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Abstract

This paper investigates the characteristics of the higher moment risks of option returns, namely beta
and coskewness. Under mild assumptions, the investors’ decreasing absolute risk aversion can result
in a U-shaped pattern (a beta smile) for put option betas, though call option betas are always non-
decreasing in the strike price. The coskewness for call options can be an inverted U-shape when the
underlying returns are negatively skewed. We discuss some implications of these results in the con-
text of the investor’s risk preference for skewness. We also provide empirical evidence that supports
our theoretical results.
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1 Introduction

The importance of call and put options cannot be exaggerated since these options are usually included as
part of an investment portfolio. Hence the knowledge of options beta (i.e., risk-return analysis) is very
helpful for investment purposes. To this end, Cox and Rubinstein [5] show that call options beta (resp.
put options beta) is an increasing (resp. decreasing) function of strike price in the binomial tree model
and the Black-Scholes model under the assumption that the single-factor capital asset pricing model
(CAPM) holds true (see pp.189-196). While the CAPM of Sharpe [17]-Lintner [14] marks an important
milestone in the development of modern asset pricing theory, it suffers from poor empirical support.1

The binomial tree model and the Black-Scholes model as the limiting case of the former assume the
completeness of the market for which there exists a unique martingale measure (and hence stochastic
discount factor (SDF)). Equivalently, all the derivative securities are replicable.

In this paper, we shall show, as one of our main contributions, that under mild assumptions but without
assuming the validity of the CAPM or the completeness of the market (see Assumption 2.1), call options
beta is monotonically increasing in the strike price (hence confirming the result of Cox and Rubinstein
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1Evidence of failed empirical records may be found in Campbell, Lo, and MacKinlay [3].
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[5] in a more general sense) and put options beta can reveal a U-shaped pattern (a beta smile) in the strike
price. Our results are supported by empirical evidence.

These findings can also shed light on the issue of the investor’s preference for skewness and on the
related problem of proper specification of the SDF. In other words, our theoretical analysis shows that the
characteristics of higher-moment risks depend on information about investors’ risk preference embedded
in the SDF. The empirical failure of CAPM can be traced to its restrictive assumptions, among them, the
normality assumption of the return distribution. Empirical evidence indicates that returns of financial
assets are not normally distributed, and in fact, the return distribution tends to be fat-tailed and skewed.
Skewness in the return distribution will have an impact on the portfolio selection of investors with a
preference for it.2 Arditti [1] shows that under decreasing absolute risk aversion, investors will exhibit a
preference for positively skewed portfolios.3 The issue of investor’s preference for skewness is related to
the specification of the SDF, which we denote by m. Let us define the beta and coskewness risk factors
as, respectively, βi := cov(ri, rM )/σ2

M and γi := cov(ri, r
2
M )/σ3

M . From the fundamental pricing
equation, it follows that,

E[(1 + ri)m] = 1 (1.1)

where E denotes the expectation operator, ri is the net return on any asset and m is strictly positive.
Likewise, from (1.1),

−Cov(1 + ri,m) + E(1 + ri)E(m) = 1

which by assuming the existence of a risk-free asset with rate of return rf ,can be written as,

−Cov(ri,m) =
1

1 + ri
(E(ri)− rf ). (1.2)

It is clear that a linear SDF m = a + brM results in the monotonicity (in the strike price) for call and put
betas. Indeed, with a linear SDF, we can rewrite (1.2) as

E(ri)− rf =
Cov(ri, rM )

Var(rM )
(E(rM )− rf )

Given that expected option returns are monotonically increasing in the strike price (Coval and Shumway[4]),
this equation suggests that the option beta must increase with the strike price. On the other hand, Harvey
and Siddique [9], among others, assume that the SDF is quadratic in the market return

m = a + brM + cr2
M (1.3)

with a > 0, b < 0 and c > 0. They show that the quadratic form can be linked to an important property
of non-increasing absolute risk aversion which can be explicitly modeled as skewness in a two-period
model. Consider that substituting (1.3) into (1.2) yields

E(ri)− rf = −b(1 + rf )Cov(ri, rM )− c(1 + rf )Cov(ri, r
2
M ). (1.4)

2It is intuitively accepted that investors have a preference for skewness. Compare the following two fair games, A and B.
Game A costs $1 to play and has one-in-one-million chance of paying out a million dollars. Game B pays $1 up front but
has a one-in-one-million chance of costing the player a million dollars. Although both games have identical first and second
moments, the third moments are of opposite sign. The return from game A is positively skewed and the return from game B is
negatively skewed. Presumably, most people would prefer game A to B. That is, most people would wager a few dollars for a
small chance of wining a large fortune.

3Additionally, Scott and Horvath [15] point out that under the assumptions of 1) an increasing utility function, 2) decreasing
absolute risk aversion and 3) strict consistency for moment preference (i.e. all moments are always associated with the same
preference direction for any wealth level), investors will exhibit preference for odd moments and aversion for even moments.
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Equation (1.4) can be considered as the three-moment CAPM model and is an unconditional version of
Harvey and Siddique[9]. The equation is assumed to hold true for all risky assets, including options
written on the market portfolio. As the strike price increases, the left hand side of (1.4) increases and
so does the right hand side. However, the expected option return depends not only on the beta but also
on systematic skewness, that is, any coskewness captured by the term Cov(ri, r

2
M ). Hence, if the SDF

is quadratic in the market return, it is not clear whether the option beta is necessarily increasing in the
strike price – even though the expected option return is definitely increasing in the strike price. We are
motivated to understand these interrelated issues (option beta as a function of the strike price, preference
for skewness, and specifications of SDF’s).

We can summarize our results as follows:

1. Put-option betas can reveal a U-shaped pattern (a beta smile) in the strike price. If there is a
beta smile for put-option betas, decreasing absolute risk aversion is a necessary condition for
producing the beta smile, and systematic skewness must be priced in the market. (Proposition
2.1).4 Our theoretical result is consistent with the general belief that the SDF includes a preference
for skewness (Harvey and Siddique [9], Dittmar [6]) and cannot be linear in the market return.5

2. For call options, we prove that beta is monotonically increasing in the strike price irrespective of
the specification of the SDF (Proposition 3.1). Hence we extend the classical results in Cox and
Rubinstein [5] to incomplete markets where the single-factor CAPM does not necessarily hold.
With respect to the skewness issue, the options beta, in turn, is not informative. We thus look
directly to the higher moment, that is, systematic skewness. We find that coskewness is an inverted
U-shape pattern in the strike price when the underlying is negatively skewed (Proposition 3.3).

3. Our empirical results show that call option betas are increasing in the strike and put option betas
exhibit a beta smile. The call options beta is uninformative in the sense that they always increase
with the strike price regardless of whether skewness is priced. But the put options beta smile in-
dicates that systematic skewness must be priced in the put option market. The empirical results
support the theoretical analysis about the call and put betas. Our empirical results on the coskew-
ness of the call option returns show an increasing pattern in the strike price. Although it is not clear
whether the skewness preference is priced in the call options market, this monotonic coskewness
is consistent with our sample in that the underlying is positive skewed.

The rest of this paper is organized as follows. In section 2, we examine put-option betas to show the
possibility of a beta smile. If so, skewness is priced. In section 3, we examine call-option betas and
coskewness. We derive some general theoretical results that describe the relationship between the beta
risk and the strike price, and between the systematic skewness and the strike price. In section 4, we
provide some empirical evidence that supports our theoretical results. Section 5 then concludes with a
brief discussion of our results. Technical proofs are relegated to the Appendix.6

4Accordingly, investor’s risk preference cannot be modeled with utility functions that result in a linear SDF (such as the
logarithmic utility).

5In a recent article, Coval and Shumway [4] show that expected option returns are too low to be consistent with CAPM
predictions and suggest additional risk factor should be priced. Our findings suggest that coskewness risk is a valid candidate.

6We note that Kraus and Litzenberger [12] develop a three-moment capital asset pricing model that identifies two systematic
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2 Put options

We work under the following assumptions in the entire paper:

Assumption 2.1. 1. dE[m|S]/ dS < 0,

2. d2E[m|S]/ dS2 ≥ 0.

We denote by S the price of the underlying market portfolio (on which the option is written) at the
maturity of the option. The first assumption is based on the fact that risk averse investors have decreasing
marginal utility on wealth, and the second requires that investors exhibit non-increasing absolute risk
aversion. The non-increasing absolute risk aversion implies that E[m|S] must be either a linear or convex
function in S. For E[m|S] to be convex in S, decreasing absolute risk aversion must hold true.

Suppose that the distribution of asset price S at the maturity has density f(·). We respectively denote
by X and S0 the strike price and today’s price of the underlying. The put option beta is defined as
βp := Cov(rp, rM )/σ2

M . Given the current value of the market portfolio S0 and the SDF, m, we have

Cov(rp, rs) =
∫ S=X(X − S)(S − S̄)f(S) dS∫ S=X

S0(X − S)E[m|S]f(S) dS
(2.1)

The derivative of put option beta with respect to the strike price can be obtained as
∫ S=X

S(S − S̄)f(S) dS
∫ S=X

S0E[m|S]f(S) dS − ∫ S=X(S − S̄)f(S) dS
∫ S=X

SS0E[m|S]f(S) dS(∫ S=X
S0(X − S)E[m|S]f(S) dS

)2
σ2

M

The denominator is positive, but a brief check of the numerator reveals that it can be either positive
or negative. That is, the derivative of the put option beta does not provide a conclusive result. The
implication of this uncertainty is that the shape of put option betas depends on the exact shape of E[m|S],
or in other words, the investors’ representative utility function.

We state one of our main results here which helps us to better understand how put option betas reflect
investors’ risk preference:

Proposition 2.1. For a put option written on the market portfolio as the underlying, beta can either be
monotonically increasing in the strike price or exhibit a U -shaped pattern, i.e., a beta smile. However,
decreasing absolute risk aversion is a necessary condition for producing the beta smile.

3 Call Options

Here we show that beta smiles do not occur in the returns of call options. Suppose that the distribution of
price S at the maturity has density f(·). We respectively denote by X and S0 the strike price and today’s
price of the underlying.

risk factors, namely, market beta and coskewness, to account for the respective second- and third-moment risks. Also, empirical
results from these models suggest that they are much better at explaining cross-sectional variation in expected returns than the
single-factor CAPM. See, for example, Krause and Litzenberger [12], Friend and Westerfield [8], Sears and Wei [16], Lim [13],
and Harvey and Siddique [9].

4



3.1 Characteristic of Options Beta

Similar to the previous section, the beta of the call option is then defined as βc := Cov(rc, rM )/σ2
M . The

following Proposition states the relationship of changes in the call option beta with respect to changes in
the strike price X:

Proposition 3.1. For a call option with the market portfolio as the underlying, beta is monotonically
increasing in the strike price; that is

∂βc/∂X > 0 (3.1)

where X is the strike price.

Three immediate consequences follow from Proposition 3.1. First, the call option beta is always
positive and greater than one. This can be seen by setting X = 0, since when X = 0, the option
is just the underlying market portfolio and its beta is one. Second, when the underlying is a security,
not the market portfolio, Proposition 3.1 is still true as long as the security itself has a positive beta.
Furthermore, call option returns always have greater betas, in absolute value, than their respective un-
derlying assets.7 Finally, the variance of any call option returns is greater than that of the underlying
returns regardless of its distribution. The last statement is true because the proof for Proposition 3.1
shows that Cov(rc, rs) is increasing in the strike price regardless of whether the underlying is the mar-
ket portfolio or an individual stock. Therefore, Cov(rc, rs) > Var(rs) for any positive strike price8

and we have Cov(rc, rs) ≤
√

Var(rc)
√

Var(rs). That is, combining the two inequalities, we obtain
Var(rc) > Var(rs).

The monotonicity of call option betas in Proposition 3.1 concurs with the CAPM model. Since we
assume neither a specific stochastic process for the underlying nor a specific utility function for the
investors’ risk preference, Proposition 3.1 implies that the monotonicity property of call option betas can
be generalized and is universally true under the assumptions stated therein.

3.2 Coskewness of Call Options Returns

In this section we investigate the characteristics of the third moment of call option returns, namely
coskewness, to better understand if the skewness preference is priced. If investors prefer positive skew-
ness, coskewness can be important for option investors. We show that the coskewness of call options can
show an inverted U-shaped pattern as a function of the strike price. To show how coskewness of option
returns depends on the skewness of the underlying security and the strike price, we assume, again for
simplicity, that the market portfolio is the underlying asset.

Proposition 3.2. If the SDF factor is negatively correlated with the market, the coskewness of a call
option with its underlying security, E[(rc− r̄c)(rs− r̄s)2]/E[(rs− r̄s)3], is increasing in the strike price
X when E[(rs − r̄s)3] > 0 where rc and rs are option and underlying security returns, respectively.

7In particular, no specific distribution is assumed for the underlying assets.
8The result is well known when the underlying follows a geometric Brownian motion.
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On the other hand, when E[(rs − r̄s)3] < 0, the coskewness is increasing in the strike price at first,
and then decreasing in the strike price. To be more specific, we define I1(X) ,

∫
S=X E(m|S)f(S)dS

and I2(X) ,
∫
S=X(S − S̄)2f(S)dS, and we obtain

Proposition 3.3. If the SDF is negatively correlated with the market, the coskewness of a call option with
its underlying security, E[(rc− r̄c)(rs− r̄s)2]/E[(rs− r̄s)3] is first increasing and eventually decreasing
in the strike price if E[(rs − r̄s)3] < 0. The coskewness has an inverted U-shape if

I1(X)(V − (X − S̄)2) = (V (1− F (X))− I2(X))E[m|X] (3.2)

has only one root.

These results show that when the underlying market return is positively skewed, systematic skewness
for the call option will be positive and increase with the strike price. On the other hand, when the market
is negatively skewed, the systematic skewness will be positive and first increase, but then decrease, to
be negative. As we know, the market premium for asset coskewness is negative when market return
is positively skewed, and is positive when market returns are negatively skewed. Therefore, when the
market is positively skewed, an increase in the strike price will increase the coskewness and hence de-
crease the expected option return. On the other hand, when the market is negatively skewed, an increase
in the strike price will, initially increase the coskewness and hence increase the expected option return.
However, further increase in the strike price will eventually decrease the coskewness and hence decrease
the expected option return.

4 Empirical evidence

This section applies previous theoretical framework to the real data. The theoretical analysis does not
assert whether the investors’ risk references are embedded in the markets. It only tells that if there are
such risk preferences, how they should be reflected by the options’ betas and coskewness. It thus provides
a way for us to identify and examine them.

We use European S&P500 index options (SPX) data to examine the beta and coskewness for call and
put options. The data is taken from the Chicago Board Options Exchange, and the sample period is from
June 1990 to December 2002. The option and underlying S&P500 index returns are computed for the
holding periods from one to six weeks. The ending dates are always the expiration dates. For one-week
return, the holding period is four days, starting on the third Tuesday and ending on the third Friday of the
month in which the options expire. Due to the fact that options held to expiration often have net returns
of -1, the conventional log return commonly used in equity studies renders infinite negative values. Thus,
in this study net returns are used.

For each holding period, we sort the options based on their moneyness, the ratio of the level of the
S&P500 index to the strike price. Twenty groups are selected for the call and put options, respectively.
For call options, groups 1 - 9 are in-the-money (ITM) options, group 10 is at-the-money (ATM) option,
and groups 11 - 20 are out-of-the-money (OTM) options. On the other hand, for put options, groups
1 - 9 are out-of-the-money (OTM) options, group 10 is at-the-money (ATM) option and groups 11 -
20 are in-the-money (ITM) options. At-the-money options are classified as those whose moneyness is
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between 0.9985 and 1.0015. A 0.3 percentage point incremental interval is used for each group. The
tight moneyness interval allows the grouping method to maintain consistent risk characteristics for the
options within a group and permits only one option within each group at a set point in time. We never
reclassify an option once it is placed within a group.
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Figure 1: Empirical evidence from S&P 500 index options with maturities 1-3 weeks.

Figure 1 shows the empirical results computed from S&P 500 index options with the time to maturity
being one, two and three weeks. Computation of beta and coskewness follows the definitions given in
the previous sections. The empirical evidence from S&P 500 index options are consistent with previous
proofs on the betas and coskewness of call and put options. The beta of call option in Figure 1 (a) suggests
a monotonic increase with strike price, but the beta of put options exhibits an U -shaped pattern. This is
clearly shown in Figure 1 (b). This suggests that the S&P500 index option market reflects our Case 3 in
previous section. Figure 1 (c) shows the coskewness of the call options. Given that the skewness of the
sample returns of the underlying S&P 500 index is positive, the coskewness of the call options indicates a
monotonically increase in the strike price. The monotonicity here is consistent with Proposition 2.5. The
pattern of the coskewness of the put options is less clear, though it might suggest a monotonic decreasing
pattern, as indicated in Figure 1 (d).

To further check the above results, we also examine the betas and coskewness by using four-, five- and
six-week returns data for call and put options. The calculated betas and coskewness, shown in Figure
2, largely confirm our previous results. For call options, beta and coskewness show a similar pattern as
in Figure 1. For put options, beta clearly demonstrates a U-shaped pattern. But put-option coskewness
suggests a weak inverse U-shaped pattern.

Although it is counterintuitive to the results from the CAPM, a beta smile for put options is a direct
result from a broader set of investors’ preferences. The SDF may be expressed as U ′(St+1)/U ′(St),
where S is aggregate wealth represented by the value of market portfolio in our context. A first order
Taylor approximation gives m = 1 + U ′′(St)

U ′(St)
rM , linear in the market return. Alternatively, a second
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Figure 2: Empirical evidence from S&P 500 index options with maturities 4-6 weeks.

order approximation gives m = 1 + U ′′(St)
U ′(St)

rM + U ′′′(St)
U ′(St)

r2
M . The third derivative of the utility captures

the curvature and represents the decreasing absolute risk aversion for investors. As shown in Case 3 in
section 3, a large curvature is necessary to generate the beta smile. It is also clear that the SDF in the later
specification incorporates a preference for skewness in the return generating equation. So, the pattern of
put option beta reflects the strength of investors’ preference for skewness. If the preference for skewness
is weak, the last term on the right hand side of the second order approximation becomes irrelevant and
the SDF specification reverts back to the CAPM; if so, the beta smile pattern would not be apparent.

5 Conclusion

It should not be surprising to find empirical evidence that investors’ skewness preference is embedded in
option pricing since it is generally believed that investors have a preference for skewness. Our investi-
gation here, however, has shown the asymmetric effects of skewness preference on the structures of call
and put options.

It is well known that the market is incomplete. Indeed, if the market were to be complete, there would
be a unique equivalent martingale measure, and that measure would capture the investor’s risk preference
across all the markets (stocks, options, and bonds). In this paper, we developed a theoretical framework
that can be used to investigate how markets reflect investors’ risk preferences without assuming the com-
pleteness for the market. To our knowledge, our paper is the first one to consider the case of incomplete
markets under the mild assumptions, as for example, Cox and Rubinstein (1985) consider only the case
of complete markets.

Our empirical results indicate that the investors with different risk preference participate in different
markets. For call options, the design of the contract truncates the effect of negative skewness and call
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option investors are mainly concerned with variance of the underlying market portfolio. In contrast, put
option investors are mainly concerned with negative skewness of the underlying portfolio. Put options
protect their holders from a significant loss and can compensate loss averse investors when the underlying
market drops. This asymmetric pattern implies that the strength of skewness preference is stronger for
put option investors than for call option investors. Our empirical result indicates a higher premium
demanded in the put options market for the risk protection benefits. Furthermore, the beta smile pattern
may be consistent with Kahneman and Tversky [11] that investors tend to be more sensitive to reductions
in their levels of well-being than to increments.

The put-option beta smile found in the S&P500 index option markets is thus consistent with the gen-
eral belief that the SDF includes a preference for skewness and cannot be linear in the market return.9

Therefore, the investors’ risk preference cannot be modeled by those utility functions that would result
in a linear discount factor such as quadratic or logarithmic utility functions (Harvey and Siddique [9]). In
fact, arbitrage opportunities may indeed occur in quadratic utility economies. See, for instance, Vanden
[18], Dybvig and Ingersoll [7], and Jarrow and Madan [10].

6 Appendix

6.1 Proof of Proposition 2.1

Our proof consists of a series of lemmas:

Lemma 6.1. Let us fix S1 > 0. For any positive convex function F (S) such that dF (S)/dS ≤ 0 for
all S, if there exists a point S∗ < S1, such that at S = S∗, dF (S)/dS = F (S∗)/(S∗ − S1), then
F (S)/(S1 − S) is decreasing in S for S < S∗ and increasing in S for S∗ < S < S1.

Proof. By taking the derivative of F (S)/(S1 − S), for S∗ < S < S1, it suffices to show F (S)/(S −
S1) < F ′(S). Indeed, since F is convex in S, we have

F (S)− F (S∗) > F ′(S∗)(S − S∗).

By substituting F ′(S∗) = F (S∗)/(S∗ − S1), we obtain, after simple algebra,

F (S)
S − S1

<
F (S∗)

S∗ − S1
= F ′(S∗) < F ′(S)

where the last inequality is due to the convexity of F . The case of S < S∗ is similar.

Lemma 6.2. If there exists S∗ < S̄ such that at S = S∗, dE[m|S]/ds = −E[m|S]/(S̄ − S), then
dCov(rp, rM )/dX < 0 for X < S∗.

Proof. Take the derivative of Cov(rp, rM ) with respect to X to obtain
∫ S=X

S(S − S̄)f(S) dS
∫ S=X

S0E[m|S]f(S) dS − ∫ S=X(S − S̄)f(S) dS
∫ S=X

SS0E[m|S]f(S) dS(∫ S=X
S0(X − S)E[m|S]f(S) dS

)2 .

(6.1)

9The SDF might also be path-dependent. See Bondarenko [2] for a discussion.
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Denote the numerator as a function of the strike price, i.e., H(X) and note that H(0) = 0. We show that
H(X) is decreasing in X when X < S∗. Taking the derivative of H(X), we obtain

H ′(X) = X(X − S̄)f(X)
∫ S=X

S0E[m|S]f(S) dS +
∫ S=X

S(S − S̄)f(S) dS(S0E[m|X]f(X))

− (X − S̄)f(X)
∫ S=X

SS0E[m|S]f(S) dS −
∫ S=X

(S − S̄)f(S) dS(S0XE[m|X]f(X))

= S0f(X)
∫ S=X

(X − S)
(
(S̄ − S)E[m|X]− (S̄ −X)E[m|S]

)
f(S) dS.

Lemma 6.1 suggests that E[m|S]
S̄−S

is decreasing in S for S < S∗. Hence for any X such that X < S∗, we
have

E[m|X]
S̄ −X

<
E[m|S]
S̄ − S

for all S < X . So H ′(X) < 0 which shows that H(X) is decreasing in X when X < S∗. Since
H(0) = 0, we have H(X) < 0 for X < S∗.

Lemma 6.3. Assuming that H(X) as in Lemma 6.2, then H(∞) > 0 and if H(X) > 0 for some
X = X0, then H(X) > 0 for all X > X0.

Proof. First, we show that H(∞) > 0. This can be checked directly:

H(∞) =
∫ ∞

0
S(S − S̄)f(S) dS

∫ ∞

0
S0E[m|S]f(S) dS −

∫ ∞

0
(S − S̄)f(S) dS

∫ ∞

0
SS0E[m|S]f(S) dS

= S0Var(S)E[m] > 0.

Next we show that H(X) remains positive once it is positive. From Lemma 6.2, it is clear that
X0 > S∗. Now, consider case: X0 < X < S̄. Dividing interval (0, X) into (0, X0] and (X0, X), we
can write H(X) as

H(X) =
∫ X0

0
S(S − S̄)f(S) dS

∫ X0

0
S0E[m|S]f(S) dS −

∫ X0

0
(S − S̄)f(S) dS

∫ X0

0
SS0E[m|S]f(S) dS

+
∫ X

X0

S(S − S̄)f(S) dS

∫ X

X0

S0E[m|S]f(S) dS −
∫ X

X0

(S − S̄)f(S) dS

∫ X

X0

SS0E[m|S]f(S) dS.

The sum of the first two terms of the above equation is H(X0), assumed to be positive. So, if the sum of
the last two terms is positive, we have H(X) > 0 for X > X0. Denote by G(X) the sum of the last two
terms. It is clear that G(X0) = 0. If G(X) is increasing in X for X ∈ [X0, S̄), then G(X) > 0 for all
X ∈ [X0, S̄). Taking the derivative with respect to X , we obtain

G′(X) = S0f(X)
∫ X

X0

(X − S)
(
(S̄ − S)E[m|X]− (S̄ −X)E[m|S]

)
f(S) dS.

Lemma 6.1 suggests that E[m|X]
S̄−X

≥ E[m|S]
S̄−S

for all S ∈ [X0, X). It follows that G′(X) > 0, which in turn
shows H(X) > 0 for all X ∈ [X0, S̄).
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Finally, we show H(X) > 0 for all X ≥ S̄. For X = S̄, we have

H ′(X) = S0f(X)
∫ S=X

(X − S)(S̄ − S)E[m|X]f(S) dS > 0.

For X > S̄, we write H ′(X) as

H ′(X) = S0f(X)
∫ S=X

(X − S)
(
(S̄ − S)E[m|X]− (S̄ −X)E[m|S]

)
f(S) dS

= S0f(X)
∫ S̄

0
(X − S)

(
(S̄ − S)E[m|X] + (X − S̄)E[m|S]

)
f(S) dS

+ S0f(X)
∫ X

S̄
(X − S)

(
(X − S̄)E[m|S]− (S − S̄)E[m|X]

)
f(S) dS.

The first term of the last equation is positive. In the second term, E[m|S] > E[m|X] > 0 and X − S̄ >

S − S̄ > 0. Therefore, the second term is also positive. Combining all the results, since H(X) is
increasing in X for X > X0, H(X0) > 0 implies that H(X) > 0 for all X > X0. For the case,
X0 ≥ S̄, the conclusion is also true since H(X) is increasing in X for all X ≥ S̄ and H(X0) > 0.

Proof of Proposition 2.1: The above three lemmas tell us that there are three possible cases, two of
which would have a monotonic increasing beta and the third has a U -shaped beta in X . We present the
three cases below.

Case 1: X < S̄ and E[m|S] is linear in S: This case is demonstrated in Figure 1, where E[m|S] is a
linear function in S. E[m|X]/(S̄−X) and E[m|S]/(S̄−S) are the absolute values of two slopes. Figure
1 shows that E[m|X]/(S̄ −X) is always greater than E[m|S]/(S̄ −S). Thus, H ′(X) is always positive
and put option beta is monotonically increasing in the strike price. Since the CAPM assumes that the
stochastic discount SDF is linear in the market return, Case 1 is analogous to the CAPM economy.

Figure A about here.

Case 2: X < S̄ and E[m|S] is convex in S, but E[m|X]/(S̄−X) > E[m|S = 0]/S̄ for all X: This case
implies that E[m|S]

S̄−S
is increasing in S. We must have E[m|X]

S̄−X
≥ E[m|S]

S̄−S
for all S < X . Hence H ′(X) > 0

for all X and therefore, H(X) > 0 for all X with H(0) = 0. This is shown in Figure 2. Note that
E[m|S] has the steepest slope at point S = 0. Figure 2 shows that for any S < X , E[m|X]/(S̄ −X) is
always greater than E[m|S]/(S̄ − S). As was true for Case 1, E[m|S] decreases slowly as S increases
and we observe a monotonically increasing function for the put option beta in X .

Figure B about here.

Case 3: X < S̄ and E[m|S] is convex in S, but there exists some X such that E[m|X]/(S̄ − X) <

Ex[m|S = 0]/S̄ holds: For this X , it follows that E[m|X]
S̄−X

< E[m|S]
S̄−S

for all S < X . This implies
that H ′(X) < 0 at that point. But Lemma 6.3 shows that H(X) becomes positive eventually. Hence
there must exist a point X0 such that H(X) > 0 for X ∈ [X0, S̄). It follows that there exists a
critical point Xc, which is less than S̄, such that put option beta is decreasing in the strike price for

11



X < Xc and increasing for X > Xc. In this case, put option beta exhibits a U -shaped pattern, i.e., a
beta smile. Under such condition, assume a second order Taylor approximation is legitimate, we obtain
m = 1 + U ′′(St)

U ′(St)
rM + U ′′′(St)

U ′(St)
r2
M . Thus, it is evident that under this circumstance the coefficient U ′′′(St)

U ′(St)

cannot be zero. Thus our analysis indicates that decreasing absolute risk aversion is only a necessary
condition for generating the beta smile.

Note that there exists some X1 < Xc such that E[m|X]/(S̄ − X1) equals the absolute value of the
derivative of E[m|S] at S = X1. Otherwise, we would have E[m|X]

S̄−X
< E[m|S]

S̄−S
for all X > 0. This implies

that for H ′(X) < 0 for all X , and as such, contradicts H(∞) > 0.

Figure C about here.

6.2 Proof of Proposition 3.1

Proof. The monotonicity of call option betas can easily be shown by taking the derivative with respect
to X . Given the current value of the market portfolio S0 and the SDF m, we have

Cov(rc, rs) =

∫
S=X(S −X)(S − S̄)f(S) dS∫

S=X S0(s−X)E[m|S]f(S) dS
(6.2)

Therefore, the derivative of βc with respect to X becomes, after some simplifications,

∂βc/∂X

=

∫
S=X S(S − S̄)f(S) dS

∫
S=X S0E[m|S]f(S) dS − ∫

S=X(S − S̄)f(S) dS
∫
S=X S0SE[m|S]f(S) dS

(∫
S=X S0(S −X)E[m|S]f(S) dS

)2
σ2

M

(6.3)

where S̄ := E(S). Since the denominator is positive, we only need to show that the numerator is positive,
which can be written as∫

S=X
S2f(S) dS

∫

S=X
S0E[m|S]f(S) dS −

∫

S=X
Sf(S) dS

∫

S=X
SS0E[m|S]f(S) dS

+
∫

S=X
S̄f(S) dS

∫

S=X
SS0E[m|S]f(S) dS −

∫

S=X
SS̄f(S) dS

∫

S=X
S0E[m|S]f(S) dS. (6.4)

Defining F (S) as the cumulative density function that corresponds to f(·), the last two terms in (6.4)
can be combined as

S0S̄(1− F (X))2Cov(E[m|S], S|S>X) (6.5)

and the first two terms in (6.4) can be written as

S0(1− F (X))2
(
E(S2|S>X)E(m|S>X)− E(S|S>X)E[E(m|S)S|S>X ]

)

= S0(1− F (X))2
(
E(m|S>X)Var(S|S>X)− E(S|S>X)Cov(E[m|S], S|S>X)

)
. (6.6)

Combining (6.5) and (6.6), we obtain

S0(1− F (X))2
(
E(m|S>X)Var(S|S>X)− Cov(E[m|S], S|S>X)(E(S|S>X)− S̄)

)
. (6.7)

Since (E(S|S>X) − S̄) ≥ 0 and m is negatively correlated with the market, the above expression is
positive.
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6.3 Proof of Proposition 3.2

Before we derive our result about call options coskewness, we first present the following four general
mathematical propositions:

Lemma 6.4. If a nonnegative random variable S is positively skewed, i.e., E[(S − E(S))3] > 0, then
Cov[S, (S − E(S))2|S>X ] > 0 for any X ≥ 0.

Proof. First, let us consider the case 1: X ≥ E(S). We know that

Cov[S, (S − E(S))2|S > X]

= Cov[S, (S − E(S|S > X) + E(S|S > X)− E(S))2|S > X]

= Cov[S − E(S), (S − E(S|S > X))2|S > X] + 2(E(S|S > X)− E(S))Cov[S, S|S > X].

Since Cov[S, S|S > X] = E[(S − E(S|S > X))2|S > X], we obtain

Cov[S, (S − E(S))2|S > X]

= E[(S − E(S))(S − E(S|S > X))2|S > X] + [E(S|S > X)− E(S)]E[(S − E(S|S > X))2|S > X].
(6.8)

Equation (6.8) indicates that as long as X ≥ E(S), Cov[S, (S − E(S))2|S > X] > 0 (regardless of
whether E[(S − E(S))3] > 0 or not).

To consider the case 2: X < E(S), let ψ : R+ 7→ R be defined as

ψ(X) , Cov[S, (S − E(S))2|S > X],

then we have

ψ(X) = E[(S − E(S))3|S > X]− [E(S|S > X)− E(S)]E[(S − E(S))2|S > X]. (6.9)

Since

∂E[(S − E(S))3|S > X]
∂X

=
f(X)

1− F (X)
{−(X − E(S))3 + E[(S − E(S))3|S > X]}

∂E[(S − E(S))2|S > X]
∂X

=
f(X)

1− F (X)
{−(X − E(S))2 + E[(S − E(S))2|S > X]}, (6.10)

and

∂E[S|S > X]
∂X

=
f(X)

1− F (X)
{−X + E(S|S > X)},
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we have
∂ψ(X)

∂X
=

f(X)
1− F (X)

{−(X − E(S))3 + E[(S − E(S))3|S > X]}

− f(X)
1− F (X)

[E(S|S > X)− E(S)]{−(X − E(S))2 + E[(S − E(S))2|S > X]}

− f(X)
1− F (X)

{−X + E(S|S > X)}E[(S − E(S))2|S > X]

=
f(X)

1− F (X)
{ψ(X)− (X − E(S))3 + [E(S|S > X)− E(S)](X − E(S))2

− [−X + E(S|S > X)]E[(S − E(S))2|S > X]}

=
f(X)

1− F (X)
{ψ(X) + [E(S|S > X)−X](X − E(S))2

− [−X + E(S|S > X)]E[(S − E(S))2|S > X]}

=
f(X)

1− F (X)
{ψ(X)− [E(S|S > X)−X][E((S − E(S))2|S > X)− (X − E(S))2]}. (6.11)

Let us define

ψ2(X) , E[(S − E(S))2|S > X] and g(X) , (X − E(S))2

and note that, from (6.10), for X ∈ [0,∞), ψ2(X) > g(X) implies that ψ2(X) is increasing and
ψ2(X) < g(X) implies that ψ2(X) is decreasing. On the other hand, we know that g(X) is decreasing
in X on X ∈ [0,E(S)). It follows that ψ2(X) and g(X) can intersect at most once at point, say X = X ′

with X ′ ∈ [0,E(S)) and that, if they intersect,

ψ2(X) < g(X) for X ∈ [0, X ′) and ψ2(X) > g(X) for X ∈ (X ′,∞) (6.12)

since if they intersect again, ψ2(X) would become negative eventually. Recall that g(X) is increasing
on X ∈ (E(S),∞).

Now let us further define R(X) , (ψ2(X) − g(X))(E[S|S > X] − X). From (6.11), we note that
the function ψ(X) is increasing when ψ(X)−R(X) > 0 and decreasing when ψ(X)−R(X) < 0.

Let us consider the case where ψ2(X) and g(X) intersect once. Since E[S|S > X]−X > 0, R(X) <

0 on X ∈ [0, X ′) and R(X) > 0 on X ∈ (X ′,E(S)). Due to our assumption E(S − E(S))3 > 0, we
have ψ(0) > 0 > R(0) from (6.9) and therefore ψ(X) > R(X) in the neighborhood of 0 and ψ(X) is
increasing. It follows that ψ(X) cannot become negative on X ∈ [0,E(S)): Indeed, if ψ(X) and R(X)
intersect at some point X ′′ ∈ [0,E(S)), then we must have X ′′ ∈ (X ′,∞) and ψ(X) starts decreasing
from X ′′. But if it becomes negative at some point, ψ(X) remains negative thereafter because R(X) > 0
on X ∈ (X ′,∞) by (6.12). It would contradict the fact ψ(X) > 0 for X ∈ [E(S),∞) from Case 1.
This proves ψ(X) > 0 on X ∈ [0,E(S)).

Finally, let us consider the case where ψ2(X) and g(X) do not intersect. In this case, we have
ψ2(X) > g(X) on X ∈ [0,E(S)): Indeed, if ψ2(X) < g(X), then ψ2(X) is decreasing in that re-
gion [0,E(S)) and we must have ψ2(E(S)) = 0 = g(E(S)) since ψ2(X) ≥ 0 on X ∈ [0,∞). However,
ψ2(E(S)) = 0 cannot happen due to the form of ψ2(X). Hence we have R(X) > 0 on X ∈ [0,E(S)).
By the same argument as in the previous case, ψ(X) cannot become negative because once it does, then
it remains negative, a contradiction again.

14



Lemma 6.5. Let S be a nonnegative random variable, and V , E[(S − E(S))2]. If V − E(S)2 > 0
then E[(S − E(S))2|S > X] − V is an increasing function of X for X ≥ 0. If V − E(S)2 < 0,
E[(S − E(S))2|S > X]− V is a U shape function of X , and attains its minimum at X̄ ∈ (0,E(S)).

Proof. In the proof of Lemmas 6.4, we showed that ψ2(X) and g(X) can intersect at most once at point,
say X = X ′ with X ′ ∈ [0,E(S)) and that, if they intersect, (6.12) will happen. On the other hand, if
ψ2(X) and g(X) do not intersect, we have ψ2(X) > g(X) and ψ2(X) is increasing, for all X ∈ [0,∞).

Since V = limX→0 ψ2(X) and E(S)2 = limX→0 g(X), in the case ψ2(X) and g(X) intersect, we
have V < E(S)2 and in the case where ψ2(X) > g(X), we have V > E(S)2. The results follow from
the analysis of ψ2(X) and g(X) in the preceding paragraph since E[(S−E(S))2|S > X]−V is obtained
by vertically shifting ψ2(X) = E[(S − E(S))2|S > X].

Lemma 6.6. If a nonnegative random variable S is positively skewed, i.e., E[(S − E(S))3] > 0, then
E[(S −X)(S − E(S))2|S>X ]− E[(S −X)|S>X ]E[(S − E(S))2] > 0 for X ≥ 0.

Proof. Let us define φ : R+ 7→ R as

φ(X) , E[(S −X)(S − E(S))2|S > X]−E[(S −X)|S > X]E[(S − E(S))2],

then we have

φ(X) = Cov[S, (S − E(S))2|S > X]

+ [E(S|S > X)−X]{E[(S − E(S))2|S > X]− E[(S − E(S))2]}. (6.13)

Therefore,

∂φ(X)
∂X

=
f(X)

1− F (X)
{Cov[S, (S − E(S))2|S > X]}

− f(X)
1− F (X)

{−X + [E(S|S > X)][E((S − E(S))2|S > X)− (X − E(S))2]}

+
f(X)

1− F (X)
{−X + E(S|S > X)}{E[(S − E(S))2|S > X]− E[(S − E(S))2]}

− {E[(S − E(S))2|S > X]− E[(S − E(S))2]}

+
f(X)

1− F (X)
[−X + E(S|S > X)]{−(X − E(S))2 + E[(S − E(S))2|S > X]}

=
f(X)

1− F (X)
(
φ(X)−E[(S − E(S))2|S > X] + E[(S − E(S))2]

)
(6.14)

Let h(X) , Cov[S, (S − E(S))2|S > X], m(X) , E(S|S > X) −X , k(X) , E[(S − E(S))2|S >

X]− E[(S − E(S))2], and u(X) , f(X)/(1− F (X)), then (6.13) and (6.14) can be represented as

φ(X) = h(X) + m(X)k(X) (6.15)

and
∂φ(X)

∂X
= u(X)φ(X)− k(X), (6.16)
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respectively. Substituting k(X) from (6.15) into (6.16) and rearranging, we obtain the following first
order differential equation

∂φ(X)
∂X

+
(

1
m(X)

− u(X)
)

φ(X) =
h(X)
m(X)

m Given the boundary condition φ(0), φ(X) can be found as

φ(X) = e
− ∫

1
m(X)

−u(X)dX
[
φ(0) +

∫
h(X)
m(X)

e
∫

1
m(X)

−u(X)dX
dX

]

Since φ(X) > 0 at X = 0, and h(X) > 0 and m(X) > 0 for all X > 0, φ(X) is positive for all
X > 0.

Proof of Proposition 3.2: We denote S̄ , E(S) (i.e., S̄/S0 is the expected market return). Let S be
the price of the underlying at maturity with density function f(·) and C be the price of a call option on
S with a strike price of X . Then

E[(rc − r̄c)(rs − r̄s)2] =
E[C(S − S̄)2]− C̄E[(S − S̄)2]

C0S2
0

=

∫
S=X(S −X)(S − S̄)2f(S) dS − E(S − S̄)2

∫
s=X(S −X)f(S) dS∫

S=X S2
0(S −X)E(m|S)f(S) dS

(6.17)

where m is the strictly positive SDF with dE[m|S]/dS < 0.

Denote V = E(S − S̄)2 and take the derivative of equation (6.17) with respect to strike price. The
denominator is

D2(X) ,
[∫

S=X
S2

0(S −X)E(m|S)f(S) dS

]2

which is positive, and the numerator is
[
−

∫

S=X
(S − S̄)2f(S) dS +

∫

S=X
V f(S) dS

] ∫

S=X
(S −X)S2

0E(m|S)f(S) dS

+
∫

S=X
S2

0E(m|S)f(S) dS

[∫

S=X
(S −X)(S − S̄)2f(S) dS −

∫

S=X
V (S −X)f(S) dS

]
. (6.18)

Defining F (s) as the cumulative density function that corresponds to f(s) and rearranging (6.18) gives

S2
0(1− F (X))2

{
V

∫

S=X
SE(m|S)

f(S)
1− F (X)

dS − V

∫

S=X
S

f(S)
1− F (X)

dS

∫

S=X
E(m|S)

f(S)
1− F (X)

dS

+
∫

S=X
E(m|S)

f(S)
1− F (X)

dS

∫

S=X
S(S − S̄)2

f(S)
1− F (X)

dS

−
∫

S=X
SE(m|S)

f(S)
1− F (X)

dS

∫

S=X
(S − S̄)2

f(S)
1− F (X)

dS

}

= S2
0(1− F (X))2

{
V · Cov [S,E(m|S)|S>X ] + E{E(m|S)|S>X}E[S(S − S̄)2|S>X ]

− E{SE(m|S)|S>X}E[(S − S̄)2|S>X ]
}

. (6.19)
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The sign of the numerator will be determined by the terms in the braces of (6.19), which can be simplified
to

− Cov [S,E(m|S)|S>X ] (E[(S − S̄)2|S>X ]− V )

+ E{E(m|S)|S>X}E[S(S − S̄)2|S>X ]− E[S|S>X ]E[(S − S̄)2|S>X ]

= −Cov [S,E(m|S)|S>X ] (E[(S − S̄)2|S>X ]− V ) + E{E(m|S)|S>X}Cov
[
S, (S − S̄)2|S>X

]
.

(6.20)

We know that E{E(m|S)|S>X} > 0 and −Cov [S,E(m|S)|S>X ] > 0. So, to determine the sign of the
above expression, we need to know

1. the sign of E[(S − S̄)2|S>X ]− V , where V = E[(S − S̄)2], and

2. the sign of Cov
[
S, (S − S̄)2|S>X

]
.

Lemma 6.4 shows that when the underlying security is positive skewed, the sign of the second term,
Cov

[
S, (S − S̄)2|S>X

]
, is positive, but the sign of the first term can be positive or negative. Hence we

cannot determine the sign of (6.20) when the two terms have different signs. However, the numerator in
(6.17) is

E[C(S − S̄)2]− C̄E[(S − S̄)2]

= (1− F (X)){E[(S −X)(S − S̄)2|S>X ]− E[S −X|S>X ]E[(S − S̄)2]}
= (1− F (X)){Cov

[
S, (S − S̄)2|S>X

]
+ E[S −X|S>X ]{E[(S − S̄)2|S>X ]− V }}. (6.21)

The sign of equation (6.21) is the same as

E{E(m|S)|S>X}
{

Cov
[
S, (S − S̄)2|S>X

]
+ E[(S −X)|S>X ](E[(S − S̄)2|S>X ]− V )

}

= −Cov [S,E(m|S)|S>X ] (E[(S − S̄)2|S>X ]− V ) + E{E(m|S)|S>X}Cov
[
S, (S − S̄)2|S>X

]

+ E{E(m|S)(S −X)|S>X}{E[(S − S̄)2|S>X ]− V }. (6.22)

Lemmas 6.4 and 6.6 show that when E[(rs − r̄s)3] is positive,

Cov
[
S, (S − S̄)2|S>X

]
> 0

and

E[(S −X)(S − S̄)2|S>X ]− E[(S −X)|S>X ]V > 0,

respectively. The second equation implies that

Cov
[
S −X, (S − S̄)2|S>X

]
+ E[(S −X)|S>X ]E[(S − S̄)2|S>X ]− E[(S −X)|S>X ]V

= Cov
[
S, (S − S̄)2|S>X

]
+ E[S −X|S>X ](E[(S − S̄)2|S>X ]− V ) > 0

which shows the right hand side of (6.21) is positive. Hence (6.22) is positive. Now let us come back to
(6.20). If E[(S − S̄)2|S>X ]− V > 0, then (6.20) is positive. If negative, by comparing (6.22) (which is
positive) with (6.20), we conclude that equation (6.20) is positive. In other words, when the underlying
security is positively skewed, the coskewness is positive (in fact, greater than one), and is increasing in
the strike price.
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6.4 Proof of Proposition 3.3

Proof. When underlying security return is negatively skewed, it is easy to check that (6.21) is negative
at X = 0, and positive in the limit as X →∞. Therefore, initially, the coskewness is positive (since the
underlying is negatively skewed), and in the limit, is negative.

To see how the coskewness would change as the strike price increases, we denote (6.17) by

C(X) = (1− F (X))φ(X)/D(X)

where φ(X) is defined as in (6.13) and D(X) =
∫
S=X S2

0(S −X)E(m|S)f(S)dS. We have

C ′(X) =
1− F (X)

D(X)

{
V − E[(S − S̄)2|S > X]− φ(X)

D′(X)
D(X)

}

=
1− F (X)

D(X)
{S2

0C(X)E{E(m|S)|S>X} − (E[(S − S̄)2|S > X]− V )} (6.23)

where V is the variance defined above. At X = 0, it is clear that C(X) < 0 and C ′(X) < 0. We expect
that initially, as X increases, C(X) decreases. Hence the coskewness is positive and increases.

Next, let us define

M(X) ,
S2

0

∫
S=X E(m|S)f(S)dS

1− F (X)
and L(X) ,

∫
S=X(S − S̄)2f(S)dS

1− F (X)
− V.

The sign of C ′(X) depends on that of C(X)− L(X)/M(X). Note that

C ′(X) ≷ 0 when C(X)− L(X)/M(X) ≷ 0. (6.24)

We have

M ′(X) = u(X)(M(X)− S2
0E[m|X]) and L′(X) = u(X)(L(X) + V − E[(X − S̄)2])

where u(X) = f(X)/1−F (X) as defined above. Note that M ′(X) < 0 for X ≥ 0 since dE[m|S]/ dS <

0. From the proof of Lemmas 6.4 and 6.5, we know L(X) is either U-shaped or strictly increasing. (Re-
call that the analysis of ψ2(X) − g(X) does not rely on the sign of E(S − S̄)3). However, if L(X) is
increasing, then L(X)/M(X) (and L(0)/M(0) = 0, assuming E[m] does not vanish) is positive and
increasing for all X ≥ 0 since M(X) > 0 and M ′(X) < 0 for all X ≥ 0. Since C(0) < 0 and
therefore, C ′(X) < 0 for all X ≥ 0, this case would contradict the fact that C(X) > 0 for a sufficiently
large X . Therefore, L(X) must be U-shaped and the positive real line is dividend into three regions:
(1) L′ < 0 and L < 0, (2) L′ > 0 and L < 0, and (3)L′ > 0 and L > 0. We can prove by using the
signs of M and M ′ that in region (1), (L/M) < 0 and (L/M)′ < 0 and in region (3), (L/M) > 0
and (L/M)′ > 0. It is clear that in region (3), C(X) > L(X)/M(X) and hence C(X) is increasing
monotonically since otherwise C(X) would become decreasing from some point, and thus contradict
that limX→∞C(X) > 0. Moreover, it follows that C(X) must intersect L(X)/M(X) at least once. By
using (6.24) together with the facts C(0) < L(0)/M(0) and C(X) > L(X)/M(X) on X ∈ (X ′,∞)
for some X ′ sufficiently large, we can conclude that C ′(X) = 0 has only one root if (L/M)′ = 0 has
only one root.
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In region (2), L(X) < 0 and L′(X) > 0 imply that

(X − S̄)2 <
I2(X)

1− F (X)
< V (6.25)

where I1(X) =
∫
S=X E(m|S)f(S)dS and I2(X) =

∫
S=X(S − S̄)2f(S)dS. Then the condition that

(L/M)′ vanishes at one point is equivalent to saying that

I1(X)(V − (X − S̄)2) = (V (1− F (X))− I2(X))E[m|X]

has only one root. Note that both sides of the equation is positive due to (6.25). This equation depends
on the quantity of E[m|X] and S̄.
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