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ABSTRACT. The importance of the global financial system cannot be exaggerated. When a large financial
institution becomes problematic and is bailed out, that bank is often claimed as “too big to fail”. On the
other hand, to prevent bank’s failure, regulatory authorities adopt the Prompt Corrective Action (PCA)
against a bank that violates certain criteria, often measured by its leverage ratio. In this article, we provide a
framework where one can analyze the cost and effect of PCA’s. We model a large bank that has deteriorating
assets and regulatory actions attempting to prevent the bank’s failure. The model uses the excursion theory
of Lévy processes and finds an optimal leverage ratio that triggers a PCA. A nice feature includes that it
incorporates the fact that social cost associated with PCA’s are greatly affected by the size of banks subject
to PCA’s. In other words, one can see the cost of rescuing a bank which is “too big to fail”.
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1. INTRODUCTION

For a description of the Prompt Corrective Action (PCA, thereafter) we first quote from [Shibut et al., 2003]:
“The Prompt Corrective Action (PCA) provisions in Federal Deposit Insurance Corporation Improvement Act of
1991 (FDICIA) require that regulators set a threshold for critically undercapitalized institutions, and that regulators
promptly close institutions that breach the threshold unless they quickly recapitalize or merge with a healthier
institution. Many economists expected these provisions to result in dramatically reduced loss rates, or even zero
loss rates, for bank failures.” In short, the PCA provides a set of mandatory and discretionary actions to be taken
by banking supervisors when the bank’s capital ratio is declining. In many countries, as the above says, regulatory
authorities set minimum capital ratios and intervene bank operations once the bank’s capital falls short of the
minimum requirement.

There are only a few studies available on PCA’s. [Kocherlakota and Shim, 2009] and [Shim, 2011] develop
dynamic contract models to analyze under what conditions regulators should subsidize or liquidate a problematic
bank. While liquidation is one alternative in PCA’s, one needs to analyze a broader spectrum of actions including
recapitalization, cash infusion, and changes of risk-return profile of the bank’s asset. Considering the catastrophic
damage on the global financial system caused by the crisis in 2008, a comprehensive analytical framework for
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regulators’ interventions is very much needed. Our model has, among other things, the following features that well
capture the real-life experience:

• we directly deal with leverage ratio threshold that triggers PCA’s;
• we describe the situation where even a large bank (with high leverage) can easily fail;
• we use spectrally negative Lévy processes for modeling sudden declines in the value of bank assets;
• we include cash infusions (at the beginning of PCA’s) that are often used for preventing outright insol-

vency, change the bank’s risk-return profile, and consider the possibilities whether the bank comes back
to the normal operation or goes to liquidation;

• we consider various costs associated with PCA’s and compute the optimal threshold level that triggers
PCA’s and that minimizes the associated total cost; and

• we obtain some results, among other things, where the bank size has a crucial impact on the cost involved.

In this paper, we describe deterioration of leverage ratio as the excursion from the running maximum. It should
be best to explain through an example. We shall define everything rigourously in the next section. Let Y = eX

be the bank’s total asset value, where X is a spectrally negative Lévy process and represents the fluctuation rate of
the asset. (See [Carr and Wu, 2003] and [Madan and Schoutens, 2008] that use Lévy processes for financial asset
values.) Let S be the running maximum of X . We assume that the bank increases its asset base as long as it
maintains the predetermined leverage ratio, defined as

Leverage ratio :=
Debt

Total Asset
.

Let us denote the aforementioned leverage ratio by e−b. For example, if the bank has the initial asset of Y0 =

eX0 = 100 with e−b = 0.8, it has total asset of 100 financed by debt 80 and equity 20. We can think of this
ratio as the maximum leverage ratio that is allowed by the banking regulations. We assume that the bank increases
its asset base as long as X = S and that the bank’s leverage ratio is maintained at 0.8. Hence if the asset value
appreciates to 120, then the bank can increase its assets since the equity value is now 40 and the leverage ratio
has improved to 40/120. With this new equity level, the bank increases its leverage up to 0.8. In other words, the
total asset increases to 200 financed by debt 160 and equity 40. Note that eS = eX = 200 and the debt level is
e−b(eS) = eS−b = 160. Now if the bank’s asset deteriorates due to defaults in the lending portfolio, we would
have S −X > 0. In other words, there appears an excursion from the running maximum S. Since the asset level
has stayed at eS = 200, the bank’s equity would be wiped out when eS−b = eX . That is, the process is absorbed
at t = Tb, i.e, the first time X goes below the level of S − b.

Moreover, note that this model can incorporate the regulatory requirements that the bank, when experiencing
asset deterioration, needs to sell the assets in order to reduce the leverage. For example, assume that when the bank
loses one dollar of asset, the bank loses its equity by γ and reduces its debt by 1−γ, where γ ∈ (1−e−b, 1]. Then,
at the time the equity is wiped out, we have

eX ≤ eS
(
1− 1− e−b

γ

)
,

that is, the process is absorbed when the excursion S − X reaches − log
(
1− 1−e−b

γ

)
. In this paper, however,

we assume γ = 1 for making our presentation simpler. (We are thankful to Nan Chen for pointing out this
requirement.)
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For spectrally negative Lévy processes, or Lévy processes with only negative jumps, a number of authors have
succeeded in solving interesting stochastic optimization problems and in extending certain classical results by using
the scale functions, which we shall review briefly later. We just name a few here : [Baurdoux and Kyprianou, 2008,
Baurdoux and Kyprianou, 2009] for stochastic games, [Avram et al., 2007, Kyprianou and Palmowski, 2007, Loeffen, 2008]
for the optimal dividend problem, [Alili and Kyprianou, 2004, Avram et al., 2004] for American and Russian op-
tions, and [Egami and Yamazaki, 2013, Kyprianou and Surya, 2007] for credit risk.

An excursion theory for spectrally negative Lévy processes has been developed and advanced recently. See
[Bertoin, 1996] as a general reference. More specifically, an exit problem of the reflected process Y has been
studied by [Avram et al., 2004], [Pistorius, 2004] [Pistorius, 2007] and [Doney, 2005]. Two-dimensional optimal
stopping problems whose stopping region involves both the original process and its running maximum are studied
in [Ott, 2013], [Guo and Zervos, 2007] and [Egami and Oryu, 2014].

The rest of the paper is organized as follows. In Section 2, we formulate a mathematical model to express
the PCA program and then find an optimal trigger level in Section 3. We shall illustrate the solution through a
numerical example and perform comparative statics in Section 4.1. In addition, we present another example by
using parameters estimated from the data of an existing bank in Section 4.2. Furthermore, we shall consider the
situation where, after the bank successfully emerges from the intervention (i.e., an PCA ends), it again becomes
problematic and subject to another PCA. This is in Section 5. We present a brief summary about scale functions
associated with spectrally negative Lévy processes in Section 6.

2. MATHEMATICAL MODEL

As explained in Section 1, the PCA (prompt corrective action) is a supervisory framework where the regulators
enforce actions to banks with inadequate capital. See The Federal Deposit Insurance Corporation Improvement Act
of 1991 (https://www.fdic.gov/regulations/laws/rules/1000-4000.html). It says “Each appropriate Federal banking
agency and the Corporation (acting in the Corporation’s capacity as the insurer of depository institutions under
this Act) shall carry out the purpose of this section by taking prompt corrective action to resolve the problems
of insured depository institutions” (Sec. 38 (a) (2)). The purpose is to detect banks of capital inadequacy at the
early stage. If the regulators assign to the bank one of the following categories: undercapitalized, significantly
undercapitalized, or critically undercapitalized, the bank is subject to corrective actions under close monitoring by
the regulators. For example, the bank is required to submit and implement plans to restore capital and to restrict
asset growth. Based on the above description, in modeling PCA’s, one should use bank’s leverage ratio for the
capital adequacy test. One should also change parameters associated with bank’s assets because once a PCA is in
force, bank’s asset growth should be checked. While the bank is required to raise capital to restore its leverage
ratio, as we know from the past experiences in the financial crises, the bank does not have enough creditworthiness
to raise capital and hence taxpayers’ money may have to be used. Let us now present our model that incorporates
these facts.

Let the spectrally negative Lévy processes Xi = {Xi
t ; t ≥ 0} (i = 0, 1) represent the state variable defined on

the probability space (Ω,F ,P), where Ω is the set of all possible realizations of the stochastic economy, and P is a
probability measure defined on F . We denote by F = {Ft}t≥0 the filtration with respect to which X0 and X1 are
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adapted and with the usual conditions being satisfied. The Laplace exponent ψi of Xi, i = 0, 1, is given by

(2.1) ψi(λ) = µiλ+
1

2
σ2i λ

2 +

∫
(−∞,0)

(eλx − 1− λx1l(x>−1))Πi(dx),

where µi ≥ 0, σi > 0, and Πi is a measure concentrated on R\{0} satisfying
∫
R(1 ∧ x2)Πi(dx) < ∞. It is

well-known that ψi is zero at the origin and convex on R+.
We define the process X = {Xt; t ≥ 0} as the solution to the stochastic differential equation

dXt = dX
I(t)
t and X0 = x,

where I = {I(t); t ≥ 0} is the right-continuous switching process which satisfies I(t) ∈ {0, 1} for every t ∈ R+.
We postpone (see (2.2)) the rigorous mathematical definition of the process I to make the explanation of our model
smoother.

The bank’s total asset value is represented by the process Y = {eXt ; t ≥ 0}. Therefore, X represents the
fluctuation rate of the bank’s total asset value. When I(t) = 0, the bank is well capitalized with satisfactory
leverage ratio and thus is not subject to the regulator’s PCA. Our dX0 corresponds to the dynamics while the bank
not being controlled. On the other hand, when I(t) = 1, a PCA is applied, the bank is taken into strict supervision
by the regulator and the asset dynamics follow dX1. In general, it may be often the case that

µ1 < µ0 and σ1 < σ0

to reflect more conservative risk-return profile during the PCA period. We introduce F-stopping times τ+c and τ−c
(c ≥ 0) defined by

τ+c = inf{t ≥ 0 : X1
t ≥ c}, and τ−c = inf{t ≥ 0 : X1

t ≤ c}.

In addition, let S = {St; t ≥ 0} be defined by St = supu∈[0,t]Xu ∨ s with s = S0. We introduce the F-stopping
times Tc (c > 0) defined by

Tc = inf{t ≥ 0 : St −Xt ≥ c}.

We assume that a PCA is applied (i.e. the process I changes form 0 to 1) at t = Tb′ , where b ≥ b′ ≥ 0. Note
that this is the time when the bank’s leverage ratio eS−b/eX exceeds the level eb

′−b (not the level e−b′). Indeed,
since X ≤ S − b′, the leverage ratio is

eS−b

eX
≥ eS−b

eS−b′
= eb

′−b.

This threshold b′ should be determined by the regulator and we call it the PCA trigger level. When the bank
undergoes a PCA, one of the two scenarios is possible: the bank becomes insolvent (i.e., S −X ≥ b), or the bank
successfully improves its leverage ratio to e−b (i.e., S −X = 0).

In this case, we assume that when a PCA is applied, the bank’s asset is pushed up to the target level

e
STb′

−a
,

where a ∈ [0, b) is some constant. This is done by injecting funds (taxpayers’ money) to improve the leverage
ratio to some predetermined level ea−b. More specifically, since this action moves the asset level to exp(STb′ − a)

and the debt level at that time is exp(STb′ − b), the new leverage ratio shall become

e
STb′−b

e
STb′

−a
= ea−b.
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The amount of public funds to be injected (as equity) is thereby the difference between the asset values before and
after PCA’s are applied.

To compute the initial cost to be paid, we need to record both of the asset values before and after the cash
injection. For this purpose, we define the random variable X as X = XTb′ and, afterwards, redefine XTb′ by
XTb′ = STb′ − a. In other words, eX represents the asset value before the cash infusion is made, and eXTb′

indicates the asset value after the bank receives fresh money. This way, eX remains representing the asset value of
the bank, and the amount of the cash infusion can be written as

e
STb′

−a − eX .

Let us emphasize that this value is large when the size of the bank is large (since the asset value eS is large). Note
that while we use this form of initial cost throughout this paper, the initial cost can be generalized to the form of
c(X,STb′ ), where c : R2

+ 7→ R+, and in those cases, this cost may include, for example, the cash to be set aside
in case of the bank’s insolvency (the bank’s depositors will be bailed out by the FDIC), or the present value of
administration costs to alter bank’s risk-return profile from ψ0 to ψ1.

Let an F-stopping time τ be the time the PCA ends, then τ should be represented by τ = Tb′+(τ+a ∧τ−a−b)◦θTb′ ,
where (θt)t∈R+ is the shift operator, and the process I can be defined as

I(t) =

0 for t < Tb′ , τ ≤ t

1 for t ∈ [Tb′ , τ).
(2.2)

In summary, at time t = Tb′ , the bank’s leverage ratio becomes worse than the PCA trigger level, then a PCA
starts and the bank goes under the regulator’s control. The corresponding excursion height is STb′ −X . Then the
regulatory authority injects cash in the amount of eSTb′

−a − eX and the bank’s leverage ratio is improved to ea−b.
To recover its leverage ratio to e−b, X1 must go up in the amount of a, and the time is denoted by τ+a . However, if
X1 goes down in the amount of b− a earlier, the bank becomes insolvent, and the corresponding time is τ−a−b.

Total Cost Function:
In addition to the initial cost, there will be certain running cost over time while PCA continues and the social cost
(the penalty) when the bank becomes insolvent. We assume that (1) the running cost will be incurred in proportion
to the duration of PCA being in place and the ratio is α ≥ 0, and (2) the social cost to the economy caused by
the bank’s final insolvency is βeSTb

−b (β ≥ 0), that is, some parameter β times the bank’s asset when it becomes
insolvent. This reflects the fact that the cost of bank’s failure becomes greater as the size of the bank becomes
larger. Summing up these, the expected total cost C1 associated with a PCA can be represented as

(2.3) C1(x, s; b
′) = Ex,s

[
e−qTb′

(
e
STb′

−a − eX
)
+ α

∫ τ

Tb′

e−qtdt+ e−qτ
(
βe

STb′
−b
)

1l{τ+a ◦θTb′>τ−a−b◦θTb′ }

]
,

which we shall calculate in the next section. Moreover, for a given value of a, we analyze the cost-minimizing
PCA trigger level denoted by b∗. It should be noted that the computation is numerical and is for a specific model.

To solve this problem, we shall use the scale function associated with every spectrally negative Lévy pro-
cess. We explain some facts in Section 6. For a comprehensive account of the scale function, see [Bertoin, 1996,
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Bertoin, 1997, Kyprianou, 2006, Kyprianou and Surya, 2007]. See [Egami and Yamazaki, 2014, Surya, 2008] for
numerical methods for computing the scale function.

There exists a (q-)scale function

W
(q)
i : R 7→ R; q ≥ 0, i = 0, 1,

which has the following properties: it is continuous and strictly increasing on [0,∞), and is zero on (−∞, 0).
Moreover, the (q-)scale function is uniquely determined by∫ ∞

0
e−βxW

(q)
i (x)dx =

1

ψi(β)− q
, β > Φi(q), i = 0, 1,

where

Φi(q) = sup {c > 0 : ψi(c) = q} , q ≥ 0, i = 0, 1.

It is known that when σi > 0, W (q)
i is twice continuously differentiable on (0,∞), which we assume in this paper.

3. SOLUTION

To solve the problem, we divide the cost function C1 into three blocks;

C1(x, s; b
′) =


C0
1 (x, s; b

′) if s− x > b′,

C1
1 (x, s; b

′) if s− x = 0,

C2
1 (x, s; b

′) if s− x ∈ (0, b′).

As the first step, we calculate C0
1 (x, s; b

′), the cost involved in the PCA when S0 −X0 ≥ b′; in other words, the
PCA is applied at time t = 0. In particular, this is always the case when b′ = 0. Note that the scale functions
of X0 and X1 are explicitly known in some processes including the case that the Lévy process has no jumps (see
[Hubalek and Kyprianou, 2011] for example).

Proposition 3.1. If S0 −X0 ≥ b′, then

C0
1 (x, s; b

′) = es−a − ex +
1

q

(
1− Z

(q)
1 (b− a)− (1− Z

(q)
1 (b))

W
(q)
1 (b− a)

W
(q)
1 (b)

)
(3.1)

+βes−b

(
Z

(q)
1 (b− a)− Z

(q)
1 (b)

W
(q)
1 (b− a)

W
(q)
1 (b)

)
,

where W (q)
i , i = 0, 1, is q-scale function of Xi, and

Z
(q)
i (x) = 1 + q

∫ x

0
W

(q)
i (y)dy.
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Proof. Since S0 −X0 ≥ b′, we have Tb′ = 0 and

Ex,s

[∫ τ

Tb′

e−qtdt

]
= Es−a,s

[∫ τ+a ∧τ−a−b

0
e−qtdt

]

=
1

q

(
1− Es−a,s

[
e−q(τ+a ∧τ−a−b)

])
=

1

q

(
1− Es−a,s

[
1l{τ+a <τ−a−b}

e−qτ+a
]
− Es−a,s

[
1l{τ+a >τ−a−b}

e−qτ−a−b

])
.

In the same way, we have

Ex,s
[
e−qτ

(
βe

STb′
−b
)

1l{τ+a ◦θTb′>τ−a−b◦θTb′ }

]
= βes−bEs−a,s

[
1l{τ+a >τ−a−b}

e−q(τ+a ∧τ−a−b)
]

= βes−bEs−a,s
[
1l{τ+a >τ−a−b}

e−qτ−a−b

]
Then we can write

C0
1 (x, s; b

′) = es−a − ex +
1

q

(
1− Es−a,s

[
1l{τ+a <τ−a−b}

e−qτ+a
]
− Es−a,s

[
1l{τ+a >τ−a−b}

e−qτ−a−b

])
(3.2)

+βes−bEs−a,s
[
1l{τ+a >τ−a−b}

e−qτ−a−b

]
.

It is well known (see [Kyprianou, 2006] and [Doney, 2005]) that

Es−a,s[1l{τ+a <τ−a−b}
e−qτ+a ] =

W
(q)
1 (b− a)

W
(q)
1 (b)

, and

Es−a,s[1l{τ+a >τ−a−b}
e−qτ−a−b ] = Z

(q)
1 (b− a)− Z

(q)
1 (b)

W
(q)
1 (b− a)

W
(q)
1 (b)

.

Hence we have (3.1). �

Now we calculate the cost in the case that S0 = X0 = s by using Proposition 3.1.

Proposition 3.2. If b′ > 0 and S0 = X0 = s, then

C1
1 (s, s; b

′) =
σ2

2

(
(W

(q)′

0 (b′))2

W
(q)
0 (b′)

−W
(q)′′

0 (b′)

)∫ ∞

s
dm exp

(
−(m− s)

W
(q)′

0 (b′)

W
(q)
0 (b′)

)
C0
1 (m− b′,m; b′)(3.3)

+

∫∫
E
Π(dh)dy

(
W

(q)′

0 (y)− W
(q)′

0 (b′)

W
(q)
0 (b′)

W
(q)
0 (y)

)

×

(∫ ∞

s
dm exp

(
−(m− s)

W
(q)′

0 (b′)

W
(q)
0 (b′)

)
C0
1 (m− y + h,m; b′)

)
,

where E = {(y, h) ∈ R2 : 0 ≤ y < b′, y − b < h < y − b′}.
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Proof. As for the initial cost part of (2.3), we have, by splitting into the case where PCA trigger level b′ is contin-
uously crossed and the case where it is overshot by a downward jump,

Es,s
[
e−qTb′

(
e
STb′

−a − e
STb′

−X
)]

=

∫ ∞

s
dmEs,s

[
e−qTb′ 1l{STb′

−X=b′,STb′
∈dm}

] (
em−a − em−b′

)
+

∫∫∫
D
Es,s

[
e−qTb′ 1l{STb′−

−XTb′−
∈dy,X−XTb′−

∈dh,STb′−
∈dm}

] (
em−a − em−y+h

)
,

where D = {(m, y, h) ∈ R3 : 0 ≤ y < b′, y− b < h < y− b′,m > s}. Note that XTb′− is, as usual, the pre-jump
position of X at time Tb′ . Because of the Markov property of X0 and X1, we have

Es,s

[∫ τ

Tb′

e−qtdt

]
= Es,s

[
e−qTb′

∫ (τ+a ∧τ−a−b)◦θTb′

0
e−qtdt

]

= Es,s
[
e−qTb′

]
Es,s

[∫ (τ+a ∧τ−a−b)◦θTb′

0
e−qtdt

∣∣∣∣FTb′

]

= Es,s
[
e−qTb′

]
Es−a,s

[∫ τ+a ∧τ−a−b

0
e−qtdt

]

= Es,s
[
e−qTb′

] 1
q

(
1− Es−a,s

[
e−q(τ+a ∧τ−a−b)

])
= Es,s

[
e−qTb′

] 1
q

(
1− Es−a,s

[
1l{τ+a <τ−a−b}

e−qτ+a
]
− Es−a,s

[
1l{τ+a >τ−a−b}

e−qτ−a−b

])
=

(∫ ∞

s
Es,s

[
e−qTb′ 1l{STb′

−X=b′,STb′
∈dm}

]
+

∫∫∫
D
Es,s

[
e−qTb′ 1l{STb′−

−XTb′−
∈dy,X−XTb′−

∈dh,STb′−
∈dm}

])
×1

q

(
1− Em−a,m

[
1l{τ+a <τ−a−b}

e−qτ+a
]
− Em−a,m

[
1l{τ+a >τ−a−b}

e−qτ−a−b

])
.

On the penalty part, we have

Es,s
[
e−qτ

(
βe

STb′
−b
)

1l{τ+a ◦θTb′>τ−a−b◦θTb′ }

]
= Es,s

[
e
−q(Tb′+τ−a−b◦θTb′

(
βe

STb′
−b
)

1l{τ+a ◦θTb′>τ−a−b◦θTb′ }

]
=

∫ ∞

s
Es,s

[
e−qTb′ 1l{STb′

−X=b′,STb′
∈dm}

]
Em−a,m

[
βem−b1l{τ+a >τ−a−b}

e−qτ−a−b

]
+

∫∫∫
D
Es,s

[
e−qTb′ 1l{STb′−

−XTb′−
∈dy,X−XTb′−

∈dh,STb′−
∈dm}

]
Em−a,m

[
βem−b1l{τ+a >τ−a−b}

e−qτ−a−b

]
.

Then, by summing those three parts, we can write in view of (3.2)

C1
1 (s, s; b

′) =

∫ ∞

s
Es,s

[
e−qTb′ 1l{STb′

−X=b′,STb′
∈dm}

]
C0
1 (m− b′,m; b′)(3.4)

+

∫∫∫
D
Es,s

[
e−qTb′ 1l{STb′−

−XTb′−
∈dy,X−XTb′−

∈dh,STb′−
∈dm}

]
C0
1 (m− y + h,m; b′).
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Finally, it is known from Theorem 1 and 2 in [Pistorius, 2005] that

Es,s
[
e−qTb′ 1l{STb′

−X=b′,STb′
∈dm}

]
=
σ2

2

(
W

(q)′

0 (b′)

W
(q)
0 (b′)

−W
(q)′′

0 (b′)

)
exp

(
−(m− s)

W
(q)′

0 (b′)

W
(q)
0 (b′)

)
dm,

and

Es,s
[
e−qTb′ 1l{STb′−

−XTb′−
∈dy,X−XTb′−

∈dh,STb′−
∈dm}

]
= Π(dh)dydm

(
W

(q)′

0 (y)− (W
(q)′

0 (b′))2

W
(q)
0 (b′)

W
(q)
0 (y)

)
exp

(
−(m− s)

W
(q)′

0 (b′)

W
(q)
0 (b′)

)
.

Hence we have (3.3). �

Note that some condition is needed for the finiteness of C1
1 (s, s; b

′), and the following Remark shows it.

Remark 3.1. C1
1 (s, s; b

′) <∞ if and only if 1− W
(q)′
0 (b′)

W
(q)
0 (b′)

< 0.

Proof. By Proposition 3.1, we have

C0
1 (m− u,m; b′) =

(
e−a − e−u + βe−b

(
Z

(q)
1 (b− a)− Z

(q)
1 (b)

W
(q)
1 (b− a)

W
(q)
1 (b)

))
em

+
1

q

(
1− Z

(q)
1 (b− a)− (1− Z

(q)
1 (b))

W
(q)
1 (b− a)

W
(q)
1 (b)

)
, for m ≥ s and u ∈ [b′, b).

Hence, there are some positive constants M1,M2 <∞ with which we can write∫ ∞

s
dm exp

(
−(m− s)

W
(q)′

0 (b′)

W
(q)
0 (b′)

)
C0
1 (m− u,m; b′)

=

∫ ∞

s
dm

(
M1 exp

((
1− W

(q)′

0 (b′)

W
(q)
0 (b′)

)
m

)
+M2 exp

(
−mW

(q)′

0 (b′)

W
(q)
0 (b′)

))
, for u ∈ [b′, b),

and therefore, the integral above is finite if and only if 1 −W
(q)′

0 (b′)/W
(q)
0 (b′) < 0. Since y − h ∈ (b′, b) on E

and the other terms in (3.3) satisfy

σ2

2

(
(W

(q)′

0 (b′))2

W
(q)
0 (b′)

−W
(q)′′

0 (b′)

)
<∞, and

∫∫
E
Π(dh)dy

(
W

(q)′

0 (y)− W
(q)′

0 (b′)

W
(q)
0 (b′)

W
(q)
0 (y)

)
<∞ for b′ > 0,

we can say that C1
1 (s, s; b

′) <∞ if and only if 1−W
(q)′

0 (b′)/W
(q)
0 (b′) < 0. �

Finally, we calculate C2
1 (x, s; b

′) in the case that S0 −X0 ∈ (0, b′), by using Propositions 3.1 and 3.2.
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Proposition 3.3. If b′ > 0 and S0 −X0 ∈ (0, b′), then

C2
1 (x, s; b

′) =
σ2

2

(
W

(q)
0 (b′ − s+ x)− W

(q)′

0 (b′)

W
(q)
0 (b′)

W
(q)
0 (b′ − s+ x)

)
C0
1 (s− b′, s; b′)(3.5)

+

∫∫
E
Π(dh)dy

(
W

(q)
0 (b′ − s+ x)

W
(q)
0 (b′)

W
(q)
0 (y)−W

(q)
0 (y − s+ x)

)
C0
1 (s− y + h, s; b′)

+
W

(q)
0 (b− s+ x)

W
(q)
0 (b)

C1
1 (s, s; b

′).

Proof. In the case S0−X0 ∈ (0, b′), two scenarios are possible. One is that X reaches to s before PCA is applied,
and the other is that PCA applies before reaching s. Mathematically, this means that

C2
1 (x, s; b

′) = Ex,s

[
e−qτ+s−x1l{τ+s−x<τ−

s−x−b′}
C1
1 (s, s; b

′)

]
+Ex,s

[
e
−qτ−

s−x−b′ 1l{τ+s−x>τ−
s−x−b′}

C0
1 (Xτ−

s−x−b′
, Sτ−

s−x−b′
; b′)

]
= Ex,s

[
e−qτ+s−x1l{τ+s−x<τ−

s−x−b′}

]
C1
1 (s, s; b

′)

+Ex,s
[
e−qTb′ 1l{STb′

−X=b′,STb′
=s}

]
C0
1 (s− b′, s; b′)

+

∫∫
E
Es,s

[
e−qTb′ 1l{STb′−

−XTb′−
∈dy,X−XTb′−

∈dh,STb′−
=s}

]
C0
1 (s− y + h, s; b′).

From Theorem 1 and 2 in [Pistorius, 2007] again, we have

Ex,s
[
e−qTb′ 1l{STb′

−X=b′,STb′
=s}

]
=
σ2

2

(
W

(q)
0 (b′ − s+ x)− W

(q)′

0 (b′)

W
(q)
0 (b′)

W
(q)
0 (b′ − s+ x)

)
,

and

Es,s
[
e−qTb′ 1l{STb′−

−XTb′−
∈dy,X−XTb′−

∈dh,STb′−
=s}

]
= Π(dh)dy

(
W

(q)
0 (b′ − s+ x)

W
(q)
0 (b′)

W
(q)
0 (y)−W

(q)
0 (y − s+ x)

)
.

Hence we have (3.5). �

Now we have all three parts of C1.

4. EXAMPLES

4.1. A Numerical Example. In this section, we analyze a specific example. We assume that Xi = {Xi
t ; t ≥

0}(i = 0, 1) are Brownian motions with drift and exponentially distributed jumps;

(4.1) Xi
t = µit+ σiB

i
t −

N i
t∑

j=1

ϵij , i = 0, 1,
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where µi ≥ 0, σi > 0, and ϵi are i.i.d. random variables which are exponentially distributed with parameter ρi > 0.
In addition,N i := {N i

t ; t ≥ 0}(i = 0, 1) are independent Poisson processes with corresponding intensities ci > 0.
Before solving the problem, we introduce the explicit representation of the scale function for the process. The
Laplace exponent ψ of X has the following simple form;

ψ(λ) =
σ2

2
λ2 + µλ− cλ

ρ+ λ
, λ ≥ 0.

The equation ψ(λ) = q (q > 0) has three real solutions {Φ(q), α, β} (Φ(q) > α > β), and the q-scale function
W (q) of X is given by

(4.2) W (q)(x) =
eΦ(q)x

ψ′(Φ(q))
+

eαx

ψ′(α)
+

eβx

ψ′(β)
.

Let ψi, i = 0, 1 be defined by

ψi(λ) =
σ2i
2
λ2 + µiλ− ciλ

ρi + λ
, λ ≥ 0.

Let us emphasize here that the cost function C(x, s; b′) in equation (3.2) consists of three kinds; (1) initial cost
of a PCA, (2) running cost, and (3) penalty in case that the bank fails. Figure 1 shows the graph of C1(0, 0; b

′)

with parameters X0 = S0 = 0, b = 1, a = 0.3, q = 0.1, α = β = 1, µ0 = 0.2, σ0 = 0.2, µ1 = 0.1, σ1 = 0.1,
c0 = c1 = 1, and ρ0 = ρ1 = 10. Note that the assigned value of b = 1 may not be realistic; b = 1 means that
the bank uses e−1 = 0.3679 as its leverage ratio (= Debt/Total Asset) during the normal business period. This
may be too restrictive for the banks. Nevertheless, we use this number since the function values are too sensitive
to conduct comparative statics analysis if we use more realistic values such as b = − log 0.8. Note also that, in the
next subsection, we shall use realistic parameter values derived from empirical data.

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
b'0
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3

4

CH0,0,b'L

FIGURE 1. Graph of the value of cost function C1(0, 0; b
′) against various values of b′.

The parameters are X0 = S0 = 0, b = 1, a = 0.3, q = 0.1, α = β = 1, µ0 = 0.2, µ1 =

0.1, σ0 = 0.2, σ1 = 0.1, c0 = c1 = 1 and ρ0 = ρ1 = 10. The cost is minimized at
b′ = 0.5201.

In Figure 1, when we fix a at 0.3, we obtain b∗ = 0.5201 as the optimal PCA trigger level at which C1(0, 0; b
′)

is minimized, and the corresponding cost is C1(0, 0; b
∗) = 2.921. As indicated in Remark 3.1, at b′ = 0.6672,

we have W (q)′

0 (b′)/W
(q)
0 (b′) = 1 and C1(0, 0; b

′) diverges to infinity on b′ > 0.6672. This can be interpreted as
follows: with a large b′, since it is not likely that the PCA is initiated at an early stage, X shall be at very high
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level when the PCA is indeed applied, and therefore, the initial cost part and the penalty part become too large.
This result suggests that one should make a discrete choice of PCA trigger level in order to prevent the bank from
becoming too costly to rescue. On the other hand, the cost is relatively high when b′ is near to a. It is because, in
this situation, the PCA may be applied too early so that the running cost to be incurred would become large.

Comparative Statics
We conduct the following comparative statics.

4.1.1. Drift and volatility: First, we change the values of σ1 = 0.1, 0.2, 0.4 and µ1 = 0.1, 0.2, 0.4 (while the
other parameters remain the same). Recall that σ1 and µ1 are the drift and volatility parameters while the PCA is in
place. These parameters affect the cost in various ways after a PCA starts. For instance, once a PCA is initiated, the
bank manages assets with these new drift and volatility parameters and may reach the level of S (at which the bank
recovers from the PCA) or S − b (at which the bank fails and the economy shall lose a large amount), whichever
comes first. The final penalty to be paid at the failure depends on the size of the insolvent bank. An important thing
is that the size of the bank (i.e., the level S) will still fluctuate during the PCA period and is influenced by these µ1
and σ1.

Figure 2 (i) and (ii) show some results. These graphs show that a higher σ1 and a higher µ1 would lead to smaller
optimal values of b∗ (that is, PCA starts earlier) and the associated total cost C1(0, 0; b

∗) becomes smaller. With a
larger σ1, the time to reach either S or S− b shall become smaller and hence the running cost shall be smaller. The
reason for the early PCA with a higher σ1 is not so simple since there are several factors involved. Nevertheless,
it could be interpreted this way: since higher volatility may increase the danger of becoming insolvent and ending
up paying penalty (i.e., reaching S − b earlier rather than S), it would be safer to start the PCA earlier in the hope
that the bank would not become too large.
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(i) comparative statics with various σ1.
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(ii) comparative statics with various µ1

FIGURE 2. The plot on the left (i) shows the effects of volatility parameters during the
PCA period: σ1 = 0.1, 0.2, 0.4 from top to bottom. With greater asset volatility, the
total cost becomes smaller and PCA’s should be initiated earlier. The plot on the right
(ii) shows the effects of drift parameters during the PCA period: µ1 = 0.1, 0.2, 0.4 from
top to bottom. With greater asset growth rate, the total cost becomes smaller and PCA’s
should be initiated earlier.
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We obtain a similar result when µ1 becomes larger. That is, the total cost shall be smaller and the starting time
of the PCA becomes earlier. To interpret this properly, we need to bear in mind the two things. One is that a higher
µ1 implies that X1 is more likely to reach S earlier than S − b, and the other is that no matter when and where
the PCA is initiated, X is always raised to the same level S − a. It follows that (1) when µ1 is large, by initiating
the PCA earlier, one can save on the cost of initial cash injection, and (2) greater possibility to come back to the
normal leverage ratio (i.e., reaching S) means that it is less likely to pay the penalty (in the event of insolvency).
From this analysis, while the conclusion may become different with different sets of parameters, we should note
that more conservative risk-return profile (after PCA starts), that is a small µ1 with a small σ1, does not necessarily
make the total cost associated with PCA’s smaller if we take the duration of a PCA period and the probability of
recovery into account.

4.1.2. Frequency and average jump size: Figure 3 (i) and (ii) show the results with different jump size parameters
ρ1 = 10, 15, 20 and intensities c1 = 1, 23 , 0.5. Recall that the average jump size is given by 1/ρ1. We have to keep
in mind that ρ1 affects the distribution of overshooting the boundaries S − b′ or S − b.
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(i) comparative statics with various ρ1
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(ii) comparative statics with various c1

FIGURE 3. The plot on the left (i) shows the effect of jump size parameters during the
PCA period: ρ1 = 10, 15, 20 from top to bottom. With smaller average jump size (1/ρ1),
the total cost becomes smaller but PCA trigger level does not change monotonically. The
plot on the right (ii) shows the effect of jump frequency parameters during the PCA pe-
riod: c1 = 1, 0.6667, 0.5 from top to bottom. With lower jump frequency rate, the total
costs becomes smaller and PCA’s should be inititated earlier.

When ρ1 = 10, 15, 20, we obtained the optimal thresholds b∗ = 0.5201, 0.5252, 0.5193, respectively, which
do not monotonously decrease as ρ1 increases. This result indicates that, when ρ1 = 10, PCA’s should be started
earlier than in the case ρ1 = 15. With the smaller ρ1 (i.e., larger average jump size), it is more likely that X1 will
reach S − b before reaching S, so there may be greater motivation to start the PCA earlier and to make possible
penalty payment smaller (by avoiding the bank becoming too large). Note that this is similar to the effects of larger
σ1’s on the level of b∗. On the other hand, the optimal threshold b∗ in the case ρ1 = 20 is also smaller than that
in the case of ρ1 = 15. This is because, with the higher ρ1 (i.e., smaller average jump size), X1 is more likely to
come back to S rather than being absorbed to S − b, and hence one does not have to worry too much about the
penalty payable at insolvency. In this case, it would be more important to lower the initial cost by initiating the
PCA earlier.
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As for the cases c1 = 1, 23 and 0.5, the values are b∗ = 0.5201, 0.5184 and 0.5129, respectively. When the jump
intensity increases, b∗ becomes larger. This may be explained as follows: c1 does not affect overshoot size at the
timeX1 reaches S−b. Hence c1 has smaller effect on the initial and penalty costs than the average jump size 1/ρ1
does, so even when c1 becomes larger, there is relatively small incentive to have a earlier PCA (in order to prevent
the bank from becoming too large). Thus, a small c1 seems to have a similar effect to a large µ1.

4.1.3. The existence of jumps: We consider the Brownian motion with drift Zt := ut + σBt with σ = 0.2 = σ0.
We set u = µ0 − c0

ρ0
= 0.1, so that Z’s drift u is the same as the overall drift of X . For simplicity, we set µ1 = µ0,

σ1 = σ0, c1 = c0 and ρ1 = ρ0. The result is shown in Figure 4, where we see that the minimizer b∗ for the original
model is 0.441, while the one for the no-jump model is 0.459. The corresponding minimum costs are 1.44250 and
1.19319, respectively. Hence the existence of jumps has significant impact on the total cost. When jumps exist,
PCA’s should be started earlier. Even by doing so, we have to pay a larger amount of cost due to the possibility of
overshooting the boundary. In practical terms, the bank should have a well-diversified portfolio because impacts of
defaults in its lending portfolio on the asset value would be small and hence it can reduce the possibility of sizable
overshooting.
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FIGURE 4. Graphs of C1(0, 0; b
′) of no jump (solid) and with jumps (dashed). While we

set the same overall drifts, the cost is greater and the PCA starts earlier in the jump model.
The minimizer b∗ for the dashed graph is given at 0.441, while the one for the solid graph
is given at 0.459.

4.1.4. The asset position upon cash infusion: We change levels of a to which the asset value is raised upon cash
infusion. Table 1 shows b∗ andC1(0, 0; b

∗) with a = 0.1, 0.2, . . . , 0.6, and Figure 5 shows the graphs ofC1(0, 0; b
′)

with a = 0.1, 0.3, and 0.5. It may be appropriate to analyze the difference b∗ − a, rather than the values of b∗

themselves, since b∗ − a is concerned with the amount of cash infusion (i.e., initial cost). When the value of a is
small, the bank’s leverage ratio significantly improves. That is, XTb∗ (after receiving public funds) gets closer to
ST ∗

b
. In this case, the bank has a better chance to come back to the normal leverage ratio successfully. This fact

justifies the large initial payment (i.e., the large value of b∗ − a as shown in Table 1).
On the other hand, the cost C1(0, 0; b

∗) does not change monotonically. According to the table, around a = 0.4,
the cost has a local maximum. One of interesting results is that when a = 0.6, b∗ is a boundary solution 0.6.
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This means that if X continuously crosses the level S − b′, the PCA is indeed applied, but there would be no cash
infusion.

a 0.1 0.2 0.3 0.4 0.5 0.6
b∗ 0.3918 0.4841 0.5201 0.5410 0.5544 0.6

b∗ − a 0.2918 0.2841 0.2201 0.1410 0.0544 0
C1(0, 0; b

∗) 1.887 2.591 2.921 3.027 2.977 2.939

TABLE 1. Changes of b∗ and C1(0, 0; b
∗) for different a’s. The minimum cost is attained

at a = 0.1 with the corresponding b∗ = 0.3918, while the worst cost is attained at a = 0.4

with the corresponding b∗ = 0.5410.
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FIGURE 5. Graphs of C1(0, 0; b
′) with a = 0.1 (red), 0.3 (solid), 0.5 (dashed). A graphi-

cal illustration of Table 1.

4.2. Another Example with Realistic Parameters. In this section, we provide another example with more real-
istic set of parameters.

4.2.1. Assumption: To simplify the exposition and parameter estimation, we assume that X0 and X1 have no
jumps and the Laplace exponents ψ0 and ψ1 are identical: that is, the parameters related to the dynamics of X do
not change before and after PCA’s are applied. The “no jump” assumption is justifiable when the size of the bank
is very large and its asset is well diversified: losses caused by defaults in its credit portfolio should be small relative
to the total asset size. Under these assumptions, the process X is Brownian motion with drift, and accordingly,
the asset price process V = (eX)t∈R is geometric Brownian motion. Since ψ0 = ψ1, we will omit the subscripts
on the parameters in this section. As for the other parameters, we set a = 0.05, b = 0.1054, α = 0.05V0,
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and β = 1. The choice of b = 0.1054 is because the operating leverage ratios e−b of the major U.S. banks lie
around 0.9 (i.e., b = − log 0.9). For example, according to the data from Captal IQ via Yahoo Finance on the
web (http://finance.yahoo.com/q/ks?s=JPM+Key+Statistics), J.P. Morgan Chase (JPM) has ROE 7.40% and ROA
0.65% as of December 2013, which give (Asset)/(Equity)= 11.38 and hence the leverage ratio (Debt)/(Asset) is
0.89. This number is almost identical across the major banks: Bank of America (BAC), Wells Fargo (WFC), and
Citigroup (C). Our assumption of α = 0.05V0 means that the running cost (of PCA’s) increases at the rate of 5%
of the asset value per unit time. This assumption seems to be natural since the administration cost of banks under
the PCA provisions depends on the size of the bank.

4.2.2. Parameter estimations: We need to estimate the drift µ and volatility σ of the bank asset. Since the market
value of the asset is not observable, we use the option-theoretic approach: corporate equity can be seen as a
contingent claim (call option) written on the asset (see [Black and Scholes, 1973], [Merton, 1974] and the list
of papers on page 27 in [Bielecki and Rutkowski, 2002]). Moody’s KMV offers default probabilities estimation
based on this approach. By viewing the equity as a call option on the asset with the strike price being the future
notional value of the bank’s debt, [Duan, 1994], [Duan, 2000] and [Lehar, 2005] provide the maximum likelihood
estimation of µ and σ of unobservable asset values. We use JP Morgan’s equity price on a weekly basis taken
from Thomson Reuter’s Datastream and its year-end debt amounts from the annual reports. For the debt amounts,
we follow Moody’s KMV and use the bank’s short-term debt amount plus a half of its long-term debt. Since the
bank’s µ and σ may fluctuate over time, we split the data period (January 2006- December 2013) into four blocks;
(1) Jan. 2006- Dec. 2007, (2) Jan. 2008- Dec. 2009, (3) Jan. 2010- Dec. 2011, and (4) Jan. 2012- Dec. 2013.
Table 2 summarizes some of the data and parameters. We estimated µ, σ, and V0, the last being the asset value
at the beginning of each sub-period. It is interesting to observe that the parameters µ and σ have become much
smaller after the financial crisis.

2006-2007 2008-2009 2010-2011 2012-2013

Equity 148,567 161,156 130,936 219,190
Debt 1,223,360 1,566,970 1,684,960 1,826,460
µ 0.002781 0.002086 0.0003978 0.001180
σ 0.02925 0.04975 0.009950 0.006575
V0 1,299,890 1,449,900 1,804,570 2,045,390

x = log V0 14.08 14.19 14.41 14.53

TABLE 2. The estimated parameters of JP Morgan Chase. The units are in millions except
µ and σ, which are the bank asset’s drift and volatility over the weekly intervals. We used
q = 0.001 for a weekly discount rate.

4.2.3. Results: We compute the total cost and optimal threshold level b∗ of initiating a PCA. Figure 6 (i) shows
the graph of C1(x, x; b

′) for the period of 2012-2013. The minimal cost is C1(x, x; b
∗) = 1, 469, 060 millions and

obtained at b∗ = 0.09457, which is one-tenth of b = 0.9. It is advisable to start a PCA promptly since if we wait



AN EXCURSION-THEORETIC APPROACH TO REGULATOR’S BANK REORGANIZATION PROBLEM 17

until b′ ≃ 0.1, the bank would become too large and the cost associated with the PCA might become extraordinary.
Interestingly, b∗ is independent of the initial value x, and C1(x, x; b

∗) is proportionate to ex. These facts stem from
our assumption about α. With different setting on α, we may obtain different results, but setting α as a specific
rate of the asset value seems to be natural. See Remark 4.1 below for a proof of this matter.

It is instructive to compare with the period that just preceded the financial crisis of 2008. Figure 6 (ii) shows
the graph of C1(x, x; b

′) of the period of 2006-2007. The cost C1(x, x; b
′) is minimized at b∗ = a = 0.05, which

is 5.5% of b = 0.9. The associated cost is C1(x, x; b
∗) = 688, 187 millions. As indicated in Table 2, the volatility

level was much higher, around 0.02925 ∼ 0.04975. Hence a PCA should be (or should have been) implemented
very early before the bank becomes too large. See Subsection 4.1.1. We have illustrated so far that, by using the
real data, one may obtain useful information about when to start a PCA with a view to maintaining soundness of
the financial system.
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FIGURE 6. The left (i) is the total cost function C1(0, 0; b
′) based on the the estimated

drift and volatility parameters µ = 0.001180 and σ = 0.006575 over the weekly intervals
during the 2012-2013 period. The optimal level is b∗ = 0.09457. The right (ii) is the total
cost function based on the the estimated drift and volatility parameters µ = 0.002781 and
σ = 0.02925 over the weekly intervals during the 2006-2007 period. The optimal level is
b∗ = 0.05.

[Zhang and Hadjiliadis, 2012] provide the following interesting quantity (in terms of Laplace transform). Let
us first define

J := sup{t ∈ [0, Tb∗ ] : St = Xt}

which is the last time of the maximum is visited before time Tb∗ . Now the difference between between J and Tb∗
measures how much time is left until a PCA should be started after the bank attains its peak asset level:

S := Tb∗ − J

which is called the speed of market crash in [Zhang and Hadjiliadis, 2012]. The Laplace transform of S given in
the paper is

(4.3) Ex[e−λS |STb∗ =M ] =
B

A
· sinh(A · b∗)
sinh(B · b∗)

,



18 M. EGAMI AND T. ORYU

where

A :=
µ

σ2
and B :=

√
A2 +

2λ

σ2
,

and the Laplace transform is independent of the value of M in the Brownian case.
In Figure 7, we plot the density of S in the period of 2012-2013 and in the period of 2006-2007. To obtain the

density, we convert the Laplace transform (4.3) by the method proposed by Zakian (see [Halsted and Brown, 1972]).
For comparison purposes, we fix b′ at 0.09 and see the effect of differences in µ and σ on the speed of excursion
S − X to reach the same level. During the period of 2012-2013, µ and σ are relatively small (see Table 2). The
time for the excursion S −X to reach 0.09 is in the range of 0 ∼ 100 weeks. On the other hand, during the period
of 2006-2007, µ and σ are estimated to be relatively large and the time for the excursion to reach the same level is
in the range of 0 ∼ 10 weeks. This kind of information is quite useful because it is important to estimate how fast
the bank would be in trouble and to avoid situations of being too late.

0 50 100 150 200 250 300
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(i)2012-2013

0 5 10 15 20 25 30
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0.3

0.35

(ii)2006-2007

FIGURE 7. We compute the density of the time S of excursion reaching a certain level
(b′ = 0.09). By comparing (i) and (ii) we see that the difference of µ and σ of the asset
value process makes a striking impact on S .

Remark 4.1. We show that b∗ is independent of x when we set α = 0.05V0. To use Proposition 3.2, we first
compute C0

1 (·, ·; b′) by using Proposition 3.1. Indeed, we have, for y ≥ b′,

C0
1 (s− y, s; b′) = es

(
e−a − e−y +

0.05

q

(
1− Z

(q)
1 (b− a)− (1− Z

(q)
1 (b))

W
(q)
1 (b− a)

W
(q)
1 (b)

)

+βe−b

(
Z

(q)
1 (b− a)− Z

(q)
1 (b)

W
(q)
1 (b− a)

W
(q)
1 (b)

))
.
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Hence we have (see (3.3))∫ ∞

s
dm exp

(
−(m− s)

W
(q)′

0 (b′)

W
(q)
0 (b′)

)
C0
1 (m− b′,m; b′)

= exp

(
sW

(q)′

0 (b′)

W
(q)
0 (b′)

)∫ ∞

s
dm exp

((
1− W

(q)′

0 (b′)

W
(q)
0 (b′)

)
m

)

×

(
e−a − e−b′ +

0.05

q

(
1− Z

(q)
1 (b− a)− (1− Z

(q)
1 (b))

W
(q)
1 (b− a)

W
(q)
1 (b)

)

+βe−b

(
Z

(q)
1 (b− a)− Z

(q)
1 (b)

W
(q)
1 (b− a)

W
(q)
1 (b)

))

= es

(
1− W

(q)′

0 (b′)

W
(q)
0 (b′)

)−1(
e−a − e−b′ +

0.05

q

(
1− Z

(q)
1 (b− a)− (1− Z

(q)
1 (b))

W
(q)
1 (b− a)

W
(q)
1 (b)

)

+βe−b

(
Z

(q)
1 (b− a)− Z

(q)
1 (b)

W
(q)
1 (b− a)

W
(q)
1 (b)

))
,

which shows that in case of x = s, this term is in the form of ex · g1(b′) where g1 is a function on R+ independent

of x. Moreover, the term
∫∞
s dm exp

(
−(m− s)

W
(q)′
0 (b′)

W
(q)
0 (b′)

)
C0
1 (m − y + h,m; b′) on the set E in (3.3) can be

separated in the same way. Hence we can represent C1
1 (x, x; b

′) by

C1(x, x; b
′) = exG(b′),

where the function G : R+ 7→ R is independent of x. This shows the independence of b∗ from x.

5. EXTENSION TO MULTIPLE PCA’S

We considered so far that the PCA is applied only once and calculated the cost associated with it. However,
after the bank recovers its leverage ratio to e−b thanks to a PCA, it can be under the regulator’s control again when
the leverage ratio deteriorates to eb

′−b or worse (S −X ≥ b′). Now we incorporate the possibility that PCA’s are
repeatedly applied until the bank becomes finally insolvent. With the method we shall provide here, while it is not
of an explicit form, one can recursively calculate the cost for multiple PCA’s. For a mathematical representation,
we redefine the process I by

I(t) = 1l{τ1≤t<τ2} + 1l{τ3≤t<τ4} + · · ·+ 1l{τ2n−1≤t<τ2n} + · · · , t ∈ R+

where τn, n = 1, 2, . . . are F-stopping times defined recursively by τ1 = Tb′ ,

τ2n = τ2n−1 + (τ+a ∧ τ−a−b) ◦ θτ2n−1 ,

τ2n+1 = τ2n + Tb′ ◦ θτ2n ,

and (θt)t∈R+ is shift-operator. This definition means that the bank goes through the nth PCA at time τ2n−1, and
recovers or becomes insolvent at time τ2n.

Additionally, we need the asset values at time τ2n−1 before pushed up, so in the same way as Section 3, we
define Xn = Xτ2n−1 for n = 1, 2, . . . and then, redefine Xτ2n−1 = Sτ2n−1 − a.
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Then the cost Cn(x, s; b
′) for the nth PCA can be represented by

Cn(x, s, b
′) = Ex,s

[
1lAn

(
e−qτ2n−1

(
eSτ2n−1−a − eXn

)
+ α

∫ τ2n

τ2n−1

e−qtdt

+e−qτ2n
(
βeSτ2n−1−b

)
1l{τ+a ◦θτ2n−1>τ−a−b◦θτ2n−1}

)]
,

where An is the event in which the bank is under regulator’s strict supervision more than n times until insolvency;
that is, An can be written by A1 = Ω and An =

∩n−1
k=1{τ+a ◦ θτ2k−1

< τ−a−b ◦ θτ2k−1
} for n = 2, 3, . . ., and the total

cost C(x, s, b′) is given by

C(x, s; b′) =

∞∑
n=1

Cn(x, s; b
′).

Proposition 5.1. If S0 = X0 = s, then

Cn+1(s, s; b
′) =

W
(q)
1 (b− a)

W
(q)
1 (b)

∫ ∞

s
dm exp

(
−(m− s)

W
(q)′

0 (b′)

W
(q)
0 (b′)

)
Cn(m,m; b′)

(5.1)

×

(
σ2

2

(
(W

(q)′

0 (b′))2

W
(q)
0 (b′)

−W
(q)′′

0 (b′)

)
+

∫∫
E
Π(dh)dy

(
W

(q)′

0 (y)− W
(q)′

0 (b′)

W
(q)
0 (b′)

W
(q)
0 (y)

))
,

for n = 1, 2, . . . .

Proof. The first-time PCA ends at time t = τ2. Since X1 only have negative jumps by definition, we have
Sτ2 = STb′ . Hence

Cn+1(s, s; b
′) = Es,s

[
e−qτ21lA2Cn(Sτ2 , Sτ2 ; b

′)
]

= Es,s
[
e−qTb′Cn(STb′ , STb′ ; b

′)
(
e−q(τ+a ∧τ−a−b)1l{τ+a <τ−a−b}

)
◦ θT ′

b

]
= Es,s

[
e−qTb′Cn(STb′ , STb′ ; b

′)
]
Es,s

[(
e−q(τ+a ∧τ−a−b)1l{τ+a <τ−a−b}

)
◦ θT ′

b

∣∣∣FT ′
b

]
= Es−a,s

[
e−q(τ+a ∧τ−a−b)1l{τ+a <τ−a−b}

](∫ ∞

s
Es,s

[
e−qTb′ 1l{STb′

−X=b′,STb′
∈dm}

]
C1(m,m; b′)

+

∫∫∫
D
Es,s

[
e−qTb′ 1l{STb′−

−XTb′−
∈dy,X−XTb′−

∈dh,STb′−
∈dm}

]
C1(m,m; b′)

)
.

From Theorem 1 and 2 in [Pistorius, 2007], we have (5.1). �

As for the finiteness of Cn(s, s; b
′), the following remark can be shown in the same way as Remark 3.1.

Remark 5.1. If Cn(m,m; b′) < ∞ for m ∈ [s,∞), then Cn+1(s, s; b
′) < ∞. Hence by Remark 3.1, if 1 −

W
(q)′

0 (b′)/W
(q)
0 (b′) < 0, then Cn(s, s; b

′) <∞ for every n ≥ 1.

Since we already calculated C1 in the previous subsection, Cn is obtained by repeatedly using this proposition
when S0 = X0. The following two propositions are for the other cases; S0 −X0 ≥ b′ and S0 −X0 ∈ (0, b′). We
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skip the proofs here since the essential techniques used are the same as in the propositions above. Note that the
results of Proposition 5.1 and Proposition 5.2 are needed for the calculation in Proposition 5.3.

Proposition 5.2. If S0 −X0 ≥ b′, then

Cn+1(x, s; b
′) =

W
(q)
1 (b− a)

W
(q)
1 (b)

Cn(s, s; b
′).(5.2)

Proposition 5.3. If S0 −X0 ∈ (0, b′), then

Cn(x, s; b
′) =

σ2

2

(
W

(q)
0 (b′ − s+ x)− W

(q)′

0 (b′)

W
(q)
0 (b′)

W
(q)
0 (b′ − s+ x)

)
Cn(s− b′, s; b′)(5.3)

+

∫∫
E
Π(dh)dy

(
W

(q)
0 (b′ − s+ x)

W
(q)
0 (b′)

W
(q)
0 (y)−W

(q)
0 (y − s+ x)

)
Cn(s− y + h, s; b′)

+
W

(q)
0 (b− s+ x)

W
(q)
0 (b)

Cn(s, s; b
′).

where Cn(·, ·; b′)’s on the right-hand side can be computed by Propositions 5.1 and 5.2.

6. APPENDIX

6.1. Scale functions. Associated with every spectrally negative Lévy process, there exists a (q-)scale function

W (q) : R 7→ R; q ≥ 0,

that is continuous and strictly increasing on [0,∞) and is uniquely determined by∫ ∞

0
e−βxW (q)(x)dx =

1

ψ(β)− q
, β > Φ(q).

where

Φ(q) = sup {λ > 0 : ψ(λ) = q} , q ≥ 0.

Fix a > x > 0. If τ+a is the first time the process goes above a and τ0 is the first time it goes below zero, then
we have

Ex
[
e−qτ+a 1{τ+a <τ0, τ

+
a <∞}

]
=
W (q)(x)

W (q)(a)
and Ex

[
e−qτ01{τ+a >τ0, τ0<∞}

]
= Z(q)(x)− Z(q)(a)

W (q)(x)

W (q)(a)
,

(6.1)

where

Z(q)(x) := 1 + q

∫ x

0
W (q)(y)dy, x ∈ R.

Here we have

(6.2) W (q)(x) = 0 on (−∞, 0) and Z(q)(x) = 1 on (−∞, 0].

We also have

Ex
[
e−qτ0

]
= Z(q)(x)− q

Φ(q)
W (q)(x), x > 0.(6.3)



22 M. EGAMI AND T. ORYU

In particular, W (q) is continuously differentiable on (0,∞) if Π does not have atoms and W (q) is twice-
differentiable on (0,∞) if σ > 0; see, e.g., [Chan et al., 2011].

Fix q > 0. The scale function increases exponentially;

W (q)(x) ∼ eΦ(q)x

ψ′(Φ(q))
as x ↑ ∞.(6.4)

There exists a (scaled) version of the scale function WΦ(q) = {WΦ(q)(x);x ∈ R} that satisfies

WΦ(q)(x) = e−Φ(q)xW (q)(x), x ∈ R(6.5)

and ∫ ∞

0
e−βxWΦ(q)(x)dx =

1

ψ(β +Φ(q))− q
, β > 0.

Moreover WΦ(q)(x) is increasing, and as is clear from (6.4),

WΦ(q)(x) ↑
1

ψ′(Φ(q))
as x ↑ ∞.(6.6)

Regarding its behavior in the neighborhood of zero, it is known that

W (q)(0) =

{
0, unbounded variation
1
d , bounded variation

}
and W (q)′(0+) =


2
σ2 , σ > 0

∞, σ = 0 and Π(0,∞) = ∞
q+Π(0,∞)

d2
, compound Poisson


(6.7)

where d := µ−
∫
(−1,0) xΠ(dx) and Π(·) is the Lévy measure as in (2.1). See Lemmas 4.3-4.4 of [Kyprianou and Surya, 2007].
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trally negative Lévy processes. Sixth Seminar on Stochastic Analysis, Random Fields and Applications, eds R. Dalang, M.
Dozzi, F. Russo. Progress in Probability, Birkhuser.

[Kocherlakota and Shim, 2009] Kocherlakota, N. R. and Shim, I. (2009). Forbearance and prompt corrective action. Journal
of Money, Credit and Banking, 39:1107–1129.

[Kyprianou, 2006] Kyprianou, A. E. (2006). Introductory lectures on fluctuations of Lévy processes with applications. Uni-
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