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Abstract

We consider a singular stochastic control problem, whicaled the Monotone Follower Stochas-
tic Control Problem and give sufficient conditions for theéséence and uniqueness of a local-time
type optimal control. To establish this result we use a nahagy that has not been employed to
solve singular control problems. We first confine ourseledsdal time strategies. Then we apply a
transformation to the total reward accrued by reflectingdiffesion at a given boundary and show
thatitis linear in its continuation region. Now, the pramlef finding the optimal boundary becomes
a non-linear optimization problem: The slope of the lineardtion and an obstacle function need to
be simultaneously maximized. The necessary conditionptnality come from first order deriva-
tive conditions. We show that under some weak assumpti@setbonditions become sufficient. We
also show that the local time strategies are optimal in tagscbf all monotone increasing controls.

As a byproduct of our analysis, we give sufficient condititorsthe value function to b€2 on
all its domain. We solve two dividend payment problems tonstiwat our sufficient conditions are
satisfied by the examples considered in the mainstrearatlite. We show that our assumptions are
satisfied not only when capital of a company is modeled by avBian motion with drift but also
when we change the modeling assumptions and use a squapdoess to model the capital.

1 Introduction

We solve a class of singular control problems which are knasvilonotone Follower Stochastic Control
Problems (see Karatzas and Shreve [7] for the terminolamya fieneral class of diffusion processes. In
particular, we give necessary and sufficient conditionseumdich the continuation region is constituted
by a single open interval in the state space of the contrgtedess. To establish our main result, we
first restrict ourselves to local-time strategies, each littv corresponds to controlling the underlying
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diffusion by reflecting it at a particular point. Applying amicular transformation to the total reward
accrued by reflecting the diffusion at a given boundary, wensthat the transformed reward is linear
in its continuation region.The slope is a function of the iaary point. In the rest of the state space, in
the region of action, the transformed reward is equal to atamte, which also depends on the value of
the boundary point. This transforms finding the optimal ktarg to a non-linear optimization problem:
The slope and the obstacle have to be maximized simultalyedie give the necessary conditions of
optimality using the first order derivative conditions amdw that under some weak assumptions these
conditions become sufficient. That is, our methodology ehiifying the unique solution of the singular
control problem relies on a combination of the classicdlidibn theory, which helps us give a geometric
characterization of the value function (the optimal reaathd non-linear programming. Next, we show
that the local time strategies are optimal in the class ofatmre increasing strategies under some certain
assumptions.

Among the benefits of our analysis are the sufficient conustiove provide for the value function to
be C? in the entire state space. This sheds light on the heugsiticiple of smooth fitwhich suggests
that the value function i€? across the boundary that demarcates the regions of actabimaation.
Our approach should be contrasted with the ad hoc ordinamyilkda-Jacobi-Bellman (HJB) approach,
which assumes the principle of smooth fit to construct a EmiutThere is no guarantee that a solution
could be found and using that method it is hard to establifficint conditions under which a solution
exists. And even if a solution is constructed to the quasatianal inequalities, one still has to verify
whether the solution satisfies the assumptions eérficationlemma, i.e., verify the optimality. For
further details of this approach see e.g. dksendal and S9em

To illustrate our results we consider the dividend paymeablem for two different scenarios. First,
we take the cash-flow of a company to be a Brownian motion wiifi.  This case was analyzed by
Jeanblanc and Shiryaev [6] using the ordinary HJB apprpaBkecond, we take the cash flow of the
company to be a square root process. In this case we showhthaptimal reflection level is strictly
less than the mean-reversion level. In the second examglitictions in terms of which the sufficient
conditions are stated are only available in terms of someiapfinctions. Yet, we are able to prove
that the sufficient conditions in our theorems are satisfigatly analyzing the ordinary differential
equation these functions satisfy without making a refezencheir explicit representations. This gives
us a method to check the sufficient conditions for other diffns even when explicit representations
are not available. We also extend our results to solve cainsl optimization problems. A dividend
payout problem with solvency constraints was recently exblisy Paulsen [10]. In this problem, the
firm is allowed to pay dividends only if the cash flow procesgrisater than certain (pre-determined)
value. Here, we provide a simpler proof to Paulsen’s rebylta very simple modification of the proof
of Proposition 2.3, which characterization provided far tptimal reflection barrier.

A similar methodology to ours was used by Dayanik and Kagf2§ to give a general characteri-
zation of the value function of the optimal stopping problefrone dimensional diffusions. The value
function of the optimal stopping problem (up to a transfatiorg is characterized as a concave majorant
of afixedobstacle. In the singular control problem we analyze, thetaatbe is not fixed. When we apply



the same transformation to the reward corresponding todhial that is identified by a fixed boundary,
the transformed reward becomes linear in the region of imaethose slope depends on this boundary
point. On the region of action the transformed reward is astasite and is a function of the boundary
point. Therefore, we maximize the slope of the linear fumrctand the obstacle simultaneously over all
possible boundary points to obtain the optimal boundarya Aessult, we characterize the optimal bound-
ary first and compute the value function (the optimal rewaiden this characterization, whereas [3]
characterize the value function first and then compute ttiemapboundary using this characterization.

Egami [4], Bayraktar and Egami [1] (in this work effects offglamentation delay are taken into ac-
count) also use similar methodologies. However, the resudt obtained here can not be obtained from
the results of these papers. In these papers, we could n@otbiaze the optimal control policy com-
pletely. The boundary of the region of action and inaction bba completely characterized only when
the threshold that the state process is taken to, after fhlecation of the control, is given. Therefore,
the characterization of the optimal boundary that we obkeire for the singular control problem can
not be obtained using a limiting argument (as the fixed cossdo zero). Also, the two problems are
very different in nature. For example, the singular conprablem is smoother than the impulse control
problem. In the impulse control problem, given a particydalicy, both the slope of the transformed
reward in the region of inaction and the obstacle (the tans£d value function in the region of action)
can be determined using the fact that it is continuous at tumdbary. However, determining the slope
of the transformed reward in the singular control problentrigkier. To write down the slope of the
transformed reward in the region of inaction as a functiothefboundary, we first show that the trans-
formed reward isC!. The continuity of the first derivative is also used to defemrthe obstacle (the
transformed reward in the region of action) as a functiorhefthioundary point. On the other hand, the
proof of optimality of local time strategies among a moregyahclass of controls in the case of singular
control problem differs significantly from the optimalitygof of the threshold strategies in the case of
impulse control problem. The latter uses the fact that theevlunction (optimal reward) of the impulse
control problem can be approximated by a sequence of opsitnpping problems.

The rest of the paper is organized as follows: In section 2sebee the monotone follower problem
for a general diffusion. We first find the optimal local timeasegy. In Section 2.1, we state the problem,
in Section 2.2, we characterize the value function cornedipg to a given boundary and after applying
a particular transformation value function becomes lirirahe region of inaction. In Section 2.3, we
characterize the optimal local time control. We also extemdanalysis to solve a constrained optimiza-
tion problem. In Section 2.4, we show that the local timetsgis are optimal among almissible
monotone controls. Here, we also point out that under thenagsons of Proposition 2.1 the value
function isC2. In Section 2.5, we solve the dividend payment problem whercapital of a company is
assumed to be either Brownian motion with drift or a squaat ppocess. We collect some preliminary
results to Section 3, which is our appendix.



2 Solution of Monotone Follower Problems

2.1 Reflected Diffusions

Let (22, F, (F1)t>0, P) be a complete probability space with a standard Brownianamdt” = {W;; ¢ >
0} and consider the diffusion procex¥ with state pac€ = [c,d) C R and dynamics

dXP = p(XP)dt 4 o(XP)dW; (2.1)

for some Borel functiong: : Z — R ando : Z — (0,00). (We assume that the functiopsand o
are sufficiently regular so that (2.1) makes sense.) We usas‘@he superscript to indicate that’ is
uncontrolled. We denote the infinitesimal generatak8fby .4 and consider the ODEA — a)v(z) = 0.
This equation has two fundamental solutiori$;) andy(-). We sety)(-) to be the increasing angd(-)
to be the decreasing solution: We will take ¢ to be absorbing and to be natural, and therefore
P(d—) = o0, p(d—) = 0 sinceX? never reached. First, we define an increasing function

s V()

o(z)
Next, we define concavity of a function with respdctas follows: A real valued functiom is called
F-concaveon (¢, d) if, foreveryc <1 < r < dandz € [l,r],

F(x)

(2.3)

Consider the solution dfX, Z) of the stochastic differential equation with reflection
dXy = p(Xy)dt + o(Xy)dWy — dZy, Xo— =z € (¢,d), (2.4)

whereZ = (Z;):>0 is a continuous non-decreasing (exceptat0) {F; }-adapted process such that
Zy — Zy =/ Lix,=pydZs, (2.5)
(0,t)

for someb € (¢, d). Here, we use the same notation as [6], see equations (4l{¥#&). To emphasize
the fact that the initial value of the proce8s 7, depends oX,_ = z, below we denote it by,(z).
We assume that — Zy(z), = € (c,d), is a measurable function atif}(c) = 0.

Here, 7 is called theocal timeof the processX at pointb. When this control is applied to the state
process( X }+>o, for ¢ > 0, it moves in(c, b] and it is reflected &k (until the time of absorption). First,
we will find the bestlocal time strategy. We will denote the set of local time tetgées by2l. Next, in

In fact, definingr? £ inf{t > 0: X? = r}, for everyr € (c, d), we can write

e [ganﬁf] . ifz<y [mr [efmgy —
P(x) = {1/1@9 [6%”2} o>y » o) = {IE“ |:67a7'8i| 7 it >y ; (2.2)

for everyz € 7 and an arbitrary but fixed € 7 (see Itd and McKean [5)).
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Proposition 2.3, we will show that under some certain as$siamgpthe local time strategies are optimal in
a larger class of controls, namely non-decreas{fg,}-adapted controls. Let = inf{t > 0 : X; = c}.
We consider the following performance measure associatigdAve 2A

T

e £(X,)ds + h / ez, | | (2.6)
(0,7¢)

ZI‘ — . T x—Zo(x)
JZ(2) = h- Zo(x) + E [/O

for some givenh € R,. Here,P*~%(®){.} is a short-hand notation for the conditional probability
measuré?{-| X, = = — Zy(x)} andE*~%0(*) is the expectation with respect to that probability measure
In (2.6), we used the following notation

b eedz 2n / " em0%dZ, — ho().
(0,7¢) 0

The objective is to find the optimal strategy € 2 (if it exists) and the value function:

v(x) £ ?églJZ(a:) = J% (2). (2.7)

One could choosél to be the family of non-decreasing,F; },~o-adapted process. We will show in
Proposition 2.3 that it is enough to consider only the loaétstrategies under certain assumptions.

Assumption 2.1. The functionf : (¢,d) — R is continuous and satisfies

E* UOO e f(X9)ds| < oo. (2.8)
0

2.2 Characterization of the Value Function Corresponding b a Given Reflection Level

We will first obtain a dynamic programming equation for thefpamance measure (2.6). Next, we
will apply a transformation to linearize the differenceveén the reward associated with a particular
control and the reward associated with not applying anyrobat all. Recall that the region in which
the particular control prescribes no action is commonlgmrefd to as the continuation region or inaction
region of this particular control.

Letr, £ {t > 0: X; > b}. On denoting

o) 257 | " e pxds (2.9)

for x € [c, b], we can write
B 70() [ / ce_o‘sf(Xs)ds] _E [ I e—wf(Xs)ds}
0 0
T/ N\Te
=E* [/ e f(X0)ds + e~ AT XA ATe /
0 0

= g(m) - Em[e—a(Tc/\Tb)g(ng/\Tc)] 4 E= |:e—a(7'b/\7—c)EXTb/\Tc /
0

T

) e_asf(Xs)ds]

’ e_asf(Xs)ds}

T

= g(z) - E:c[e—a(rb/\n)g(X(Tb/\Tc)_)] +E® |:e—06(7'b/\7'c)EX7-b/\-rc / c e_asf(Xs)dS] ’
0



in which the third line follows from Lemma 3.1 in the Appendikherefore, for: € [c, b]

JZ(JJ) — E* [e—a(Tb/\Tc) {_g(X(Tb/\TC)—) _|_EXTb/\TC [/0 ¢ e_asf(Xs)dS + /(O’Tc) e hdZ, } _1_9(1,)
=B [ {—g(X o,y ) + X (X }| + 9(@).
(2.10)
Let us define
u(z) 2 J%(z) — g(z), z€ e d). (2.12)
It is worth noting that:®(c) = —g(c) sinceJ? (c) = 0.
Equation (2.10) can be written as
u(z) = B [0 (X pr,) = 9(Xmm)—) + 9(Xrynee )}
— E* [e—a(Tb/\Tc)ub(XTb/\Tc)] ’ (212)
for x € [c,b]. On the other hand, if € [b,d), then
u(x) = h- (x —b) — g(z) + g(b) +u’(b), =z € [b,d). (2.13)
Using (2.12) and (2.13) can be written in a more compact fam a
w(z) = {ug(m) S [Uncnje™ P 0) + Lnorye (@], w0l
K (,b) + ug(b), z € [b,d),
in which
K(z,y) & h-(z —y) — g(x) + g(y)- (2.15)
Observe that’(z) is continuous at = b.
Using Lemma 3.2 we can write the functien— u$(z), = € [c,b] as
by b PP — @) | v(@)e(b) — (b)e() )16
10 = Ce®m —vEete T U0 e (219
The functionz — uf(x), = € [c, b] can be linearized by using
W) & (ug/e) o F~H (), a € [F(c), F(b)], (2.17)
and (2.16) becomes
F(b) — - F
Wha) = WHF @) i + WO s @€ [FO. PO (239)
We extend the functior — W{(z), fromz € [F(c), F(b)] to [F(c), F(d)) by defining
Wh(z) & (u/p) o F~H(z), € [F(c),F(d)). (2.19)
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We have now established thidf®(z) is alinear functionin the transformeaontinuation regior(the
region of no action). Note that (2.14) and (2.18) do not catgly determine:’: the slope and the
intercept of the linéV*(z) = € [F(c), F(b)] need to be determined. But we already know that

the linear functiodV¢(-) passes through¥'(c),l.) = (F(c), :jg) (2.20)

The slope of this linear function will be determined as a fiorcof b, i.e.,b — ((b), b € [¢,d). Then,
we will give sufficient conditions in Proposition 2.1 undehnigh the optimab*, i.e. b € [c, d) such that
u¥” (z) = v(z) — g(x), can be determined by the ordinary first order conditiongsethe unique solution
of 94(b)/0b = 0.

2.3 Characterization of the Optimal Reflection Level
In this section, we characterize the optimal level at whieh diffusion is to be reflected to maximize a
given reward functional as the unique solution of a nondimequation.

We first transform the functioi(-), defined in (2.15), into
A K(F‘l(w); b)

R(z;b) =R [F(b), F(d)). (2.21)
From (2.18) and (2.20) it follows that
W(z) = Bz — F(c)) + 1., € [F(c),F(b)], (2.22)

for somes € R, which is to be determined as a functiontofOur task in this section is to identify an
appropriate slopg* = 3(b*), so that the functioh — W?°(z) is maximized ab* for anyz € [c, d).

Proposition 2.1. Let us defind : R — R by
k(z) 2 h—g(z) — 1.0 (). (2.23)

Assume that: (i) For any € [c,d), R(x;b) defined in (2.21) is differentiable with respectatp(ii) For
anyb € [c,d), x — R(z;b) + %Wb(F(b)) is increasing and concave anc (F'(j), F(d)) for
some poiny € (¢, d) and it approaches infinity as — d; (iii) There exists a unique solutiobt € (¢, d)
to the equation

K ()9 (b) = k(b)¥" (b) + F(0)[k(b)¢" (b) — K (b)¢' (b)] = 0 (2.24)

such that* satisfies
(073" (0%) = k(6" )9 (") 4 F(c) (=K (b")"(b) + k()¢ (b")) < 0. (2.25)

Then the solution of (2.7) is given byz) = u*" (x) + g(z), in whichu®" is given by the equation (2.14)
if we replaceb by b* and choose the slope of (2.18) to g which is given by
= k(b") .
P(b*) = F(e)¢' (b%)
Recall thatW®" (z) is linear forz € [F(c), F(b*)].

(2.26)




Proof. We will first determine the slope of the line in (2.22), as adlion ofb, i.e.,b — 3(b), b € [c,d).
This will be established by showing thEf® defined in (2.19) is continuously differentiablebatTo this
end we will first consider the threshold strategy that is abt@rized by the paifb, a) € [c,d)?: Z is
said to be a threshold strategy correspondinfte) if, whenever the proces¥ in (2.4) hits levela or

is aboveq, then it jumps to (the jump is forced ) level b < a. (Although the letterZ was used to
denote only local time strategies before, we would like te iiso denote the threshold strategies to be
able to refer (2.4) when we are describing threshold stiededrhis prevents introducing unnecessary
equations.) Consider the reward in (2.6) correspondingdarticular threshold strategyand denote

it by u>¢. Note thatu®® = u®. The control represented by the péiit ) is of impulse control type.
Forb € [c,d), let us finda(b) such tha@upae[c,d) = u>() Using the results in Section 2.2 of [1]
and the assumption (i) and (ii) of the proposition we coneltltht, for any, there exists a unique(b)
such that the functiom — W) (), defined by (2.19) when is replaced by, is continuously
differentiable atu(b). This characterization of the functidn— a(b), b € [c,d) will be used to show
a(b) =b, b € [¢,d) and to calculate the sloge— (3(b), b € [c,d).

Let us define

i 2 {PO@ - FO Fe 2 €FQFOL ;0
H(w;b) 2 R(w;b) + 2% (BONF0) = F(e) + 1), = € [F(b), F(d)).
in which k(D)
O =~ e (2.28)
The right-hand derivative of the functidi’® satisfies
- - (e L) 0,
(WP)(E(b)+) = —(B(b)(F(b) — F( ))+lc)(p()F,(b)+ R(x;0) o)
o e o'(b) | e)(=g'(@)+h) — (h-(x—b) —g(x)+g(b)y'(x) 1
- T POED = HO) ) oy may P(a)? F) ey
= B(b),
(2.29)

where we used (2.15) and (2.21) to derive the first equalitg,(2.28) to derive the third inequality. The
functionz — Wo(z), = € [F(c), F(d)) is C' atz = F(b), since the left-hand derivative is alsgb).
This implies thatiV’® = We®) or (4" ) o F~1 = W and thata(b) = b. As a result we see that
W satisfies smooth fit condition aiand the slope in (2.22) is given by (2.28). Before we contiwitb
the proof the reader should note that

5(8) — tim @D + el — 1) . h—g(a) - g/ (a)
ol F(a)~ EBE@) + (o) (~14+ 28 el Fla)e(a) + Fla)e/(a) - F()¢/(@)
) h—g'(b) — 1 (b) k(b)
F'(b)p(b) + F(b)¢/ (b) — F(e)¢'(b)  ¢/'(b) — F(c)¢'(b)’



where the second equality follows from an application of @dgital’s rule. In contrast with equation
(2.25) in [1], this implies that the first order smooth fit oéthingular control ab can be derived by a
limiting argument from the continuous fit of a family of imgel control problems dt Here, the first
order smooth fit holds at arty € (¢, d), not only atb*, which we will soon discover to be the optimal
reflection barrier.

Equations (2.24) and (2.25) imply that(b*) = 0 and3” (b*) < 0. Thereforep* is a local maximum
of the functionb — (3(b). On the other hand, since we assumed that the uniqueness sébltition to
(2.24), b* is the unique local extremum of the function— ((b). Let us argue that* is the global
maximum of this function: Assume there exists a point# b* where the maximum of the function
b — [(b) is attained. Then there would exist local minimume (m, b*) of the functionb — 3(b)
which contradicts the fact that is the unique local extremum of this function. Note that> 3(b) =
k(b) /4’ (b) may not be concave.

Recall the definition of the functio/ from (2.27). Using (2.15) and (2.21) we can calculate the
derivative of H with respect ta as

9 i _ —h+g' () + Y O)BO)F D) — F(o) +le) + (B'()(F(b) — F(c)) + B()F'(b))p(b)
H(z;b) -
9b b=b* p(F~(z)) b=b*
_ —h+ g (b) + B(B)Y (b) + L (b) + B'(b)F(b)p(b) — F(c)(B(b)¢' (b) + B'(b)e(b))
(£~ (z)) b=b*

=0.

B'(b)(F'(b) — F(c))p(b)
p(F~1(x)) b=b*
(2.30)

Here, the second equality follows from the definitionfoin (2.3), and the third equality follows from
the definition of3(b) in (2.28) and (2.23). Note that,

0

%H(ac; b) =0 ifandonlyifb=0b". (2.31)
On the other hand,
s - _ BIO)(F (D) — F(c)e(b) + B'(b)F'(b)p(b) + B'(b)(F'(b) — F(c))¢' (b)
ob2? H( 5 b) - cp(F_l(x)) b:b*(2<3(;,)

sinced’(b*) = 0, 3”(b*) < 0 andF is increasing. Now, (2.27), (2.30), (2.31) and (2.32), tbgewith
the fact thab — [(b) is maximized ab* imply that

WY (z) = sup Wo(z), x € [F(c),F(d)). (2.33)
be(c,d)

The proof of our assertion follows since it is immediate fr@@83) thatu’" () = supyc. 4 u’(z), for
allz € [c,d). O

We can extend our results to solve constrained optimizatroblems. A dividend payout problem
with solvency constraints was recently solved by Paulséh [In this problem, the firm is allowed to
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pay dividends only if the cash flow proce&sis greater than certain (pre-determined) valuklere, we
provide a simpler proof to this result, using the charaz&ion we provided for the optimal reflection
barrier in Proposition 2.1.

Corollary 2.2. Assume that the assumptions of Proposition 2.1 hold2(Le the set of € 2 such that

Zy — Zo :/ lix,—ydZs, b<be (c,d), (2.34)
©0.1)
for a fixedb and define
N A )
ba{ 5 (2.35)
b if b*>b.

Let us also defing by replacingb with b in (2.34). Then

v(x) 2 sup J?(z) = JZ(:U) (2.36)
zeA

Proof. The proof follows since under the assumptions of Propasi#id the functiond — 3(b), b €
[c,d),b— H(x;b), z € [¢,d) have a unique maximum &t. (See the proof of Proposition 2.1). O

2.4 The Optimality of Local Time Strategies in the Class of Mootone Increasing Con-
trols

Let us write the value function(x), explicitly and make some observations on it.

) {vo(x) 2 p(@)(5"(Fla) ~ F() +10) +9(@). = € e .37

h-(x—0b*) +vo(b"), x € [b*,d)
where the second equation is obtained by

K(2,b*) +ug () + g(2) = h- (& = b") — g(2) + g(0) + (b")(5*(F(") = F(c)) + L) + g(x)

(1‘ — b*) + ’Uo(b*).

h-
h-
It is worth noting that(c) = 0.
Remark 2.1. (a) The first and the second derivativeudf) on (c, b*) are

V(@) = (@) + (le = B°F(0)¢' (x) + ¢'(x) and v"(z) = B"¢"(2) + (l. — B F(c)¢" (z) + 4" (2).

Evaluating these expressionshatwve obtain

k(b*)

v (x) b = w/(b*) o F(C)(,O’(b*) (1/} (x) - F(C)90 (‘T)) +h— k(x) b = h7 (2 38)
" o k‘(b*) "(p) — S (2)) — K (x _ '
V(@) T _F(C)(p,(b*)(?ﬁ () = F(c)e" () = k( )x:b* 0.
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(b)

(©

(d)

We used (2.23) and (2.26) to obtain the first expression a2d) 2o obtain the second expression.
Note that these smooth fit conditions are the two boundargitions that are frequently imposed

to solve the singular control problems in an ordinary Hamnilfacobi-Bellman (HJB) approach.

In that approach, after the solution is constructed, theraptions are verified using a verification

lemma. However, the smooth fit conditions need not necdég$anid and the HIB approach is un-

able to tell the sufficient conditions for the smooth fit tochdUsing our alternative methodology,

in Proposition 2.1, we are able to list some sufficient coonst for the value function to b€ on

all of its domain.

Furthermore,
(A—a)v(z) =(A—a)g(x) =—f(x) for z € (cb"]. (2.39)

Under assumption (iii) of Propostion 2.1 the function- k(b)/ (1)’ (b) — F/(¢)¢’ (b)) is maximized
atb*. Therefore, using the first equation in (2.38) it can be chddkaty’(x) > h, x € (¢, d).

Sinceb* satisfies (2.24), then we have that
k(b*) K (b*)
= ) 2.40
PO - Pl @) 70— FOF ) (2:40)
Now using, the second equation in (2.38) we have that
" _ k/(b*) 1 /! / *
v (x) - T/J”(b*) — F(C)(,D”(b*)(w (x) - F(C)QO (I’)) —k (‘T)7 T e (Cab ] (241)
If either

O (x)—F(c)¢"(x) >0, x€(cb*] and z —

is a decreasing function dp, b*],
(2.42)
or
K (x)
P(x) = Fe)e" (x)

o (x)—F(c)¢"(x) <0, z€(cb*] and z — is an increasing function ofe, b*],

(2.43)
thenv”(z) <0, = € (¢, b*]. Note from (2.37) that”(z) = 0 onz € [b*,d).
Forz € [b*,d)
(A—-a)v(z)=(A—-a)(h-(z—0b")+v9(b")) = p(x)h — ah - (x — b*) — avy(b"),
< () — ovo(b*) < p(b)h — awn(b) = lim (A — a)o(x) (2.44)

= lim (A~ a)v(z) = - lim f(x) = —f(v') <~/ (2)

if we assume that the maximums of the functions> u(x) andz — f(z) on the intervalb*, d)
are attained ab* (for e.g. if bothz — f(x) andz — p(z) are non-increasing ofp*, d)), and
that these functions are both continuousbat Note that the identityim,, ;- (A — a)v(z) =
limgqp+ (A — o)v(z) is due to (2.38).
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The following proposition gives sufficient conditions undéhich the local time strategies are optimal
in the class of all increasing strategies.

Proposition 2.3. Assume that the assumptions of Proposition 2.1 hold. Censh@ process
dXt = /L(Xt)dt + O'(Xt)th — dft

in which&; is an {F; }-adapted, non-decreasing and right-continuous processefa possibly at zero)

such thatE” [ [[* e*5d¢;] < oco. We denote the family of such controls @y Let us assume that

x — o(x), x € [¢,d) is a bounded function, the maximums of the functions> u(x), x — f(x)
onxz € [b*,d) is attained ath*, and that bothu(-) and f(-) are continuous ab*. We further assume
that either (2.42) or (2.43) holds. Then— v(z), = € (c,d) defined in (2.37) satisfiegz) > J¢(z),
x € [¢,d), for any¢ € C, in which

J&(z) = héo(a) + B*~50@) [ / s f(Xs)ds + / e—aShdgs] . (2.45)

0 (0,00)
Proof. We first apply I1td’s formula te~**v(X;) and get

e~ u(X;) = v(x) —i—/o e (A —a)v(Xs)ds — /0 e~ ' (Xs— )dés +/O e Yo (Xs)v' (Xs)dWs
+ ) e (X)) —v(Xen) + (X )AXL),
0<s<t

(2.46)

inwhichAX, = X,_ — X,, s > 0. From equation (2.46) and Remark 2.1 (b), (c) and (e), ibWedl that

v(x) = /Ot he”**d¢s — /Ot e”*(h — v (Xs))dés — /Ot e (A —a)v(Xs)ds

— /0 e o (X)) (Xs)dWs — Z e (v(X,) —v(Xe) + 0" (X0 )AXS) + e (X))

0<s<t
t t t
> / he=osdg, + / =05 F(X,)ds — / e (X ) (X, ) AWV,
0 0

0
— e (v(X,) —v(Xeo) + 0/ (X )AXS) + e ou(Xy)
0<s<t

t t t
2/0 he O‘sd§5+/0 e O‘Sf(XS)als—/O e Yo (X' (Xs)dWy
- e (v(Xs) — v(Xso) + 0 (X )AX).

0<s<t
(2.47)

The last line follows becauseis positive:v(c) = 0 andv’(xz) > h > 0, z € (¢,d), by Remark 2.1 (b).

We have that .
E [/ e *o(X )V (Xs)dWs| =0, (2.48)
0

12



sincev’(z) ando(z) are bounded. On the other hand, sin¢¢x) < 0 (see Remark 2.1 (d)) for any
x>y

o) = o) = V@) —3) = [ 00) = v (@)du 2 0

which implies that
= > e (X)) — 0(Xs) + 0 (X0 )AX,) > 0. (2.49)

Now (2.47), (2.48), (2.49) imply that

v(z) > E* [/Ot h-e *%d&s + /Ot e_o‘sf(Xs)ds] ,

for all t > 0, which implies thaw(x) > J(x) for all = € (c,d) after taking a limit ag — oo. The
exchange of limit and integration is possible due to Assimng?.1 and the definition af as a result of
an application of bounded convergence theorem. O

Remark 2.2. We give a useful hint which will be helpful in checking whethe
T = R(w:b) + 20 W(F(b)), = € [F(c), F(d)) satisfies assumption (i) of Proposition 2.1. Let
us denote

s p— (g) (@), (2.50)

thenR'(y;b) = m(z) and R’ (y;b) = m(z)/F (z), in whichy 2 F(z). If z — K(z,b) is twice-
differentiable at: € (¢, d), then

R (y;b)[(A — a)K (x,b)] > 0. (2.51)

The inequality is strict ifR” (y; b) # 0.

2.5 Examples of Dividend Payment Problems

Example 2.1. Dividend payout with a Brownian motion with drift (Jeanblanc and Shiryaev [6],
Case C):Let us assume that the capital of a company is modeled a Baswmnotion with a drift and the
managers of the company would like to maximize the amounividehds payed out. We assume that
the company is ruined when the capital becom¢ise. 0 an absorbing boundary). The right boundary
+o00 is natural. The uncontrolled proces? is a Brownian motion with drift

dXY = pdt + odW;.

The value function is defined as

v(z) = sup ] Zo(z) + E*—%0(@) / e dz,
A (0,70)

} , (2.52)

wherery = inf{t < 0; X; = 0}.
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In this problem,f(z) = 0 andh = 1 andK (z,y) = = — y. As in [6] we takes = /2. By solving
the equation{.A — a)v(x) = 0, in which A is the infinitesimal generator of the uncontrolled proc&8s
we find(z) = =227 andp(z) = e~ 727 whereA = ,/(4)2 + a. HenceF(z) = ¢*** and
F~!(z) = %8 Note thatF(0) = 1, 1. = 0 andk(z) = 1.

Verification of the Conditions in Proposition 2.1.

(i) For a givenb > 0, we have that

Rl = (/) ) = o ("5 )

ony > F(0) = 1. This function is differentiable with respect {0
(i) R(-;b) is increasing oy € [F'(0), c0) by (2.50) andim,_.., R(y;b) = co. We also have that

1 _ logy (2.53)

p(F~1(y) 24

is increasing ofF'(0), o) to co.

On the other hand, A — o) K (x,b) = p(z) for everyz > 0, in whichp(x) £ i —a(z —b). This linear
functionp(x) has only one positive root at sdy, Then by (2.51)R(y; b) is convex ory € [F(0), F'(k))
and concave op € (F(k),co). Observe from (2.53) that/o(F~!(y)) is concave.

(iii) From (2.24), Sincé:’(x) = 0 for = € [0, o0), Equations (2.24) and (2.25) become

" (b) = F(0)¢" (b), (2.54)
" (b*) — " (b*)F(0) > 0. (2.55)
Sincey)”(-) is increasing ang”(-) is decreasing ofb, oo), equation (2.55) holds for alt € [0, o).

Moreover, since)” (0) < ¢”(0) and0 = lim, ., ¢”(z) < lim,_ " (z) = oo, there exists a unique
solution to (2.54).

Verification of the Conditions in Proposition 2.3: The only non-trivial condition to check is whether
v"(z) < 0forz € (0,00). It can be shown that”(x) — F(0)¢”(z) < 0 onz € (0,b*), by the same
argument that we used to prove the uniqueness of the root®f)(and the concavity af follows from
Remark 2.1-c. Hence we conclude that the local time straaegyis optimal among all the admissible
strategies.

Now, vy(+), defined in (2.37) can be computed as
v(z) = p(@)W (F(x)) = 5 (F(z) - p(a) = §7(*D — D) WA
= ﬁ*e‘“x/z(emg - e‘Am) = 203*eH/2 sinh(zA).

The solution to this problem is then



which coincides with the solution that is computed by Jeambland Shiryaev [6] by using the ordinary
HJB approach, which is specific to the modeling assumptiéigure 1 shows the value function after
applying the transformation (2.19), the slope function- 3(b), b € [c,d), the value function and its
derivative when the parameters gre «) = (0.15,0.2). The optimal reflection point i&* = 0.736246
andg(b*) = 1.16523.

W R-shifted B(b)
12 1.15
10 1.125
8 b
6 0.5 1 1. 2
4 1.075
2 1.05
>4 6 8§ 10 127 1.025
(a) (b)
Vv (X) V' (X)
1.75
1.5 1.08
1.25
1 1. 06“
0.75 104}
0.5 g Lo
0.25; ' . .
- 0.250.50.75 1 1.251.5 l.7§( " 0.25 0.5‘0.75’—1 1.25 1.5 1. 75)(
(©) (d)

Figure 1:The analysis of the singular control problem of JeanblarmtSiniryaev [6] with parameterg:, o) =
(0.15,0.2): (@) The functionr — R(F(x);b*) + W (F(b*))p(b*)/¢(x), = € [c,d) and its linear majorant. (b)
The graph ob — §(b) (see (2.28)). It attains its maximumigt (c) The value functiom(z) with b* = 0.736246
andg* = 1.16523. (d) The derivative/(z): Itis vj(z) on0 < z < b* andv’(z) = 1 ond* < z (lower line). The
derivativev| (z) onb* < z is also shown to illustrate thaf/ (b*) = 0.

Example 2.2. Dividend payout with a square root process: We solve the problem defined in (2.52)
when the cash flow of the company is modeled by the followingasg root process:

dX? = (1 —2pX0)dt 4 24/ X2dW;, X§ =z > 0. (2.56)
The solutions of A — a)v(x) = 0 are

) =o Mexp (B) M_a s 1(pn), pla) =a exp (B)Woo s 1(pa),  (@57)

4>

in whichW_ o £+l-1 and M _ £+1,-1 are Whittaker functions. (See Appendix 1.26 as well as Girapt
2.1.11 of Borodm and Salmlnen [2] ) The Whittaker funcare defined as

ac2 o 1
W—%-l—%,—% <_> =22 4\/5D—a/p($)> z >0,

22\ T((1+a/p)/2) (259
< )ZQ—ﬁpmn_a/p(_w)_D_a/p(x)), x>0,
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in which I" stands for the Gamma functidi(z) = [;° u*~'e~“du and D, (-) is the parabolic cylinder
function, which is defined as

D,(z) & 2"/26_9”2/4Hv <i> , x E€R,
(2) 7

in terms of the Hermite polynomial of order whose integral representation is given by

1
I'(—v)

Ho(z) = /0 e~ *~25—v=1gt  Re(v) < 0. (2.59)

See e.g. Lebedev [8]. The Hermite polynomials sati¢fy(z) = 2vH,_1(z2),z € R.
Verification of the Conditions in Proposition 2.1:

(i) Note that

o K(z,b) -0
R(F(x);b) = @) o) (2.60)
and the differentiability of?(y; b) comes from that of'(-) andy(-).
(ii) Since
0 K(z,b) () — (z—b)¢'(z) >0 (2.61)

oz p(x) p(x)?
for z > b, using (2.50), it can be seen thaty; b) is increasing oy € (F(b), c0) to oco.

On the other hand, A — a)(x — b) = p(z) for everyz > 0, in whichp(z) = (1 — 2px) — a(z — b).
This linear functiorp(z) has one positive root at say, ThenR(y; -) is convex ory € [F(0), F'(k)) and
concave ory € (F(k), o).

The facts that /o(F~'(y)) is increasing tao and concave of(0), co) can be similarly shown (by
replacingX (x,b) in (2.60) with unity).

(i) We need to verify that (2.54) and (2.55) hold. In factewvill see that wherx > 0, the unique
solution of (2.54), the optimal reflection level, satisfiése (0,1/(2p)). This result is very intuitive,
sincex = 1/(2p) is the mean-reversion level of.

The functions(-) andy(-) both solve the differential equation
(1 —2pz)w' (z) + 2zw" (z) — cw(z) =0, z € (0,00). (2.62)
Also, we know from their representation in (2.2) that
P(x) >0, Y'(x) >0; @) >0, (x)<0, xec/(0,00). (2.63)

Evaluating (2.62) at = 1/(2p) for w = ¢ andw = ¢, we obtain
(LN (2 (LY o (L
2z <2p> = a1p <2p> and 2z <2p> = a1p <2p> ) (2.64)
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from which it follows that, forae > 0,

1 1
v (5) v (%) .
1 1
(%) ¢()
where the first inequality follows from the fact that defined in (2.3) is increasing. H = 0, then
V"(1/(2p)) = ¢"(1/(2p)) = 0.

First, we will show that (2.54) has a unique solutior(n1/(2p)], and show that this solution indeed
satisfies (2.55). Next, we will show that the same equatie@sdmt have a solution ifi/(2p), cc). To
establish our first goal, let us collect some information e behavior of the functiong(-) and(+)
over this interval. From (2.62) witlhy = ¢, we see that when

(%) > F(0) >0, (2.65)

1
O"(x) >0, we€ (0, %} , (2.66)
sincey’(z) < 0 andy(x) > 0 over the same interval. Differentiating (2.62) we obtain
(2p + a)w' (z) — (3 — 2pz)w” (z) = 22w (z), =z € (0,00), (2.67)

for w = orw = . Using (2.67) it can be seen that

1
o"(x) <0, we (0, %} , (2.68)

using the fact thap’(z) < 0 andy”(z) > 0 on the same interval.
After simplifying the expression fap(-) in (2.57), we write

0() = TS (b1 )~ Hay59) (2.69

The second derivative af(-), then can be computed as

L((1+a/p)/2) [_ a
2

W) = =5k N

2732 (H_g)p1(—/PT) + H_o)p 1 (+/PT)) +

(2.70)
a _
«Q <; + 1> a ! (H—a/p—2(_\/p_w) - H—a/p—2(\/p_w)) )
from which it follows that
: " _

xll)r(l)l_’_l/J (x) = —o0. (2.71)

With the help of (2.67) withv = v, observe that
if =€ (0,1/(2p)) andy)” (z) < 0, theny”' (z) > 0, (2.72)

sincey’(z) > 0. It follows from (2.65) and (2.66) that”(1/(2p)) > 0. Now, this fact together with
(2.71) imply that
' (x) <0 for x € (0,z9], wherez, e (0, %) . (2.73)
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And it also follows from (2.72) that

Y'(x) >0, z€ <x0, %) . (2.74)

At this point, we can state that there exists a solutine (zo,1/(2p)) to (2.54) as a result of (2.65),
(2.66), (2.73) and the intermediate value theorem.

Let us prove that a*, ¢ (b*) > 0. If " (b*) < 0, then there would exist a poif € (z¢,b*) such
that
W"(%0) =0, (&) <0, (2.75)
in which (Y stands for the fourth derivative of. Differentiating (2.67) we write
(4p + a)w” (z) — (5 — 2pz)w” (z) = 20w (z), 2 € (0,0). (2.76)

Evaluating the left-hand-side of (2.76) (when= v) at Z(, using (2.74) and the equality in (2.75),
we obtain a positive quantity, whereas the right-hand-sid@.76) is negative due to the inequality in
(2.75), which yields a contradiction. Singé€’(v*) > 0, andy”' (b*) < 0 by (2.68),b* satisfies (2.55).

Let us show thak* is the only solution to (2.54) if0, 1/(2p)). Assume there exists another solution to
(2.54)in(0,1/(2p)), then necessarily there would be at least one more solwi¢54) in(0,1/(2p))
(This follows from (2.65), (2.66), (2.68), and (2.73)). lustdenote the largest three of all of the solutions
by 1 < 22 < x3. It can be easily under this assumption

' (x) > F(0)¢"(z), € (v1,22), and ¢"(x2) <O. (2.77)

But this contradicts the fact we have proved above: sincis a solution to (2.54))" (x2) > 0

It remains to show that (2.54) does not have a solutiofl jii2p), o). It is clear from (2.65) that
x = 1/(2p) is not a solution of (2.54). Let us assume thatdfar 1/(2p), " (z) = F(0)¢"(x). Then,

—(1 = 202)/(2) + atb() = —F(0)(1 — 2p) () + F(0)ap(a), (2.78)

which implies that

/ . /
o(F(z) — F(0)) = (1 — 2pz) <1/’ (z) ch ()0)“’ (“)> . (2.79)
Note that the left-hand-side of (2.79) is non-negative beed’ is increasing. On the other hand the

right-hand-side of (2.79) is negative. This yields a cadtitréon.

Verification of the Conditions in Proposition 2.3: The only non-trivial condition to check is whether
v"(z) < 0forz € (0,00). Itis clear from our analysis above that' (z) — F(0)¢"(z) < 0 on
x € (0,0*). The concavity ob follows from Remark 2.1-c.

We can determing* from (2.26) and write down the value function as
o) — @2 W@ - FOp@), 0o
vo(b*) + & — b*, b* <z

in which ¢(z) andy(z) are given by (2.57) with (2.58). Figure 2 illustrates thediion b — 3(b), the
value function,v, and its derivatives for a special choice of parameters.
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Figure 2: The dividend payout problem with a square root process vattametergp, o) = (1,0.2): (a) The
graph ofb — §(b) (see (2.28)). It attains its maximum &it. (b) The value function(z). b* = 0.4370 and
B* = 2.2826. (c) The derivative/(z): Itis vj(xz) on0 < z < b* andv’(z) = 1 ond* < z. The derivativey| ()
onb* < z is also shown to illustrate thaf/ (b*) = 0.

3 Appendix

Lemma 3.1. Let us assume that (2.8) holds. Then for any stopping timiethe filtration (F;):>0

g | [ e pxdias| = o) - ¥ [ nalx9)] (3.0

in whichg is defined in (2.9).

Proof. The proof immediately follows from the strong Markov projyesf the processy’. O

Lemma 3.2. For any pair (I,7) € (c, d)?, let us define

vp(2) EE"[e7 " 1 oy, and  u(z) 2E e o], €[] (3.2)

P(@)e(r) — (r)e(x)
b(De(r) = (r)el)

and v(x) = x € l,r]. (3.3)

Proof. Bothz — v,(x) andz — v(z), z € (¢, d) are solutions td.A — a)u = 0 with boundary condi-
tionsv;(l) = v, (r) = 1 andy;(r) = v, (I) = 0. Therefore, we can write them as linear combinations of
the homogeneous solutions (@1 — «)u = 0, and we get (3.3). O
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