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Abstract

During the subprime mortgage crisis, it became apparent that practical models, such as the

one-factor Gaussian copula, had underestimated company default correlations. Complex mod-

els that attempt to incorporate default dependency are difficult to implement in practice. In this

study, we develop a model for a company asset process, based on which we calculate simul-

taneous default probabilities using an option-theoretic approach. In our model, a shot noise

process serves as the key element for controlling correlations among companies’ assets. The

risk factor driving the shot noise process is common to all companies in an industry but the

shot noise parameters are assumed company-specific; therefore, every company responds dif-

ferently to this common risk factor. Our model gives earlier warning of financial distress and

predicts higher simultaneous default probabilities than commonly used geometric Brownian

motion asset model. It is also computationally simple and can be extended to analyze any finite

number of companies.

JEL classification: G01; G17; G21; G32

Keywords: Credit risk; Shot noise; Option-theoretic approach; Asset process; Simultaneous
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1. Introduction

This study aims to calculate simultaneous default probabilities of multiple companies. Our

research is motivated by the fact that the incumbent models did not predict the default corre-
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lations in the global financial crisis; simultaneous default probabilities were underestimated in

the structuring and pricing of collateralized debt obligations (CDOs). We wish to compute joint

default probabilities more accurately to enhance risk management quality for the portfolios of

debt instruments.

In general, there are top-down and bottom-up approaches to default correlation analysis.

Our model belongs to the latter one. Using structural approach proposed by Merton [22], we

analyze company defaults in a particular industry through the behavior of unobservable asset

process. For this, we define default as an event in which a company’s asset value falls below

a certain level. It is highly likely that company defaults in one industry are correlated. To in-

corporate this correlation into the calculation of simultaneous default probabilities, we include

a common shot noise process in each company’s asset model. In our model, each company’s

asset value is driven by a company-specific risk factor and by the shot noise process, the latter

being common to all companies that belong to the industry and having negative effects on the

asset value. The shot noise process can be seen as an aggregation of jumps up to each point in

time. The effect of jumps does not disappear immediately but decreases gradually over time,

and hence inclusion of the shot noise process may help to make default correlation among the

companies more realistic. For computational simplicity, in this study we deal only with nega-

tive effect of jumps, and the shot noise process allows us to keep the negative effect of external

shocks for a certain period of time. We assume that the parameters of this shot noise process

are company-specific. This means that the sensitivity of each company to the jumps of the shot

noise process is different.

The main contributions of our paper are the following. Even though we introduce an unob-

servable common jump process in the asset model, by using a justifiable approximation of this

process, we are able to derive an equation linking observable equity and debt values to the un-

observable asset value; thus, we are able to estimate the asset process that incorporates common

shocks to the industry. Furthermore, our estimation procedure requires neither the assumption

of numbers or distribution of jumps nor the observation of shock arrivals (i.e, specific arrival

times of shocks). In addition, when simulating the asset process using the estimated parame-

ters, there is no need to simulate the jump times or jumps directly. This makes the simulation

simple, which in turn makes the calculation of simultaneous default probabilities computation-

ally easy. The existing model that enables us to estimate the unobservable asset process in a

similar way is the geometric Brownian motion model. Our model can be considered as an im-
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provement over this model, since it incorporates common jump process and is able to capture

the correlation among the asset processes of multiple companies in a particular industry.

Since we use a structural approach and include a shot noise process in the asset model,

below we will provide an overview of the literature related to the structural approach and com-

mon jumps used in default modeling. Kunisch and Uhrig-Homburg [17] adopt the top-down

approach which they base on the structural model of a firm. They use random thinning to

decompose an economy’s default intensity, which is driven by macroeconomic factors, into

the intensities of defaultable company subsets. To this end, they define default of a company

as an event in which company assets fall at the outstanding debt level. This study employs a

structural framework similar to Merton [22], assuming that the asset process follows geometric

Brownian motion and assets of different companies are correlated. Under these assumptions,

they derive solutions to the default probabilities of the company subsets, and finally, they cal-

culate thinning probabilities using these default probabilities. Asset model proposed by Ma

and Xu [21] includes company-specific and also common self-exciting Hawkes process and is

intended to model unexpected defaults and default clustering better than the geometric Brow-

nian motion (GBM) model when used in a structural approach. Theoretically, their model is

capable of reproducing jump clustering. Ma and Xu [21] derive closed-form formulas for the

default correlation; however, this study does not show how to estimate asset model parame-

ters using company data. Aı̈t-Sahalia et al. [1] provides a financial asset model that includes

mutually exciting jump component and a continuous Brownian component and aims to incor-

porate amplification of jumps. This study establishes an estimation method for this model and

investigates the contagion patterns and jump excitation among five world stock markets. Since

their model tries to capture the effect of jumps that remains over time and has both continuous

Brownian and jump component, it is related to our model; however, in contrast to our paper,

Aı̈t-Sahalia et al. [1] models observable stock index returns and does not address the issue of

modeling unobservable company asset process.

Common shocks are often included in intensity-based models that belong to the bottom-up

approach. Mortensen [24] models default of a firm as the first jump of a Cox process, the inten-

sity of which consists of an idiosyncratic and common (to all firms) elements. In the analysis,

Mortensen [24] specifies that jump sizes are exponentially distributed, and checks the fit of the

model to the market prices of synthetic CDOs. Giesecke et al. [12] develop a dynamic reduced-

form model in which the default intensity of a firm in a portfolio is driven by idiosyncratic and
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systematic risk factors, as well as the past defaults in the portfolio. A default is assumed to

cause a jump in the intensity processes of all surviving firms. Such model allows for self-

exciting effects. Giesecke et al. [12] use this model to analyze the behavior of the default rate

as the number of firms in the portfolio increases. Spiliopoulos et al. [26] and Giesecke et al.

[13] study an approximation to a large portfolio’s loss distribution based on this model. Other

examples of intensity-based studies are Dong et al. [6], Herbertsson et al. [14], and Liang and

Wang [20], which use shocks to model default intensity processes and to derive explicit formu-

las for the joint probability of default. However, the feasibility of the intensity-based common

shock model approach in the analysis of simultaneous defaults of more than two companies is

not sufficiently explored. The computational difficulty remains an issue.

We also want to review copula models since these models are often used in bottom-up de-

fault analysis. An example of the copula approach that is similar to our study, in a sense that

it is based on the asset process, is Giesecke [11]. He describes the model in which the thresh-

old at which a firm goes bankrupt is not publicly known because information about the firm’s

liabilities is not fully disclosed. Taking the connection of different firms into account, bond

investors estimate threshold levels for firms using available information. Then, while observ-

ing asset dynamics and default events, the investors update their estimates. This study uses

copula to model the dependence structure among thresholds of different companies. Copula

of default times is modeled using asset and threshold dependence structures. Another exam-

ple is Dalla Valle et al. [4]. They employ pair copula to model dependence structure among

current and long-term portions of the asset and debt of the company, and express company eq-

uity as a function of the asset and debt using pair copula. They simulate the values of equity

and define default as an event in which equity is at or below zero, but they do not describe

the extension of the model to simultaneous defaults of multiple companies and its feasibility.

Finally, the study by Elouerkhaoui [10] is an example of a copula approach that includes com-

mon jumps. Elouerkhaoui [10] adopts the Marshall-Olkin method and models the default times

of the obligors using Cox processes with common trigger jumps. In this way, this study in-

troduces dependency among default times and then employs time-dependent copula to model

this interdependence. Elouerkhaoui [10] considers only those shocks that induce defaults, i.e

fatal-shock model and assumes that conditional on each trigger event, the default of the firms

are independent in time.

We want to emphasize where our model stands in relation to the abovementioned models.

4



Our model tries to achieve a balance between computational simplicity and the ability to predict

realistic joint default probabilities. Theoretically, it is possible to model complicated default

dependency structures using copula approach. Even though there is a wide variety of choices

for copula models, to our knowledge, there does not exist a good copula model for multivariate

analysis that is not too complex. To introduce default dependency, we use the shot noise pro-

cess that keeps the effect of shocks over a certain period of time. Since we use this process in

order to represent bad news affecting a particular industry, and it is natural to consider that the

effect of bad news accumulates and gradually decreases, we think the shot noise process is a

reasonable/natural choice for representing accumulated effects. In contrast to copula models,

by adopting structural approach, we manage to keep calculations simple.

Another important feature of our model is that we can estimate the parameters of unob-

servable company asset processes. We explicitly derive the equation that links company assets,

debt, and equity values (see equation (2.8)). This equation enables us to estimate the parame-

ters. This is a contrasting point to Ma and Xu [21], who model asset value by similar model

but do not provide insight into the parameter estimation. Structural approach assumes that the

company equity is a European call option written on the company asset process with a strike

price equal to the amount of debt at maturity. In order to estimate the parameters of the asset

model, we need to link the unobservable asset process to observable equity and debt values.

And for this, we need to derive an option pricing formula. When using GBM model for the

asset process, this can be easily done. However, GBM model contains only one risk source and

as we demonstrate in this study, it turns out insufficient compared to our shot noise model. Mer-

ton [23] and Kou [16] provide option pricing formulas when underlying asset model contains

jumps. However, they need to specify jump size distributions in order to obtain closed-form

solutions. Merton [23] assumes log-normal distribution, while Kou [16] does double exponen-

tial distribution. Moreover, the estimation procedure, provided by Duan [7] and Duan [8] that

we will discuss later, requires the likelihood function for the asset process. As demonstrated in

Consigli [3], when explicitly using jumps in the model, the likelihood function requires setting

the maximum number of jumps in a time interval of interest. In our study, we bypass the ne-

cessity of specifying the jump size distribution, jump times or maximum number of jumps by

employing an approximation of the shot noise process.

As for the analysis, our focus is on the subprime mortgage crisis. Therefore, we analyze

daily data from 2005/12/30 to 2014/12/31. In our example, we present results for three compa-
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nies. However, this model works for any number of companies and adding a new company to

the model does not increase computational difficulty, since the shot noise process is assumed

common for all companies that belong to that particular industry. We estimate simultaneous

default probability matrices by our model (we call this shot noise model) and by the GBM

model, that we will discuss later (Sections 2.5 and 4) and that is commonly used in a struc-

tural approach. The most important result is that our model reacts earlier to financial distress

and predicts higher simultaneous default probabilities for 2008-2010. In addition, we test our

model in the following two ways. First, we simulate asset values from our model and the GBM

model and obtain implied equity values. Then, we compare these equity values to real equity

data. The goodness of fit of our model turns out to be better or almost the same (in a few cases)

as that of the GBM model. Second, we use simulated asset values and explore the relationship

between assets and CDS spreads by using a linear regression analysis. We observe that all the

coefficients are statistically significant at 1% level.

Finally, we would like to emphasize that we propose our model as a tool for risk manage-

ment. Based on one year (or half a year) of data, one could estimate the parameters of our

model and calculate joint default probabilities for the coming year. If those values are signif-

icantly different from the ones of the previous year, this could be considered as an alarm for

investors or related parties. The behavior of the investors armed with this information obvi-

ously can affect the outcome of the coming year. Therefore, predicting a high simultaneous

default probability for the next year does not mean that the default has to occur in order to

justify the model. It only means that the model predicts high risk and the action of investors

and the related parties has to change in a way that the default becomes avoidable.

The rest of the paper is organized as follows. In Section 2, we carefully construct the asset-

value process based on the shot noise process, and derive the maximum likelihood function.

After discussing the data used in Section 3, we present and compare the results from the GBM

and shot noise model (see Sections 4.1, 4.2, and 4.3). All the mathematical proofs are presented

in Appendix A and some statistical and graphical results are in Appendix B.

2. Methodology

2.1. Model

Throughout this study, we deal with probability space (Ω,FT ,P). T can be viewed as any

fixed point in time. Below we will specify the filtration FT . For an asset-value process, we
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aim to use a model that incorporates a shot noise process. To make the model simple, we use

only one shot noise process for bad news, which means that the shot noise process will have

negative effects on the asset value. We propose the following model for the company i’s asset

value and give the details behind this formulation below.

V (i)
t = exp

X (i)
0 +

(
µ
(i)− 1

2
(
σ
(i))2

)
t +σ

(i)B(i)
t −

µ
(i)
1 ρ

δ (i)
−Z(i)

t

√
µ
(i)
2 ρ

2δ (i)

 t ≥ 0 (2.1)

Here, V (i)
t denotes the asset value of company i at time t, and the superscript i denotes the

company-specific parameters. µ(i), σ (i) > 0, X (i)
0 , µ

(i)
1 > 0, µ

(i)
2 > 0, δ (i) > 0, and ρ > 0 are

constant parameters. ρ is a common parameter to all companies in a particular industry; there-

fore, it does not have the superscript i. B(i)
t is standard Brownian motion representing company-

specific risk. Z(i)
t is an Ornstein-Uhlenbeck process and satisfies the differential equation

dZ(i)
t =−δ

(i)Z(i)
t dt +

√
2δ (i)dWt ,

where Wt is a standard Brownian motion. Wt is a risk factor common to all companies in the

industry of interest. See (2.6) and the subsequent explanation of W . By the dynamics of dZ(i),

Z(i)
t can equivalently be written as

Z(i)
t = Z(i)

0 e−δ (i)t +
√

2δ (i)
∫ t

0
e−δ (i)(t−s)dWs. (2.2)

Before discussing further details of our model, we will explain the background behind this

formulation.

Setting λ̃
(i)
t =

µ
(i)
1 ρ

δ (i) +Z(i)
t

√
µ
(i)
2 ρ

2δ (i) , we observe that (2.1) can be written as

V (i)
t = eX (i)

0 +
(

µ(i)− 1
2 (σ

(i))2
)

t+σB(i)
t −λ̃

(i)
t , (2.3)

where λ̃
(i)
t serves as a decreasing factor of the asset process. It represents an approximation

of a shot noise process λ
(i)
t at time t based on Dassios and Jang [5]. We give a brief overview

of this shot noise process. The shot noise process at time t, denoted by λ
(i)
t , is given by the

following equation

λ
(i)
t = λ

(i)
0 e−δ (i)t +

Mt

∑
j=1

Y (i)
j e−δ (i)(t−S j), (2.4)

where λ
(i)
0 is the initial value of the shot noise process, δ (i) is the exponential decay rate,

{S j} j=1,2,... are event times of Poisson process Mt with constant rate ρ , and {Y (i)
j } j=1,2,... is a

sequence of independent and identically distributed random variables with distribution function
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G(i)(y),y > 0. The Y (i)’s represent the size of the shot noise jumps and are independent of Mt .

In addition, we require that the first and second moments of the jumps be finite, following

Dassios and Jang [5]:

E
(

Y (i)
j

)
= µ

(i)
1 < ∞ and E

((
Y (i)

j

)2
)
= µ

(i)
2 < ∞.

We use the superscipt i for the shot noise process because it includes company-specific param-

eters. The jump times of the shot noise process are common to all companies; however, we

assume that companies respond differently to these jumps. For this reason, the Y ’s are used

with the superscipt i, since the impacts of the jumps differ across companies. For the same

reason, the first and the second moments of the jumps are company-specific, as well. Recall

that ρ and the jump times are common to all companies. We want to point out that in this study

λ̃
(i)
t (or λ

(i)
t ) is not used as an intensity of a stochastic process. It is simply used as a process

that expresses accumulated effect of jumps. Since all jumps are assumed positive, we use−λ̃
(i)
t

to incorporate bad news in the asset model.

The shot noise process λ is widely used in the literature. As mentioned above, our main

purpose of using this process is to represent jumps (= bad news), whose effects do not disap-

pear immediately and remain for a certain period of time (see e.g., Fig. 1 below).

Fig. 1. An example of a simulated sample path of a shot noise process up to time T = 10. λ0 = 1, δ = 0.5, ρ = 3. Jumps follow exponential

distribution with parameter 1.

2.2. On Approximation of the Shot Noise Process

As discussed in the introduction, the derivation of the equation that links an unobservable

asset process to an observable equity and debt values is necessary for parameter estimation.

This is the reason why we use the approximation of the shot noise process and not the process
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itself directly. This method allows us to estimate asset model parameters using observable debt

and equity data. Below we will illustrate the idea behind this approximation and give its justi-

fication for our case.

λ̃ is the approximation of the shot noise process λ proposed in Theorem 2 in Dassios and

Jang [5]. We will discuss a general case presented in Dassios and Jang [5], omitting the super-

script i. Dassios and Jang [5] assume that the event arrival rate ρ tends to infinity and that λ0

is a random variable, independent of everything else, satisfying
λ0−

µ1ρ

δ√
µ2ρ

2δ

d−→ Z0 as ρ → ∞. Then,

defining Z(ρ)
t :=

λt−
µ1ρ

δ√
µ2ρ

2δ

, they prove that Z(ρ)
t

d−→ Zt as ρ → ∞, where dZt = −δZtdt +
√

2δdBt

and Bt is a standard Brownian motion. For this approximation to hold, we need to verify that

the event arrival rate ρ is large enough, that is, jumps are frequent. This means that events in

this model are not catastrophes, but rather “common events of high frequency” (Dassios and

Jang [5, p. 97]). We propose that the frequent jumps represent bad news about companies in

a given industry, including deteriorating profit numbers, changing business environments, and

sudden changes in management team as well as the jumps associated with systematic risk. If

we use m companies of one industry in the analysis, these jumps would be related to 1) m

idiosyncratic company risks, 2) risks associated with the remaining companies in the industry,

and 3) systematic noise. We will be using daily data for the analysis, setting ∆t =
1

360
. The

number of jumps in one year would be equal to ρ .

Since we have set λ̃t =
µ1ρ

δ
+Zt

√
µ2ρ

2δ
(by omitting superscript i), the approximation means

λt =
µ1ρ

δ
+

√
µ2ρ

2δ
Z(ρ)

t
d
=

µ1ρ

δ
+

√
µ2ρ

2δ
Zt = λ̃t (2.5)

for each t when ρ is large enough. Note that λt is originally given by (2.4) (omitting the

superscript i). Hence, checking the approximation of Z(ρ)
t by Zt is equivalent to comparing λt

and λ̃t . We shall now make sure that this convergence in distribution holds with ρ = 360, one

bad news per day in average in the industry. More specifically, we generate sample paths of

λt based on (2.4) and generate λ̃t based on (2.2) with the right-hand side of (2.5). Again, we

are discussing a general case and do not use i to indicate company-specific parameters. The

precision of the approximation when ρ = 360 is demonstrated in Fig. 2, where we compared

the distribution of λt and λ̃t at certain points of time t. We can see that the approximation of the

distribution is quite accurate for such ρ . Since we are dealing with processes, we also display

the trajectories of the shot noise and of the approximated process in Fig. 3. We simulated

paths of the two processes λt and λ̃t including their initial values (a) 200, (b) 500, and (c) 1000
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times and plotted the averaged paths. We show here the results that would most likely occur.

During simulation, we only assumed that Z0 and
λ0−

µ1ρ

δ√
µ2ρ

2δ

have the same distribution, the sole

assumption required in Dassios and Jang [5]. Table 1 reports the sums of squared differences

between the two averaged paths. We also computed these differences for the case of ρ = 1080,

that is, 3 jumps per day in average. This table shows that for each ρ , the differences diminish

significantly as we increase the number of simulations. Note that since λt in (2.4) depends on ρ

and hence its paths generated for the test of ρ = 360 and that of ρ = 1080 are different, a direct

comparison of fit between ρ = 360 and ρ = 1080 is not relevant in this experiment. As we can

see, the trajectories of the shot noise process are approximated rather well when there are 1∼ 3

jumps per day in average. We have tried other jump and decay parameters and obtained equally

good results of fitness. 1∼ 3 jumps per day is not an unrealistic assumption. Thus, we proceed

with this approximation λ̃t and hence with Zt in (2.2).

Table 1

Sum of Squared Differences between the Shot Noise and the Approximated Process’s paths.

Simulation Number

200 500 1000

ρ = 360 0.8099 0.3377 0.1606

ρ = 1080 1.6368 0.6686 0.3030
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(a) (b)

(c)

Fig. 2. Histogram of a Shot Noise Process λ (Upper Panel) and Its Approximation λ̃ (Lower Panel). T = 2, δ = 0.5, ∆t =
1

360 , ρ = 360. Jumps

follow exponential distribution with parameter 200. λ0 is assumed to be a standard normal random variable. The horizontal axis denotes the

values of the process at t = 0.75 in (a), t = 1 in (b), and t = 1.5 in (c). The paths were simulated 10,000 times.
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(a) (b)

(c)

Fig. 3. Average of the Simulated Trajectories of a Shot Noise Process λ (Blue Line) and Its Approximation λ̃ (Red Line). T = 2, δ = 0.5, ∆t =

1
360 , ρ = 360. Jumps follow exponential distribution with parameter 200. λ0 is assumed to be a standard normal random variable. Z0 has the

same distribution as
λ0−

µ1ρ

δ√
µ2ρ

2δ

. The horizontal axis denotes a specific point in time. (a), (b), and (c) display the average of 200, 500, and 1000

simulated paths, respectively.
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Now we return to our model (2.1) for any company i. As we mention, following Dassios

and Jang [5], we have assumed that λ
(i)
0 is a random variable independent of everything else

and satisfies
λ
(i)
0 −

µ
(i)
1 ρ

δ (i)√
µ
(i)
2 ρ

2δ (i)

d−→ Z(i)
0 when ρ → ∞ . Then, from Theorem 2 in Dassios and Jang [5],

(
Z(i)

t

)(ρ) d−→ Z(i)
t as ρ → ∞.

Here,
(

Z(i)
t

)(ρ)
=

λ
(i)
t −

µ
(i)
1 ρ

δ (i)√
µ
(i)
2 ρ

2δ (i)

and Z(i)
t = Z(i)

0 e−δ (i)t +
√

2δ (i)
∫ t

0 e−δ (i)(t−s)dWs, which is (2.2). Note

that Wt is a standard Brownian motion and since it represents shocks of the shot noise process,

we assume that Wt is of the form

Wt = k(1)B(1)
t + k(2)B(2)

t + · · ·+ k(m)B(m)
t + k̃B̃t , (2.6)

where B(i) is a standard Brownian motion that appears in (2.1), representing company i’s id-

iosyncratic risk. After taking into consideration m companies’ idiosyncratic risks, we are left

with the systematic noise, which we assume is a standard Brownian motion, and ntotal−m

number of companies’ idiosyncratic risks (ntotal denotes the total number of companies in the

industry), i.e. ntotal−m number of standard Brownian motions. In our framework, company

idiosyncratic risks are independent of each other and of the systematic noise. Then, the stan-

dard Brownian motion B̃ can be seen as a combination of the remaining independent Brownian

motions (remaining idiosyncratic risks and the systematic noise) into one, since this is easily

done mathematically. Hence, all the Brownian motions appearing in equation (2.6) are inde-

pendent of one another. W has an instantaneous correlation coefficient k(i) with B(i). Note that

we need the condition
m
∑

i=1
(k(i))2 < 1, so that (Wt) is a standard Brownian motion. We shall

explain this matter in Section 2.5, where we discuss parameter estimation. Finally, we assume

that m+1-dimensional Brownian motion
(
(B(i)

t )1≤i≤m, B̃t

)
is adapted to filtration Ft .

Furthermore, we assume Z(i)
0 is F0-measurable. There is no a priori information about the

distribution of Z(i)
0 . We assume Z(i)

0 is a bounded random variable. Given Z(i)
0 , Z(i)

t follows

the normal distribution for t fixed. Hence, we can use λ̃
(i)
t =

µ
(i)
1 ρ

δ (i) +Z(i)
t

√
µ
(i)
2 ρ

2δ (i) as Gaussian

approximation of λ
(i)
t . This is the process used in our model (2.1). Once again, we want to

emphasize that the parameters (µ1,µ2,δ ) and the random variable Z0 are company-specific,

since each company reacts differently to shocks (this means that the characteristics of jumps

are different), while the driving force behind these jumps (Wt in our case) is assumed to be

common to all companies in the industry.
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2.3. Dynamics of V (i)
t under Approximation

Since Z(i)
t is a semimartingale, we can use Itô’s formula to derive the dynamics of the asset

process under the approximation (see Appendix A.1 for details):

dV (i)
t =V (i)

t

(
µ
(i)− 1

2
(
σ
(i))2

)
dt +V (i)

t σ
(i)dB(i)

t +
1
2

V (i)
t
(
σ
(i))2dt−V (i)

t

√
µ
(i)
2 ρ

2δ (i)
dZ(i)

t

+
1
2

V (i)
t

µ
(i)
2 ρ

2δ (i)
d〈Z(i),Z(i)〉t−V (i)

t
1
2

√
µ
(i)
2 ρ

2δ (i)
σ
(i)d〈B(i),Z(i)〉t−V (i)

t
1
2

√
µ
(i)
2 ρ

2δ (i)
σ
(i)d〈B(i),Z(i)〉t

=
(
µ
(i)+

1
2

µ
(i)
2 ρ +δ

(i)

√
µ
(i)
2 ρ

2δ (i)
Z(i)

t −σ
(i)
√

µ
(i)
2 ρk(i)

)
V (i)

t dt +σ
(i)V (i)

t dB(i)
t −

√
µ
(i)
2 ρV (i)

t dWt

= Q(i)
t V (i)

t dt +
((

σ
(i)−

√
µ
(i)
2 ρk(i)

)
dB(i)

t −
√

µ
(i)
2 ρ

√
1− (k(i))2dW (−i)

t

)
V (i)

t (2.7)

where Q(i)
t = µ(i)+ 1

2 µ
(i)
2 ρ+δ (i)

√
µ
(i)
2 ρ

2δ (i) Z(i)
t −σ (i)

√
µ
(i)
2 ρk(i) and W (−i)

t =
∑

1≤ j≤m, j 6=i
k( j)dB( j)

t +k̃dB̃t

√
1−(k(i))2

.

Note that B(i)
t and W (−i)

t are independent standard Brownian motions. In the integral form, this

is

V (i)
t =

V (i)
0 +

∫ t

0
Q(i)

s V (i)
s ds+

∫ t

0

(
σ
(i)−

√
µ
(i)
2 ρk(i)

)
V (i)

s dB(i)
s −

∫ t

0

√
µ
(i)
2 ρ
(
1− (k(i))2

)
V (i)

s dW (−i)
s .

The first integral is again a Lebesgue–Stieltjes integral and is a bounded variation process.

The second and the third integrals are local martingales, since

P
[∫ T

0

(
V (i)

s

)2(
σ (i)−

√
µ
(i)
2 ρk(i)

)2
ds<∞

]
= 1 and P

[∫ T

0

(
V (i)

s

)2
µ
(i)
2 ρ
(
1−(k(i))2)ds<∞

]
= 1, where T is our observation horizon. Their sum is also a local martingale. Therefore, V (i)

t

is a semimartingale for t ∈ [0,T ].

2.4. Risk-neutral Theory

The asset process of the company is not observable in the market. We know the book value

of the assets only from the balance sheet. However, once we estimate the unknown parameters

in (2.1), (2.2), and (2.6), we are able to simulate the asset process. For this purpose, first, we

wish to connect company assets to its equity since the equity value is observable. We use the

option-theoretic approach to equity value, as in Black and Scholes [2], Merton [22], and Lehar

[19]. That is, we regard equity E(i)
t as a call option written on the company’s assets with a strike
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price equal to the future value of the company’s debt D(i)
Tm

= D(i)
t er(Tm−t) where D(i)

t is the debt

of the company i at time t and Tm is the maturity of the option. In our case, we need to calculate

the value of this call option when the underlying asset follows (2.1). Lehar [19] assumes that

all debt is insured (risk-free) and grows at a risk-free rate r, which we adopt for simplicity. In

addition, we assume that the time to maturity equals 1 year, as in Lehar [19]. For each t, we

consider a new option maturing after 1 year, i.e. Tm− t = 1 for all t.

Proposition 1. Let the company i’s asset-value process V (i)
t follow the equation (2.1). Then,

the value of equity E(i)
t for this company is given by the equation

E(i)
t =V (i)

t Φ

(
d(i)

t

)
−D(i)

t Φ

(
d(i)

t −M(i)
√
(Tm− t)

)
, (2.8)

where d(i)
t :=

ln

(
V (i)

t

D(i)
t

)
+

(
M(i)
)2

2 (Tm−t)

M(i)
√

(Tm−t)
, M(i) :=

√(
σ (i)
)2

+µ
(i)
2 ρ−2σ (i)

√
µ
(i)
2 ρk(i), and Φ(·) is

the standard normal distribution function.

Proof. Consider the discounted asset-value process e−rtV (i)
t , where r is the constant risk-free

rate. Its dynamics are

d
(
e−rtV (i)

t
)

=−re−rtV (i)
t dt + e−rtdV (i)

t

= e−rtV (i)
t
(
− r+Q(i)

t
)
dt + e−rtV (i)

t

((
σ
(i)−

√
µ
(i)
2 ρk(i)

)
dB(i)

t −
√

µ
(i)
2 ρ
(
1− (k(i))2

)
dW (−i)

t

)
= e−rtV (i)

t

[(
−r+Q(i)

t

)
dt +

(
σ
(i)−

√
µ
(i)
2 ρk(i)

)
dB(i)

t −
√

µ
(i)
2 ρ(1− (k(i))2)dW (−i)

t

]
.

The following argument is based on Shreve [25, pp. 226–228]. Let us define αi := σ (i)−√
µ
(i)
2 ρk(i) and α−i :=−

√
µ
(i)
2 ρ(1− (k(i))2). Then, we obtain

d(e−rtV (i)
t ) = e−rtV (i)

t

[(
−r+Q(i)

t

)
dt +αidB(i)

t +α−idW (−i)
t

]
. (2.9)

In order to transform the discounted asset value into martingale, we rewrite the equation in the

following way:

d(e−rtV (i)
t ) = e−rtV (i)

t

(
αi

[
−θ

(i)
t dt +dB(i)

t

]
+α−i

[
−θ

(−i)
t dt +dW (−i)

t

])
For an adapted process θ =

(
θ
(i)
t ,θ

(−i)
t

)
t≥0

to satisfy the above equation, it is necessary that

αiθ
(i)
t +α−iθ

(−i)
t =

(
σ
(i)−

√
µ
(i)
2 ρk(i)

)
θ
(i)
t −

√
µ
(i)
2 ρ(1− (k(i))2)θ

(−i)
t = r−Q(i)

t .
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This is one equation in two unknowns; therefore, it has infinitely many solutions. We choose

one of them (no matter what we choose, the resulting pricing formula is the same). We

set θ
(−i)
t := 1 and θ

(i)
t :=

r−Q(i)
t +

√
µ
(i)
2 ρ(1−(k(i))2)

σ (i)−
√

µ
(i)
2 ρk(i)

and define B̃(i)
t := B(i)

t −
∫ t

0 θ
(i)
s ds, W̃ (−i)

t :=

W (−i)
t −

∫ t
0 θ

(−i)
s ds. θ

(i)
t and θ

(−i)
t are measurable adapted processes. If we can show that

Ht(θ) := e
∫ t

0 θ
(i)
s dB(i)

s +
∫ t

0 θ
(−i)
s dW (−i)

s − 1
2
∫ t

0 ||θs||2ds

is a martingale, then by Theorem 5.1 (Karatzas and Shreve [15, p. 191])
(

B̃(i),W̃ (−i)
)

t
would be

a two-dimensional standard Brownian motion for 0≤ t ≤ T on (Ω,FT ,P̃T ), where probability

measure P̃T is defined as P̃T (A) =E[1AHT (θ)] for A∈FT . Indeed, HT (θ) is a martingale (see

Appendix A.2) and we obtain

d
(
e−rtV (i)

t
)
= e−rtV (i)

t

[(
σ
(i)−

√
µ
(i)
2 ρk(i)

)
dB̃(i)

t −
√

µ
(i)
2 ρ(1− (k(i))2)dW̃ (−i)

t

]
= e−rtV (i)

t M(i)d ˜̃B(i)
t

as a martingale under P̃T , where

M(i) :=

√(
σ (i)
)2

+µ
(i)
2 ρ−2σ (i)

√
µ
(i)
2 ρk(i)

and

˜̃B(i)
t :=

σ (i)−
√

µ
(i)
2 ρk(i)

M(i)
B̃(i)

t −

√
µ
(i)
2 ρ(1− (k(i))2)

M(i)
W̃ (−i)

t

is a one-dimensional standard Brownian motion under P̃T (see Appendix A.2). From (2.7), we

obtain

dV (i)
t =V (i)

t Q(i)
t dt +V (i)

t

((
σ
(i)−

√
µ
(i)
2 ρk(i)

)
dB̃(i)

t +

(
r−Q(i)

t +

√
µ
(i)
2 ρ(1− (k(i))2)

)
dt
)

−V (i)
t

(√
µ
(i)
2 ρ(1− (k(i))2)dW̃ (−i)

t +

√
µ
(i)
2 ρ(1− (k(i))2)dt

)
= rV (i)

t dt +V (i)
t

((
σ
(i)−

√
µ
(i)
2 ρk(i)

)
dB̃(i)

t −
√

µ
(i)
2 ρ(1− (k(i))2)dW̃ (−i)

t

)
= rV (i)

t dt +M(i)V (i)
t d ˜̃B(i)

t ,

so that

V (i)
t =V (i)

0 e
(

r− 1
2(M(i))

2)
t+M(i) ˜̃B(i)

t with V (i)
0 = e

X (i)
0 −

µ
(i)
1 ρ

δ (i)
−Z(i)

0

√
µ
(i)
2 ρ

2δ (i) . (2.10)

By the risk-neutral pricing formula,

E(i)
t = Ẽ

[
e−r(Tm−t)

(
V (i)

Tm
−D(i)

Tm

)+∣∣∣∣Ft

]
.
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Recall that Tm denotes the maturity (a certain point in time) of the debt, E(i)
t is the equity (i.e.,

the price of the option written on the value of the firm at time t) and D(i)
Tm

works as the strike

price. This is the same as the Black–Scholes formula with the volatility parameter M(i) in view

of (2.10). Then, we obtain the desired equation (2.8).

As we can see, the analysis for company i does not include parameters of the remaining

m− 1 companies on interest. The only common parameter is ρ and it appears always in the

form of µ
(i)
2 ρ . The product µ

(i)
2 ρ is company-specific. This means, that we can estimate the

parameters for each company separately. This is demonstrated in the next subsection.

2.5. Estimation Procedure

Thanks to Proposition 1, we have established the relationship between the unobservable

asset-value process and the equity values in our shot noise model. Using that, we estimate

the parameters of V (i)
t by the maximum likelihood estimation technique introduced in Duan

[7], Duan [8], and Duan et al. [9]. For the case of GBM model, we just follow the method

in these articles. But for our model, we have to modify it as we shall explain here. Given

the data of the equity process E(i) = (E(i)
t , t = ∆t ,2∆t , . . . ,n∆t), we can estimate the company-

specific parameters µ(i),δ (i),µ
(i)
2 ρ,σ (i), and the realized value of the random variable Z(i)

0 by

maximizing the following log-likelihood function:

L(E(i)
t , t = ∆t ,2∆t , . . . ,n∆t ; µ

(i),δ (i),µ
(i)
2 ρ,Z(i)

0 ,σ (i) |F0) =

− n
2

ln(2π)− 1
2

n

∑
j=1

lnVar(i)j∆t
−

n

∑
j=1

(
ln

(
V̂ (i)

j∆t

V̂ (i)
( j−1)∆t

)
−mean(i)j∆t

)2

2Var(i)j∆t

−
n

∑
j=1

lnV̂ (i)
j∆t
−

n

∑
j=1

lnΦ(d̂(i)
j∆t
),

(2.11)

where V̂ (i)
j∆t

is the unique solution to (2.8) in Proposition 1, d̂(i)
j∆t

is d(i)
j∆t

but with V (i)
j∆t

replaced by

V̂ (i)
j∆t

,

mean(i)j∆t
=

(
µ
(i)− 1

2
(
σ
(i))2

)
∆t−

√
µ
(i)
2 ρ

2δ (i)
Z(i)

0 e−δ (i) j∆t
(
1− eδ (i)∆t

)
and

Var(i)j∆t
=
(
σ
(i))2

∆t +
µ
(i)
2 ρ

2δ (i)
(1− e−2δ (i)∆t )−

2σ (i)
√

µ
(i)
2 ρ

δ (i)

(
1− e−δ (i)∆t

)
k(i).
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See Appendix A.3 for a derivation. Following Duan [7], we have dropped the first observation

V (i)
0 from the likelihood and used F0 to define the conditional distribution of the observations

that follow; therefore, the above likelihood does not include the density of the first observation.

As we have assumed in Section 2.2, Z(i)
0 is F0 measurable. Therefore, the distribution of

Z(i)
0 does not come into play anymore and only the realized value of Z(i)

0 will be estimated.

Moreoever, since V (i)
0 = e

X (i)
0 −

µ
(i)
1 ρ

δ (i)
−Z(i)

0

√
µ
(i)
2 ρ

2δ (i) ,

V (i)
t =V (i)

0 e

(
µ(i)− 1

2(σ (i))
2)

t+σ (i)B(i)
t −Z(i)

t

√
µ
(i)
2 ρ

2δ (i)
+Z(i)

0

√
µ
(i)
2 ρ

2δ (i) (2.12)

and dropping V (i)
0 from estimation means that we will not estimate X (i)

0 and µ
(i)
1 . During maxi-

mization, when necessary, V (i)
0 will be calculated by (2.8) in Proposition 1, using the observable

values of E(i)
0 and D(i)

0 .

As we have mentioned, we estimate the company-specific parameters separately for each

company. However, we want to point out that from equation (2.6), the condition
m
∑

i=1
(k(i))2 +

k̃2 = 1 must be satisfied when analyzing m companies. We estimate k(1), · · · ,k(m), k̃ separately,

and then use these values in the calculation of the likelihood function. We illustrate the estima-

tion procedure for k(1), · · · ,k(m), k̃ in the next paragraph.

We linearly regress (including an intercept) the time series of the industry price index on

the time series of the individual company share prices (the share prices of all m companies

at the same time) and apply ANOVA to the estimated linear model. For each company i, we

calculate the reduction in residual sum of squares by adding company i’s share price data to

the model that already contains all the other m−1 company share price data.1 We denote this

reduction by (Sum of Squares)i. Also, we calculate Total Sum of Squares (TSS), which is the

sum of squared industry price index values after subtracting out the mean, and which in turn

corresponds to the sum of squared residuals of the model that includes only the intercept. Then,

we set

k(i) =

√
(Sum of Squares)i

Total Sum of Squares
.

Adding explanatory variables to the simple model with only intercept reduces the sum of

squared residuals. The sum of the abovementioned individual contributions to this reduction

1We confirmed that when the companies’ share prices are adjusted for the company size by a multiple of real

numbers, the values of k(i) are the same. Hence our method here can be used whether or not the industry price

index is adjusted for the company size.
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(i.e.
m
∑

i=1
(Sum of Squares)i) can never exceed ESS (which is the total contribution of the model

that includes m companies’ share price data). Hence, we have
m
∑

i=1
(Sum of Squares)i ≤ ESS ≤

T SS. 2 Therefore, using this method, we can ensure that
m
∑

i=1

(
k(i)
)2

< 1.

When implementing the likelihood maximization in MATLAB, the function that we max-

imize to obtain the parameters consists of two parts. Inside the function, V̂ (i)
j∆t

is estimated by

a fixed-point iteration procedure from (2.8) using available equity and debt values. Thereafter,

using these estimated asset values, the log-likelihood in (2.11) is calculated. The result is a

function in the unknown five parameters and this function is maximized by the built-in interior-

point method in MATLAB (precisely, we use the MATLAB function ”fmincon” to minimize

the negative log-likelihood).

2.6. Summary

Our model for company asset value V (i) is written by equation (2.1) with W as in (2.6) and

Z(i) as in (2.2). The latter is part of our approximation of the shot noise process λ (i) in equation

(2.4).

[1] We first estimate k(i), i = 1, · · · ,m and k̃.

[2] We need to estimate parameters µ(i),δ (i),µ
(i)
2 ρ,σ (i) together with Z(i)

0 by the log-

likelihood function (2.11). This function is derived thanks to Proposition 1, in particular

equation (2.8). These values are company-specific and hence we perform this estimation

on a company by company basis.

[3] The required data for [2] are equity values E(i) and debt values D(i), which we discuss in

details in Section 3.

[4] Once we obtain the parameters, we can simulate V (i) by (2.1), (2.2), and (2.6) and com-

pute equity values implied by our model using (2.8). By comparing the implied equity

values to the real equity data, we check whether the estimated parameters, including the

2The case that
m
∑

i=1
(Sum of Squares)i is equal to TSS would realize only if the following three events occur at

the same time: (1) we have used all the companies in the industry (i.e. ntotal = m), (2) there is no other source of

variation, such as systemic risk (that is, k̃ = 0 by definition), and (3) the sum of marginal contributions of each

company is equal to the total reduction of variance (i.e.,
m
∑

i=1
(Sum of Squares)i = ESS). But this is highly unlikely

to occur in practice.
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realized value of Z(i)
0 , are accurate or not. With V (i), we can compute simultaneous default

probabilities. For details of this part, see Section 4.

3. Data

The data used in the estimations are obtained from Thomson Reuters Datastream and

Worldscope. The debt and equity data are displayed in millions of US dollars. Our focus

is on the banking industry; however, the abovementioned model can be used in the analysis

of any industry. The choice of companies can be random. We analyze three companies: JP-

Morgan Chase & Co. (JPM), Citigroup Inc. (Citi), and Bank of America Corporation (BAC)

(see Tables B.1, B.2, and B.3 for the company profiles in Appendix B). For our equity data,

we use “Market Value by Company” (MVC) from Datastream. “Market Value” (MV) from

Datastream provides the market value of only one class of shares. MVC is the same as MV

for companies with only one listed equity security. However, for companies with more than

one type of listed or unlisted shares, MVC takes these other types of shares into consideration,

too. For a detailed description, refer to Datastream Datatype Definition. For the estimation, we

use daily data from 2005/12/30 to 2014/12/31. Fig. B.1a displays the daily MVC for the three

companies.

From the company balance sheets, we calculate D(i)
t for each t. We define D(i)

t as the sum

of Deposits-Total, Commercial Paper, Debt and equity instruments-Trading liabilities, Federal

funds purchased under repurchase agreement, Other borrowed funds, and one half of Long-

term debt. This addition of one-half of the long-term debt is a conventional method adopted

by Moody’s KMV, a unit that offers commercial packages of default probability. For JPM,

all these categories are available (Federal funds purchased under repurchase agreement are

displayed under the name of “under repurchase agreements”). However, for the other two com-

panies, the data are not available under these names and we make small adjustments.

For Citi, we define Dt as the sum of Deposits-Total, Federal funds purchased and securi-

ties (sum of Federal Funds Purchased, Security Sold under Repurchase Agreement, and Federal

funds purchased and securities), Commercial paper, Trading account liabilities, Short-term bor-

rowings (sum of Short-term borrowings and Other borrowings - Balancing value), and one half

of Long-term debt. For BAC, Dt is the sum of Deposits-Total, Federal funds purchased and

securities (sum of Federal Funds Purchased, Security Sold under Repurchase Agreement, and

Federal funds purchased and securities), Trading account liabilities, Short term borrowings,
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and one half of Long term debt. Commercial paper data are not available on the balance sheet

for this company.

Deposits-Total for all companies and Long term debt for BAC are retrieved from World-

scope. The remaining data are from Reuters. The values are restated, updated, or reclassified

values, that is, the latest values available. These debt data are quarterly. We use interpolation

to obtain the daily values of the debt. Fig. B.1b displays the time-series (2609 observations) of

the debt for all companies. Finally, the three companies’ individual share prices and S&P500

Economic Sector Financials Price Index (S&P500 ES Financials) data was used for estimating

parameters k(i).

4. Estimation, Results, and Discussion

Since there is a possibility that parameters of the model change over time, we split the

estimation period into 1-year subperiods. The data in each 1-year subperiod are used to estimate

the model parameters for the subsequent year’s default probabilities. The first cohort is

2005/12/30∼ 2006/12/29⇒ for the year 2007,

2006/12/29∼ 2007/12/31⇒ for the year 2008,

2007/12/31∼ 2008/12/31⇒ for the year 2009,

2008/12/31∼ 2009/12/31⇒ for the year 2010,

and the second cohort is

2009/12/31∼ 2010/12/31⇒ for the year 2011,

2010/12/31∼ 2011/12/30⇒ for the year 2012,

2011/12/30∼ 2012/12/31⇒ for the year 2013,

2012/12/31∼ 2013/12/31⇒ for the year 2014.

For each 1-year interval, we estimate the parameters of our model (including k(i)) and of the

GBM model used in Lehar [19]. The difference between these two models is that the first in-

corporates the shot noise process and the second does not. We report the parameter values of

both models for each period. We want to point out that the drift term of the asset process in

our model (eq.(A.3) in Appendix A) is much more complicated than the drift term of the GBM

model. For example, it is not possible to directly compare the parameter µ(i) of our model and
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the counterpart of the GBM. 3 Also, each parameter of the shot noise model may change from

one period to another, so that the final drift in eq.(A.3) can capture the overall trend of equity

prices.

Using the estimated parameters of the 1-year subinterval, we generate the asset-value pro-

cess for the next year. For this, we first retrieve the starting value of the asset process from

the Black–Scholes equation using the estimated variance parameter and then simulate the next

360 observations by starting from that value. For example, if we use data from 2005/12/30 ∼

2006/12/29 to estimate parameters, we compute the starting asset value of the next year (Year

2007) using the Black–Scholes formula (2.8), the estimated variance, and the observable data

(equity and debt) of 2006/12/29. In order to simulate the asset path V (i)
t , we need to simulate

B(i)
t and Z(i)

t , the latter depending on Wt . After estimating the coefficients k(i), i = 1, · · · ,m and

k̃ =

√
(1−

m
∑

i=1
(k(i))2, we are able to simulate Wt using B(i)

t , i = 1, · · · ,m and B̃t . We assume

that default occurs only at the end of the simulation period (default model proposed by Merton

[22]); therefore, we compare the final simulated asset value (i.e., the asset value for the end of

the year 2007) to the debt amount of the company. We assume that debt grows at the rate of

1-year treasury bill r; that is, we use the year-end debt level of 2006 multiplied by er, where

r is the last observed treasury rate in 2006. Table B.6 in Appendix B summarizes the interest

rates used in the calculation of the debt. If the asset value falls at or below the level of debt DTm ,

we consider this as default. We simulate sample paths of the asset-value process 100,000 times

and count the number of defaults. Then, dividing the number of defaults by 100,000 gives us

default probabilities. An example demonstrating the precision of this simulation is displayed

in Fig. B.5 in Appendix B.

Since our model has 5 unknown parameters, the values that we obtain from the minimiza-

tion function depend on the initial values of the parameters. We mention our rules and pro-

cedures for choosing one parameter set among a few candidates. Let us take an example.

Suppose we use the equity data of 2005/12/30∼2006/12/29 to estimate parameters. Using

these estimated parameter vectors, we simulate the asset-value process for the same 1-year

period (for 2005/12/30∼2006/12/29). The simulation procedure is the same as described in

the previous paragraph. For each simulated asset path, we back out the equity values from

3We have observed during estimation that Z(i)
0 and µ(i) are closely related when determining the drift and most

of the time take opposite signs.
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the Black–Scholes equation (2.8). We do the asset simulation 50,000 times, so that we ob-

tain 50,000 implied equity paths. Finally, we take the average of these paths. In this way,

we are able to obtain the implied equity values from the model for 2005/12/30∼2006/12/29.

Then, we compare these equity values to the actual equity value time series of the com-

pany for the same period. We also calculate the sum of the squared differences (SSE) be-

tween the real and the implied equity values. In addition, we calculate standard errors (dis-

played in parentheses) by inverting the Hessian matrix of the constrained minimization prob-

lem and taking the square root of the diagonal elements.4 The constraints are the following:

Var(i)j∆t
> 0, δ (i) > 0, µ

(i)
2 ρ > 0, σ (i) > 0, M(i) > 0. We choose the parameter vectors that pro-

vide the lowest likelihood (up to the first decimal point) and the best approximation of the

equity process (the lowest SSE), together with realistic standard errors. We want to point out

that even though multiple parameter vectors satisfy these criteria, the resulting SSE and the

default probabilities are robust to the parameter estimates.

4.1. Results (1) 2007–2010

The estimated joint default probabilities of all three companies for 2011-2014 are close to 0

for both models . Therefore, we focus on 2007-2010 and report the results only for this period.

The estimated model parameters are listed in Tables B.4 and B.5 in Appendix B. The graphs

that compare the calculated (implied) equity values and real equity values are displayed below

the tables of the estimated parameters. Refer to Table 2 for the estimated default probabilities.

This table displays the probabilities of defaulting at the end of the indicated years. “All” denotes

the probability that all three banks default at the end of the year. These default probabilities

are predictions for the next 1 year but they also indicate how healthy the financial situation of

the company is at the moment of estimation, based on 1-year data. If the parameters of the

asset process remain the same for next year, what is the probability of defaulting at the end

of the year? This is the question we try to answer here. For 2008, we notice that the default

probability of Citi is quite high in the case of the shot noise model. The data of 2007 is used for

estimating the parameters for 2008 and as we can see from Fig. B.3b, Citi’s equity is decreasing

in this period; therefore, this result is not surprising. Citi was bailed out in 2008 and we can

say that our model predicted the deteriorating asset quality better than the GBM. For 2009, the

4However, from the description of the MATLAB manual of the function “fmincon”, the reported standard

errors may not be accurate. In addition, we observe that the standard errors depend on the initial values.
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Table 2

Simultaneous Default Probability Matrices

GBM Model Shot Noise Model

2007 JPM Citi BAC 2007 JPM Citi BAC

JPM 0 0 0 JPM 0 0 0

Citi 0 0 0 Citi 0 0 0

BAC 0 0 0 BAC 0 0 0

All 0 All 0

GBM Model Shot Noise Model

2008 JPM Citi BAC 2008 JPM Citi BAC

JPM 0 0 0 JPM 0 0 0

Citi 0 0.02748 0 Citi 0 0.99996 0

BAC 0 0 0 BAC 0 0 0

All 0 All 0

GBM Model Shot Noise Model

2009 JPM Citi BAC 2009 JPM Citi BAC

JPM 0.00566 0.00566 0.00486 JPM 0.00745 0.00745 0.00745

Citi 0.00566 0.99961 0.85154 Citi 0.00745 0.99995 0.93235

BAC 0.00486 0.85154 0.85187 BAC 0.00745 0.93235 0.93240

All 0.00486 All 0.00745

GBM Model Shot Noise Model

2010 JPM Citi BAC 2010 JPM Citi BAC

JPM 0.09304 0.04043 0.00047 JPM 0.05618 0.01361 0.00299

Citi 0.04043 0.42820 0.00180 Citi 0.01361 0.23726 0.01293

BAC 0.00047 0.00180 0.00442 BAC 0.00299 0.01293 0.05545

All 0.00019 All 0.00070

probabilities predicted by the shot noise model are larger than those by the GBM (except for the

case of JPM, where there is only slight difference). We confirm this feature by comparing the

pair-wise default probabilities. For 2010, the joint default probabilities of the shot noise model

are lower than those of the GBM for some pairs; however, the simultaneous default probability

of all three companies is three times larger for our model than for the GBM. Even so, both

estimates are close to zero.
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As for goodness of fit, we review the graphs located below Tables B.4 and B.5 in Appendix

B. In each graph, we plot, by the dashed lines, the actual equity value and by the solid lines,

the implied equity value. The latter is implied from the asset value estimated by the shot noise

model (upper panel) and the GBM (lower panel). Here, the indicated periods stand for the

abovementioned 1-year subperiods. For example, 2006 denotes 2005/12/30∼2006/12/29. We

briefly comment on these graphs. For JPM, see Fig. B.2. Except for Fig. B.2c, in which both

models give similar results, the shot noise model has better performance, especially in 2006

and 2009. In the case of Citi, our model still outperforms the GBM, on average. Please refer to

Fig. B.3. The performance of our model is especially good in 2008 and 2009. The results are

similar for BAC (Fig. B.4). The two models give similar performance in 2007 and 2008 but

the shot noise model provides much better fit of the equity values in 2006 and 2009.

We think 1-year period is too long to measure big fluctuations in market that occurred

during short periods of time in subprime mortgage crisis. For this reason, we examine this

period closely in the next subsection.

4.2. A Closer Look at the Subprime Mortgage Crisis

We know that during the subprime mortgage crisis, there was a big change in a short pe-

riod of time. Therefore, we will take a closer look at the evolution of the simultaneous default

probabilities during 2007–2009. We display the estimated probabilities of the three companies

defaulting simultaneously in Fig. 4. In this analysis, we use a 6-month moving window estima-

tion procedure. Using 6-month data, we estimate model parameters and with these estimates,

we simulate asset paths for the next 6 months (by the same method as in a 1-year case) and

calculate the probability of defaulting at the end of the sixth month. Then, we roll the estima-

tion window forward by one month. For example, the default probability for the horizontal axis

label 3 in Fig. 4 indicates the default at the end of December 2008, and the data used for the

calculation is from the end of December 2007 to the end of June 2008. Table 3 summarizes

the estimation periods and the 6-month risk-free rates used for the calculation of debt levels

(the calculation method is the same as the one described on p.27 with 1 year changed to 6

months). The estimated model parameters are given in Tables B.8, B.9, B.10, B.11, and B.12

in Appendix B. The estimated values of default probabilities are displayed in Table B.7. These

default probabilities are predictions for the next 6 months but they also indicate the financial

situation of the company at the moment of estimation, just as in Section 4.1. If the parameters
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Fig. 4. The Simultaneous Default Probabilities of All Three Companies. The red line denotes the shot noise model and the blue line denotes

the GBM model. The horizontal axis is explained in Table 3.

Table 3

This table explains the horizontal axis in Fig. 4 and lists 6-month treasury yields used as risk-free rates during default probability analysis of

Section 4.2. The rates are observed at the end of each Period Used During Estimation. Source: US Department of the Treasury.

Horizontal Axis Label Period Used During Estimation Intereset Rate (%) Horizontal Axis Label Period Used During Estimation Intereset Rate (%)

1 2007.10.31 - 2008.4.30 1.64 9 2008.6.30 - 2008.12.31 0.27

2 2007.11.30 - 2008.5.30 2.01 10 2008.7.31 - 2009.1.30 0.36

3 2007.12.31 - 2008.6.30 2.17 11 2008.8.29 - 2009.2.27 0.45

4 2008.1.31 - 2008.7.31 1.89 12 2008.9.30 - 2009.3.31 0.43

5 2008.2.29 - 2008.8.29 1.97 13 2008.10.31 - 2009.4.30 0.29

6 2008.3.31 - 2008.9.30 1.6 14 2008.11.28 - 2009.5.29 0.3

7 2008.4.30 - 2008.10.31 0.94 15 2008.12.31 - 2009.6.30 0.35

8 2008.5.30 - 2008.11.28 0.44 16 2009.1.30 - 2009.7.31 0.26

of the asset process remain the same for the next 6 months, what is the probability of defaulting

at the end of the 6th month? Our goal is to answer this question. In case of the shot noise

model, the data from the first 6 months of 2008 (horizontal axis label 3) already gives an alarm

that there is a high probability (22.91%) of the simultaneous default, while the GBM model

gives the probability of only 1.44%. After this alarm, the simultaneous default probabilities go

to 0 from both models, and later start increasing. Furthermore, we observe that the shot noise

model is faster than the GBM to capture the effect of negative shocks and give signals of high

default risk for these subsequent periods.

4.3. Regression for CDS Spreads

In this study, our main focus is on the simultaneous default probabilities during 2007–2010,

since this period encompasses the subprime mortgage crisis. After taking a closer look at this

period in Section 4.2, we can say that our model captures the effect of negative shocks better

and gives warning faster than the GBM model. In this subsection, we use the CDS spread data

to test our model from a different perspective. We want to know if our model has the same

power to explain the CDS spreads as the GBM model that is already widely used in practice.
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Fig. 5. CDS Spreads for All Three Companies. The vertical axis denotes CDS spread value in basis points and the horizontal axis denotes the

corresponding (·)th trading day starting from 2005/12/30.

We used Senior 5-year CDS Spread Mid data from Thomson Reuters (datasource-CMA)

for JPM, Citi, and BAC. We call this data “CDS spread”. Since we use daily data in our previ-

ous calculations, we also use daily CDS spreads. The data are available only until 2010/09/30.

We focus on the 2-year period starting from the end of 2007 until the end of 2009 and use

this data for our estimation. Fig. 5 illustrates the dynamics of CDS spreads. Observations

261–784 are from 2006/12/29 to 2008/12/31 and show that CDS spreads for Citi and BAC

increased significantly in 2009. To check the connection between CDS spreads and asset val-

ues, we first simulate the asset processes for both models. We illustrate this by an example.

Using the 2008 (again, this means 2007/12/31 ∼ 2008/12/31) data, we have already estimated

parameters and used them to predict defaults at the end of 2009 in Section 4.1. Rather than

predicting, we now use the 2008 parameters to simulate asset processes for the year of 2008.

We retrieve initial asset values from the Black–Scholes equation (2.8) using the variance pa-

rameter and then, simulate asset paths 50,000 times and take the average. Using the 2009 data,

we simulate asset paths for 2009 in a similar manner. We take the average of asset values for

overlapping observations (e.g., the last value of 2008 and the first value of 2009). By putting

these paths together, we obtain time-series of asset values from both models. Then, using R

3.1.3, we regress the CDS spreads of each company on all three asset time-series of the period

2007/12/31–2009/12/31. The ordinary least squares regression equations are as follows:
JPMcds = c1 +α1JPMgbm+β1Citigbm+ γ1BACgbm+ εJPM ,

Citicds = c2 +α2JPMgbm+β2Citigbm+ γ2BACgbm+ εCiti,

BACcds = c3 +α3JPMgbm+β3Citigbm+ γ3BACgbm+ εBAC ,
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and 
JPMcds = c?1 +α?

1 JPMshotnoise+β ?
1 Citishotnoise+ γ?1 BACshotnoise+ ε?

JPM
,

Citicds = c?2 +α?
2 JPMshotnoise+β ?

2 Citishotnoise+ γ?2 BACshotnoise+ ε?
Citi
,

BACcds = c?3 +α?
3 JPMshotnoise+β ?

3 Citishotnoise+ γ?3 BACshotnoise+ ε?
BAC

.

JMPcds, Citicds, and BACcds are CDS spread data vectors. JPMgbm, Citigbm, and BACgbm

are asset vectors simulated from the GBM model. JPMshotnoise, Citishotnoise, and BACshot-

noise are asset vectors simulated from our model. Finally, c denotes constant terms. For each

company’s CDS spread, we perform two regressions: one based on assets simulated from the

GBM model and another based on assets simulated from our model. See Tables 4, 5, and 6

below. The results from the GBM and shot noise model are headed by (1) and (2), respectively.

All parameters of shot noise model are statistically significant at 1% level.

5. Conclusion

We will summarize the main results of our analysis. The shot noise model predicted high

probability of Citi’s default at the end of 2008. A closer look at 2007–2009 demonstrated that

the shot noise model is more reactive to the financial distress in the banking industry than the

GBM, giving high simultaneous default probability predictions of all three companies earlier.

This is because the shot noise model incorporates the dependencies of companies. In addition,

the graphs displayed in Appendix B demonstrate how well our model fits the real equity data.

Furthermore, the linear regression shows that the asset values generated from our model do not

fall behind the GBM model’s asset values when it comes to explaining the CDS spread data.

Finally, we wish to emphasize that early alarming that the shot noise model can offer should be

of critical importance for risk management.

To conclude, our model is promising and worth considering for further refinement. It is

easy to expand this model and use it in an analysis of more than three companies. Adding more

companies to the model would not increase computational burden since we use only one shot

noise process. In addition, we wish to analyze simultaneous defaults in different industries in

the future. For this, we consider using multiple shot noise processes to incorporate industry

dependencies in the model.
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Table 4

Regression Results for JPM CDS Spread

Dependent variable:

JPMcds

(1) (2)

JPMgbm −0.0003∗∗∗

(0.00005)

Citigbm −0.0003∗∗∗

(0.00003)

BACgbm −0.0004∗∗∗

(0.00002)

JPMshotnoise −0.0002∗∗∗

(0.00002)

Citishotnoise −0.0002∗∗∗

(0.00001)

BACshotnoise −0.0004∗∗∗

(0.00001)

Constant 1,595.8240∗∗∗ 1,290.5320∗∗∗

(121.2533) (52.8553)

Observations 524 524

R2 0.6003 0.6288

Adjusted R2 0.5980 0.6267

Residual Std. Error (df = 520) 25.0123 24.1025

F Statistic (df = 3; 520) 260.2795∗∗∗ 293.6332∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5

Regression Results for Citi CDS Spread

Dependent variable:

Citicds

(1) (2)

JPMgbm −0.0014∗∗∗

(0.0002)

Citigbm −0.0016∗∗∗

(0.0001)

BACgbm −0.0006∗∗∗

(0.0001)

JPMshotnoise −0.0008∗∗∗

(0.0001)

Citishotnoise −0.0008∗∗∗

(0.00003)

BACshotnoise −0.0005∗∗∗

(0.00004)

Constant 5,689.3910∗∗∗ 3,389.5770∗∗∗

(418.2004) (160.7776)

Observations 524 524

R2 0.6122 0.7199

Adjusted R2 0.6099 0.7183

Residual Std. Error (df = 520) 86.2669 73.3159

F Statistic (df = 3; 520) 273.6059∗∗∗ 445.4525∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6

Regression Results for BAC CDS Spread

Dependent variable:

BACcds

(1) (2)

JPMgbm −0.0006∗∗∗

(0.0001)

Citigbm −0.0007∗∗∗

(0.0001)

BACgbm −0.0004∗∗∗

(0.00003)

JPMshotnoise −0.0003∗∗∗

(0.00003)

Citishotnoise −0.0004∗∗∗

(0.00002)

BACshotnoise −0.0003∗∗∗

(0.00002)

Constant 2,690.5180∗∗∗ 1,721.1900∗∗∗

(211.5637) (85.5596)

Observations 524 524

R2 0.5846 0.6680

Adjusted R2 0.5822 0.6661

Residual Std. Error (df = 520) 43.6416 39.0159

F Statistic (df = 3; 520) 243.9732∗∗∗ 348.7913∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix A. Mathematical Proofs

Appendix A.1. Dynamics of V (i) = (V (i)
t )t≥0 under approximation (Section 2.3)

First, we prove that Z(i)
t = Z(i)

0 e−δ (i)t +
√

2δ (i)
∫ t

0 e−δ (i)(t−s)dWs is a semimartingale. Apply-

ing Itô’s formula to eδ (i)tWt , we obtain

eδ (i)tWt =
∫ t

0
δ
(i)eδ (i)sWsds+

∫ t

0
eδ (i)sdWs.

Multiplying both sides by e−δ (i)t , we get

Wt =
∫ t

0
δ
(i)e−δ (i)(t−s)Wsds+

∫ t

0
e−δ (i)(t−s)dWs,

which is ∫ t

0
e−δ (i)(t−s)dWs =Wt−

∫ t

0
δ
(i)e−δ (i)(t−s)Wsds.

After substituting this into the equation of Z(i)
t , we obtain

Z(i)
t = Z(i)

0 e−δ (i)t +
√

2δ (i)Wt−
√

2δ (i)
∫ t

0
δ
(i)e−δ (i)(t−s)Wsds

= Z(i)
0 +

(
Z(i)

0 e−δ (i)t−Z(i)
0 −

√
2δ (i)

∫ t

0
δ
(i)e−δ (i)(t−s)Wsds

)
+
√

2δ (i)Wt

(A.1)

The process inside the brackets starts at 0. For any fixed t, the integral inside the brackets

is a well-defined Lebesgue–Stieltjes integral and as a function of t, it is of bounded variation

(Karatzas and Shreve [15, Remark 4.6(i) p. 23, 150]). This means that Z(i)
t can be expressed as

a sum of the initial value, the bounded variation process, and the local martingale. Hence, it is

a semimartingale. In addition, we obtain

〈Z(i),Z(i)〉t = 2δ
(i)t. (A.2)

Next, we show the dynamics of the asset value

V (i)
t = e

X (i)
0 +(µ(i)− 1

2 (σ
(i))2)t+σ (i)B(i)

t −
µ
(i)
1 ρ

δ (i)
−Z(i)

t

√
µ
(i)
2 ρ

2δ (i)

32



by Itô’s formula. Since dZ(i)
t =−δ (i)Z(i)

t dt +
√

2δ (i)dWt and 〈B(i),Z(i)〉t = 〈B(i),
√

2δ (i)W 〉t =
√

2δ (i)k(i)t, we obtain

dV (i)
t =

(
µ
(i)− 1

2
(σ (i))2

)
V (i)

t dt +σ
(i)V (i)

t dB(i)
t +

1
2
(σ (i))2V (i)

t dt−

√
µ
(i)
2 ρ

2δ (i)
V (i)

t dZ(i)
t

+
1
2

µ
(i)
2 ρ

2δ (i)
V (i)

t d〈Z(i),Z(i)〉t−V (i)
t

1
2

√
µ
(i)
2 ρ

2δ (i)
σ
(i)d〈B(i),Z(i)〉t−V (i)

t
1
2

√
µ
(i)
2 ρ

2δ (i)
σ
(i)d〈B(i),Z(i)〉t

= µ
(i)V (i)

t dt +σ
(i)V (i)

t dB(i)
t −V (i)

t

√
µ
(i)
2 ρ

2δ (i)
(−δ

(i)Z(i)
t dt +

√
2δ (i)dWt)+

1
2

µ
(i)
2 ρ

2δ (i)
(2δ

(i))V (i)
t dt

−V (i)
t

√
µ
(i)
2 ρ

2δ (i)
σ
(i)
√

2δ (i)k(i)dt

=V (i)
t

(µ
(i)+

1
2

µ
(i)
2 ρ +δ

(i)

√
µ
(i)
2 ρ

2δ (i)
Z(i)

t −
√

µ
(i)
2 ρσ

(i)k(i)
)

dt +σ
(i)dB(i)

t −
√

µ
(i)
2 ρdWt

 .

(A.3)

Furthermore, since Wt is a Brownian motion, k̃2 +
m
∑
j=1

(k( j))2 = 1 and we have

σ
(i)dB(i)

t −
√

µ
(i)
2 ρdWt

= σ
(i)dB(i)

t −
√

µ
(i)
2 ρk(i)dB(i)

t −
√

µ
(i)
2 ρ

(
∑

1≤ j≤m, j 6=i
k( j)dB( j)

t + k̃dB̃t

)√
1− (k(i))2√
1− (k(i))2

= (σ (i)−
√

µ
(i)
2 ρk(i))dB(i)

t −
√

µ
(i)
2 ρ

√
1− (k(i))2dW (−i)

t

= (σ (i)−
√

µ
(i)
2 ρk(i))dB(i)

t −
√

µ
(i)
2 ρ

√
1− (k(i))2dW (−i)

t

where B(i)
t and W (−i)

t =

(
∑

1≤ j≤m, j 6=i
k( j)dB( j)

t + k̃dB̃t

)
1√

1−(k(i))2
are independent standard

Brownian motions. Then,

dV (i)
t =V (i)

t

((
µ
(i)+

1
2

µ
(i)
2 ρ +δ

(i)

√
µ
(i)
2 ρ

2δ (i)
Z(i)

t −

−
√

µ
(i)
2 ρσ

(i)k(i)
)
dt +(σ (i)−

√
µ
(i)
2 ρk(i))dB(i)

t −
√

µ
(i)
2 ρ(1− (k(i))2)dW (−i)

t

)
which is (2.7).

Appendix A.2. Proof of the Novikov condition being satisfied (Section 2.4)

We define

Ht(θ) = e
∫ t

0 θ
(i)
s dB(i)

s +
∫ t

0 θ
(−i)
s dW (−i)

s − 1
2
∫ t

0 ||θs||2ds,
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where

θ
(i)
t =

r−Q(i)
t +

√
µ
(i)
2 ρ(1− (k(i))2)

σ (i)−
√

µ
(i)
2 ρk(i)

and θ
(−i)
t = 1.

We have to show that Novikov’s condition E
[
e

1
2
∫ T

0 ||θt ||2dt
]
< ∞ is satisfied. Let K = r−µ(i)−

µ
(i)
2 ρ

2 +σ (i)
√

µ
(i)
2 ρk(i)+

√
µ
(i)
2 ρ(1− (k(i))2).

1
2
||θt ||2 =

(
r−µ(i)− µ

(i)
2 ρ

2 +σ (i)
√

µ
(i)
2 ρk(i)+

√
µ
(i)
2 ρ(1− (k(i))2)−δ (i)

√
µ
(i)
2 ρ

2δ (i) Z(i)
t

)2

2
(

σ (i)−
√

µ
(i)
2 ρk(i)

)2 +
1
2

=

(
K−δ (i)

√
µ
(i)
2 ρ

2δ (i) Z(i)
t

)2

2
(

σ (i)−
√

µ
(i)
2 ρk(i)

)2 +
1
2
.

Recalling (2.2), we have

1
2
||θt ||2 ≤

1
2
+

(
|K|+

∣∣∣∣∣δ (i)

√
µ
(i)
2 ρ

2δ (i) Z(i)
0 e−δ (i)t

∣∣∣∣∣+δ (i)
√

µ
(i)
2 ρ

∣∣∣∫ t
0 e−δ (i)(t−s)dWs

∣∣∣)2

2
(

σ (i)−
√

µ
(i)
2 ρk(i)

)2

Since e−δ (i)t ≤ 1, |K|+

∣∣∣∣∣δ (i)

√
µ
(i)
2 ρ

2δ (i) Z(i)
0 e−δ (i)t

∣∣∣∣∣ ≤ |K|+
∣∣∣∣∣δ (i)

√
µ
(i)
2 ρ

2δ (i) Z(i)
0

∣∣∣∣∣. Since we have as-

sumed that Z(i)
0 is bounded, |K|+

∣∣∣∣∣δ (i)

√
µ
(i)
2 ρ

2δ (i) Z(i)
0

∣∣∣∣∣ ≤C, where C is some constant. Let W ∗T :=

sup0≤t≤T |Wt |. Then,∣∣∣∣∫ t

0
e−δ (i)(t−s)dWs

∣∣∣∣≤ |Wt |+δ
(i)
∫ t

0
|Ws|ds≤W ∗T +δ

(i)W ∗T T (A.4)

and we obtain

1
2
||θt ||2 ≤

1
2
+

(
C+δ (i)

√
µ
(i)
2 ρ
(
W ∗T +δ (i)W ∗T T

))2

2
(

σ (i)−
√

µ
(i)
2 ρk(i)

)2 . (A.5)
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We take any sequence that satisfies 0 = t0 < t1 < ... < tn→ ∞ and consider

E
[
e

1
2
∫ tn

tn−1
||θt ||2dt

]
≤ e

tn−tn−1
2 E

e

1
2
∫ tn

tn−1

(
C+δ (i)

√
µ
(i)
2 ρ

(
1+δ (i)T

)
W∗T

)2

(
σ(i)−

√
µ
(i)
2 ρk(i)

)2 dt



= e
tn−tn−1

2 E

e

1
2 (tn−tn−1)

(
C+δ (i)

√
µ
(i)
2 ρ

(
1+δ (i)T

)
W∗T

)2

(
σ(i)−

√
µ
(i)
2 ρk(i)

)2

 ,

where
C+δ (i)

√
µ
(i)
2 ρ

(
1+δ (i)T

)
Wt

√
2
(

σ (i)−
√

µ
(i)
2 ρk(i)

) is a Gaussian process. For each ω , Brownian motion is continu-

ous in t; therefore, its maximum on [0,T ] exists. From the Burkholder–Davis–Gundy inequality

(Karatzas and Shreve [15, p. 166]), there is some constant K1
2

and E[W ∗T ] ≤ K1
2

√
T . Now, we

have established

sup
0≤t≤T

∣∣∣∣∣∣C+δ (i)
√

µ
(i)
2 ρ
(
1+δ (i)T

)
Wt

√
2
(
σ (i)−

√
µ
(i)
2 ρk(i)

)
∣∣∣∣∣∣< ∞ a.s. (A.6)

Then, by Landau and Shepp [18], some ε > 0 exists, such that

E

exp

ε

(
C+δ (i)

√
µ
(i)
2 ρ
(
1+δ (i)T

)
W ∗T
)2

2
(
σ (i)−

√
µ
(i)
2 ρk(i)

)2


< ∞.

We make the interval tn− tn−1, ∀n≥ 1 equal to ε . Then,

E

exp

(tn− tn−1
)(C+δ (i)

√
µ
(i)
2 ρ
(
1+δ (i)T

)
W ∗T
)2

2
(
σ (i)−

√
µ
(i)
2 ρk(i)

)2


< ∞, ∀n≥ 1.

This means that

E
[
e

1
2
∫ tn

tn−1
||θt ||2dt

]
< ∞, ∀n≥ 1 (A.7)

and from Corollary 5.14 from Karatzas and Shreve [15, p. 199], we can say that Ht(θ) is a

martingale.5 Because Ht(θ) is a martingale, we can change the measure and
(

B̃(i),W̃ (−i)
)

t

becomes two-dimensional Brownian motion under P̃T .

5The idea of this proof was borrowed from Nate Eldredge

http://math.stackexchange.com/questions/133691/can-i-apply-the-girsanov-theorem-to-an-ornstein-uhlenbeck-

process Accessed: 2015-05-08
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Now, ˜̃B(i)
t :=

σ (i)−
√

µ
(i)
2 ρk(i)

M(i) B̃(i)
t −

√
µ
(i)
2 ρ

(
1−(k(i))2

)
M(i) W̃ (−i)

t is a martingale and its quadratic

variation is t (by the definition of M(i)). Therefore, it is a standard Brownian motion under

P̃T . Finally, d(e−rtV (i)
t ) = e−rtV (i)

t M(i)d ˜̃B(i)
t and e−rtV (i)

t is a local martingale under P̃T . How-

ever, we also obtain

Ẽ
[
e

1
2
∫ T

0 (M(i))2dt
]
< ∞

and from Proposition 14.2 in Steele [27, p.241], we conclude that e−rtV (i)
t is a martingale under

P̃T .

Appendix A.3. Derivation of the Log-likelihood Function (Section 2.5)

First, we calculate E
[
lnV (i)

j∆t
|V (i)

( j−1)∆t
,F0

]
and Var

[
lnV (i)

j∆t
|V (i)

( j−1)∆t
,F0

]
. From (2.1), we

have

ln

 V (i)
j∆t

V (i)
( j−1)∆t

=

(
µ
(i)− 1

2
(σ (i))2

)
∆t +σ

(i)
(

B(i)
j∆t
−B(i)

( j−1)∆t

)
−

√
µ
(i)
2 ρ

2δ (i)

(
Z(i)

j∆t
−Z(i)

( j−1)∆t

)
,

where we compute

Z(i)
j∆t
−Z(i)

( j−1)∆t

= Z(i)
0 e−δ (i) j∆t +

√
2δ (i)e−δ (i) j∆t

∫ j∆t

0
eδ (i)sdWs−Z(i)

0 e−δ (i)( j−1)∆t

−
√

2δ (i)e−δ (i)( j−1)∆t

∫ ( j−1)∆t

0
eδ (i)sdWs

= Z(i)
0 e−δ (i) j∆t (1− eδ (i)∆t )+

√
2δ (i)

[
e−δ (i) j∆t

∫ j∆t

0
eδ (i)sdWs− e−δ (i)( j−1)∆t

∫ ( j−1)∆t

0
eδ (i)sdWs

]
and

e−δ (i) j∆t

∫ j∆t

0
eδ (i)sdWs− e−δ (i)( j−1)∆t

∫ ( j−1)∆t

0
eδ (i)sdWs =

e−δ (i) j∆t

∫ j∆t

( j−1)∆t

eδ (i)sdWs +

(
1

eδ (i)∆t
−1
)

e−δ (i)( j−1)∆t

∫ ( j−1)∆t

0
eδ (i)sdWs,

and it follows that

ln

 V (i)
j∆t

V (i)
( j−1)∆t


=

(
µ
(i)− 1

2
(σ (i))2

)
∆t +σ

(i)(B(i)
j∆t
−B(i)

( j−1)∆t

)
−

√
µ
(i)
2 ρ

2δ (i)
Z(i)

0 e−δ (i) j∆t
(
1− eδ (i)∆t

)
−
√

µ
(i)
2 ρ · e−δ (i) j∆t

∫ j∆t

( j−1)∆t

eδ (i)sdWs−
√

µ
(i)
2 ρ

(
1

eδ (i)∆t
−1
)

e−δ (i)( j−1)∆t

∫ ( j−1)∆t

0
eδ (i)sdWs.
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Since we use daily data for the analysis, ∆t =
1

360 ≈ 0.0028. We assume δ (i) is small enough

and satisfies eδ (i)∆t ≈ 1. Note that we can check our assumption on this point by comparing

the equity values implied by our model (with the estimated parameters) to the real data. Note

also that our experiments without removing this term produces δ (i) small enough to justify this

assumption. E
[
e−δ (i)( j−1)∆t

∫ ( j−1)∆t
0 eδ (i)sdWs

]
= 0. Also, from equation (A.4) we have∣∣∣∣e−δ (i)( j−1)∆t

∫ ( j−1)∆t

0
eδ (i)sdWs

∣∣∣∣≤W ∗T +δ
(i)W ∗T T < ∞.

Therefore, we may assume that√
µ
(i)
2 ρ

(
1

eδ (i)∆t
−1
)

e−δ (i)( j−1)∆t

∫ ( j−1)∆t

0
eδ (i)sdWs ≈ 0.

We do not have any information about Z(i)
0 , expect that it takes bounded values according to

our assumption. To check how big the actual value of Z(i)
0 is, we estimate the realized value of

Z(i)
0 ; therefore, we do not ignore the term

√
µ
(i)
2 ρ

2δ (i) Z(i)
0 e−δ (i) j∆t

(
1− eδ (i)∆t

)
. Following the above

arguments, conditioning on V (i)
( j−1)∆t

and F0, lnV (i)
j∆t

follows the normal distribution with the

(conditional) mean
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which in evaluated as
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2 ρe−2δ (i) j∆tE
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The log likelihood function is written as

L
(

V (i)
t , t = ∆t ,2∆t , . . . ,n∆t |F0

)
=

ln
(

f
(

V (i)
n∆t
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,F0

)
f
(

V (i)
(n−1)∆t
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)
. . . f

(
V (i)
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))
,

where f denotes the density function. Let us now define
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µ(i)− 1
2(σ
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Then, using the density of log-normal distribution,
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The log-likelihood function of unobserved V (i)
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We have an element-by-element transformation from an unobserved asset sample to an ob-

served equity sample through equation (2.8) and ∂E(i)
t

∂V (i)
t

= Φ(d(i)
t ). Then, we can write the log-

likelihood function of equity as

L
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where V̂ (i)
j∆t

is the unique solution to (2.8) and d̂(i)
j∆t

is d(i)
j∆t

with V (i)
j∆t

replaced by V̂ (i)
j∆t

. The

derivation of (2.11) is now complete.
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Appendix B. Statistical and Graphical Results

We collect some statistical results here. Matlab R2015a is used for all the calculations and

to produce graphs.

(a) (b)

Fig. B.1. Equities (a) and Debts (b) for All Three Companies. The vertical axis denotes values in millions of US dollars and the horizontal

axis denotes the corresponding (·)th trading day starting from 2004/12/31.

Table B.1

JPM Company Profile

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Total Assets 1157248 1198942 1351520 1562147 2175052 2031989 2117605 2265792 2359141 2415689 2572773

Total Liabilities 1051595 1091731 1235730 1438926 2008168 1866624 1941499 2082219 2155072 2204511 2341046

ROE 5.87% 7.98% 12.96% 12.86% 3.82% 6.01% 9.69% 10.21% 10.72% 8.40% 9.75%

ROA 0.63% 0.95% 1.67% 1.35% 0.59% 0.75% 0.96% 1.01% 1.06% 0.92% 1.00%

Net Income -33.53% 89.95% 70.27% 6.38% -63.52% 109.24% 39.89% 10.92% 12.82% -15.26% 21.96%
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Table B.2

Citi Company Profile

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Total Assets 1484101 1494037 1884318 2187631 1938470 1856646 1913902 1818846 1864660 1880382 1842530

Total Liabilities 1374810 1381500 1764535 2074033 1794448 1701673 1748113 1639273 1673663 1674249 1630485

ROE 16.56% 22.33% 18.66% 3.08% -31.88% -8.28% 6.66% 6.37% 4.04% 6.88% 3.37%

ROA 1.49% 2.00% 1.73% 0.72% -0.84% 0.10% 0.98% - 0.72% - -

Net Income -4.52% 44.25% -12.41% -83.21% - - - 3.51% -32.22% 81.83% -46.29%

Table B.3

BAC Company Profile

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Total Assets 1110432 1291803 1459737 1715746 1817943 2230232 2264909 2097047 2176936 2102273 2104534

Total Liabilities 1010197 1190270 1324465 1568943 1640891 1998788 2036661 1866946 1939980 1869588 1861063

ROE 19.18% 16.35% 18.07% 10.77% 1.82% -1.33% -1.77% 0.04% 1.29% 4.61% 1.71%

ROA 1.70% 1.61% 1.87% 1.33% 0.59% 0.81% 0.30% 0.42% 0.48% - -

Net Income 30.83% 18.05% 28.35% -29.11% -73.25% 59.18% - - 189.69% 173.03% -57.71%
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Table B.4

Shot Noise Model Parameters. “Year” indicates the year from which the data was used during estimation. Standard errors are displayed in

parentheses.

JPM

Year 2006 2007 2008 2009

µ 0.04140 (0.02013) 0.10105 (0.52028) -3.22915 (1.02244) 0.06508 (0.15777)

δ 3.36241 (0.80350) 8.87134 (4.73650) 0.03510 (0.02235) 21.52812 (2.38332)

µ2ρ 0.00036 (0.00042) 0.00006 (0.00008) 0.01821 (0.00673) 0.00001 (0.00000)

Z0 19.34641 (5.02009) 21.98025 (3.94756) 200.44205 (11.45851) -132.08146 (19.11733)

σ 0.02484 (0.00530) 0.04024 (0.00199) 0.02051 (0.00520) 0.07110 (0.02344)

k2 0.05886 0.03889 0.00393 0.02768

M 0.02731 0.03945 0.13522 0.07075

Likelihood -2283.98727 -2420.59085 -2705.45474 -2622.28717

Citi

Year 2006 2007 2008 2009

µ 5.46832 (0.91507) -11.39959 (0.54377) -0.86360 (0.93395) 0.49460 (0.16508)

δ 0.08332 (0.02373) 0.16515 (0.01983) 1.31767 (0.45313) 9.15615 (0.34043)

µ2ρ 0.00081 (0.00034) 0.00182 (0.00020) 0.00027 (0.00120) 0.00011 (0.00009)

Z0 -913.16063 (12.48526) 990.97999 (13.09358) 65.86908 (21.49292) -119.24921 (7.37256)

σ 0.00107 (0.03044) 0.00930 (0.30066) 0.10217 (0.01584) 0.21295 (0.01736)

k2 0.05428 0.04538 0.04519 0.00577

M 0.02828 0.04164 0.09998 0.21242

Likelihood -2376.54011 -2546.32342 -2641.99974 -2473.97455

BAC

Year 2006 2007 2008 2009

µ -1.92586 (0.14746) 1.68165 (0.65830) -7.55677 (2.54445) -0.63579 (0.30954)

δ 0.44366 (0.06549) 0.10704 (0.08674) 0.05976 (0.05595) 1.30789 (0.93302)

µ2ρ 0.00063 (0.00009) 0.00073 (0.00009) 0.01147 (0.00509) 0.00032 (0.00280)

Z0 205.30077 (11.71072) -258.45660 (6.83843) 410.12122 (14.65558) 88.98744 (8.78695)

σ 0.02665 (0.00241) 0.02550 (0.00286) 0.10346 (0.06139) 0.09340 (0.01545)

k2 0.00497 0.00191 0.00936 0.00926

M 0.03534 0.03633 0.14153 0.09341

Likelihood -2414.38806 -2445.22217 -2721.79010 -2621.63717
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Table B.5

GBM Model Parameters. “Year” indicates the year from which the data was used during estimation. Standard errors are displayed in paren-

theses.

JPM

Year 2006 2007 2008 2009

µ 0.21919 (0.03292) 0.15618 (0.04840) 0.31776 (0.06802) -0.00104 (0.03397)

σ 0.02798 (0.00203) 0.03969 (0.00602) 0.13522 (0.01437) 0.07167 (0.01510)

Likelihood -2290.69922 -2422.15893 -2705.46914 -2624.44213

Citi

Year 2006 2007 2008 2009

µ 0.31259 (0.03517) 0.03907 (0.01463) -0.29999 (0.09195) 0.10987 (0.03191)

σ 0.02867 (0.00284) 0.04680 (0.00397) 0.10117 (0.00404) 0.22568 (0.04988)

Likelihood -2380.15378 -2575.81747 -2642.87053 -2476.83399

BAC

Year 2006 2007 2008 2009

µ 0.15641 (0.02101) 0.12783 (0.04977) -0.12223 (0.04184) 0.20402 (0.09560)

σ 0.03676 (0.00719) 0.03638 (0.00990) 0.14169 (0.01362) 0.09836 (0.01537)

Likelihood -2424.69174 -2445.56137 -2721.94870 -2623.65780

Table B.6

1-Year Risk-free Interest Rates

Simulation Year Observed Date 1-Yr Treasury Yield (%)

2007 12/29/06 5

2008 12/31/07 3.34

2009 12/31/08 0.37

2010 12/31/09 0.47

2011 12/31/10 0.29

2012 12/30/11 0.12

2013 12/31/12 0.16

2014 12/31/13 0.13

2015 12/31/14 0.25

Source: US Department of the Treasury
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(a) 2006 (b) 2007

(c) 2008 (d) 2009

Fig. B.2. Implied (Solid Line) and Realized (Dashed Line) Equities for JPM for the Corresponding Subperiods. The shot noise model is in the

top panel, and the GBM model is in the bottom panel. The indicated year is the year from which the data was used during the estimation. The

vertical axis denotes equity values in millions of US dollars and the horizontal axis denotes the corresponding (·)th trading day starting from

the last day of the previous year for each subperiod.

Table B.7

Simultaneous Default Probabilities Displayed in Fig. 4

.

Horizontal Axis Label GBM Shot Noise Horizontal Axis Label GBM Shot Noise

1 0 0 9 0.0662 0.2756

2 0 0.0003 10 0.5464 0.9709

3 0.0144 0.2291 11 0.8275 0.9991

4 0 0 12 0.9433 0.7783

5 0 0 13 0.7346 0.3720

6 0 0 14 0.3397 0.1332

7 0.0014 0 15 0.2056 0.1389

8 0.0487 0.1733 16 0.0014 0.0013
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(a) 2006 (b) 2007

(c) 2008 (d) 2009

Fig. B.3. Implied (Solid Line) and Realized (Dashed Line) Equities for Citi for the Corresponding Subperiods. The shot noise model is in the

top panel, and the GBM model is in the bottom panel. The indicated year is the year from which the data was used during the estimation. The

vertical axis denotes equity values in millions of US dollars and the horizontal axis denotes the corresponding (·)th trading day starting from

the last day of the previous year for each subperiod.
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(a) 2006 (b) 2007

(c) 2008 (d) 2009

Fig. B.4. Implied (Solid Line) and Realized (Dashed Line) Equities for BAC for the Corresponding Subperiods. The shot noise model is in

the top panel, and the GBM model is in the bottom panel. The indicated year is the year from which the data was used during the estimation.

The vertical axis denotes equity values in millions of US dollars and the horizontal axis denotes the corresponding (·)th trading day starting

from the last day of the previous year for each subperiod.

Fig. B.5. Convergence of the Simultaneous Default Probability (Table B.7, Horizontal Axis Label 3, Shot Noise) Displayed up to 5000 trials.

The value in this example is 0.22882 and 95% confidence interval around the mean of the (100000,1)-dimensional binomial vector (1 for

default, 0 for non-default) with 100,000 simulations is [0.226216,0.231424].
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Table B.8

Shot Noise Model Parameters for JPM for each 6-month Subperiod. “Period” indicates the period from which the data was used during

estimation. For example, 2007.10-2008.4 denotes the period from the end of October, 2007 to the end of April, 2008. The rest should be

understood in a similar way. Standard errors are displayed in parentheses.

Period 2007.10-2008.4 2007.11-2008.5 2007.12-2008.6 2008.1-2008.7

µ 0.16935 (0.43178) -5.15671 (4.92242) -10.16382 (2.40578) 19.19598 (2.80149)

δ 0.00019 (0.00581) 0.14788 (0.06974) 0.17928 (0.09812) 0.17991 (0.04333)

µ2ρ 0.00126 (0.00076) 0.00264 (0.00149) 0.00271 (0.00178) 0.00658 (0.00180)

Z0 126.35071 (5.31810) 389.37951 (13.25713) 677.06440 (21.69214) -802.62820 (16.25556)

σ 0.05829 (0.00339) 0.04070 (0.02248) 0.04422 (0.02041) 0.00870 (0.46101)

k2 0.00590 0.01323 0.01611 0.00803

M 0.06588 0.06179 0.06387 0.08078

Likelihood -1275.47934 -1270.02487 -1273.64867 -1296.63644

Period 2008.2-2008.8 2008.3-2008.9 2008.4-2008.10 2008.5-2008.11

µ 18.70039 (2.51287) 25.29645 (2.87620) 0.96619 (0.43719) -25.73898 (9.77697)

δ 0.24412 (0.11168) 0.28635 (0.11546) 14.79082 (3.04631) 0.11864 (0.11682)

µ2ρ 0.00695 (0.00158) 0.01513 (0.00606) 0.02939 (0.00850) 0.04364 (0.01861)

Z0 -652.22744 (10.79559) -554.95077 (6.32650) -4.18307 (1.14583) 527.02632 (15.22436)

σ 0.00353 (0.34587) 0.00625 (0.07229) 0.01769 (0.01325) 0.04131 (0.66705)

k2 0.00022 0.00031 0.04281 0.04710

M 0.08337 0.12304 0.16865 0.20397

Likelihood -1300.28382 -1348.44774 -1375.78055 -1366.66309

Period 2008.6-2008.12 2008.7-2009.1 2008.8-2009.2 2008.9-2009.3

µ -2.76816 (0.75406) -1.02960 (0.29805) -0.57461 (0.28468) 17.97071 (7.94993)

δ 2.45224 (0.51889) 6.10800 (1.31877) 20.05494 (4.33431) 0.17358 (0.10876)

µ2ρ 0.04488 (0.01246) 0.05336 (0.00351) 0.06589 (0.02506) 0.02668 (0.01198)

Z0 21.51110 (5.25524) 7.11308 (2.32964) 3.92360 (1.01425) -393.73101 (8.07602)

σ 0.01920 (0.01638) 0.01508 (0.00412) 0.00851 (0.00955) 0.10442 (0.04185)

k2 0.03189 0.01671 0.00440 0.00900

M 0.20927 0.22954 0.25626 0.18533

Likelihood -1391.06585 -1381.67195 -1367.81741 -1351.70137

Period 2008.10-2009.4 2008.11-2009.5 2008.12-2009.6 2009.1-2009.7

µ 1.37390 (2.80019) 0.96900 (0.99689) 0.05868 (0.13764) 0.11554 (0.07194)

δ 2.54631 (0.97409) 2.45263 (0.81466) 25.74678 (3.47023) 24.12009 (5.03220)

µ2ρ 0.00129 (0.00100) 0.00081 (0.00047) 0.00025 (0.00041) 0.00006 (0.00013)

Z0 -59.68576 (7.84254) -49.38486 (5.58259) -24.02740 (5.16684) -24.94549 (2.11805)

σ 0.18338 (0.07628) 0.16536 (0.11461) 0.13094 (0.01280) 0.10181 (0.01837)

k2 0.03641 0.06573 0.05383 0.02393

M 0.18001 0.16044 0.12820 0.10088

Likelihood -1335.12304 -1340.53716 -1320.65833 -1320.03700
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Table B.9

Shot Noise Model Parameters for Citi for each 6-month Subperiod. “Period” indicates the period from which the data was used during

estimation. For example, 2007.10-2008.4 denotes the period from the end of October, 2007 to the end of April, 2008. The rest should be

understood in a similar way. Standard errors are displayed in parentheses.

Period 2007.10-2008.4 2007.11-2008.5 2007.12-2008.6 2008.1-2008.7

µ -0.01481 (0.50430) -0.12663 (0.25197) -9.34337 (5.88169) -0.41996 (0.10097)

δ 15.88077 (8.23615) 23.42112 (10.20578) 0.21140 (0.21454) 5.11785 (1.67285)

µ2ρ 0.00006 (0.00003) 0.00020 (0.00019) 0.00225 (0.00165) 0.00007 (0.00009)

Z0 -80.49119 (3.03780) -20.13731 (4.77693) 615.87192 (390.85580) 32.07261 (6.15784)

σ 0.05560 (0.00514) 0.05283 (0.00406) 0.02853 (0.08514) 0.05304 (0.01442)

k2 0.20751 0.24140 0.11439 0.02126

M 0.05247 0.04749 0.04633 0.05247

Likelihood -1281.55245 -1268.90658 -1263.24572 -1272.26501

Period 2008.2-2008.8 2008.3-2008.9 2008.4-2008.10 2008.5-2008.11

µ -0.31684 (0.15745) 5.62609 (0.88356) -0.29450 (0.15878) -9.28147 (2.40997)

δ 12.71235 (1.23708) 0.12135 (0.02038) 14.38931 (6.71972) 0.17434 (0.24781)

µ2ρ 0.00004 (0.00008) 0.00659 (0.00151) 0.00113 (0.00339) 0.01505 (0.02226)

Z0 23.08451 (7.48412) -300.75735 (3.02128) -4.72012 (1.95102) 250.30261 (9.04846)

σ 0.05506 (0.00531) 0.05208 (0.00506) 0.12582 (0.01985) 0.20110 (0.07373)

k2 0.05239 0.17733 0.24171 0.16302

M 0.05395 0.07576 0.11316 0.18860

Likelihood -1271.68354 -1308.30624 -1337.57901 -1334.62633

Period 2008.6-2008.12 2008.7-2009.1 2008.8-2009.2 2008.9-2009.3

µ -0.91023 (0.67059) -1.47071 (0.61863) -1.47157 (0.85461) 53.89664 (22.20254)

δ 7.27340 (1.26724) 6.37209 (2.71264) 0.00014 (0.00045) 0.09717 (0.03635)

µ2ρ 0.00093 (0.00119) 0.00024 (0.00064) 0.13651 (0.08986) 0.15840 (0.09172)

Z0 21.54567 (4.90313) 58.82569 (5.38875) -19.38073 (9.07170) -641.73389 (26.07933)

σ 0.22587 (0.05294) 0.28858 (0.06108) 0.23506 (0.03056) 0.24874 (0.16337)

k2 0.06970 0.00382 0.00192 0.00055

M 0.21979 0.28804 0.42913 0.46438

Likelihood -1342.95369 -1319.15642 -1290.43938 -1249.73621

Period 2008.10-2009.4 2008.11-2009.5 2008.12-2009.6 2009.1-2009.7

µ 46.63025 16.32559 21.32822 (6.74110) 0.23543 (0.38680) 0.12873 (0.17642)

δ 0.16543 (0.06531) 0.20249 (0.07077) 8.75045 (3.64768) 13.34913 (8.96509)

µ2ρ 0.15256 (0.05021) 0.02986 (0.01800) 0.00007 (0.00008) 0.00003 (0.00003)

Z0 -436.39042 (15.63711) -409.58304 (4.38073) -99.49593 (5.42703) -76.08406 (3.35488)

σ 0.11484 (0.02696) 0.04149 (0.01018) 0.13182 (0.03666) 0.06554 (0.01549)

k2 0.00283 0.01257 0.01889 0.00745

M 0.40121 0.17313 0.13092 0.06530

Likelihood -1205.51610 -1178.36287 -1146.79620 -1126.73272
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Table B.10

Shot Noise Model Parameters for BAC for each 6-month Subperiod. “Period” indicates the period from which the data was used during

estimation. For example, 2007.10-2008.4 denotes the period from the end of October, 2007 to the end of April, 2008. The rest should be

understood in a similar way. Standard errors are displayed in parentheses.

Period 2007.10-2008.4 2007.11-2008.5 2007.12-2008.6 2008.1-2008.7

µ -3.37983 (0.47615) -3.55630 (1.33077) -7.39615 (1.99630) 14.71927 (6.22488)

δ 0.23609 (0.13508) 0.24033 (0.17118) 0.22304 (0.13708) 0.10526 (0.02281)

µ2ρ 0.00329 (0.00108) 0.00226 (0.00115) 0.00318 (0.00159) 0.00539 (0.00492)

Z0 180.72506 (5.00186) 222.83691 (6.93309) 400.40584 (31.58148) -893.79524 (121.98668)

σ 0.02506 (0.02073) 0.03295 (0.02014) 0.01297 (0.60251) 0.03960 (0.08950)

k2 0.01522 0.01719 0.04484 0.03650

M 0.05972 0.05415 0.05511 0.07648

Likelihood -1286.15317 -1274.38596 -1274.23330 -1310.98785

Period 2008.2-2008.8 2008.3-2008.9 2008.4-2008.10 2008.5-2008.11

µ 11.60681 (2.95546) 16.43999 (9.47100) 0.14265 (0.10871) -27.85228 (10.52505)

δ 0.14211 (0.11217) 0.16729 (0.33359) 10.60600 (2.28166) 0.06383 (0.05119)

µ2ρ 0.00458 (0.00385) 0.01933 (0.01709) 0.00010 (0.00031) 0.07456 (0.04061)

Z0 -659.84760 (21.27672) -419.49585 (17.34311) -31.11603 (6.29688) 572.69955 (23.31740)

σ 0.06043 (0.03142) 0.03139 (0.00660) 0.21584 (0.10925) 0.03752 (0.01485)

k2 0.02817 0.00031 0.00735 0.01016

M 0.08284 0.14198 0.21520 0.27186

Likelihood -1315.24563 -1364.76216 -1393.52336 -1373.59448

Period 2008.6-2008.12 2008.7-2009.1 2008.8-2009.2 2008.9-2009.3

µ -1.03986 (0.70420) -0.75168 (0.40036) -0.52689 (0.19876) 69.73410 (39.28902)

δ 6.84679 (2.65173) 10.50677 (2.16160) 0.00014 (0.00128) 0.14858 (0.06703)

µ2ρ 0.10298 (0.02470) 0.00073 (0.00356) 0.15073 (0.02633) 0.19479 (0.08298)

Z0 4.09323 (2.28340) 17.31140 (6.76433) -95.34258 (7.22529) -599.81814 (20.77161)

σ 0.01857 (0.00795) 0.37177 (0.03363) 0.36854 (0.03308) 0.12892 (0.63276)

k2 0.01336 0.01992 0.02136 0.00884

M 0.31929 0.36893 0.49470 0.44801

Likelihood -1390.56558 -1377.49228 -1354.06623 -1326.79338

Period 2008.10-2009.4 2008.11-2009.5 2008.12-2009.6 2009.1-2009.7

µ 1.30978 (0.58653) 1.25057 (0.70362) 0.74751 (0.35939) -1.18236 (0.42266)

δ 7.71079 (1.71445) 6.38245 (1.68945) 11.11703 (2.97884) 0.54900 (0.22048)

µ2ρ 0.00050 (0.00027) 0.00020 (0.00045) 0.00068 (0.00192) 0.00081 (0.00079)

Z0 -92.04925 (5.83663) -94.89346 (39.83479) -20.05959 (8.81854) 124.88194 (8.73892)

σ 0.40124 (0.09052) 0.37155 (0.14852) 0.31051 (0.03315) 0.17637 (0.04986)

k2 0.01104 0.00457 0.02673 0.01908

M 0.39951 0.37086 0.30733 0.17473

Likelihood -1301.42445 -1307.62951 -1294.66381 -1296.57820
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Table B.11

GBM Model Parameters for JPM and Citi for each 6-month Subperiod.“Period” indicates the period from which the data was used during

estimation. For example, 2007.10-2008.4 denotes the period from the end of October, 2007 to the end of April, 2008. The rest should be

understood in a similar way. Standard errors are displayed in parentheses.

JPM

Period 2007.10-2008.4 2007.11-2008.5 2007.12-2008.6 2008.1-2008.7

µ 0.21319 (0.07546) 0.14392 (0.10206) 0.05234 (0.03572) 0.29755 (0.14505)

σ 0.06588 (0.01400) 0.06198 (0.00449) 0.06488 (0.00723) 0.08479 (0.02948)

Likelihood -1275.47934 -1270.34259 -1275.25656 -1299.98972

Period 2008.2-2008.8 2008.3-2008.9 2008.4-2008.10 2008.5-2008.11

µ 0.52313 (0.15131) 0.77804 (0.24394) 0.62224 (0.15034) 0.52853 (0.04598)

σ 0.09099 (0.01889) 0.14147 (0.02683) 0.16879 (0.02603) 0.20780 (0.00315)

Likelihood -1305.41168 -1354.22146 -1377.42600 -1367.12046

Period 2008.6-2008.12 2008.7-2009.1 2008.8-2009.2 2008.9-2009.3

µ 0.57975 (0.12866) 0.14285 (0.06586) -0.10157 (0.07189) -0.38367 (0.09895)

σ 0.23471 (0.05275) 0.24464 (0.04475) 0.25563 (0.03797) 0.18816 (0.03521)

Likelihood -1393.84983 -1383.36441 -1369.39328 -1352.27919

Period 2008.10-2009.4 2008.11-2009.5 2008.12-2009.6 2009.1-2009.7

µ -0.21601 (0.12280) -0.06371 (0.06939) -0.08846 (0.05967) 0.03647 (0.07179)

σ 0.18446 (0.03695) 0.16224 (0.03116) 0.13028 (0.05879) 0.10152 (0.05995)

Likelihood -1336.06880 -1341.01779 -1321.51138 -1320.41296

Citi

Period 2007.10-2008.4 2007.11-2008.5 2007.12-2008.6 2008.1-2008.7

µ -0.32850 (0.10201) -0.24301 (0.04263) -0.20397 (0.11480) -0.22784 (0.02103)

σ 0.06029 (0.01176) 0.04964 (0.01066) 0.04828 (0.01968) 0.05308 (0.01252)

Likelihood -1292.07017 -1272.20962 -1266.54887 -1272.91080

Period 2008.2-2008.8 2008.3-2008.9 2008.4-2008.10 2008.5-2008.11

µ -0.23564 (0.12060) -0.25415 (0.08126) -0.37658 (0.07756) -0.49848 (0.16085)

σ 0.05449 (0.02084) 0.07602 (0.01226) 0.11405 (0.01420) 0.18875 (0.01749)

Likelihood -1272.22788 -1308.48679 -1337.73282 -1334.75718

Period 2008.6-2008.12 2008.7-2009.1 2008.8-2009.2 2008.9-2009.3

µ -0.47486 (0.03022) -0.84348 (0.26948) -1.46722 (0.23355) -1.35366 (0.40535)

σ 0.22184 (0.08199) 0.29100 (0.06274) 0.42913 (0.03707) 0.46784 (0.12217)

Likelihood -1343.34248 -1319.51646 -1290.43938 -1249.99944

Period 2008.10-2009.4 2008.11-2009.5 2008.12-2009.6 2009.1-2009.7

µ -0.90736 (0.23758) -0.38332 (0.16801) -0.32403 (0.13933) -0.08896 (0.04624)

σ 0.41582 (0.16110) 0.18736 (0.07493) 0.15287 (0.03573) 0.07953 (0.01767)

Likelihood -1206.24911 -1179.59436 -1148.82478 -1129.24235
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Table B.12

GBM Model Parameters for BAC for each 6-month Subperiod. “Period” indicates the period from which the data was used during estimation.

For example, 2007.10-2008.4 denotes the period from the end of October, 2007 to the end of April, 2008. The rest should be understood in a

similar way. Standard errors are displayed in parentheses.

BAC

Period 2007.10-2008.4 2007.11-2008.5 2007.12-2008.6 2008.1-2008.7

µ 0.03705 (0.01377) -0.03992 (0.01533) -0.15159 (0.04318) -0.05345 (0.03154)

σ 0.05991 (0.00833) 0.05437 (0.00204) 0.05584 (0.00498) 0.07723 (0.00804)

Likelihood -1286.51132 -1274.86403 -1275.91633 -1311.79893

Period 2008.2-2008.8 2008.3-2008.9 2008.4-2008.10 2008.5-2008.11

µ -0.00017 (0.06862) 0.08554 (0.05414) -0.04136 (0.15008) -0.19891 (0.01676)

σ 0.08378 (0.00562) 0.14429 (0.05251) 0.21607 (0.02688) 0.27256 (0.09420)

Likelihood -1316.02280 -1365.50322 -1393.66006 -1373.67766

Period 2008.6-2008.12 2008.7-2009.1 2008.8-2009.2 2008.9-2009.3

µ -0.09935 (0.04838) -0.47891 (0.09599) -0.78673 (0.23733) -0.45968 (0.23744)

σ 0.31777 (0.01987) 0.36967 (0.11545) 0.49469 (0.06288) 0.47975 (0.09863)

Likelihood -1391.26790 -1377.59291 -1354.06623 -1327.81849

Period 2008.10-2009.4 2008.11-2009.5 2008.12-2009.6 2009.1-2009.7

µ -0.07077 (0.14157) 0.31080 (0.10390) 0.44122 (0.23059) 0.51233 (0.15189)

σ 0.42651 (0.09214) 0.37516 (0.02479) 0.30205 (0.08278) 0.17732 (0.03982)

Likelihood -1302.57972 -1308.10172 -1294.84802 -1296.63112
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