ≤ 0}.

Assumption 2.1. We make the following assumptions in this paper:

(a) At the stopping time τ , the insurer chooses a proportion ξ ∈ [0, 1] of its claims to reinsure and
begins negotiating with the reinsurer. This negotiating takes a fixed amount of time ∆ ≥ 0.
After the time ∆ elapses, if the surplus process has not hit the ruin level, the insurer pays a fixed
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transaction cost K > 0 and the proportional reinsurance takes effect at time τ + ∆. Hence, the
surplus process X follows





dXt = µ0dt + σ0dWt, 0 ≤ t < τ + ∆,

Xτ+∆ = X(τ+∆)− −K,

dXt = µ1dt + σ1dWt, τ + ∆ ≤ t,

(2.3)

where µ0 = θa, σ0 = σ,

µ1 = (θ − ηξ)a, and σ1 = σ(1− ξ),

with ξ ∈ [0, 1].

(b) When the insurer becomes insolvent, it has to pay a fixed cost P ≥ 0.

(c) At time τ + ∆, if X(τ+∆)− ≤ K, the surplus process hits the ruin state at time τ + ∆, and the
insurer becomes insolvent.

We consider the following performance measure associated with a reinsurance strategy π ∈ Π (= the
collection of admissible strategies),

Jπ(x) , Ex

[∫ τ0

0
e−αsf(Xs)ds− e−ατ0P

]
, (2.4)

in which X is the controlled surplus process and Ex[·] is the expectation under the probability law when
X0 = x. Also, f : R→ R denotes a continuous, nondecreasing (utility) function that satisfies

Ex

[∫ ∞

0
e−αs|f(X0

s )|ds

]
< ∞, (2.5)

and P ∈ R+ is a constant that represents insolvency costs.

The objective is to find the optimal strategy π∗ ∈ Π, if it exists, and the corresponding value function:

v(x) , sup
π∈Π

Jπ(x) = Jπ∗(x). (2.6)

Next, we rewrite the problem (2.4) and (2.6) as a combination of an optimal stopping problem and a
stochastic control problem. The possibility that the surplus process may hit the ruin state during the
delay period complicates the expression. Note that in the following derivation, we only require that the
continuous, nondecreasing function f satisfy (2.5).

First, define the function g : R→ R by

g(x) , Ex

[∫ ∞

0
e−αsf(X0

s )ds

]
, (2.7)

which corresponds to the expected total utility if the insurer does not implement any reinsurance. The
following identity, which can be derived by using the strong Markov property of X0 (see Karatzas and
Shreve [11] for example), will prove useful in the computations below:

Ex

[∫ τ

0
e−αsf(X0

s )ds

]
= g(x)− Ex

[
e−ατg(X0

τ )
]
, (2.8)
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for any stopping time τ , including τ0, due to integrability condition in inequality (2.5).

In Appendix A.1, we show that the original problem of finding the value function v(x) in (2.6) reduces
to solving,

v(x)− g(x) = sup
ξ∈[0,1]

(
sup
τ∈S

Ex
[
1{τ<τ0}e

−ατh(Xτ ; ξ)
]
+ Ex

[
1{τ>τ0}e

−ατ0{−P − g(Xτ0)}
] )

, (2.9)

where S is the set ofF-stopping times. Recall that the proportion reinsured ξ ∈ [0, 1] is chosen at time τ ,
as stated in Assumption 2.1(a). The optimization in (2.9) is a combined problem of an optimal stopping
problem (inner optimization, with the ruin state at x = 0 and the payoff at the ruin −P − g(0)) and a
stochastic control problem (outer optimization). Here the function h is defined by

h(z; ξ) , Ez
[
1{∆<τ0}e

−α∆
{
Jπ

ξ (X∆)− g(X∆−)
}

+ 1{∆>τ0}e
−ατ0{−P − g(Xτ0)}

]
, (2.10)

which we can evaluate by using expressions (A.6), (A.7), and (A.8). The subscript ξ in Jξ signifies
that the surplus process now has new dynamics after the proportion of ξ is reinsured. When we want to
emphasize the dependence of h on the delay period ∆, then we will write h∆ or h(·; ξ, ∆).

Remark 2.1. In the next section, we rely on work of Dynkin [7] and Dayanik and Karatzas [6] to
determine the optimal strategy π∗ in the case for which f is linear. Unlike arguments that rely on quasi-
variational inequalities, we avoid proving a verification lemma and the related guesswork in determining
the optimal strategy. The work of Dayanik and Karatzas [6](see especially, Proposition 4.3 and 4.4)
in finding an optimal stopping time is applicable to one-dimensional diffusions more general that the
Brownian motion we consider in (2.3). Complexity is added in our model due to the delay period ∆
and due to the possibility that the surplus X hits zero during the delay period. Therefore, to obtain
economically significant results, we require an explicit diffusion for the surplus process. Because in the
insurance literature, Brownian motion with drift is quite common, we analyze our model under Brownian
motion with drift, as in (2.3).

2.2 Solution when f is linear

In the previous subsection, we showed that if we solve (2.9) and (2.10), then we have effectively solved
the original problem given by (2.4) and (2.6). Our setting for this result was quite general. To show a
concrete result, in the work that follows, we suppose that f is linear: Namely,

f(x) = x.

We summarize our plan as follows: In Appendix A.2, we perform some preliminary computations. In
Section 2.2.1, we solve the optimal-stopping problem conditional on the proportion reinsured and then
optimize with respect to that proportion. We conclude Section 2.2 with a numerical example in Section
2.2.2. In each subsection, we consider both cases of ∆ = 0 and ∆ > 0. In fact, solving the special case
of ∆ = 0 turns out to be helpful in analyzing the case of ∆ > 0.
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2.2.1 Solution of the optimal stopping problem

To understand some characteristics of the optimization problem (2.9), it is useful to consider the special
case for which ∆ = 0. If ∆ = 0, then from work in Appendix A.2, the expression in (2.9) becomes

v(x)− g(x) = sup
ξ∈[0,1]

(
sup
τ∈S

Ex
[
1{τ<τ0}e

−ατ
(
g1(Xτ− −K; ξ)− (P + g1(0; ξ))eλ(ξ)(Xτ−−K) − g(Xτ−)

)]

+ Ex
[
1{τ>τ0}e

−ατ0(−P − g(0))
]
)

= sup
ξ∈[0,1]

(
sup
τ∈S

Ex

[
1{τ<τ0}e

−ατ

{
1
α

(
−K − ηξa

α

)
−

(
P +

µ1

α2

)
eλ(ξ)(Xτ−−K)

}]

+ Ex

[
1{τ>τ0}e

−ατ0

(
−P − θa

α2

)])
, (2.11)

in which g1 is given in (A.12). We denote the value function of the inner optimization for a given ξ by
U(x; ξ). We have to show the existence of a finite solution to the optimal stopping problem. For this
purpose, we employ the characterization of the value function by Dynkin [7] and Dayanik and Karatzas
[6] (which we explain below).

To this end, note that

h(x; ξ) = h(x; ξ, ∆ = 0) =
1
α

(
−K − ηξa

α

)
−

(
P +

µ1

α2

)
eλ(ξ)(x−K)

, A(ξ)−B(ξ)eλ(ξ)(x−K).

Later in this section, we will write h∆ when ∆ > 0 to distinguish it from h here when ∆ = 0.

Consider the infinitesimal generator A of X : Au(x) , (σ2/2)u′′(x) + θau′(x) acting on a smooth
function u(·). The (so-called fundamental) solutions of the ODE (A− α)u(x) = 0 are given by

ψ(x) , eγx and ϕ(x) , eρx, (2.12)

with

γ =
−θa +

√
(θa)2 + 2σ2α

σ2
> 0 and ρ =

−θa−
√

(θa)2 + 2σ2α

σ2
< 0.

Define the increasing function F by F (x) , ψ(x)/ϕ(x). By the characterization of the value function
in [6] (Propositions 4.3), if we find the smallest concave function W (y; ξ) that passes through the point1(

F (0),−(P+θa/α2)
ϕ(0)

)
=

(
1,− (

P + θa/α2
))

and majorizes H(y; ξ) on [F (0),∞], where y , F (x)

and
H(y; ξ) , h(F−1(y); ξ)/ϕ(F−1(y)), (2.13)

then the value function U(x; ξ) is given by ϕ(x)W (F (x); ξ). Moreover, from Proposition 4.4 in [6], the
optimal stopping rule is given by τ∗ = inf{t ≥ 0 : Xt ∈ Γ}, in which Γ , {x ∈ R+ : U(x; ξ) =
h(x; ξ)}.

1Recall that the ruin state 0 is transformed to F (0).
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The procedure is, therefore, (1) transforming h by (2.13) to H and identifying the smallest concave
majorant of H , (2) finding the points where H and W meet to obtain the optimal boundaries in the
transformed space, and (3) transforming back to recover the value function U in the original space.
Hence, to show the existence of a finite value function U , we just need to show the existence of a finite
concave majorant W by examining H . The major task now reduces to analyzing the function H in the
transformed space. The analysis of the behavior of H is facilitated by the following observations: For
y = F (x), we have

H ′(y; ξ) =
1

F ′(x)

(
h(x; ξ)
ϕ(x)

)′
, and H ′′(y; ξ)[(A− α)h(x; ξ)] ≥ 0, (2.14)

with strict inequality if H ′′(y; ξ) 6= 0. The inequality in (2.14) is useful in identifying the concavity of
H .

We next investigate the behavior of H .

(i) We first study H(y; ξ) in a neighborhood of y = F (0) = 1. Assume that P is such that P +µ1/α2 > 0
(note that µ1 might be negative) to ensure the following inequality holds: As x ↓ 0,

−
(

P +
θa

α2

)
− h(0; ξ) =

1
α

(
K +

ηξa

α

)
+

(
P +

µ1

α2

)
e−λ(ξ)K −

(
P +

θa

α2

)

>
K

α
> 0 (2.15)

since e−λ(ξ)K > 1. This means that the intercept at F (0) = ϕ(0) = 1, namely − (
P + θa/α2

)
, is

greater than H(F (0); ξ); that is, W (y; ξ) > H(y; ξ) in a neighborhood of F (0) = 1. See Remark 2.2(b)
below if W (y; ξ) > H(y; ξ) does not hold in a neighborhood of y = F (0) = 1.

(ii) Next, note that limx→∞ h(x; ξ) = − 1
α

(
K + ηξa

α

)
< 0, and limx→∞ h′(x; ξ) = 0 for all ξ ∈ [0, 1].

It follows from the first expression in (2.14) and direct calculation, that H ′ changes sign at most once
(from + to −) and limy→∞H ′(y; ξ) = −∞ < 0. If H ′ does not change sign, then H ′(y; ξ) < 0 for all
y ≥ 1. Additionally, we compute

(A− α)h(x; ξ) = −
(
P +

µ1

α2

)
eλ(ξ)(x−K)

(
σ2

2
λ2(ξ) + θaλ(ξ)− α

)
+

(
K +

ηξa

α

)
.

By combining this expression with the second one in (2.14), we conclude that H ′′ changes sign at most
once and limy→∞H ′′(y; ξ) > 0.

Hence, for a concave majorant of H to exist, H ′ has to change sign. Assuming H ′ changes sign (if it
does, it does just once from + to −), the next task is to find the smallest concave function that majorizes
H . From the facts we gathered, it follows that the smallest concave majorant W is described as follows:

(1) For y ∈ [F (0), F (b)), W is the linear function (call it W1(y; ξ)) that intersects
(
F (0),−P+θa/α2

ϕ(0)

)
=(

1,−(P + θa/α2)
)

and is tangent to H(y; ξ) at y = F (b).

(2) For y ∈ [F (b), F (d)], W (y; ξ) = H(y; ξ).
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(3) For y ∈ (F (d),∞), W is the horizontal line, with value, say, δ(ξ) equal to the global maximum
of H(y; ξ).

See the graph (b) of Figure 1 for an example. When this majorant exists, the optimal stopping rule (see
[6]) (Proposition 4.4) says that these two points b and d are the threshold values: In other words, the
insurer should not buy reinsurance when the surplus belongs to either (0, b) or (d,∞), and the insurer
should buy reinsurance contracts when the surplus belongs to [b, d]. When the surplus is small, the
insurance company waits until the surplus becomes large enough due to the existence of the fixed cost.
(See Remark 2.2(a) below in the case for which K = 0.) On the contrary, if the surplus is large, the
insurer can bear 100% of the risk since its surplus is far enough from the ruin state. Note that b (and
hence d) is necessarily positive when (2.15) holds.

(iii) We now derive a necessary and sufficient condition for the existence of a linear majorant W1(y; ξ)
with positive slope, say β(ξ) > 0. By direct calculation, the sole critical point of H(F (x); ξ) is given by

x̄ , 1
λ(ξ)

ln
(

A(ξ)ρ
B(ξ)(ρ− λ(ξ))

)
+ K, (2.16)

which exists and is greater than K when 0 < A(ξ)ρ
B(ξ)(ρ−λ(ξ)) < 1. Then, a linear majorant with positive

slope exists if

H(F (x̄); ξ) =
h(x̄; ξ)
ϕ(x̄)

> −
(

P +
θa

α2

)
= W (F (0); ξ),

which is equivalent to
1
α

(
K +

ηξa

α

)
λ(ξ)

ρ− λ(ξ)
> −

(
P +

θa

α2

)
eρx̄. (2.17)

Suppose that (2.17) holds. We see that H is concave in a neighborhood of {y > 0 : H ′(y; ξ) = 0}.
Recall that we always have limy→∞H ′′(y; ξ) > 0. Together with the fact that H ′ changes sign at most
once, the specifications of W1(y; ξ) and δ(ξ) in (ii) above are also justified. Indeed, H(y; ξ) is increasing
and concave in y first and attains the global maximum at y = F (x̄) and then becomes convex eventually.

When (2.17) holds, the smallest concave majorant of H on [F (0), F (b)) is necessarily a linear function
with a positive slope that is tangent to H at y = F (b) and equal to H itself on [F (b), F (x̄)] until
y = F (x̄), after which it must be a horizontal line. Note that

d = x̄ and δ(ξ) = H(F (x̄); ξ).

Remark 2.2. We make some comments in relation to the above analysis:

(a) Note that if K = 0, then we have
(−P − θa

α2

)− h(0; ξ) = 0 from (2.15). That is, the linear majo-

rant is tangent to H(y; ξ) at the point
(

F (0),−(P+θa/α2)
ϕ(0)

)
. Hence in the case of no transaction

costs or no delay, the continuation region is of the form (d,∞).

(b) If the inequality (2.15) does not hold but (2.17) still holds, it follows that the smallest concave
majorant W of H is described as follows: On [F (0), F (d)], it is H(y; ξ) itself and on (F (d),∞),
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it is the horizontal line W2(y; ξ) = δ(ξ). Hence, in this case, if the initial surplus is less than
d, it is optimal to buy reinsurance immediately. But, in general, it is considered that the penalty
at ruin should be sufficiently high for risk management purposes. Therefore, for the subsequent
argument, we assume that (2.15) holds.

(c) Moreover, due to the behavior of H as determined in items (i) and (ii), (2.17) is also a necessary
condition for the existence of an optimal stopping time. Indeed, if (2.17) does not hold, the smallest
concave majorant is the horizontal line starting at

(
F (0),−P+θa/α2

ϕ(0)

)
. Then, the set {y : W (y) =

H(y; ξ)} is empty. It follows that there is no optimal stopping time; see Proposition 4.4 in [6].

We summarize our work up to this point in the following lemma for the inner optimization of (2.11):

Lemma 2.1. The following optimal stopping problem, given ξ ∈ [0, 1],

U(x; ξ) , sup
τ∈S

Ex

[
1{τ<τ0}e

−ατ

{
1
α

(
−K − ηξa

α

)
−

(
P +

(θ − ηξ)a
α2

)
eλ(ξ)(Xτ−−K)

}]

+ Ex

[
1{τ>τ0}e

−ατ0

(
−P − θa

α2

)]
(2.18)

has a solution with τ∗(ξ) , inf{t ≥ 0 : Xt /∈ (0, b∗(ξ)) ∪ (d∗(ξ),∞)}, for some constants b∗ and d∗

dependent on ξ, if and only if the parameters (α, θ, η, a, K, P ) and ξ ∈ [0, 1] satisfy (2.17) with x̄ given
by (2.16). In particular, if K = 0, we have b∗(ξ) = 0 for any ξ ∈ [0, 1] that satisfies condition (2.17).

From this lemma, we can specify the value function.

Corollary 2.1. Let ψ(x) and ϕ(x) be defined in (2.12), and assume that (2.17) holds.

(i) The value function U(x; ξ) on (0, b∗(ξ)) is increasing in x and is of the form

U(x; ξ) = β(ξ)(ψ(x)− ϕ(x))− (
P + θa/α2

)
ϕ(x), (2.19)

with β(ξ) > 0.

(ii) The value function U(x; ξ) on (d∗(ξ),∞) is of the form U(x; ξ) = δ(ξ)ϕ(x), for some δ(ξ) ∈ R.

Proof. (i) By following the argument for Lemma 2.1 and the preceding discussion, the smallest concave
majorant is a linear function with slope β(ξ) > 0 and is of the form:

W1(F (x); ξ) = β(ξ)(F (x)− F (0))−
(
P + θa/α2

)

ϕ(0)
.

By transforming back to the original space via U(x; ξ) = ϕ(x)W (F (x); ξ) and by noting that F (0) =
ϕ(0) = 1, we get the desired result. The function is increasing in x due to the positivity of β.

(ii) Similarly, the horizontal line can be described by W2(y; ξ) = δ(ξ) = H(F (x̄); ξ). In the original
space, by multiplying by ϕ(x), we get the result.
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In the case of ∆ > 0, (2.9) becomes

v∆(x)− g(x) = sup
ξ∈[0,1]

(
sup
τ∈S

Ex
[
1{τ<τ0}e

−ατh∆(Xτ ; ξ)
]
+ Ex

[
1{τ>τ0}e

−ατ0

(
−P − θa

α2

)])
,

(2.20)

for which the analysis is similar to that of (2.18). In this case, we denote the value function by v∆ to
distinguish from the case of ∆ = 0. Here h∆ is given by

h∆(x; ξ) , h(x; ξ, ∆ > 0) = I1(x; ξ)− I2(x) + I3(x) + I4(x) (2.21)

where the specific forms of I1(·), I2(·), I3(·) and I4(·) are given in (A.14), (A.15), (A.16), and (A.17).
Due to the delay, note that given ξ ∈ [0, 1],

h∆(x; ξ) < h(x; ξ) for x ∈ R+. (2.22)

If we define D(x; ξ) , h(x; ξ)−h∆(x; ξ), then D(x; ξ) ↓ 0 monotonically as x ↑ ∞. This result can be
checked directly, but a simpler argument is that the probability that the surplus process hits zero during
the delay period monotonically decreases to zero as x increases. In other words, h∆(x; ξ) behaves like
h(x; ξ) as x → ∞. In fact, we can directly verify limx→∞ h∆(x; ξ) = −α

(
K + ηξa

α + ηξa∆
)

< 0,
limx→∞ h′∆(x; ξ) = 0 and limy→∞H ′′

∆(y; ξ) > 0 for all ξ ∈ [0, 1] in which H∆ is defined as in (2.13)
with h replaced by h∆. It follows from the first equality in (2.14) that H ′

∆(y; ξ) changes sign at most
once (from + to −), limy→∞H ′

∆(y; ξ) = −∞ < 0, and H∆ becomes convex eventually.

Now, we can proceed with the same argument as in the case of ∆ = 0. The value function along with a
continuation region of the form (0, b∆)∪ (d∆,∞) exists if and only if h∆(x̄; ξ) > −(P + θa

α2 )eρx̄ holds,
in which x̄ is the root of h′∆(x; ξ)ϕ(x) − h∆(x; ξ)ϕ′(x) = 0. If this condition is met, then H∆(y; ξ) is
concave in a neighborhood of {y > 0 : H ′

∆(y; ξ) = 0}. We have thereby solved the first-stage of the
optimization in (2.9) for any ξ ∈ [0, 1].

Due to the described characterization of the value function in the transformed space, the second-
stage optimization in (2.9) can be solved by finding ξ that maximizes the parameterized (by ξ) value
function, namely by maximizing the slope, β(ξ) of the linear majorant and the horizontal line δ(ξ).
This stage can be easily implemented numerically. Note that since the dependence of U(x; ξ) on ξ ∈
[0, 1] is rather complicated, there is no guarantee that ξ that maximizes β(ξ) necessarily simultaneously
maximizes δ(ξ). To choose an optimal ξ, the insurance company could compute the two value functions
corresponding to the two ξ’s. Then, depending on the initial surplus level X0 = x, the insurer could
choose the ξ that provides the higher value for that given x. In this paper, hereafter, for the sake of
simplicity of the argument, we suppose that the insurance company wishes to maximize the slope β(ξ)
since it is more concerned with reinsurance policies to avoid ruin.

In summary, for the case of ∆ > 0, we have the following proposition. Note that we denote b∆(ξ) as
the optimal threshold level for a given ξ to distinguish it from b∆, the overall optimal level among all the
possible ξ’s, and similarly for d∆(ξ) and d∆.
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Proposition 2.1. 1. The following optimal stopping problem for a given ξ ∈ [0, 1],

U∆(x; ξ) , sup
τ∈S

Ex

[
1{τ<τ0}e

−ατh∆(Xτ ; ξ) + 1{τ>τ0}e
−ατ0

(
−P − θa

α2

)]

has a solution τ∆(ξ) , inf{t ≥ 0 : Xt /∈ (0, b∆(ξ)) ∪ (d∆(ξ),∞)}, for some constants b∆(ξ)
and d∆(ξ), if and only if the parameters (α, θ, η, a,K, P ) and ξ ∈ [0, 1] satisfy h∆(x̄; ξ) >

−(P + θa
α2 )eρx̄, with x̄ being the unique solution of h′∆(x; ξ)ϕ(x) = h∆(x; ξ)ϕ′(x).

2. The value function v∆(x) , supπ∈Π Ex[
∫ τ0
0 e−αsXsds− e−ατ0P ] is of the form:

v∆(x) =





−P, x = 0,

β(ξ∆)(ψ(x)− ϕ(x))− (
P + θa

α2

)
ϕ(x) +

(
x
α + θa

α2

)
, 0 < x < b∆,

h∆(x; ξ∆) +
(

x
α + θa

α2

)
, b∆ ≤ x ≤ d∆,

δ(ξ∆)ϕ(x) +
(

x
α + θa

α2

)
, d∆ < x,

(2.23)

where ξ∆ maximizes β(ξ) over all the possible values of ξ ∈ [0, 1] that satisfy h∆(x̄; ξ) > −(P +
θa
α2 )eρx̄. The optimal time to buy reinsurance is given by τ∆ = inf{t ≥ 0 : Xt /∈ (0, b∆) ∪
(d∆,∞)}.

Remark 2.3. Owing to inequality (2.22) and the fact h(0; ξ) = − (
P + θa

α2

)
when K = 0, we have

lim
x→0

h∆(x; ξ) < −
(

P +
θa

α2

)
,

with K = 0 (no transaction cost). This implies that in the presence of a delay period, there exists for any
ξ ∈ [0, 1], a continuation region of the form: (0, b∆) ∪ (d∆,∞), for some constants d∆ ≥ b∆ > 0. The
positivity of b∆ follows by the same argument in the paragraph between equations (2.15) and (2.16). We
point out the contrast to the last statement in Lemma 2.1 for the no-delay case.

2.2.2 A numerical example

Figure 1 shows a numerical experiment with parameters (a, σ, θ, η, P, α, K) = (0.2, 0.3, 0.1, 0.25, 20, 0.1, 0.03)
and ∆ = 0. Note that condition (2.17) is satisfied with ξ > 0.25. The first graph shows the slopes β(ξ)
for various ξ and indicates that the slope is maximized by ξ∗ = 0.815 and that the corresponding slope
is β∗ , β(ξ∗) = 2.977. (Note that the horizontal line is maximized by ξ = 0.810.) The second graph
shows the concave majorant W (y; ξ∗) with b∗ = 0.201 and d∗ = 0.448.

Figure 2 shows the corresponding results when ∆ > 0. With a delay of ∆ = 0.5, the solution
changes to (ξ∆, β∆, b∆, d∆) = (0.770, 0.823, 0.461, 0.565), in which β∆ , β(ξ∆). Note that b∗ < b∆,
d∗ < d∆, and β∗ > β∆. The reinsurance proportion drops from ξ = 0.815 to ξ∆ = 0.770. The smaller
slope with delay is expected. The interval [b∆, d∆] shifts to the right with delay due to the positive
probability of ruin during the delay period. That is, the insurer becomes more cautious in the presence
of delay.
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Figure 1: Numerical example with parameters (a, σ, θ, η, P, α, K) = (0.2, 0.3, 0.1, 0.25, 20, 0.1, 0.03) and ∆ =
0: (a) β(ξ) for various ξ ∈ [0, 1]. (b) The linear function with positive slope W1(y; ξ∗) (red line), H(y; ξ∗) itself
(blue line), and the horizontal line W2(y; ξ) = δ(ξ∗) (yellow line) with the optimal ξ∗.

As is reflected by β∆ < β∗, the value function without delay v(x) is greater than the value function
with delay, denoted by vD(x) in the graph. As x becomes larger, the probability of ruin becomes
negligible. For this reason, the two value functions become indistinguishable (see graphs (e) and (f)).

3 Discussions and concluding remarks

Before concluding this paper, we perform a sensitivity analysis in the length of the delay period and
briefly comment on possible extensions of this problem.

3.1 Sensitivity analysis

We change the length of delay period ∆ while keeping the other parameters as in the original example.
The table below shows the optimal threshold values and proportions reinsured for different values of
the delay period. The phenomenon of the rightward shift of [b∆, d∆] is consistently observed here, too.
Namely, the longer the delay period, the interval gets further from the ruin state.

As expected, the longer the delay period, the smaller the slope. Geometrically this occurs because
the global maximum of H∆ (due to the increased chance of hitting the ruin state) decreases, while the
vertical intercept

(
F (0),−P+θa/α2

ϕ(0)

)
is fixed.

More interestingly, the last column d∆ − b∆ shows that the longer delay period results in an interval
of smaller length. Since the slope flattens as the delay period increases, at a certain delay level, say ∆∗,
we shall have β∆∗ = 0 with b∆∗ = d∆∗ . At this level, the action (reinsurance) region is the singleton
{b∆∗(= d∆∗)} and the continuation region is (0, b∆∗) ∪ (b∆∗ ,∞).

Now, if we further increase the delay period beyond ∆∗, then the slope β∆ becomes negative. In other

12
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Figure 2: Numerical example with parameters (a, σ, θ, η, P, α, K) = (0.2, 0.3, 0.1, 0.25, 20, 0.1, 0.03) and ∆ =
0.5: (c) β∆(ξ) for various ξ ∈ [0, 1]. (d) The linear function with positive slope W1(y; ξ) (red line), H(y; ξ) itself
(blue line), and the horizontal line W2(y; ξ) = δ(ξ) (yellow line) with the optimal ξ∆. (e) The value functions
v(x) (above) and vD(x) (below), without and with delay, respectively. (f) Plot of the difference, v(x) − vD(x)
whose value converges to zero, as expected, when x gets larger.

words, the condition (2.17) is now violated. But, we know that H∆(y; ξ) becomes eventually convex
for all ξ ∈ [0, 1]. It follows that the smallest concave majorant is just the horizontal line starting at(
F (0),−P+θa/α2

ϕ(0)

)
, and no optimal stopping time exists. See Remark 2.2(c). No purchase of reinsurance

makes sense in this case because the delay period is too long to risk the surplus hitting the ruin during
that period.

3.2 Multiple-step analysis

As an extension to the work in this paper, we briefly consider a multiple-step problem: Namely, an
admissible strategy is a double sequence,

π = (τ1, τ2, . . . , τi, . . . ; ξ1, ξ2, . . . , ξi, . . . ),

in which 0 ≤ τ1 < τ2 < . . . is an increasing sequence of F-stopping times such that τi+1− τi ≥ ∆, and
ξ1, ξ2, . . . are Fτi-measurable random variables representing the proportion reinsured at time τi + ∆.
The proportion ξi ∈ [0, 1] is determined at time τi and implemented at time τi + ∆ due to the existence
of a delay period. Then, Assumption 2.1 (a) and (c) become

13



Table 1: Reinsurance proportion ξ∆ and thresholds b∆ and d∆ for various delay times ∆.
∆ ξ∆ β∆ b∆ d∆ d∆ − b∆

0 0.815 2.977 0.201 0.448 0.247
0.1 0.807 2.350 0.257 0.466 0.209

0.15 0.802 2.043 0.292 0.475 0.183
0.25 0.793 1.552 0.352 0.497 0.145
0.375 0.781 1.124 0.411 0.531 0.120
0.5 0.770 0.823 0.461 0.565 0.104
0.6 0.761 0.642 0.496 0.589 0.093

0.75 0.747 0.436 0.545 0.622 0.077

(a)′ At the stopping time τi, the insurer begins negotiating with the reinsurer. This negotiating takes a
fixed amount of time ∆ ≥ 0. After the time ∆ elapses, if the surplus process has not hit the ruin
level, the insurer pays a fixed transaction cost K > 0 and reinsures a proportion ξi ∈ [0, 1] of its
claims at time τi + ∆. Hence the surplus process X follows





dXt = µi−1dt + σi−1dWt, τi−1 + ∆ ≤ t < τi + ∆,

Xτi+∆ = X(τi+∆)− −K,
(3.1)

for i = 1, 2, . . . , where µ0 = θa, σ0 = σ,

µi = (θ − ηξi)a, and σi = σ(1− ξi),

with ξi ∈ [0, 1] for i = 1, 2, . . . , and ξ0 = 0.

(c)′ At time τi + ∆, if X(τi+∆)− ≤ K, the surplus process hits the ruin state at time τi + ∆, and the
insurer becomes insolvent.

Let ξ∆
i denote the optimal proportion reinsured at step i of the multiple-step reinsurance problem for

i = 1, 2, . . . . At step i, we assume that the insurer buys reinsurance only if its surplus lies in an interval
[bi, di]. Then, we solve the optimal stopping problem (which we shall define below) recursively by using
the two sets of drift and volatility parameters: More precisely, in (A.14), (A.15), (A.16), and (A.17), we
replace µ0, µ1, and σ by µ(ξ) := (θ − ηξ)a, µ(y) := (θ − ηy)a, and σ(ξ) = σ(1− ξ), respectively. In
other words, the old fraction is denoted by ξ and the new fraction is denoted by y in each iteration.

In the next lemma, under this assumption for the form of the reinsurance strategy, we show that the
sequence

(
ξ∆
i

)
converges to a limit ξ∆.

Lemma 3.1. The mapping T : [0, 1] → [0, 1] has a fixed point ξ: T (ξ) = ξ, in which

T (ξ) , sup
y∈[0,1]

(
sup
τ∈S

Ex

[
1{τ<τ0}e

−ατh∆(Xτ ; ξ, y) + 1{τ>τ0}e
−ατ0(−P − g(0; ξ))

])
(3.2)
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with

h∆(x; ξ, y) = e−α∆{I1(x; ξ, y)− I2(x; ξ, y) + I3(x; ξ, y) + I4(x; ξ, y)}.

I1, I2, I3, and I4 are defined in (A.14), (A.15), (A.16), and (A.17) with ξ0 and ξ1 replaced by ξ and y,

respectively. X satisfies the stochastic differential equation




dXt = (θ − ηξ)dt + σ(1− ξ)dWt, 0 ≤ t < τ + ∆,

Xτ+∆ = X(τ+∆)− −K,

with initial value X0 = x.

Proof. See Appendix A.3.

Note that probabilistically, T (ξ) = ξ is attained when the condition (2.17) is violated. In fact, the
parameter set used in the example in Section 2.2.2 shows that, with and without delay, the first ξ∆

1 is
optimal in this multiple-step problem and, hence, τ2 = ∞. The following is an open problem: Under
what conditions does the optimal τ2 = ∞?

See Carmona and Touzi [4] for an example of a mutiple-optimal stopping problem in the setting of so-
called swing options. They prove the existence of a solution of their problem, for which they are allowed
a finite number of exercise times. Note that in our problem, one can implement reinsurance arbitrarily
many times. Another difference between their work and ours is in the timing of the rewards.

3.3 Concluding Remarks

In this paper, we explicitly incorporated fixed costs and time delay into the optimal reinsurance problem.
We identified that the optimal stopping problem has a two-sided continuation region. We summarize our
findings:

(a) Without any fixed cost or delay, it is optimal to buy reinsurance when the surplus lies in an interval
of the form (0, d].

(b) In the presence of a fixed cost but no delay, it is optimal to buy reinsurance when the surplus lies
in an interval of the form [b, d].

(c) In the presence of a fixed cost and a small enough delay, it is optimal to buy reinsurance when
the surplus lies in an interval of the form [b∆, d∆]. The continuation region is (0, b∆) ∪ (d∆,∞).
When the delay period is large enough, say ∆∗, the reinsurance region is only a singleton set (the
maximizer of H∆). When ∆ > ∆∗, it is optimal not to purchase reinsurance.

Recall that we assumed if X(τi+∆)− ≤ K, then the surplus process hits the ruin state at time τi + ∆
and the insurer becomes insolvent (Assumption 2.1(c)). Another possibility is that, if this happens, the
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insurer does not have to fulfill its obligation of buying a reinsurance but could restart its business with
surplus Xτi+∆. The problem becomes more difficult to solve since one loses tractability. But, based on
our results, we expect that the reinsurance threshold will decrease in this case compared with the one
in our current model because the ruin probability decreases. Other extensions include (1) allowing the
insurance company to invest its surplus in a risky asset and (2) maximizing some utility function other
than the surplus itself (i.e., replace f(x) = x with a different utility function.)

A Proofs and Derivations

A.1 Derivation of Expression (2.9)

We simplify Jπ by splitting the terms in (2.4). We can write the first term as

Ex

[∫ τ0

0
e−αsf(Xs)ds

]

= Ex

[
1{τ+∆<τ0}

{∫ τ+∆

0
e−αsf(X0

s )ds + e−α(τ+∆)EXτ+∆

ξ

∫ τ0

0
e−αsf(Xs)ds

}]

+ Ex

[
1{τ+∆>τ0}

∫ τ0

0
e−αsf(Xs)ds

]

= Ex

[
1{τ+∆<τ0}e

−α(τ+∆)

{
EXτ+∆

ξ

∫ τ0

0
e−αsf(Xs)ds− g(X0

τ+∆)
}]

− Ex
[
1{τ+∆>τ0}e

−ατ0g(Xτ0)
]
+ g(x)

= Ex

[
1{τ+∆<τ0}e

−α(τ+∆)

{
EXτ+∆

ξ

∫ τ0

0
e−αsf(Xs)ds− g(X(τ+∆)−)

}]

− Ex
[
1{τ+∆>τ0}e

−ατ0g(Xτ0)
]
+ g(x),

where we use Ey
ξ [·] to stress that the insurer has reinsured a proportion ξ and the process starts with state

y, so that the surplus process has dynamics with drift (θ−ηξ)a and volatility σ(1− ξ). Note that Xs and
τ mean different things in different parts of this expression; their meaning is clarified by the conditions
on the corresponding expectations.

The second term in (2.4), namely the penalty term, can be developed as

Ex[e−ατ0P ] = Ex
[
1{τ+∆<τ0}e

−α(τ+∆)Ex[e−α(τ0−(τ+∆))P |Fτ+∆]
]

+ Ex
[
1{τ+∆>τ0}e

−ατ0P
]

= Ex
[
1{τ+∆<τ0}e

−α(τ+∆)Ex[e−α(τ0◦s(τ+∆))P |Fτ+∆]
]

+ Ex
[
1{τ+∆>τ0}e

−ατ0P
]

= Ex
[
1{τ+∆<τ0}e

−α(τ+∆)EXτ+∆

ξ [e−ατ0P ]
]

+ Ex
[
1{τ+∆>τ0}e

−ατ0P
]
,

where s(·) is the shift operator (see Karatzas and Shreve [11]). By combining the two terms together, we
have

Jπ(x) = Ex
[
1{τ+∆<τ0}e

−α(τ+∆)
(
Jπ

ξ (Xτ+∆)− g(X(τ+∆)−)
) ]

+ Ex
[
1{τ+∆>τ0}e

−ατ0{−P − g(Xτ0)}
]
+ g(x), (A.1)
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where Jπ
ξ signifies that the surplus process now has new dynamics after the proportion of ξ is reinsured:

Jπ
ξ (x) , Ex

ξ

[∫ τ0

0
e−αsf(Xs)ds− e−ατ0P

]
(A.2)

¿From Assumption 2.1(a), the post-transaction value of the surplus is Xτ+∆ = X(τ+∆)− −K.

By taking into account the positive probability that the surplus process hits the ruin state during the
delay period ∆, we rewrite the expression in (A.1) as follows:

Jπ(x)− g(x)

= Ex
[
1{τ+∆<τ0}e

−α(τ+∆)
{
Jπ

ξ (Xτ+∆)− g(X(τ+∆)−)
}]

+ Ex
[
1{τ+∆>τ0}e

−ατ0{−P − g(Xτ0)}
]

= Ex
[
Ex

[
1{τ+∆<τ0}e

−α(τ+∆)
{
Jπ

ξ (Xτ+∆)− g(X(τ+∆)−)
} | Fτ

]]

+ Ex
[
1{τ>τ0}e

−ατ0{−P − g(Xτ0)}
]

+ Ex
[
Ex

[
1{τ<τ0}1{τ+∆◦s(τ)>τ0}e

−ατ0{−P − g(Xτ0)} | Fτ

]]

= Ex
[
1{τ<τ0}e

−ατEXτ
[
1{∆<τ0}e

−α∆
{
Jπ

ξ (X∆)− g(X∆−)
}

+ 1{∆>τ0}e
−ατ0{−P − g(Xτ0)}

]]

+ Ex
[
1{τ>τ0}e

−ατ0{−P − g(Xτ0)}
]
. (A.3)

Let us concentrate on the inner expectation of the first term in (A.3). Recall that if X(τ+∆)− ≤ K,
the surplus process hits the ruin state by Assumption 2.1(c). We further divide the inner expectation as
follows:

EXτ

[
1{∆<τ0}e

−α∆
{
Jπ

ξ (X∆)− g(X∆−)
}

+ 1{∆>τ0}e
−ατ0{−P − g(Xτ0)}

]

= EXτ

[
1{inf0≤u<∆ Xu>0}1{X∆−>K}e−α∆

{
Jπ

ξ (X∆)− g(X∆−)
}

+ 1{inf0≤u<∆ Xu>0}1{X∆−≤K}e−α∆{−P − g(0)}+ 1{inf0≤u<∆ Xu≤0}e−ατ0{−P − g(0)}
]

, I1(Xτ ; ξ)− I2(Xτ ) + I3(Xτ ) + I4(Xτ ), (A.4)

where

I1(x; ξ) = Ex[1{inf0≤u<∆ Xu>0}1{X∆−>K}e−α∆Jπ
ξ (X∆)],

I2(x) = Ex[1{inf0≤u<∆ Xu>0}1{X∆−>K}e−α∆g(X∆−)],

I3(x) = Ex[1{inf0≤u<∆ Xu>0}1{X∆−≤K}e−α∆{−P − g(0)}],
I4(x) = Ex[1{inf0≤u<∆ Xu≤0}e−ατ0{−P − g(0)}].

To evaluate these expectations, we use the following well known result for a Brownian motion with
drift ν and volatility σ (see, for example, Musiela and Rutkowski [12]):

Px

(
X0

∆ ≥ z, min
0≤u≤∆

X0
u ≥ y

)
= N

(
x− z + ν∆

σ
√

∆

)
− e2ν(y−x)/σ2

N

(
2y − x− z + ν∆

σ
√

∆

)
(A.5)

for y ≤ x and y ≤ z, and N(·) is the cumulative distribution function of the standard normal random
variable. We can calculate the joint density function p(y, z) of (min0≤u≤t Xu, Xt) from (A.5).
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For I1 and I2 in (A.4), we need to calculate

Ex
[
1{inf0≤u<∆ Xu>0}1{X∆−>K}h(X∆−)

]
=

∫ ∞

K

∫ x

0
h(z)p(y, z)dydz

=
1

σ
√

∆

∫ ∞

K
h(z)

[
φ

(
x− z + ν∆

σ
√

∆

)
− e−2νx/σ2

φ

(−x− z + ν∆
σ
√

∆

)]
dz

=
∫ x+ν∆−K

σ
√

∆

−∞
h(x + ν∆− wσ

√
∆)φ(w)dw + e−2νx/σ2

∫ −x+ν∆−K

σ
√

∆

−∞
h(−x + ν∆− wσ

√
∆)φ(w)dw,

(A.6)

in which φ(·) is the probability density function of the standard normal random variable and h is any
continuous function h : R+ → R. For I3(·) and I4(·) in (A.4), we use

Px(τ0 > t) = Px

(
min

0≤u≤t
X0

u ≥ 0
)

= N

(
x + νt

σ
√

t

)
− e−2νx/σ2

N

(−x + νt

σ
√

t

)
.

It follows that the expectation of the indicator function in I3(·) is

Px

(
inf

0≤u<∆
Xu > 0, X∆− ≤ K

)
= Px( inf

0≤u<∆
Xu > 0)− Px( inf

0≤u<∆
Xu > 0, X∆− > K)

= N

(
x + ν∆
σ
√

∆

)
− e−2νx/σ2

N

(−x + ν∆
σ
√

∆

)
−N

(
x−K + ν∆

σ
√

∆

)
+ e−2νx/σ2

N

(−x−K + ν∆
σ
√

∆

)
,

(A.7)

and the Laplace transform of τ0 in I4(·) can be written as

Ex[1{inf0≤u<∆ Xu≤0}e−ατ0 ] =
∫ ∆

0
e−αtPx(τ0 ∈ dt). (A.8)

With these preparations, we can evaluate the inner expectation of (A.3) explicitly.

In summary, the original problem of finding the value function v(x) in (2.6) reduces to solving,

v(x)− g(x) = sup
π∈Π

Ex
[
1{τ<τ0}e

−ατh(Xτ ; ξ)
]
+ Ex

[
1{τ>τ0}e

−ατ0{−P − g(Xτ0)}
]

(A.9)

where

h(z; ξ) , Ez
[
1{∆<τ0}e

−α∆
{
Jπ

ξ (X∆)− g(X∆−)
}

+ 1{∆>τ0}e
−ατ0{−P − g(Xτ0)}

]

= I1(z; ξ)− I2(z) + I3(z) + I4(z), (A.10)

which we can evaluate by using expressions (A.6), (A.7), and (A.8).

A.2 Preliminary computations for Section 2.2

With the specification of f(x) = x, we compute (2.9). For each ξ ∈ [0, 1], we first consider

Jπ
ξ (x) = Ex

ξ

[∫ τ0

0
e−αsf(Xs)ds− e−ατ0P

]
= g1(x; ξ)− (P + g1(0; ξ))Ex

ξ [e−ατ0 ].
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in which g1 : R+ × [0, 1] → R is defined by

g1(x; ξ) , Ex
ξ

[∫ ∞

0
e−αsf(Xs)ds

]
.

Similar to g(x), the function g1(x; ξ) denotes the expected total utility if the insurer starts with the
reinsurance level ξ and does not change its reinsurance thereafter. The last expectation can be written

Ex
ξ [e−ατ0 ] = Bϕξ(x),

in which ϕξ(x) is the decreasing solution of

(Aξ − α)v(x) , 1
2
σ2(1− ξ)2v′′(x) + (θ − ηξ)av′(x)− αv(x) = 0,

and B = 1 by the boundary condition at x = 0. The solution of the above ODE is given by ϕξ(x) =
eλ(ξ)x, with

λ(ξ) , −(θ − ηξ)a−
√

(θ − ηξ)2a2 + 2σ2(1− ξ)2α
σ2(1− ξ)2

< 0.

Therefore, by combining these results, we have

Jπ
ξ (x) = g1(x; ξ)− (P + g1(0; ξ))eλ(ξ)x. (A.11)

Since we assume that f(x) = x, by Fubini’s theorem,

g1(x; ξ) =
x

α
+

(θ − ηξ)a
α2

. (A.12)

We can find g(x) in (2.7) by setting ξ = 0, so that g(x) = x
α + θa

α2 .

Now, we can explicitly compute (2.10). Let

µ0 , (θ − ηξ0)a = θa and µ1 , (θ − ηξ)a, (A.13)

by setting ξ0 = 0. Then, from (A.6), we have

eα∆I1(x; ξ)

=
1

σ
√

∆

∫ ∞

K
Jξ(z −K)

(
φ

(
x− z + µ0∆

σ
√

∆

)
+ e−2µ0x/σ2

φ

(−x− z + µ0∆
σ
√

∆

))
dz

=
1
α

{(
x + µ0∆−K +

µ1

α

)
N(d1) + σ

√
∆φ (d1)

+ e−2µ0x/σ2
((
−x + µ0∆−K +

µ1

α

)
N(d2) + σ

√
∆φ(d2)

)}

−
(
P +

µ1

α2

)
eλ2(ξ)∆σ2/2

(
N(d3)eλ(ξ)(x+µ0∆−K) + e−2µ0x/σ2

N(d4)eλ(ξ)(−x+µ0∆−K)
)

, (A.14)

in which

d1, d2 , ±x + µ0∆−K

σ
√

∆
, d3, d4 , ±x + µ0∆ + λ(ξ)σ2∆−K

σ
√

∆
,
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and

eα∆I2(x) =
1

ασ
√

∆

∫ ∞

K

(
z +

µ0

α

)(
φ

(
x− z + µ0∆

σ
√

∆

)
+ e−2µ0x/σ2

φ

(−x− z + µ0∆
σ
√

∆

))
dz

=
1
α

{(
x + µ0∆ +

µ0

α

)
N (d1) + σ

√
∆φ (d1) + e−2µ0x/σ2

((
−x + µ0∆ +

µ0

α

)
N (d2) + σ

√
∆φ (d2)

) }
.

(A.15)

Also, from (A.7) and (A.8),

eα∆(I3(x) + I4(x)) =
(
−P − µ0

α2

){
N

(
x + µ0∆

σ
√

∆

)
− e−2µ0x/σ2

N

(−x + µ0∆
σ
√

∆

)
−N (d1)

+ e−2µ0x/σ2
N (d2) +

∫ ∆

0
e−αtPx(τ0 ∈ dt)

}
, (A.16)

where the last integral is given by

∫ ∆

0
e−αtPx(τ0 ∈ dt) =

∫ ∆

0
e−αt

{
x− µ0t

2σt
3
2

φ

(
x + µ0t

σ
√

t

)
+ e−2µ0x/σ2 x + µ0t

2σt
3
2

φ

(−x + µ0t

σ
√

t

)}
dt.

(A.17)

We next substitute I1, I2, I3, and I4 into h in (2.9) and solve the corresponding two-stage optimization
in that expression.

A.3 Proof of Lemma 3.1

Proof. First, we sketch a proof that the mapping T is continuous. Note that ∂
∂xh∆(x; ξ, y) is continuous

both in ξ and y. As we discussed in Section 2.2.1, the inner expectation in (3.2) can be solved by finding
the smallest linear majorant of h∆(x; ξ, y)/ϕ(x; ξ) in the transformed space.

Let us fix y = ȳ that satisfies the condition for the existence of positive β. Recall that since for any
ξ ∈ [0, 1], h∆(x; ξ, y)/ϕ(x; ξ) has the sole local maximum, the slope of linear majorant does not jump
as we vary ξ. This fact, together with the continuity of ∂

∂xh∆(x; ξ, y) in ξ, implies that the slope β(ξ, ȳ)
of the linear majorant is also continuous in ξ. Similarly, when we fix ξ = ξ̄, β(ξ̄, y) is continuous in y.
It follows that β(ξ, y) is continuous both in ξ and y.

Now, suppose that we let ξ change to ξ′ and correspondingly T (ξ) = y moves to T (ξ′) = y′, and let
c > 0 be given. Suppose that for all δ > 0 with |ξ − ξ′| < δ, we have |y − y′| > c; that is, suppose that
T is not continuous at ξ. This contradicts the continuity of β(ξ, y) in both arguments. Indeed, for any
ε > 0, there exist δ1 > 0 and δ2 > 0 such that if |ξ − ξ′| < δ1 and |y − y′| < δ2, then

|β(ξ, y)− β(ξ′, y′)| ≤ |β(ξ, y)− β(ξ′, y)|+ |β(ξ′, y)− β(ξ′, y′)| < ε. (A.18)

Now suppose that, for this ε, no matter how small we make |ξ−ξ′|, we cannot make |y−y′| smaller than

20



c. In this case, (A.18) is violated because |β(ξ′, y)− β(ξ′, y′)| cannot be small enough, a contradiction.2

Since T is a mapping from a closed bounded convex set in R into itself, the continuity of T guarantees
the existence of a fixed point due to Brower’s fixed point theorem; see Rudin [15], Theorem 5.28.
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