
A Continuous-Time Search Model with Job Switch and Jumps

Masahiko Egami∗ Mingxin Xu†

Abstract

We study a new search problem in continuous time. In the traditional approach, the basic formulation
is to maximize the expected (discounted) return obtained by taking a job, net of search cost incurred
until the job is taken. Implicitly assumed in the traditional modeling is that the agent has no job
at all during the search period or her decision on a new job is independent of the job situation she
is currently engaged in. In contrast, we incorporate the fact that the agent has a job currently and
starts searching a new job. Hence we can handle more realistic situation of the search problem.
We provide optimal decision rules as to both quitting the current job and taking a new job as well
as explicit solutions and proofs of optimality. Further, we extend to a situation where the agent’s
current job satisfaction may be affected by sudden downward jumps (e.g. de-motivating events),
where we also find an explicit solution; it is rather a rare case that one finds explicit solutions in
control problems using a jump diffusion.
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1 Introduction

In this paper a continuous-time search problem is discussed in which offers of random size are received randomly
over time. This work is positioned in the vein of research papers by Lippman and McCall [14], Zuckerman
[21, 22, 23], and Stadje [20]. In these papers, the case of a Poisson-model offer is analyzed and subsequently the
results are generalized to the case where the arrival times form a renewal process. In a typical setting, the problem
is written as

gT = E

[
e−αT Y (T )−

∫ T

0

ce−αtdt

]

to find the stopping time T that maximizes the right hand side with Y (t) being the stochastic process interpreted
as the highest offer received up to time t. Stadje [20] extended to the case where the rate of arrivals and search
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cost are both time-dependent. Further extensions of the studies of this problem are Boshuizen and Gouweleeuw
[4, 5, 6]. Boshuizen and Gouweleeuw [4] study optimal stopping problems for semi-Markov processes. In the
context of job search problems, this setting allows interarrival times of job offers to be transition-dependent. In
other words, the time until the next offer arrives depends on the highest offer that the agent has obtained up to now.
In [5], the semi-Markov model is treated as a special case of multivariate point processes. Using the results from
the preceding papers, the search problems are fully discussed in [6] where they provide, under general interarrival
time distributions (in a finite and an infinite time horizon), the recursive (dynamic programming) formulae for the
value function and the characterization of optimal strategies. Hence the main results obtained by Zuckerman in
[22, 23] are reproduced as special cases. These studies are, among other things, in the direction of generalizing
the structure of interarrival times and of deriving appropriate dynamic programming equations for the solution.
The basic formulation is to maximize the expected (discounted) return obtained by taking a job, net of search cost
incurred until the job is taken. Implicitly assumed is that the agent has no job at all during the search period or her
decision on a new job is independent of the current job situation.

We extend the search problems to some other directions in this paper. The agent has a job and considers a new
job (by quitting the current one.) Our model discussed in this paper allows the agent to start searching for a new
job while she is being employed. Hence the agent shall determine when to quit the current job and when to take
a new job offer. We model the state of a current job by a one-dimensional diffusion and formulate an optimal
stopping problem where the decision variables are both the time of quitting the current job and the time of taking
a new offer. We assume that the interarrival times are exponentially distributed and attempt to obtain explicit form
solutions. After we describe the model, we solve a restricted case where search can start only after the agent quits
her current job (Section 2.1). Second, we relax this constraint so that the agent can start job search while she
is being employed (Section 2.2). Third, an extension is attempted to the case where the state of a current job is
described by a jump diffusion (Section 3). Stochastic jumps represent sudden deterioration of job environments.
In each problem, we provide an optimal search rule, its proof and explicit solutions. The first two cases are solved
in a quite general setting. In the jump diffusion setting, we apply a method with which we directly identify the
value function and, thereby, are able to significantly facilitate the process of finding the optimal solutions.

This paper adds some new material to the literature of search problem. Other directions of the search problem in
the recent literature include Nakai [16] that studies in a partially observable Markov chain setting, and Collins and
McNamara [9] where a “secretary problem” is analyzed under competition in an infinite population of candidates
and an infinite population of posts of diverse value.

2 Model

Let (Ω,F ,P) be a complete probability space with a standard Brownian motion B = {Bt : t ≥ 0} and a Poisson
Process N = {Nt : t ≥ 0} independent of B. Let us consider the diffusion process X = {Xt : t ≥ 0} in the
following form:

dXt = µ(Xt)dt + σ(Xt)dBt, X0 = x, (2.1)

with state space I ⊆ R, which is assumed to be an interval with endpoints −∞ ≤ a < b ≤ ∞. The drift and
diffusion coefficients µ(·) : I → R and σ : I → (0,∞) are some Borel functions and we assume (2.1) has weak
solution with unique probability law, which is guaranteed, for example, if

∀x ∈ int(I),∃ε > 0 such that
∫

(x−ε,x+ε)

1 + |µ(y)|
σ2(y)

dy < ∞.
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See Section 5.5 of Karatzas and Shreve [12]. We also assume that X is regular, that is, X reaches, from any
x ∈ (a, b), another point y ∈ I with positive probability. Let α ≥ 0 be a real constant and f(·) be a continuous
function that satisfies

Ex

[∫ ∞

0

e−αs|f(Xs)|ds

]
< ∞. (2.2)

Let Y = {Yt1 , Yt2 ....} be the sequence of independently and identically distributed positive random variables
observable at time t1, t2, ... from the common distribution G with finite mean E(Y ) < ∞ and independent of
Brownian motion B. The arrivals of these random variables Y ’s follow an independent Poisson process N =
{N(t) : t ≥ 0} with rate λ > 0. We assume that there is no offer available at time 0. That is, N(0) = 0. We
denote by F = {Ft}t≥0 the filtration generated by X and Y . We write Yt as the value that the agent observes when
it appears at time t and the agent cannot hold the offers. Since Y is available only at the times of Poisson arrivals,
it is quite natural to consider the following optimal stopping problems:

The first problem (P1): Consider the following functional

v(x) := sup
ζ,τ∈S1

Ex

[∫ ζ

0

e−αsf(Xs)ds + e−αζk(Xζ)−
∫ τ

ζ

ce−αsds + e−ατYτ

]
, (2.3)

where S1 is the set of admissible F-stopping times. In our first problem, the set S1 is of the form:

S1 := {ζ < τ : ζ, τ ∈ S} (2.4)

where we denote by S all the F-stopping times. k : R→ R is the terminal payoff function incurred at time ζ. The
constant c > 0 is the rate of search cost.

We can view the process X as the state of the current job. It is possible to view f(·) as a utility function. The
agent obtains monetary value and/or satisfaction level f(Xt) that arises from her current job at time t. Since the
agent will be offered other job opportunities in the market, she always has an option to quit the job at time ζ and
switch to another one, at time τ , whose wage is expressed by Yτ . However, in this setting, she starts searching
only after she quits the incumbent. At time ζ, she receives or pays the amount represented by k(·) based on the
state of the current job. This amount, if negative, can be interpreted as a hurdle of switching the current job. In
other words, if x → k(x) is decreasing in x (for example, k(x) = bx, b < 0), then the agent has small incentive to
change jobs when the state variable X is large because she has to experience large negative utility.

It should be emphasized that this setting can be easily applied to property sales (house, manufacturing plant,
or entire business). In the alternative setting, the stochastic process X represents the state of the current house,
f(·) translates the state into economic value, k(·) denotes expenditures incurred at the sale and finally Y ’s are the
stream of offers given to the house.

The second problem (P2): We relax the restriction of the order of ζ < τ in the second problem.

v(x) = sup
ζ,τ∈S2

Ex

[∫ ζ

0

e−αsf(Xs)ds + e−αζk(Xζ)−
∫ τ

0

ce−αsds + e−ατYτ

]
, (2.5)

where

S2 := {ζ ≤ τ : ζ, τ ∈ S}. (2.6)

In other words, the agent starts searching for a new job while she is being employed. Note that the lower limit
of the integral for search cost is zero. If τ occurs (at ζ), then she quits the current job and takes the new one
simultaneously. If ζ occurs (before τ ), then she quits the current job and keeps searching for a new job. The latter
case reduces to the first problem (P1).
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2.1 Solution to the first problem

Our solution to the first problem (P1) will be explained by a series of lemmas along with steps that simplify (2.3).
First we set Jζ,τ (x) := Ex

[∫ ζ

0
e−αsf(Xs)ds + e−αζk(Xζ)−

∫ τ

ζ
ce−αsds + e−ατYτ

]
for our performance mea-

sure. We have

Jζ,τ (x) = Ex

[∫ ζ

0

e−αsf(Xs)ds + e−αζk(Xζ)−
∫ τ

ζ

ce−αsds + e−ατYτ

]

= Ex

[(∫ ∞

0

−
∫ ∞

ζ

)
e−αsf(Xs)ds−

∫ τ

ζ

ce−αsds + e−αζk(Xζ) + e−ατYτ

]

= Ex

[
g(x)− e−αζg(Xζ) + e−αζk(Xζ) + e−αζEXζ

[∫ τ

0

e−αs(−c)ds + e−ατYτ

]]
. (2.7)

In the last line, we denote

g(x) := Ex

[∫ ∞

0

e−αsf(Xs)ds

]
. (2.8)

and use, for the first two terms containing X , the strong Markov property of X by noting that X and Y are
independent and by conditioning on the value of Xζ . We also use the fact that P(τ > ζ) = 1 for the last two terms
of (2.7). Indeed, the search starts at time ζ in this problem. It can be further simplified to

Jζ,τ (x) = Ex
[
g(x)− e−αζg(Xζ) + e−αζk(Xζ) + e−αζEXζ

[
− c

α
+ e−ατ c

α
+ e−ατYτ

]]

= Ex
[
g(x) + e−αζ

{
k(Xζ)− g(Xζ)− c

α
+ E

[
e−ατ

( c

α
+ Yτ

)]} ]
(2.9)

by the independence of X and Y again with the memoryless property of Poisson arrival time for the last term of
(2.9) at the last step. Hence we can split the problem into two stages: first maximizing over τ to obtain a constant
from the last term and then secondly maximizing over ζ, namely

v(x) = sup
ζ∈S1

Ex
[
g(x) + e−αζ

{
k(Xζ)− g(Xζ)− c

α
+ sup

τ∈S1

E
[
e−ατ

( c

α
+ Yτ

)]} ]
. (2.10)

Let us consider the first stage optimization, the inner maximization. Since c/α is a constant, we only have to
consider the following problem: Let us consider a situation that the agent observes a stream of i. i. d. random
variables Y with Poisson interarrival. Our task is to set an optimal stopping rule. Call this auxiliary problem (P ′1).
Suppose that the current value the agent observes is y. Then, the dynamic programming equation is simple in this
case;

V (y) := max(y, V ), (2.11)

where V is the maximum expected discounted value if y is rejected. That is, V (y) is the maximum expected return
when there is current offer y available. See standard textbooks, for example, Ross [18]. Also see Ross [19] that
contains many examples including search models.

Now let V0(y) := y and for n > 0,

Vn(y) := max
(

y,E
[
e−ατ (1)

∫ ∞

0

Vn−1(z)G(dz)
])

,

where τ (1) is the first jump time of the Poisson process and G(·) is the distribution of the offers. Hence Vn(y) is
the maximum reward if we observe y now and are allowed a maximum of n offers before stopping. Then we have
Vn(y) ≤ Vn+1(y) ≤ V (y), by construction, for all y ≥ 0.
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Let us define

B :=
{

i ∈ R+ : i ≥ E
[
e−ατ(1)

Yτ(1)

]}
. (2.12)

B is the set of states for which stopping is at least as good as continuing for one more period (round) and then
stopping. The policy that stops the first time the process enters a state in B is referred to as one-stage look-
ahead policy. Let us write Pij for the transitional probability of process Y for a general argument, while Pij is
independent of i in our problem.

Lemma 2.1. For auxiliary problem (P ′1), if the process is stable in the sense that limn→∞ Vn(y) = V (y) for all
y ≥ 0 and if Pij = 0 for i ∈ B, j /∈ B, then optimal policy stops at i if and only if i ∈ B.

Proof. This is in essence Theorem 2.2 (page 54) in [18]. Here we show it for completeness. It should be shown
that Vn(i) = i for all i ∈ B and all n. It follows for n = 0 and let us suppose it for n− 1 for induction. Then for
i ∈ B,

Vn(i) = max
{

i,E
[
e−ατ (1)

∫ ∞

0

Vn−1(z)G(dz)
]}

= max
{

i,E
[
e−ατ (1)

∫

z∈B

Vn−1(z)G(dz)
]}

= max
{

i,E
[
e−ατ (1)

∫

z∈B

zG(dz)
]}

= i

where the second equality is due to the structure of B and the third due to the induction hypothesis. Hence
Vn(i) = i for all i ∈ B and all n. By letting n → ∞ and using the stability assumption, we obtain V (i) = i for
i ∈ B.

On the other hand, for i /∈ B, the policy that continues for one more stage and stops has an expected reward,
E

[
e−ατ (1) ∫∞

0
zG(dz)

]
which is strictly greater than i since i /∈ B. Summarizing, we have V (i) = i for i ∈ B

and V (i) > i for i /∈ B.

Lemma 2.2. If Y is a positive random variable and E(Y ) < ∞, then limn→∞ Vn(y) = V (y) for all y ∈ R+.

Proof. Since Vn(y) ≤ V (y) for all n ≥ 0, we only need to prove the opposite direction. Let S∗ be the set of all
the strategies. Consider two strategies that are identical up to τ (n). One strategy keeps observing Yn+1, Yn+2, ....
We call the present value (at zero) of this strategy V ∗(y). The other strategy stops with Vn(y). Call the set of these
strategies Sn. We have Sn ⊂ S∗. For notational convenience, let us define no-discount versions of Vn(·). Namely,
V̄0(y) = y, V̄n(y) = max

(
y,

∫∞
0

Vn−1(z)G(dz)
)

and we discount from time τ (n) to time zero to get Vn(y). Now
let us denote by V̄ a value of the first strategy discounted back up to time τ (n). Without loss of generality, we can
state V̄ ≥ V̄n(y) for all n. Indeed, if it were not the case, we would have supν∈S∗ V̄ ≤ V̄n(y), leading to the
desired inequality Vn(y) ≥ V (y) and the proof would be complete. Hence we have

|V ∗(y)− Vn(y)| ≤ E[e−ατ (n) |V̄ − V̄n(y)|] ≤ E[e−ατ (n)
V̄ ].

Since E(Y ) < ∞ and Y is positive, lims→∞ P(Y > s) = 0, implying that we have limx→∞ P(V̄ > x) = 0. By
passing n to the limit, the right hand side becomes zero by the dominated convergence theorem. Hence we have
V (y) = supν∈S∗ V ∗(y) = supν∈∪nSn

Vn(y). This shows that limn→∞ Vn(y) ≥ V (y).

Let us call the set that satisfies the assumption of this lemma, “closed” set. We now come back to our original
problem (P1). In applying this lemma to our problem at hand, we need to modify the “closedness” of B. Since any
offer can be declined, the assumption of the lemma does not hold. However, we have the following result.
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Lemma 2.3. An optimal policy is to accept the first offer that is at least u∗ where

u∗ := min
{

i :
αi + c

λ
≥ E[(Y − i)+]

}
. (2.13)

The optimal threshold u∗ exists and is unique if and only if λE(Y ) ≥ c.

Proof. Let us allow the agent to recall any past offer, that is, the current offer is always the running maximum of
the offers up to present. Going back to (2.3), we redefine our closed (in i) set B and incorporating the recallability
of past offers, we have

B =

{
i : i ≥ E

[
e−ατ(1)

Yτ(1) −
∫ τ(1)

0

ce−αsds

]}

=
{

i : i ≥ λ

α + λ

(∫ i

0

iG(dy) +
∫ ∞

i

yG(dy)
)
−

(
c

α
− λ

(α + λ)
c

α

)}

=
{

i : i ≥ λ

α + λ

(
i− i

∫ ∞

i

G(dy) +
∫ ∞

i

yG(dy)
)
− c

α
+

λ

(α + λ)
c

α

}

=
{

i : αi ≥ λ

∫ ∞

i

(y − i)G(dy)− c

}
=

{
i :

αi + c

λ
≥ E[(Y − i)+]

}
,

which is (2.13). The left hand side is a linear function in i with positive slope α/λ and positive intercept c/λ. The
right hand side is a decreasing function of i and it is E(Y ) > 0 at i = 0. Hence equation (2.13) has unique solution
if and only if E(Y ) ≥ c/λ.

For i > u∗, i ∈ B. This fact implies that once i (that carries the running maximum of the offers) enters set B, it
does not leave set B. It is because the running maximum cannot decrease in time. Hence B is “closed”. Although
we cannot recall past offers in our problem, this policy (2.13) is still feasible in the original problem (no recall).
Now, it was shown that the first time Y enters in B gives us an optimal policy in a larger set of strategies (namely
including the recalling). Hence this policy cannot be beaten by any other strategies in the smaller set (allowed in
the original problem). It follows that (2.13) is an optimal policy.

Economically speaking, this condition says that, if we would consider
∑N(t)

i Yi as a compound Poisson just
for interpretation purposes, the search is meaningful if the expected value of the compound Poisson per unit time
λE(Y ) is greater than the search cost per unit time c. Moreover, if we look at the left hand side αi+c

λ , we conclude
that a large discount rate α, a large rate of search cost c and a small frequency of job offers λ will lead to a small
optimal acceptance level u∗, which fits with our intuition.

Remark 2.1. The papers we mentioned in Section 1 assume the recallability and prove the optimality of the
one-stage look-ahead strategy. This argument of “closedness” of set B reaches the same conclusion under the
assumption of no recall.

Now we shall show a convenient result for computing (2.10):

Lemma 2.4. Suppose that the distribution of offers has the density with support in (0,∞) and λE(Y ) ≥ c, then

sup
τ∈S

E
[
e−ατ

( c

α
+ Yτ

)]
=

c

α
+ u∗ (2.14)

where u∗ is the unique solution to

αu∗ + c

λ
= E[(Y − u∗)+]. (2.15)
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Proof. Let us denote ¯G(·) = 1−G(·) where G(·) is the distribution of offers. We use the thinning argument of the
Poisson process. Since the agent follows the strategy described in Lemma 2.3, for any u > 0, τ is the first arrival
time of the offer greater than or equal to u. The agent is interested in a sequence of random variables Y 1{Y≥u}
and this thinned Poisson process has rate λḠ(u). Due to the independence of Y and N(t) in the original setting,
we have the independence of Y 1{Y≥u} and the thinned Poisson process with rate λḠ(u), given the offer is greater
than or equal to u.

E
[
e−ατ

( c

α
+ Yτ

)]
= E

[
e−ατ

( c

α
+ Y

) ∣∣∣Y ≥ u
]

=
c

α

∫ ∞

0

λḠ(u)e−αte−λḠ(u)tdt +

∫∞
0

∫∞
u

yG(dy)e−αtλḠ(u)e−λḠ(u)tdt

Ḡ(u)

=
cλḠ(u)

α(α + λḠ(u))
+

λ

α + λḠ(u)

∫ ∞

u

yG(dy), (2.16)

which is a function of u only. By differentiating with respect to u, we obtain the first order condition for optimality
(
− c

α
g(u)− ug(u)

)
(α + λḠ(u)) + λ

(
c

α
Ḡ(u) +

∫ ∞

u

yg(y)dy

)
g(u) = 0.

This can further be simplified to
∫ ∞

u

(y − u)g(y)dy =
αu + c

λ
. (2.17)

The integral on the left hand side is just E[(Y − u)+] and the above equation is the same as (2.15). Denote by u∗

the solution of (2.17) and write E[(Y − u∗)+] = E[Y 1{Y≥u∗}]− u∗Ḡ(u∗) = αu∗+c
λ . This is equivalent to

u∗ +
c

α + λḠ(u∗)
=

λE[Y 1{Y≥u∗}]
α + λḠ(u∗)

. (2.18)

By plugging (2.18) in (2.16) and noting that u∗ is the optimal threshold level, we have

sup
τ∈S1

E
[
e−ατ

( c

α
+ Yτ

)]
=

cλḠ(u)
α(α + λḠ(u))

+ u∗ +
c

α + λḠ(u∗)
= u∗ +

c

α
.

Now that the first stage optimization is done and the last term of (2.10) becomes constant, it reduces to an
optimal stopping problem to find ζ∗. By using Lemma 2.3, (2.10) is now in the following simple form:

v̄(x) := v(x)− g(x) = sup
ζ∈S1

Ex
[
e−αζ(k(Xζ)− g(Xζ) + u∗)

]
. (2.19)

Notice that c/α term is canceled. This equation does not have any c explicitly, but we have to keep in mind that
the solution to (2.19) does depend on c because u∗ depends on c through (2.15).

For the solution of (2.19), let us use the characterization of the value function of optimal stopping problems in
one-dimension by Dynkin [11] and/or Dayanik and Karatzas [10]. Let us denote by ψ(·) and ϕ(·) the increasing
and decreasing functions of the solution of (A − α)w(·) = 0 with A being the infinitesimal generator of X . Let
us define

F (x) := ψ(x)/ϕ(x).

We use the transformation for a Borel function h(·) : R→ R,

H(·) := h(F−1(·))/ϕ(F−1(·)). (2.20)
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For our problem, let us define

h(x) := k(x)− g(x) + u∗

and

lc := lim sup
x→c

(h(x))+

ϕ(x)
, (2.21)

where (h(x))+ = max(h(x), 0). Theoretically, we can compute v̄(x) for any f , k, G(dy) and the underlying
diffusion X . But it is useful if we provide sufficient conditions that the optimal continuation region (that is, no
job-quitting region) is a connected interval in the real line:

Proposition 2.1. Suppose that the state space (c, d) ⊆ R of X has natural boundaries at c and d with lc < ∞. If
H0(y) := h(F−1(y))/ϕ(F−1(y)) has sole local maximum in the interior of (F (c), F (d)) with limy→c H ′′

0 (y) < 0
and limy→d H ′′

0 (y) > 0, then the value function, that is the solution to (P1) in (2.3), is of the form

v(x) =





k(x) + u∗, x ≤ x∗,

v0(x) := p · ϕ(x) + g(x), x > x∗,
(2.22)

where p and x∗ are uniquely determined.

Proof. Define y = F (x) and denote W (y) as the smallest concave majorant of

H(y) :=





H0(y), y > 0,

lc, y = 0.

By Proposition 5.12 in [10], v̄(x) = ϕ(x)W (F (x)) and W (0) = lc (W (·) is continuous at y = 0) and the
optimal stopping rule is given by τ∗ = inf{t ≥ 0 : Xt ∈ Γ} where Γ := {x ∈ (c, d) : v(x) = h(x)}. Under our
assumptions, H(y) has a global maximum at which the function is concave (call this point y∗) and becomes convex
on (ȳ,∞) where ȳ > y∗. Then the smallest concave majorant W (y) is H(y) itself on (0, y∗) and the horizontal
line passing point (y∗,H(y∗)). Call p := H(y∗). Transforming back to the original space, v̄(x) = h(x) on
(c, F−1(y∗)) and v̄(x) = pϕ(x). Adding back g(x) to obtain v(x), which is the solution.

Remark 2.2. Note that as we describe in our problem statement at the beginning of this section, in practice f(·)
is increasing and k(·) is decreasing in the state variable. Hence if g(·) is also increasing, h(·) = k(·) − g(·) + u∗

is decreasing in state. The example below is a typical one of this case.

Example 2.1. The solution can be best illustrated by a simple example. Our example is Xt = Bt with B0 = x

and f(x) = ax with a > 0, k(x) = bx with b < 0 and c = 0. Here we assume that G(dy) = me−mydy. Hence
u∗ satisfies

e−mu

m
=

αu

λ
(2.23)

from (2.17). Then our g(x) = a
αx and problem (2.3) becomes

v̄(x) = sup
ζ∈S1

Ex

[
e−αζ

{(
b− a

α

)
x +

λ

α + λḠ(u∗)

∫ ∞

u∗
yG(dy)

}]

= sup
ζ∈S1

Ex
[
e−αζ

{(
b− a

α

)
x + u∗

}]
. (2.24)

8



5 10 15 20 25
y=FHxL

-5

5

10

15

HHyL

(a)
1 2 3 4 5

x

15

20

25

vHxL

(b)

Figure 1: With parameters (a, b, α, λ, k) = (1,−1, 0.2, 1.2, 0.1): (a) In the transformed space, H(y) and its
concave majorant, the horizontal line with height p = 15.797. (b) In the original space, the value function with the
quitting threshold x∗ = 0.8062 and the new-job-taking threshold u∗ = 14.324. The red line (above) is v0(x) and
the blue line (below) is bx + u∗ = −x + 14.324.

Since our diffusion is a Browninan motion, c = −∞ and d = ∞ are both natural boundaries. In this example,
ϕ(x) = e−x

√
2α and F (x) = e2x

√
2α and F−1(y) = log y

2
√

2α
. It is clear that l−∞ = 0. We have the explicit form of

H0(y) =
√

y

(
b− a

α

2
√

2α
· log y + u∗

)
.

Note that limy→0 H0(y) = 0 = l−∞. By direct computation, we can show that H0(y) satisfies the conditions in
the proposition. The concave majorant (see (a)) is just first H(y) itself up to, say y∗ at which the horizontal line and
H(y) match, and thereafter the horizontal line, say W (F (x)) = p. Recall that y∗ = F (x∗). After transforming
back, it is pϕ(x). We should add back g(x) to get v(x). Hence our solution is

v(x) =





bx + u∗, x ≤ x∗,

v0(x) := pϕ(x) + a
αx, x > x∗.

(2.25)

In the first region where x < x∗ the agent immediately quit the current job by paying the hurdle cost bx and wait
until an offer greater than u∗ whose expected discounted value is also u∗ by Lemma 2.4. The value function is the
black line (see(b)) in this region. In the second region, the agent should maintain the current job until the Brownian
motion hits x∗, and the value function is the red line.

2.2 Solution to the second problem

Let us move on to the second problem (P2) in (2.5) with (2.6). Suppose that we implement the threshold strategy
with u ≥ 0 for the choice of Y as in the first problem. (This premise will be justified in Lemma 2.5.) By setting

Jζ,τ (x) := Ex

[∫ ζ

0

e−αsf(Xs)ds + e−αζk(Xζ)−
∫ τ

0

ce−αsds + e−ατYτ

]
, (2.26)

the first two terms of J become

Ex

[∫ ζ

0

e−αsf(Xs)ds + e−αζk(Xζ)

]
= g(x) + Ex[e−αζ(k(Xζ)− g(Xζ))]

9



for any stopping time ζ ∈ S . Let us denote for u ≥ 0,

k̄(x) := k(x)− g(x) and F (dt) := λḠ(u)e−λḠ(u)tdt := λ′e−λ′tdt (2.27)

where the latter is the arrival time distribution of the thinned Poisson process with λ′ := λḠ(u). Let us use the
fact that, for any τ, ζ ∈ S2,

ζ ∧ τ = ζ1{ζ≤τ} + τ1{ζ>τ} = ζ1{ζ≤τ} = ζ.

We then obtain, by conditioning on τ ,

Ex[e−αζ(k(Xζ)− g(Xζ))] = Ex[e−α(ζ∧τ)k̄(Xζ∧τ )] = Ex

[∫ ζ

0

e−αtk̄(Xt)F (dt) +
∫ ∞

ζ

e−αζ k̄(Xζ)F (dt)

]

due to the independence of the two processes X and Y . Then it becomes, by defining

h̄u(x) := Ex

[∫ ∞

0

λ′e−(α+λ′)tk̄(Xt)dt

]
(2.28)

and invoking the strong Markov property of X as in (P1),

Ex[e−α(ζ∧τ)k̄(Xζ∧τ )] = h̄u(x)− Ex[e−(α+λ′)ζ h̄u(Xζ)] + Ex

[
e−αζ k̄(Xζ)

∫ ∞

ζ

F (dt)
]

= h̄u(x) + Ex[e−(α+λ′)ζ(k̄(Xζ)− h̄u(Xζ))].

Writing down everything, we have for any u ≥ 0,

Jζ,τ (x) = g(x) + h̄u(x) + Ex[e−(α+λ′)ζ(k(Xζ)− g(Xζ)− h̄u(Xζ))]

−
(

c

α
− cλ′

α(α + λ′)

)
+

λ

α + λ′

∫ ∞

u

yG(dy). (2.29)

Notice that the dependence of h̄u on u comes solely from λ′ = λḠ(u). In summary, the second problem (P2)
reduces to

v̄(x) : = v(x)− g(x)

= sup
ζ∈S,u∈R+

Ex

[
e−(α+λ′)ζ(k(Xζ)− g(Xζ)− h̄u(Xζ)) + h̄u(x) +

1
α + λ′

(
−c + λ

∫ ∞

u

yG(dy)
)]

.

(2.30)

Hence we can no longer split the problem into two subproblems. It is intuitively clear that the optimal threshold
level for Y depends on the current state X0 = x since the agent can start her search before quitting the current one.

Lemma 2.5. For the second problem (P2), the threshold strategy for Y is optimal.

Proof. Recall that Yτ appears only in the last term of (2.26). The argument is similar to the auxiliary problem
(P ′1) and we only need to prove the “closedness” of set B. Let us consider case (1) where by the time offer in the
amount of y is at table, the agent has not quitted yet or has not picked any offer yet. The corresponding one-step
look-ahead is

max

(
y,Ex

[∫ ζ∧τ(1)

0

e−αsf(Xs)ds + e−α(ζ∧τ(1))k(Xζ∧τ(1))−
∫ τ(1)

0

ce−αsds + e−ατ(1)
Yτ(1)

])
(2.31)
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where τ (1), again, is the first jump time of the Poisson process (after y). We can consider set B similarly to
(2.12). It is a mere comparison of the two items in the max function. But Y shows up only at the last term. This
observation corresponds to the dependence of h on u only through λḠ(u) in (2.30). Call the first three terms in
the expectation A(x, τ (1), ζ). Similar to Lemma 2.3, we compute

B =
{

i ∈ R+ :
α

λ
i ≥ E[(Y − i)+] +

A(x, τ (1), ζ)(α + λ)
λ

}
.

Two cases are possible:

1. While the agent waits for the next offer, she quits. A(x, τ (1), ζ) = A(x, ζ)

2. While the agent waits for the next offer, she does not quit. A(x, τ (1), ζ) = A(x, τ (1)).

We again allow her to recall the past offers and she stops at τ (1) with the best offer up to the next arrival of the
Poisson process. In either case, the “closedness” of set B is not affected since A(x, τ (1), ζ) is constant in i. Hence
B is again a closed set in i for any ζ and τ (1) and we invoke Lemma 1.1 to conclude that the first time the process
Y enters into this set B is the stopping time.

Finally, we consider case (2) where by the time y is at table, she had already quitted. Then the problem reduces
to the first problem (P1). An optimal strategy is characterized already. To conclude, the threshold strategy is again
optimal.

Remark 2.3. When we evaluate (2.26) at ζ = 0 (the immediate quitting), it becomes

J0,τ (x) = E
[
k(x)−

∫ τ

0

ce−αsds + e−ατYτ

]
,

of which derivative with respect to u is independent of x. Taking the derivative with respect to u, the first order
condition of optimality must become independent of x.

Let us again consider an example with the same setting as in Example 2.1 to illustrate the optimization procedure
for (P2).

Example 2.2. The setup of the problem is exactly the same as in Example 2.1 except for S1 being replaced
by S2. For the second problem (P2), we proceed with (2.30) by computing the necessary functions. Recall
λ′ = λ(1 − G(u)) = λe−mu (with m being the rate of Poisson arrival times) is a function of u, the offer-taking
threshold level.

k̄(x) = k(x)− g(x) =
(
b− a

α

)
x

h̄u(x) = Ex

[∫ ∞

0

λ′e−(α+λ′)t
(
b− a

α

)
(Xt)dt

]
=

λ′

α + λ′

(
b− a

α

)
x.

Now let us consider (2.30) by writing everything explicitly:

v̄(x) = v(x)− g(x)

= sup
ζ∈S,u∈R+

Ex

[
e−(α+λ′(u))ζ(k(Xζ)− g(Xζ)− h̄u(Xζ)) + h̄u(x) +

λ

α + λ′

∫ ∞

u

yG(dy)
]

= sup
ζ∈S,u∈R+

Ex

[
e−(α+λ′)ζ

(
α(b− a

α )
α + λ′

)
Xζ +

λ′

α + λ′

(
b− a

α

)
x +

λ

α + λ′

∫ ∞

u

yG(dy)
]

= sup
ζ∈S,u∈R+

Ex

[
e−(α+λ′)ζ

(
α(b− a

α )
α + λ′

)
Xζ +

λ′

α + λ′

((
b− a

α

)
x + u +

1
m

)]
.
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We can first solve the optimal stopping problem for a fixed u and find the optimal threshold for quitting in terms
of u. Namely we solve, for a given u,

sup
ζ∈S

Ex

[
e−(α+λ′)ζ

(
α(b− a

α )
α + λ′

)
Xζ

]
. (2.32)

Again suppressing the dependence of λ′ on u, we find, similarly to the first problem, ϕ(x) = e−x
√

2(α+λ′) and
F (x) = e2x

√
2(α+λ′) with F−1(y) = log y

2
√

2(α+λ′)
. After the transformation, the reward function h̄u(·) is

Hu(y) :=
α(b− a

α )

(α + λ′)2
√

2(α + λ′)
log y

√
y.

This function attains the maximum at y0 = e−2 independent of u. The smallest concave majorant of Hu(y) is
again the horizontal line that matches Hu(y) at y0 = e−2 for all u. But in the original space, the quitting threshold
for u, D(u) := F−1(y0) = log y0

2
√

2(α+λ′)
depends on u. See the picture below for u = 10.

0.2 0.4 0.6 0.8 1 y=FHxL

0.1

0.2

0.3

0.4

0.5

0.6

HHy, u0L

(a)

-2 -1 1 2
x

13.5

14

14.5

15

15.5

16

vHx, u0L

(b)

Figure 2: With parameters (a, b, α, λ,m) = (1,−1, 0.2, 1.2, 0.1): (a) In the transformed space, Hu(y) with
u = u0 = 10 and its concave majorant. (b) In the original space, the value function with the quitting threshold
x(u0) = −0.892728. The red line (above) is v0(x;u0) and the black line (below) is the reward function

Graph (c) is the plot of the threshold level for quitting D(u) for various u’s. Now the intercept (=the height of

5 10 15 20 25 30 35
u

-1.4

-1.2

-0.8

-0.6

DHuL

(c)

Figure 3: The optimal quitting threshold D(u) for various u’s.

the horizontal line) is

p(u) := Hu(y0) =
α(b− a

α )

(α + λ′)2
√

2(α + λ′)

(−2
e

)
.
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Hence the value function for any u ≥ 0 is written of the form

vu(x) :=





(
α(b− a

α )

α+λ′

)
x + λ′

α+λ′
((

b− a
α

)
x + u + 1

m

)
+ a

αx, x < D(u),

v0(x, u) := p(u)e−x
√

2(α+λ′) + λ′
α+λ′

((
b− a

α

)
x + u + 1

m

)
+ a

αx, x ≥ D(u).
(2.33)

It can be simplified but let us keep it for the moment. Finally, we maximize vu(x) with respect to u by simply
taking the partial derivative with respect to u. Let us first consider the second branch in (2.33 ), that is, v0(x, u) to
find the optimal offer-taking threshold level, say ux for each initial state x. We can directly show that, for each x,
the function v0(x, u) attains the sole local maximum. See graph (d) below. In graph (e), we also plot the threshold
level x → ux for each initial state x. It is increasing in x. This makes sense since if the initial position is high,
then the offer-taking level should also be high.

15 20 25 30
u

14.5

15

15.5

16

16.5
vHx0, uL

(d)

1 2 3 4 5 6
x

20

25

30

35

u*HxL

(e)

Figure 4: With parameters (a, b, α, λ,m) = (1,−1, 0.2, 1.2, 0.1): (a) For given x0, v0(x0; u) attains the sole
maximum. (b) The optimal threshold level of taking an offer ux as a function of the initial state x.

The final question is the following: Suppose the agent’s current state in the current job is at x. She computes
the best offer-taking level, say ux by taking the derivative of the second branch of vu(x), namely v0(x, u). Does
this ux also maximizes the other function of vu(x), that is, the first branch in (2.33)?

To answer this question, we simplified the first branch of (2.33) to get

vu(x) = bx +
λ′

α + λ′

(
u +

1
m

)
, x < D(u). (2.34)

The maximizer of u is independent of x (see also Remark 2.3) and is the solution of

e−mu

m
=

αu

λ
,

which is exactly the same equation as (2.23) in the first example for the universally best u∗. So if we plug u∗ back
into (2.34), it becomes

vu(x) = bx + u∗, x < D(u).

This is the same function as in the first problem (See (2.25)). Of course, this is not a coincidence. We will
generalize this later. This observation makes sense because this function represents the value of an immediate
quitting. Hence this function has to be the same both in the first and the second problem. We summarize the
optimal procedure:

1. Given the initial state x, she maximizes the second branch of vu(x) in (2.33) to get the offer-taking threshold
ux as in graph (d).
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2. Based on this ux, she computes the optimal quitting threshold of D(ux) by solving (2.32).

3. Compare this D(ux) with the initial x if x ≤ D(ux), quit immediately and get bx + u∗. Otherwise, stay
with the current job and her value function is v0(x, ux) in (2.33).

4. If she chooses to stay with the current job, two possibilities are there: If the diffusion hits D(ux) first, quit
and wait for a new one with higher value than ux. If a new offer shows up (with a value higher than ux)
before the hitting time of the diffusion, quit and take the new job at the same time.

Therefore, the answer to the question at the top of this paragraph is as follows: The maximizer of the second
branch, ux is in general not the same as u∗, the maximizer of the first branch. But the agent does not have to worry.
Once D(ux) is computed and turns out to be greater than x, her choice is immediate quitting. At this point, her
immediate quitting is guaranteed to be optimal irrespective of x because u∗ is independent of x.

Again, while this method can handle all the possible selections of f , k, G and X , we shall specify sufficient
conditions for computational convenience. Let us define the increasing and decreasing solutions of (A − (α +
λḠ(u))v(x) = 0 by ψ(x) and ϕ(x) with a slight abuse of notation. We define F (x) accordingly. Recall h̄u(·) is
defined in (2.28). With these definitions, we summarize the result as follows:

Proposition 2.2. Suppose that the state space (c, d) ⊆ R of X has natural boundaries at c and d with lc < ∞. If
H0(y) := h̄ux(F−1(y))/ϕ(F−1(y)) has sole local maximum in the interior of (F (c), F (d)) with limy→c H ′′

0 (y) <

0 and limy→d H ′′
0 (y) > 0, then the value function, that is the solution to (P2) in (2.3), is of the form

v(x) =





k(x) + u∗, x < D(ux),

p(ux)ϕ(x) + h̄ux(x) + g(x), x ≥ D(ux),

where

ux := arg max
u∈R+

(
p(u)ϕ(x) + h̄u(x)

)
(2.35)

for any given x. Here u∗ (independent of x) is the unique solution of (2.15). p(ux) and D(ux) are uniquely
determined.

If x < D(ux), then the optimal strategy is to quit the current job immediately and to wait for a first job offer
whose value is greater than or equal to u∗. If x ≥ D(ux), then the optimal strategy is to wait until ζ ∧ τ where
ζ = inf{t > 0 : Xt ≤ D(ux)} and τ = inf{t > 0 : Yt ≥ ux}.

Proof. Evaluating (2.30) at ζ = 0, we have

v(x) = k(x) + sup
u∈R+

{
1

α + λ′

(
−c + λ

∫ ∞

u

yG(dy)
)}

.

for x < D(u). Working out in the same way as in Lemma 2.3, we can find that the optimal u∗ satisfies (2.15) and
the previous equation becomes

v(x) = k(x) + u∗, x < D(u).

Note that u∗ is independent of D(u). For the other branch of v(x), the proof is similar to Proposition 2.1.
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3 Search problem in a jump diffusion model

1 In this section, we extend our model by adding stochastic jumps in the state space of process X . Let {Ω,F ,P}
be a probability space hosting a Brownian motion B and an independent Poisson random measure M(dt, dz) on
[0,∞) × R, both adapted to a certain filtration F that satisfies the usual conditions. We assume that this Poisson
random measure is independent of the Poisson process N = {N(t); t ≥ 0} associated with arrival times of job
offers Y in the previous sections. The mean measure of M is ν(dt, dz) = θdtF (dz), where θ > 0 is constant and
F (dz) is the common distribution of jump sizes. Throughout this subsection, we consider

Xt = X0 + µt + σBt −
M(t)∑

i=1

Zi, X0 = x, (3.1)

where M = {M(t) : t ≥ 0} is a Poisson process (associated with the Poisson random measure M(dt, dz)) with
constant intensity rate θ and jump sizes Zi, i = 1, 2, 3... are i.i.d. from an exponential distribution with parameter
η. Hence our mean measure becomes ν(dt, dz) = θdtηe−ηzdz and the jumps are always downwards. These
negative jumps represent a sudden drop of the agent’s incentives. For modeling purposes, these downward jumps
may be compensated by setting the drift parameter µ higher. The infinitesimal generator of this process acting on
a test function u ∈ C2 is

Au(x) =
1
2
σ2u

′′
(x) + µu

′
(x) + θ

∫ ∞

0

(u(x− z)− u(x))ηe−ηzdz. (3.2)

Our jump diffusion setup in the state variable (current job) does not change the structure of problems (P1) or
(P2) at all. Hence our presentation here focus on the solution of the optimal stopping problem in (2.19) and we
provide an explicit solution in the context of Example 2.1. Of course, the optimal stopping part (by fixing u value)
in (2.30) is very similar. Here we use a different approach from the ordinary Hamilton-Jacobi-Bellman type. Due
to the memoryless property of exponential distribution (of the jump size), we can directly evaluate the functional
associated with the exit time from an interval, the value of a certain function of X at which the process X cross the
left boundary of (a,∞). Using this functional, we can identify the form of the value function (see (3.14)), while the
optimality is still proved by a verification lemma. But we do not have to set the boundary conditions to determine
the candidate of the value function. Hence this method facilitates the proof of the existence and uniqueness of the
system of non-linear equations that arise from the boundary conditions. This analysis is along the line of Kou and
Wang [13], and this is one of the few examples that an explicit solution to an optimal stopping problem in an jump
diffusion model. Other direct methods successful in obtaining explicit solutions (in terms of the increasing minimal
harmonic map) in a spectrally negative jump-diffusion model include Alvarez and Rakkolainen [1, 2, 3] where they
solve various types control problems including optimal stopping, impulse control and singular stochastic control.
The well-known alternative technique is based on factorization arguments. Mordecki and Salminen [15] show the
value function for optimal stopping problems driven by general Hunt processes as an integral representation of
excessive functions. See also Boyarchenko and Levendorskiǐ [7, 8] and references therein for this approach.

3.1 Exit problem from an interval

If we try a function in the form of u(x) = eβx with β + η > 0 for (A − α)u(x) = 0, then β’s are found by the
roots of the following equation:

G(β) :=
1
2
σ2β2 + µβ − θβ

η + β
= α. (3.3)

1For this section, we thank Savas Dayanik for valuable discussions.
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Now, by the independence of Bt, Mt and Zi,

Ex
[
erXt

]
= Ex

[
er(X0+µt+σBt)

Mt∏

i=1

e−rZi

]
= erxerµt+ 1

2 σ2r2tE

[(
η

η + r

)Mt
]

= erxet(rµ+ 1
2 σ2r2+θ( η

η+r−1))

= erxeG(r)t.

Hence we have Ex[erXt−G(r)t] = 1, which implies that {exp(rXt − G(r)t)} is a martingale for any r ∈ R.
Equation (3.3) has at most three real roots, two negative roots −β1 and −β2, and one positive root β3, with the
relationship

−β2 < −η < −β1 < 0 and β3 > 0.

Namely,

0 < β1 < η < β2 and β3 > 0. (3.4)

Let us compute some functionals of X associated with exit time from an interval [a, b] ∈ R. Define Ta , inf{t ≥
0, Xt ≤ a} and note that due to the negativity of the jumps, XTa

≤ a. Note that we have Px(Ta < ∞) = 1 for all
a and x such that −∞ < a < x < ∞.

Lemma 3.1. Suppose that we have a finite interval [a, b] ∈ R and a process that is defined by (3.1) with mean
measure ν(dt, dz) = θdtηe−ηzdz. Then, for a ≤ x ≤ b, we have

(1) Ex[e−αTa ] =
β2(η − β1)
η(β2 − β1)

e−β1(x−a) +
β1(β2 − η)
η(β2 − β1)

e−β2(x−a), (3.5)

(2) Ex[e−αTa1{a−XTa >z}] =
e−ηz(η − β1)(β2 − η)

η(β2 − β1)

(
e−β1(x−a) − e−β2(x−a)

)
, (3.6)

(3) Ex[e−αTa1{a−XTa=0}] =
η − β1

β2 − β1
e−β1(x−a) +

β2 − η

β2 − β1
e−β2(x−a), (3.7)

(4) Ex[e−αTa1{Ta<Tb}1{a−XTa>z}] =
B1(x)

A
eβ3(x−a)e−ηz, (3.8)

(5) Ex[e−αTa1{Ta<Tb}1{a−XTa=0}] =
B2(x)

A
eβ3(x−a), (3.9)

(6) Ex[e−αTb1{Ta>Tb}] =
C(x)

A
eβ3(x−b). (3.10)

Furthermore, for every x < b, lima↓−∞ Ex[e−αTb1{Ta>Tb}] = eβ3(x−b) where

A =
η

η + β3

(
β1 + β3

η − β1
ϕ1(a)(ϕ2(a)− ϕ2(b))− β2 + β3

η − β2
ϕ2(a)(ϕ1(a)− ϕ1(b))

)
,

B1(x) = (ϕ2(a)− ϕ2(b))(ϕ1(x)− ϕ1(b))− (ϕ1(a)− ϕ1(b))(ϕ2(x)− ϕ2(b)),

B2(x) = −
(

η

η − β2
ϕ2(a)− η

η + β3
ϕ2(b)

)
(ϕ1(x)− ϕ1(b)) +

(
η

η − β1
ϕ1(a)− η

η + β3
ϕ1(b)

)
(ϕ2(x)− ϕ2(b)),

C(x) =
η

η + β3

(
β1 + β3

η − β1
ϕ1(a)(ϕ2(a)− ϕ2(x)) +

β2 + β3

η − β2
ϕ2(a)(ϕ1(x)− ϕ1(a))

)
,

with ϕ1(·) = e−(β1+β3)(·) and ϕ2(·) = e−(β2+β3)(·).

Proof. For (1), we need to compute v(x) := Ex[e−αTa ]. Let u(x) be the bounded continuous solution of (A −
α)u = 0 on (a,∞) and u(x) = 1 on (−∞, a]. Then u(x) = A1e

−β1x + A2e
−β2x + A3e

β3x. Since we want u(x)
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to be bounded, we must set A3 = 0. Note that while e−β1x is a martingale function, e−β2x is not a martingale
function because of β2 > η. Indeed, Ae−β2x = +∞ 6= αe−β2x, even though −β2 satisfies equation (3.3).
Nevertheless, β2 plays an important role below. We proceed to determine the coefficients A1 and A2. First, by
expanding (A− α)u(x) with (3.3), we have

(A− α)u(x) =
1
2
σ2u

′′
(x) + µu

′
(x) + θ

∫ x−a

0

(u(x− y)− u(x))F (dy) + θ

∫ ∞

x−a

(1− u(x))F (dy)− αu(x)

= θe−η(x−a) − θη

η − β1
A1e

−xη+a(η−β1) − θη

η − β2
A2e

−xη+a(η−β2).

Setting (A− α)u(x) = 0, we have a condition for A1 and A2,

1 =
θη

η − β1
A1e

−aβ1 − θη

η − β2
A2e

−aβ2 , (3.11)

with the continuity condition, that is, u(a+) = 1,

1 = A1e
−aβ1 + A2e

−aβ2 . (3.12)

By solving (3.11) and (3.12), we have A1 = β2(η−β1)
η(β2−β1)

eβ1a, and A2 = β1(η−β2)
η(β2−β1)

eβ2a. Hence we have

u(x) =





1, x ≤ a,
β2(η−β1)
η(β2−β1)

e−β1(x−a) + β1(β2−η)
η(β2−β1)

e−β2(x−a), x > a.
(3.13)

For the proof of v(x) = u(x), we refer the reader to Kou and Wang [13] (Theorem 3.1) 2. The proof of the other
functionals are similar. For example, for equation (4), define

w1(x) :=





1, x ≤ a− z,

0, x ∈ [a− z, a] ∪ [b,∞),

A1e
−β1x + A2e

−β2x + A3e
β3x, a < x < b.

Three conditions to determine A1, A2, and A3 come from w1(a+) = 0, w1(b−) = 0, and the martingale condition
(A− α)w1(x) = 0 for a < x < b. Note that, in this case,

(A− α)w1(x) =
1
2
σ2w

′′
1 (x) + µw

′
1(x)

+ θw1(x)− αw1(x) + θ

(∫ x−a

0

+
∫ x−a+z

x−a

+
∫ ∞

x−a+z

)
w1(x− y)F (dy)dy

and

w1(x− y) =





A1e
−β1(x−y) + A2e

−β2(x−y) + A3e
β3(x−y), y ∈ [0, x− a),

0, y ∈ [x− a, x− a + z],

1, y ∈ [x− a + z,∞).

After finding the expressions for A1, A2, and A3, we can use the same argument as before to find the desired
expectation.

Lemma 3.2. (a) Given x ∈ (a,∞) ⊆ R ∪ {+∞}, and h : R→ R, a polynomial of degree n, we have

Ex[e−αTah(XTa)] = P (x)
n∑

i=0

(−1)ih(i)(a)
ηi

+ h(a)Q(x).

2In this paper, a doubly exponential distribution is studied and results similar to (1) ∼ (3) of Lemma 3.1 are available.
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where

P (x) =
(η − β1)(β2 − η)

η(β2 − β1)

(
e−β1(x−a) − e−β2(x−a)

)
,

Q(x) =
η − β1

β2 − β1
e−β1(x−a) +

β2 − η

β2 − β1
e−β2(x−a).

(b) Given x ∈ (a, b), we have

Ex[e−α(Ta∧Tb)h(XTa∧Tb
)] =

B1(x)
A

n∑

i=0

(−1)i h
(i)(a)
ηi

eβ3(x−a) +
B2(x)

A
h(a)eβ3(x−a) +

C(x)
A

h(b)eβ3(x−b).

Proof. (a) Let Γa, a non-negative random variable, be the size of undershoot at the left boundary a. Then

Ex[e−αTah(XTa)] = Ex[e−αTah(a− Γa)] =
∫ ∞

0

h(a− z)Ex[e−αTa1{Γa∈dz}] + h(a)Ex[e−αTa1{a−XTa=0}]

=
∫ ∞

0

h(a− z)ηe−ηzP (x)dz + h(a)Q(x),

by using (3.6) and (3.7). Integration by parts in the first term will lead to our result. The proof of (b) is similar.

3.2 Solution to the optimal stopping problem

We continue to solve Example 2.1. Namely the optimal stopping part of the problem (cf. (2.24)) is

v̄(x) = sup
ζ∈S1

Ex

[
e−αζ

{(
b− a

α

)
x +

λ

α + λḠ(u∗)

∫ ∞

u∗
yG(dy)

}]

= sup
ζ∈S1

Ex
[
e−αζ

{(
b− a

α

)
x + u∗

}]
,

where we define h(x) := (b− a/α)x + u∗ := rx + u∗ for notational brevity. Note that r := (b− a/α) < 0.

3.2.1 Necessary condition of the optimality

By Lemma 3.2, for any interval [l,∞),

Ex[e−αTl(rXTl
+ u∗)] =

η − β1

η(β2 − β1)

(
(η − β2)

r

η
+ β2(rl + u∗)

)
e−β1(x−l)

+
β2 − η

η(β2 − β1)

(
(η − β1)

r

η
+ β1(rl + u∗)

)
e−β2(x−l). (3.14)

Hence the optimal stopping problem reduces to finding some l (call it l∗) that maximizes this function for all x ∈ R.
To derive the necessary condition of the optimality of l∗, we take the derivative with respect to l and evaluate in
particular at x = 0 since l∗ has to maximize the function for all x. After some simple algebra, we obtain

l∗ = −
(

β1 + β2

β1β2
− 1

η
+

u

r

)
. (3.15)

Plugging (3.15) into the right hand side of (3.14) and set this result as

w0(x) :=
−r

η(β2 − β1)

(
(η − β1)β2

β1
e−β1(x−l∗) +

(β2 − η)β1

β2
e−β2(x−l∗)

)
. (3.16)

Note that by direct calculation, w0(l∗) = −r
(

1
η − (β1+β2)

β1β2

)
, which is equal to rl∗+ u∗ in light of (3.15) and also

w′0(l
∗) = r as expected.
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3.2.2 Proof of sufficiency of the optimality

The construction of w0(x) suggests us to define

w(x) :=





rx + u∗, x ≤ l∗,

w0(x), x > l∗.
(3.17)

The rest of the task is to prove the optimality of w(x) via variational inequalities. That is, to show w(x) = v̄(x)
for all x ∈ R by proving

max(h(x)− w(x), (A− α)w(x)) = 0 (3.18)

for all x ∈ R. For the variational inequality, see standard textbooks, e.g. Øksendal and Sulem [17].

(1) w(x) ≥ rx + u∗: When x ≤ l∗, w(x) − (rx + u∗) = 0. Let us define D(x) := w0(x) − (rx + u∗). Now
D′(x) = w′0(x)− r and D′′(x) = w′′0 (x). We also know that D(l∗) = 0 and D′(l∗) = 0. Then we have

D′′(x) = w′′0 (x) =
β1β2(−r)
η(β2 − β1)

(
(η − β1)e−β1(x−l∗) + (β2 − η)e−β2(x−l∗)

)
> 0, x ∈ R, (3.19)

by (3.4), showing that D′(x) is increasing everywhere. Since D′(l∗) = 0, it follows that D′(x) > 0 on (l∗,∞).
This fact together with D(l∗) = 0 implies that D(x) > 0 for x > l∗. Therefore, we have established that
w0(x) > rx + u∗ on (l∗,∞).

(2) (A− α)w(x) ≤ 0: When x ≥ l∗, (A− α)w(x) = (A− α)w0(x) = 0 by the construction of w0(x). Finally,
on x < l∗,

(A− α)w(x) = rµ + θ

∫ ∞

0

(r(x− z) + u∗ − (rx + u∗))ηe−ηzdz − α(rx + u∗)

= rµ− rθ/η − α(rx + u∗)

< rµ− rθ/η − α(rl∗ + u∗) = lim
x↑l∗

(A− α)w(x)

= lim
x↓l∗

(A− α)w(x)− 1
2
σ2w′′0 (l∗) < lim

x↓l∗
(A− α)w(x) = 0,

where the last inequality is due to (3.19). This proves the desired variational inequality (3.18). Hence w(x) = v̄(x)
and v(x) = w(x) + g(x).

The next picture shows the case with θ = 0.5 and η = 1 and the other parameters are the same as in Example
2.1 and 2.2. The quitting threshold level is lower than the no jump case: l∗ = −1.17583 < 0.8062 = x∗. It is
reasonable to think that negative jumps will make the downfall of the diffusion faster and therefore, the discount
factor e−αt does reduce the value as much as the case with no jumps. Hence the agent ends up with a lower
threshold.
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