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Abstract

We study two practical optimization problems in relation toventure capital investments and/or Re-

search and Development (R&D) investments. In the first problem, given the amount of the initial

investment and the cash flow structure at the initial public offering (IPO), the venture capitalist wants

to maximize overall discounted cash flows after subtractingsubsequent investments, which keep the

invested company solvent. We describe this problem as a mixture of singular stochastic control

and optimal stopping problems. The singular control corresponds to finding an optimal subsequent

investment policy so that the value of the investee company stays solvent. The optimal stopping

corresponds to finding an optimal timing of making the company public. The second problem is

concerned with optimal dividend policy. Rather than selling the company at an IPO, the investor

may want to harvest technological achievements in the form of dividend when it is appropriate. The

optimal control policy in this problem is a mixture of singular and impulse controls.
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1 Introduction

In accordance with the recent theoretical and practical development in the area of real options, modeling venture

capital investment and R&D has become increasingly an important topic, see Davis et al. [4] for a review of this

literature. One of the most important issues is modeling thedynamics of the value process of start-up companies

and/or R&D projects. Among many approaches, one approach isto use jump models with Poisson arrivals. For

example, Willner [12] uses a deterministic drift componentand stochastic jumps whose size follows a gamma

distribution. A similar model is presented by Pennings and Lint [9], who also model with a deterministic drift and
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a jump part whose size follows a Weibull distribution with scale parameter two. In the spirit of these papers, we

will model the value of the process with a jump diffusion. More specifically, we are assuming that the company or

the R&D project has (unproven) innovative technologies andhence the appreciation of the company value occurs

when there is a technological breakthrough or discovery of innovative methods.

Let {Ω,F , P} be a probability space hosting a Poisson random measureN(dt, dy) on [0,∞)×R and Brownian

motionW = (Wt)t≥0, adapted to some filtrationF = {Ft}t≥0 satisfying the usual conditions. The mean measure

of N is ν(dt, dy) , λdtF (dy), whereλ > 0 is constant, andF (dy) is the common distribution of the jump sizes.

The (uncontrolled) value processX0 of the invested company is described as follows:

dX0
t = µ(X0

t )dt + σ(X0
t )dWt +

∫ ∞

0

yN(dt, dy), t ≤ τ (0), (1.1)

in which

τ (0) , inf{t ≥ 0; X0
t < 0}. (1.2)

In this set up the jumps ofX0 come from a compound Poisson process whose jump size distribution is F . To

obtain explicit results we will take this distribution to beexponential. In practice, investments in promising start-up

companies are made through venture capital funds (often called “private equity fund” as well) that raise capital from

institutional investors such as banks, insurance companies, university endowment funds, and pension/retirement

funds. Venture capital funds screen out those start-up companies and select several companies to invest in. Venture

capitalist allocates certain amounts of money to each promising companies to diversify risks. As a result, for each

investment project, venture capitalist has a certain initial budget. In many cases, the venture capital funds actively

help and advise them by taking a seat on the board of the invested companies. When there is a technological

breakthrough, this jump is materialized in the following way: the company and the venture capital fund reevaluate

the value of the company stock by using expected cash flow methods provided that the company is successful

in manufacturing real products or by using comparable transactions in the past. As a result, some new investors

may become willing to invest in the company at the re-evaluated price in a “second round” funding. Hence the

appreciation of the stock value can be modelled by an arrivalof jumps. The size and arrival rate of jumps can be

estimated by track records of the venture capital funds. Thefinal objective of these venture capital investments is,

in many cases, to make the company public through initial public offerings (IPO’s) or to sell to a third party at a

premium. However, in due course, there are times when the start-up company faces the necessities to solicit new

(additional) capital. In turn, the venture capitalist has to make decisions on whether to make additional investments.

We refer to this type of problem as the “IPO problem”.

Let us mention some advantages of using a jump diffusion model rather than a piecewise deterministic Markov

model as in other works in the literature. As we discussed in the previous paragraph, until going public in the

IPO market, the start-up company evolves while proving the merits and applicabilities of their technology. At an

early stage, the company’s growth mostly depends on the timing and magnitude of jump part in (1.1). At the time

when the company invites “second” and “third round” investors, it is often the case that they have generated some

cash flows from their operation while jumps of great magnitude are not necessarily expected. At these stages, the

diffusion part of (1.1) is becoming increasingly influential. Hence the jump diffusion model can represent start-up

companies of various stages by appropriately modifying theparameters of the model.

To address the issue of subsequent investments in the IPO problem, we first solve an optimal stopping problem

of a reflectedjump diffusion. In this problem, the venture capitalist does not allow the company’s value to go

below a fixed level, saya, with a minimal possible effort and attempts to find an optimal time to IPO (Section

2.1). Next, we solve the problem in which the venture capitalist chooses the levela optimally (Section 2.2) subject

to a budget constraint. In the the process of solving this problem we also solve the min-max version of it. In
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mathematical terms, this problem is a mixture of local-timecontrol (plus an impulse applied at time 0 depending

on whether the start-up company’s value is initially belowa) and optimal stopping. The local time control is

how the venture capitalist exercises controls or interventions in terms of additional capital infusions. The optimal

stopping is, given a certain reward function at the IPO market, to find an optimal timing of making the company

public. In summary, while making decisions with respect to additional investments, the venture capitalist seeks to

find an optimal stopping rule in order to maximize her return,after subtracting the present value of her intermediate

investments or capital infusion.

Another problem of interest is the following: Rather than selling outright the interest in the start-up company or

R&D investments, the investor may want to extract values outof the company or project in the form of dividend

until the time when the value becomes zero. This situation may be more suitable in considering R&D investments

because one wants to harvest technological achievements when appropriate, while one keeps the project running.

We refer to this type of problem as the “harvesting problem” (Section 3) or dividend payment problem. We

prove the optimality of a threshold policy. Optimal dividend problem for Lévy processes with negative jumps was

analyzed by Avram et al. [1]. Here the Lévy process we consider has positive jumps and due to this nature of the

jumps one applies a mixture of impulse and singular stochastic control: When the controlled process jumps over

the optimal threshold, the controller applies impulse control, when the controlled process approaches the threshold

continuously, the controller reflects the controlled process, i.e., she applies singular control.

The rest of the paper is structured as follows: In section 2, we solve the “IPO problem”, first by setting the

lower threshold levela fixed and later by allowing this level vary. In section 3, we solve the “harvesting problem”.

Next, we construct a candidate solution and verify the optimality of this candidate by showing that the conditions

prescribed in the verification lemma are all satisfied. We also provide some static sensitivity analysis to the model

parameters. In section 4, we give our concluding remarks andcompare the values of IPO and harvesting problems.

2 The IPO Problem

2.1 Optimal Stopping of a Reflected Diffusion

The dynamics of the value of the start-up company is described as (1.1). After making the initial investment in

the amount ofx, the venture capitalist can make interventions in the form of additional investments. Hence the

controlled processX is written as follows:

dXt = µ(Xt)dt + σ(Xt)dWt +

∫ ∞

0

yN(dt, dy) + dZt, X0 = x, (2.1)

in which for a givena ≥ 0,

Za
t = (a − x)1{x<a} + Lt, t ≥ 0 (2.2)

whereLt is the solution of

Lt =

∫ t

0

1{Xs=a}dLs, t ≥ 0. (2.3)

Note thatZ = (Zt)t≥0 is a continuous, non-decreasing (except att = 0) Ft-adapted process. In this set up,

through cash infusion or additional investments, the venture capitalist aims to keep the value of the start-up above

a with a minimal possible effort.

The venture capitalist’s purpose is to find the bestF-stopping time to make the company public through an IPO

to maximize the present value of the discounted future cash-flow. We will denote the set of allF stopping times by
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S. The discounted future cash-flow of the venture capitalist if he applies the controlZ, and makes an initial public

offering at timeτ is

Jτ,a(x) , E
x

[

e−ατh(Xτ ) −

∫ τ

0

e−αsdZa
s

]

, τ ∈ S. (2.4)

We use the following notation:
∫ t

0

e−αtdZt = Z0 +

∫

(0,t)

e−αtdZt. (2.5)

We will assume thath : R+ → R+ has the following form:

h(x) , rx, (2.6)

with r > 1. The parameterr is determined by the IPO market.

Let us discuss the rationale of our model specification. First of all, valuation of IPOs is itself a very challenging

subject and, to our knowledge, no complete solutions have yet been obtained. The pricing mechanism at the

IPO market is complex, involving uncertainties with respect to the future of the newly publicized companies. A

widely observed and recommended procedure both by academics and market practitioners is using comparable

firm “multiples”: The subject company’s operational and financial information is compared with those of publicly-

owned comparable companies, especially with ones newly made public. For example, the price-earning (P/E)

ratio and/or market-to-book (M/B) ratio are multiplied by acertain number called “multiples” (that may vary from

industry to industry) to calculate the IPO value. These numbers of the comparable firms serve as benchmarks. Kim

and Ritter [8] found that “P/E multiples using forecasted earnings result in much more accurate valuations” than

using historical earnings. In this pricing process, the role of investment banks (they often serve underwriters as

well) is critical. They, together with the firm, evaluate thecurrent operational performance, analyze the comparable

firm “multiples”, project future earnings, assess the market demand for IPO stocks and set the timing of IPO. This

procedure inherently involves significant degree of variation on prices and introduces “discontinuity” of the post-

IPO value from the pre-IPO value, since post-IPO value is, toa certain extent, market driven, while pre-IPO value

is mostly company specific. This justifies our choice of reward functionh(·). The post IPO valueh(x) = rx is

strictly greater than the pre IPO valuex.

Further evidence of this discontinuity can be obtained by the literature about initial stock returns on IPO markets.

Johnston and Madura [7] examined the initial (i.e. first day trading) returns of IPOs (both Internet firms and non-

Internet firms) during January 1, 1996 to December 31, 2000. They found that the average initial returns of Internet

firms IPOs was78.50%. They also reviewed the papers by Ibbotson and Jaffe [5], Reilly [10] and Ritter [11] and

tabulated those authors’ findings. Ritter [11], for example, found average initial returns as high as48.4% for IPOs

that occurred during 1980-1981. Thus, it is widely observedthat the IPO companies are priced at a premium and

that these premia are the most important sources of income tothe venture capitalist. This phenomenon of abnormal

initial returns is incorporated in our model withr > 1.

The purpose of the venture capitalist is to determineτ∗ ∈ S such that

V (x; a) , sup
τ∈S

Jτ,a(x) = Jτ∗,a(x), x ≥ 0. (2.7)

if such aτ∗ exists.

2.1.1 Verification Lemma

Lemma 2.1. Let us assume thatσ(·) is bounded. If a non-negative functionv ∈ C1(R+) is also twice continuously

differentiable except at countably many points, and satisfies
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(i) (A− α)v(x) ≤ 0, x ∈ (a,∞),

(ii) v(x) ≥ h(x), x ∈ (a,∞),

(iii) v(x) = x − a + v(a), x ∈ [0, a], andv′(a+) = 1.

in which the integro-differential operatorA is defined by

Af(x) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x) + λ

∫ ∞

0

(f(x + y) − f(y))F (dy), (2.8)

then v(x) ≥ Jτ,Za

(x), τ ∈ S. (2.9)

Moreover, if there exists a pointb(a) such that

(iv) (A− α)v(x) = 0 and for allx ∈ [a, b(a)), v(x) > h(x) for all x ∈ (a, b(a)),

(v) (A− α)v(x) < 0 for all x ∈ (b(a),∞), v(x) = h(x) for all x ∈ [b(a),∞),

thenv(x) = V (x; a), x ∈ R+, andτb(a) , inf{t ≥ 0; Xt ≥ b(a)} is optimal.

Proof. Let us defineτ(n) , inf{t ≥ 0; Xt ≥ n}. Let τ ∈ S. When we apply Itô’s formula to the semimartingale

X (see e.g. Jacod and Shiryaev [6]), we obtain

e−α(τ∧τ(n)∧τ0)v(Xτ∧τ(n)∧τ0
) = v(x) +

∫ τ∧τ(n)∧τ0

0

e−αs(A− α)v(Xs)ds + 1{x<a}(a − x)

+

∫ τ∧τ(n)∧τ0

0

e−αsv′(Xs)dLs +

∫ τ∧τ(n)∧τ0

0

e−αsσ(Xs)v
′(Xs)dWs

+

∫ τ∧τ(n)∧τ0

0

∫ ∞

0

(v(Xs− + y) − v(Xs−))(N(ds, dy) − ν(ds, dy))

(2.10)

Rearranging this equation and after taking expectations weget

v(x) = (x − a)1{x<a} + E
x

[

e−α(τ∧τ(n)∧τ0)v(Xτ∧τ(n)∧τ0
) −

∫ τ∧τ(n)∧τ0

0

e−αsdLs

]

+ E
x

[

∫ τ∧τ(n)∧τ0

0

e−αs(1 − v′(Xs))dLs −

∫ τ∧τ(n)∧τ0

0

e−αs(A− α)v(Xs)ds

]

− E
x

[

∫ τ0∧τ(n)∧τ0

0

e−αs(v(Xs− + y) − v(Xs−))(N(ds, dy) − ν(ds, dy))

]

− E
x

[

∫ τ∧τ(n)∧τ0

0

e−αsσ(Xs)v
′(Xs)dWs

]

.

(2.11)

Since the functionsσ(·), v(·) andv′(·) are bounded on the interval[0, n], the expected value stochastic integral

terms vanish, and sincev′(a) = 1 the expected value of the integral with respect toL also vanishes. On the other

hand, the expected value of the integral with respect to the Lebesgue measure is greater than zero by Assumption

(i). Therefore,

v(x) ≥ (x − a)1{x<a} + E
x

[

e−α(τ∧τ(n)∧τ0)v(Xτ∧τ(n)∧τ0
) −

∫ τ∧τ(n)∧τ0

0

e−αsdLs

]

.

Equation (2.9) follows from the bounded and monotone convergence theorems and assumption (ii).
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On the other hand, if we substituteτ for τb(a) in the above equations and use assumptions (iv) and (v), we get

thatv(·) = Jτb(a),a(·), which proves thatv(·) = V (·) and thatτb(a) is optimal, i.e.,Jτb(a),a(·) ≥ Jτ,a(·) for any

τ ∈ S.

2.1.2 Construction of a Candidate Solution

We will assume that the mean measure of the Poisson random measureN is given byν(dt, dy) = λdtηe−ηydy. In

other words, we consider the case in which the jumps come froma compound Poisson process with exponentially

distributes jump sizes. We also assume thatµ(x) = µ whereµ ∈ R andσ(x) = σ > 0. We will also assume that

µ + λ/η > 0. This assumption simply says that the overall trend of the company is positive which motivates the

venture capitalist to keep the start-up alive.

The action of the infinitesimal generator ofX0 on a test functionf is given by

Af(x) = µf ′(x) +
1

2
σ2f ′′(x) + λ

∫ ∞

0

(f(x + y) − f(x))ηe−ηydy. (2.12)

Let us define

G(γ) ,
1

2
σ2γ2 + µγ +

λη

η − γ
− λ. (2.13)

Note that

E
x
[

eγX0
t

]

= exp (G(γ)t) . (2.14)

Lemma 2.2. The equationG(γ) = α has two positive rootsγ1, γ2 and one negative root−γ3 satisfying

0 < γ1 < η < γ2, and γ3 > 0. (2.15)

Proof. Let us denote

A(γ) ,
1

2
σ2γ2 + µγ − (λ + α), B(γ) ,

λη

γ − η
. (2.16)

It follows that

lim
γ↓η

B(γ) = ∞, lim
γ↑η

B(γ) = −∞, lim
γ→−∞

B(γ) = 0, (2.17)

lim
γ→−∞

A(γ) = lim
γ→∞

A(γ) = ∞, (2.18)

and that

A(0) = −(λ + α) < B(0) = −λ. (2.19)

Moreover,A(·) is strictly decreasing on(−∞,−µ/σ2) and strictly increasing on(−µ/σ2,∞); B(·) is strictly

decreasing both on(−∞, η) and on(η,∞) with different asymptotic behavior on different sides ofγ = η. The

claim is a direct consequence of these observations.

Let us define

v0(x; a) , A1e
γ1x + A2e

γ2x + A3e
−γ3x, (2.20)

for someA1, A2, A3 ∈ R andb > a, which are to be determined. We set the candidate value function as

v(x; a) ,















x − a + v0(a; a), x ∈ [0, a],

v0(x; a), x ∈ [a, b],

rx, x ∈ [b,∞),

(2.21)
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Our aim is to determine these constants so thatv(·; a) satisfies the conditions of the verification lemma.

We will chooseA1, A2, A3 ∈ R andb > a to satisfy

A1e
γ1b + A2e

γ2b + A3e
−γ3b = rb, (2.22a)

A1η
γ1−η

eγ1b + A2η
γ2−η

eγ2b + A3η
−γ3−η

e−γ3b + r
(

b + 1
η

)

= 0, (2.22b)

γ1A1e
γ1a + γ2A2e

γ2a − γ3A3e
−γ3a = 1, (2.22c)

γ1A1e
γ1b + γ2A2e

γ2b − γ3A3e
−γ3b = r. (2.22d)

For the functionv in (2.21) to be well-defined, we need to verify that this set ofequations have a unique solution.

But before let us point how we came up with these equations. The expressions (2.22a), (2.22c) and (2.22d) come

from continuous pastingat b, first-order smooth pastingat a and first order smooth pasting atb, respectively.

Equation (2.22b) on the other hand comes from evaluating

(A−α)v(x; a) = µv′0(x)+
1

2
σ2v′′0 (x)+λ

(

∫ b−x

0

v0(x + y)ηe−ηydy +

∫ ∞

b−x

r · (x + y)ηe−ηydy

)

−(λ+α)v0(x) = 0.

(2.23)

Lemma 2.3. For any givena, there is a unique(A1, A2, A3, b) ∈ R3 × (a,∞) that solves the system of equations

(2.22a)-(2.22d). Moreover,b > max{a, b∗}, in which

b∗ ,
1

α

(

µ +
λ

η

)

(2.24)

andA1 > 0, A2 > 0.

Proof. Using (2.22a), (2.22b) and (2.22d) we can determineA1, A2 andA3 as functions ofb:

A1(b) =
r

η2

(η − γ1)[γ2γ3(ηb + 1) + η(γ2 − γ3)]

(γ3 + γ1)(γ2 − γ1)
e−γ1b =: D1(b)e

−γ1b,

A2(b) =
r

η2

(γ2 − η)[γ1γ3(ηb + 1) + η(γ1 − γ3)]

(γ3 + γ2)(γ2 − γ1)
e−γ2b =: D2(b)e

−γ2b,

A3(b) =
r

η2

(η + γ3)[γ2γ1(ηb + 1) − η(γ2 + γ1)]

(γ3 + γ1)(γ2 + γ3)
eγ3b =: D3(b)e

γ3b.

(2.25)

Let us define

R(b) , γ1A1(b)e
γ1a + γ2A2(b)e

γ2a − γ3A3(b)e
−γ3a. (2.26)

To verify our claim we only need to show that there is one and only one root of the equationR(b) = 1. Observe

that

R(a) = γ1A1(a)eγ1a + γ2A2(a)eγ2a − γ3A3(a)e−γ3a = γ1D1(a) + γ2D2(a) − γ3D3(a) = r > 1, (2.27)

and that

lim
b→∞

R(b) = −∞. (2.28)

The derivative ofb → R(b) is

R′(b) = γ1A
′
1(b)e

γ1a + γ2A
′
2(b)e

γ2a − γ3A
′
3(b)e

−γ3a

=
[

γ1C1e
−γ1(b−a) + γ2C2e

−γ2(b−a) + γ3C3e
γ3(b−a)

]

(−ηγ1γ2γ3b + Y ),
(2.29)
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in which

C1 ,
r

η2

η − γ1

(γ3 + γ1)(γ2 − γ1)
> 0, C2 ,

r

η2

γ2 − η

(γ3 + γ2)(γ2 − γ1)
> 0, andC3 ,

r

η2

η + γ3

(γ3 + γ1)(γ3 + γ2)
> 0,

(2.30)

and Y , −γ1γ2γ3 + η(−γ1γ2 + γ2γ3 + γ1γ3). (2.31)

Observe that
Y

ηγ1γ2γ3
= b∗. (2.32)

From (2.29) it follows that on(−∞, b∗] the functionb → R(b) is increasing, and on[b∗,∞) it is decreasing. If

b∗ ≤ a, then it follows directly fromR(a) = r > 1 andlimb→∞ R(b) = −∞ that there exists a uniqueb > a such

thatR(b) = 1. On the other hand, ifb∗ > a, thenR(x) > 1 on x ∈ [a, b∗]. Again, sincelimb→∞ R(b) = −∞,

there exists a uniqueb > b∗ such thatR(b) = 1.

Let us show thatA1(b) > 0 for the unique root ofR(b) = 1. Observe thatA′
1(b

∗) = 0 andA1(b
∗) > 0.

Moreover,b∗ is the only local extremum of the functionb → A1(b), andlimb→∞ A1(b) = 0. Since this function

is decreasing on[b∗,∞), A1(b) > 0. Similarly,A2(b) > 0.

Remark 2.1. It follows from (2.22a),(2.22c) and (2.22d) that

v(b; a) = rb, v′(a; a) = 1 < v′(b(a); a) = r. (2.33)

Lemma 2.4. LetA1, A2, A3, andb be as in Lemma 2.3 andv0(·; a) be as in (2.20). Then ifA3 ≥ 0, thenv0(·; a)

is convex for alla ≥ 0. Otherwise, there exists a unique pointx̃ < b such that,v0(·; a) is concave on[0, x̃) and

convex on(x̃,∞).

Proof. The first and the second derivative ofv0(·; a) (defined in (2.21)) are

v′0(x; a) = A1γ1e
γ1x + A2γ2e

γ2x − γ3A3e
−γ3x, v′′0 (x; a) = A1γ

2
1eγ1x + A2γ

2
2eγ2x + γ2

3A3e
−γ3x. (2.34)

¿From Lemma 2.3 we have that

A1 > 0 and A2 > 0. (2.35)

If A3 ≥ 0, then (2.34) and (2.33) imply thatv′′(x; a) > 0, x ∈ [a, b(a)], i.e.,v(·; a) is convex on[a, b(a)].

Let us analyze the case whenA3 < 0. In this case the functionsx → A1γ
2
1eγ1x + A2γ

2
2eγ2x and x →

−γ2
3A3e

−γ3x intersect at a unique point̃x > 0. The functionv′0(·; a) (defined in (2.21)) decreases on[0, x̃) and

increases on[x̃,∞). Now from (2.33) it follows that̃x < b(a).

2.1.3 Verification of Optimality

Proposition 2.1. Let us denote the uniqueb in Lemma 2.3 byb(a) to emphasize its dependence ona. Thenv(·; a)

defined in (2.21) is equal toV (·; a) of (2.7).

Proof. The functionv in (2.21) already satisfies

(A− α)v(x; a) = 0, x ∈ (a, b(a)), v(x; a) = rx, x ∈ [b(a),∞), v′(a; a) = 1. (2.36)
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Therefore, we only need to show that

(A− α)v(x; a) < 0, x ∈ (b(a),∞), and that v(x; a) > rx, x ∈ (a, b(a)), (2.37)

Let us prove the first inequality.

(A− α)v(x; a) = µr +
λr

η
− αrx, x > b(a). (2.38)

So,(A− α)v(x; a) < 0, for x > b(a) if and only if

b(a) >
1

α

(

µ +
λ

η

)

= b∗. (2.39)

However, we already know from Lemma 2.3 that (2.39) holds.

Let us prove the second inequality in (2.37). IfA3 ≥ 0, then Lemma 2.4 imply thatv′′(x; a) > 0, x ∈ [a, b(a)],

i.e.,v(·; a) is convex on[a, b(a)]. Thereforev′(·; a) is increasing on[a, b(a)] andv′(x; a) ∈ [1, r) on [a, b). Since

x → v(x; a) intersects the functionx → rx at b(a), v(x; a) > rx, x ∈ [a, b(a)). Otherwise there would exist a

pointx∗ ∈ [a, b) such thatv′(x∗; a) > r.

If A3 < 0, then the functionv′0(·; a) (defined in (2.21)) decreases on[0, x̃) and increases on[x̃,∞), in which

x̃ < b(a), by Lemma 2.4. Ifx̃ ≥ a, thenv′(x; a) < r for x ∈ [a, b(a)) sincev′(a; a) = 1, v′(x; a) < 1

for x ∈ (a, x̃] andv′(x; a) < r for x ∈ (x̃, b(a)). On the other hand if̃x < a, thenv′(x; a) ∈ [1, r) for

x ∈ [a, b(a)) sincev′(·; a) is increasing on this interval andv′(b; a) = r. So in any casev′(x; a) < r on [a, b(a)).

Sincev(b; a) = rb, thenv(x) > rx, x ∈ [a, b). Otherwise there would exist a pointx∗ ∈ [a, b) such that

v′(x∗; a) > r.

Figure 1 shows the value function and its derivatives. As expected the value functionv(·; 1) is concave at first

and becomes convex before it coincides with the lineh(·). It can be seen thatv(·; a) satisfies the conditions of the

verification lemma.

1 2 3 4 5 6
x

3

4

5

6

7

vHxL

(a)

1 2 3 4 5 6
x

0.2

0.4

0.6

0.8

1

1.2

v’HxL

(b)

Figure 1:The IPO problem with parameters(µ, λ, η, σ, α, r) = (−0.05, 0.75, 1.5, 0.25, 0.1, 1.25) anda = 1: (a)

The value functionv(x) with b(a) = 4.7641. (b) v′(x) is also continuous inx ∈ R+.

2.2 Maximizing Over the Cash-Infusion Levela

In this section, the goal of the venture capitalist is to find an a∗ ∈ [0, B] andτ∗ ∈ S such that

U(x) , sup
a∈[0,B]

sup
τ∈S

Jτ,a(x) = sup
a∈[0,B]

V (x; a) = Jτ∗,a∗

(x), x ≥ 0, (2.40)
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if (a∗, τ∗) ∈ [0, B]×S exists. In this optimization problem, the constrainta ≤ B, reflects the fact that the venture

capitalist has a finite initial budget to pump-up the value ofthe start-up company: the first term in (2.2) can not

be greater thanB. The main result of this section is Proposition 2.2. We will show thatV (x; a), for all x ≥ 0, is

maximized at eithera = 0 or a = B. In the mean time we will also find a solution to the min-max problem

Ũ(x) , inf
a∈[0,B]

sup
τ∈S

Jτ,a(x). (2.41)

We will start with analyzing the local extremums of the function a → v0(x; a), x ≥ 0. We will derive the

second order smooth fit condition ata, from a first order derivative condition.

Lemma 2.5. Recall the definition of the functionv0(·; a) from (2.21). Ifã ≥ 0 is a local extremum of the function

a → v0(x; a), for anyx ≥ 0, thenv′′0 (ã; ã) = 0.

Proof. Let us denote

Ã1(a) , A1(b(a)), Ã2(a) , A2(b(a)), and Ã3(a) , A3(b(a)), (2.42)

in which the functionsA1(·), A2(·) andA3(·) are given by (2.25). The derivative

dv0

da
(x; ã) = Ã′

1(ã)eγ1x + Ã′
2(ã)eγ2x + Ã′

3(ã)e−γ3x = 0 (2.43)

for all x ≥ 0 if and only if

Ã′
1(ã) = Ã′

2(ã) = Ã′
3(ã) = 0, (2.44)

since the functionsx → eγ1x, x → eγ2x andx → e−γ2x, x ≥ 0, are linearly independent.

It follows from (2.22c) that for anya ≥ 0

γ1Ã1(a)eγ1a + γ2Ã2(a)eγ2a − γ3Ã3(a)e−γ3a = 1. (2.45)

Taking the derivative with respect toa we get

(γ2
1Ã1(a) + γ1Ã

′
1(a))eγ1a + (γ2

2Ã2(a) + Ã′
2(a))eγ2a + (γ2

3Ã3(a) − γ3Ã
′
3(a))e−γ3a = 0. (2.46)

Evaluating this last expression ata = ã we obtain

γ2
1Ã1(ã)eγ1ã + γ2

2Ã2(ã)eγ2ã + γ2
3Ã3(ã)e−γ3ã = v′′0 (ã; ã) = 0, (2.47)

where we used (2.44).

Lemma 2.6. Let ã be as in Lemma 2.5 anda → b(a), a ≥ 0, be as in Proposition 2.1. Thenb′(ã) = 0. The

point ã is a unique local extremum ofa → v0(x; a), for all x ≥ 0, if and only ifã is the unique local extremum of

a → b(a). If ã is the unique local extremum ofb(·), thenb′′(ã) > 0. Moreover,̃a = argmina≥0(b(a)).

Proof. Let Ã1(·) be as in (2.42). Since

Ã′
1(ã) =

d

db
A1(b(ã))b′(ã) = 0, (2.48)

and for anya, b(a) > b∗, in which b∗ is the unique local extremum of the functionb → A1(b), it follows that

b′(ã) = 0.
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Assume that̃a is the unique local extremum ofb(·). Then

Ã′
1(a) = Ã′

2(a) = Ã′
3(a) = 0, (2.49)

if and only if a = ã. Using (2.43), it is readily seen thata → v0(x; a) has a unique local extremum and that this

local extremum is equal tõa.

On the other hand we know from Lemma 2.3 thatb(a) > a for all a. Therefore, ifb(·) has a unique local

extremum at̃a, it can not be a local maximum. On the other hand, if there wereana 6= ã such thatb(a) ≤ b(ã),

then there would be a local maximum in(min{a, ã}, max{a, ã}), which yields a contradiction.

Lemma 2.7. Recall the definition ofv(·; a), a ≥ 0, from (2.21). For anya1, a2 ≥ 0, if b(a1) > b(a2), then

v(x; a1) > v(x; a2), x ≥ 0.

Proof. We will first show that

v0(x; a1) = Ã1(a1)e
γ1x + Ã2(a1)e

γ2x + Ã3(a1)e
−γ3x ≥ v0(x; a2) = Ã1(a2)e

γ1x + Ã2(a2)e
γ2x + Ã3(a2)e

−γ3x,

(2.50)

for x ∈ [0, b(a2)], in whichÃ1, Ã2, Ã3 are defined in (2.42). Sinceb(a2) ≤ b(a1),

A1(b(a1)) < A1(b(a2)), A2(b(a1)) < A2(b(a2)), A3(b(a1)) > A3(b(a2)). (2.51)

This follows from the fact that the functionsA1(·), A2(·) are increasing andA3(·) is decreasing on[b∗,∞) and

thatb(a) > b∗, for anya ≥ 0. See (2.25) and Lemma 2.3.

Let us define

W (x) , v0(x; a1) − v0(x; a2), x ∈ R. (2.52)

The derivative

W ′(x) < 0, x ∈ R, and (2.53)

lim
x→−∞

W (x) = ∞, lim
x→∞

W (x) = −∞. (2.54)

Therefore,W (·) has a unique root. We will show that this root, which we will denote byk, satisfiesb(a2) < k <

b(a1).

It follows from Lemma 2.4 thatv0(·; a) is convex on[b(a),∞), for anya. Moreover, for anya ≥ 0, v0(·; a)

smoothly touches the functionh(·) (see (2.22a) and (2.22d)), and stays aboveh(·) sincev0(·; a) is convex. Now,

sinceb(a2) < b(a1), for the functionW (·) to have a unique root, that unique root has to satisfyb(a2) < k < b(a1).

This proves (2.50).

¿From (2.50) it follows thatv(x; a1) ≥ v(x; a2), for anyx ∈ [min{a1, a2}, b(a2)]. But v(x; a2) = rx for

x ≥ b(a2) andv(x; a) = v0(x; a1) > rx, x ∈ [b(a2), b(a1)] andv(x; a) = rx, x ≥ b(a1). Therefore, we have

v(x; a1) ≥ v(x; a2), x ≥ min{a1, a2}. (2.55)

In what follows we will show that the inequality in (2.55) also holds onx ≤ min{a1, a2}.

Let us assume thata1 < a2. It follows from (2.53) andv′0(a2; a2) = 1 (see (2.22c)) that

v′0(a2; a1) < 1. (2.56)
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Therefore,v0(·; a1) does not intersectx → x−a2+v0(a2, a2) x ∈ [a1, a2]. Otherwise, at the point of intersection,

sayx̂, v′0(x̂, a1) > 1, which together with (2.56) contradicts Lemma 2.4. This implies thatv(x; a1) > v(x; a2),

x ∈ [a1, a2].

Let us assume thata1 > a2 and thatb(a2) ≥ a1. Then,v0(x; a2) < x − a1 + v0(a1; a1). Otherwise,v0(·; a2)

intersectsx → x − a1 + v0(a1; a1) at x0 ∈ (a2, a1). Thenv′0(x0; a2) > 1. Sincev′0(a; a) = 1 for anya ≥ 0,

using Lemma 2.4, it follows thatv0(a1; a2) > v0(a1; a1). This yields a contradiction sincev0(·; a2) andv0(·; a1)

do not intersect for anyx < k, in whichk > b(a2) ≥ a1. Therefore,v(x; a1) > v(x; a2), x ≥ [a2, a1].

Finally, let us assume thata1 > a2 and thatb(a2) < a1. Sincev(x; a2) = rx and v0(x; a1) > rx for

x ≥ [b(a2), a1] it follows thatv(x; a1) > v(x; a2), x ≥ [a2, a1]. Now, the proof is complete.

Corollary 2.1. Recall the definition ofv(·; a) from (2.21). Let̃a be the unique local extremum ofa → b(a), a ≥ 0.

Thenv(x; ã) ≤ v(x; a), x ≥ 0, for all a ≥ 0.

Proof. The proof follows from Lemmas 2.6 and 2.7.

Corollary 2.2. Let ã be the unique local extremum ofa → b(a), a ≥ 0. Then functionv(·; ã) is convex. Moreover,

v′(x; ã) > 1, x > ã.

Proof. Let Ã3(ã) be as in (2.42). IfÃ3(ã) ≥ 0 thenv0(·; ã) is convex by Lemma 2.4.

If Ã3(ã) < 0, then the function

v′′′0 (x; ã) = Ã1(ã)γ3
1eγ1x + Ã2(ã)γ3

2eγ2x − γ3
3Ã3(ã)e−γ3x > 0. (2.57)

Sincev′′0 (ã, ã) = 0, then (2.57) implies thatv′′0 (x; ã) > 0 for x > ã. The convexity ofv(·; ã) follows, since it is

equal tov0(·; ã) on [ã, b(ã)] and is linear everywhere else.

Sincev′(ã; ã) = 1 (see Remark 2.1), it follows from the convexity ofv(·; ã) thatv′(x; ã) > 1 for x > ã.

Note that the second order smooth fit conditionv′′(ã; ã) = 0 yields a solution that minimizesV (x; a), x ≥ 0,

a ≥ 0, as a result of Corollary 2.1. In the next proposition we find the maximizer.

Proposition 2.2. Assume thata → b(a), a ≥ 0 has a unique local extremum atã. Then

U(x) = max
a∈{0,B}

v(x; a), and Ũ(x) = v(x; ã), (2.58)

in whichU andŨ are given by (2.40) and (2.41), respectively.

Proof. It follows from Lemma 2.6 thata → b(a), has a unique local extremum, and in fact this local extremumis

a minimum. Therefore,a → b(a), a ∈ [0, B] is maximized at either of the boundaries. The result followsfrom

Lemma 2.7.

Using the same parameters as in Figure 1, we solve (2.22a)-(2.22d) and

v′′0 (ã; ã) = γ2
1Ã1(ã)eγ1ã + γ2

2Ã2(ã)eγ2ã + γ2
3Ã3(ã)e−γ3ã = 0. (2.59)
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Figure 2: Using the parameters(µ, λ, η, σ, α) = (−0.05, 0.75, 1.5, 0.25, 0.1): (a) ã = 3.884 minimizes the

function b(a) with b(ã) = 4.741. (b) The corresponding value functionv(x; ã) (solid line) is belowv(x; 0)

(dashed line). (c)v(x; 0) − v(x; ã).

numerically and find̃a and confirm its uniqueness. We observe in Figure 2 that (a)ã is the minimizer ofb(a), and

(b) v(x; 0) ≥ v(x; ã) for x ∈ R+.

Before ending this section, we provide sensitivity analysis of the optimal stopping barrier to the parameters of

the problem. We use the parameter sets(µ, λ, η, σ, α) = (−0.05, 0.75, 1.5, 0.25, 0.1) with r = 1.25 anda = 0

and vary one parameter with the others fixed at the base case. Figure 3 shows the results. In fact, all the graphs

show monotone relationship betweenb(a) and the parameters, which is intuitive. Largerη (that means smaller

1/η) leads to a smaller threshold value since the mean jump size is small (Graph (a)). Similarly, largerλ leads to a

larger threshold value since the frequency of jumps is greater and the investor can expects higher revenue. (Graph

(b)). In the same token, if the absolute value ofµ is greater (when the drift is negative), the process inclines to

return to zero more frequently. Hence the investor cannot expect high revenue due to the time value of money.

(Graph (c)). A larger volatility expands the continuation region since the processX has a greater probability to

reach further out within a fixed amount of time. Hence the investor can expect the process to reach a higher return

level (Graph (d)).

3 The Harvesting Problem

3.1 Problem Description

In this section, the investor wants to extract the value out of the company intermittently (i.e., receives dividends

from the company) when there are opportunities to do so. Thisproblem might fit better the case of R&D invest-

ments rather than the venture capital investments. Namely,the company or R&D project has a large technology

platform, based on which applications are made and productsare materialized from time to time. Each time it oc-

curs, the investor tries to sell these products or applications and in turn receives dividends. There are many papers

about dividend payout problems that consider continuous diffusion processes. See, for example, Bayraktar and

Egami [2] and the references therein. To our knowledge, one of the few exceptions aside from [1] (that we refer to

earlier) is Dassios and Embrechts [3] that analyze, using the Laplace transform method, the downward jump case.

The absolute value of the jumps are exponentially distributed. In [3], the investor extracts dividends every time

when apiecewise deterministic Markov processhits a certain boundary (i.e., singular control). In what follows,

the dividend payments are triggered by sporadic jumps of theprocess as well as the diffusion part. Whenever the

value of the company exceed a certain value, which may occur continuously or via jumps, dividends are paid out.
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Figure 3:Sensitivity analysis of the harvesting (dividend payout) problem to the parameters. The basis parameters

are(µ, λ, η, σ, α) = (−0.05, 0.75, 1.5, 0.25, 0.1): (a) jump size parameterη, (b) arrival rateλ, (c) drift rateµ(x) =

−µ and (d) volatilityσ.

So the investor applies a mixture of singular and impulse controls.

Again, we consider the jump diffusion model (1.1) for the intrinsic value of the company. Accounting for the

dividend payments the value of the company follows:

dXt = µ(Xt)dt + σ(Xt)dWt +

∫ ∞

0

yN(dt, dy) − dZt (3.1)

in which Z = (Zt)t≥0 is a continuous non-decreasing (expect att = 0) F-adapted process, i.e.,Z ∈ V , is the

dividend payment policy.

The investor wants to maximize the discounted expected value of the payments she receives, which is given by

JZ(x) , E
x

[
∫ τ0

0

e−αtdZt

]

(3.2)

in which τ0 is defined as in (1.2) denotes the time of insolvency. The investor wants to determine the optimal

dividend policyZ∗ that satisfies

V (x) , sup
Z∈V

JZ(x) = JZ∗

(x), (3.3)

if such aZ∗ ∈ V exists.

3.2 A Mixed Singular and Impulse Control Problem

3.2.1 Verification Lemma

Lemma 3.1. Let us assume thatσ(·) is bounded. If non-negative functionv ∈ C
1(R+) is also twice continuously

differentiable except at countably many points and satisfies
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(i) (A− α)v(x) ≤ 0, x ≥ 0,

(ii) v′(x) ≥ 1, x ≥ 0,

(iii) v′′(x) ≤ 0 (i.e. v is concave),

then

v(x) ≥ V (x), x ≥ 0. (3.4)

Moreover, if there exists pointb ∈ R+ such thatv ∈ C1(R+) ∩ C2(R+\{b}) such that

(iv) (A− α)v(x) = 0 , v′(x) > 1, for all x ∈ [0, b),

(v) (A− α)v(x) < 0, v(x) = x − b + v(b), x > b,

in which the integro-differential operatorA is defined by (2.8), then

v(x) = V (x) x ∈ R+, and, (3.5)

Zt = (Xt − b)1{Xt>b} + Lb
t , t ≥ 0, (3.6)

in which

Lt =

∫ t

0

1{Xs=b}dLb
s, t ≥ 0, (3.7)

is optimal.

Proof. Let τ(n) be as in the proof of Lemma 2.1. Using Itô’s formula for semimartingales (see e.g. Jacod and

Shiryaev [6])

e−α(τ(n)∧τ0)v(Xτ(n)∧τ0
) = v(x) +

∫ τ(n)∧τ0

0

e−αs(A− α)v(Xs)ds −

∫ τ(n)∧τ0

0

e−αsv′(Xs)dZ
(c)
s

+

∫ τ(n)∧τ0

0

e−αsσ(Xs)v
′(Xs)dWs +

∫ τ(n)∧τ0

0

∫ ∞

0

e−αs(v(Xs− + y) − v(Xs−))(N(ds, dy) − ν(ds, dy))

+
∑

0≤θk≤τ(n)∧τ0

e−αθk

(

v(Xθk
) − v(Xθk−

)
)

, +

∫ τ(n)∧τ0

0

∫ ∞

0

e−αs (v(Xs) − v(Xs− + y))N(ds, dy)

(3.8)

in which {θk}k∈N is an increasing sequence ofF stopping times that are the times the processX jump due to

jumps inZ that do not occur at the time of Poisson arrivals.Z(c) is the continuous part ofZ, i.e.,

Z
(c)
t , Zt −

∑

0≤s≤t

(Zs − Zs−). (3.9)

The controller is allowed to choose the jump times ofZ to coincide with the jump times ofN . But this is taken

into account in (3.8) in the last line. Observe that the expression on this line is zero if the jump times ofZ never

coincide with those of the Poisson random measure.
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Equation (3.10) can be written as

e−α(τ(n)∧τ0)v(Xτ(n)∧τ0
) = v(x) +

∫ τ(n)∧τ0

0

e−αs(A− α)v(Xs)ds −

∫ τ(n)∧τ0

0

e−αsdZs

+

∫ τ(n)∧τ0

0

e−αs(1 − v′(Xs))dZs +

∫ τ(n)∧τ0

0

∫ ∞

0

e−αs(v(Xs− + y) − v(Xs−))(N(ds, dy) − ν(ds, dy))

+
∑

0≤θk≤τ(n)∧τ0

e−αθk

(

v(Xθk
) − v(Xθk−

) + (Xθk
− Xθk−

)v′(Xθk−
)
)

+

∫ τ(n)∧τ0

0

e−αsσ(Xs)dWs

+

∫ τ(n)∧τ0

0

∫ ∞

0

e−αs (v(Xs) − v(Xs− + y) + (y + Xs − Xs−)v′(Xs− + y))N(ds, dy)

(3.10)

After taking expectations the stochastic integral terms vanish. Also, the concavity ofv implies that

v(y) − v(x) − v′(x)(y − x) ≤ 0, for any y > x. (3.11)

Now together with the, Assumptions (i), (ii), (iii) we obtain

v(x) ≥ E
x

[

e−α(τ(n)∧τ0)v(Xτ(n)∧τ0
) +

∫ τ(n)∧τ0

0

e−αsdZs

]

.

Equation (3.4) follows from the bounded and monotone convergence theorems.

When the controlZ defined in (3.6) is applied, the third line (3.10) is equal to(x− b)1x>b, since the jump times

of Zt coincide with that of the Poisson random measureN except at time zero ifX0 = x > b. The fourth line

is also zero, becausev(·) is linear on[b,∞). After taking expectations and then using assumptions (iv)and (v),

monotone and bounded convergence theorems we obtain

v(x) = E
x

[
∫ τ0

0

e−αsdZs

]

, (3.12)

which proves the optimality ofZ andv(·) = V (·).

3.2.2 Construction of a Candidate Solution

As in Section 2.1.2 we will assume that the mean measure of thePoisson random measureN is given byν(dt, dy) =

λdtηe−ηydy, µ(x) = µ whereµ > 0 andσ(x) = σ.

Let us define

v0(x) , B1e
γ1x + B2e

γ2x + B3e
−γ3x, x ≥ 0, (3.13)

for B1, B2, B3 ∈ R that are to be determined. We set our candidate function to be

v(x) ,







v0(x) x ∈ [0, b),

x − b + v0(b), x ∈ [b,∞).
(3.14)

We will chooseB1, B2, B3 andb to satisfy
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B1η

γ1 − η
eγ1b +

B2η

γ2 − η
e−γ2b −

B3η

γ3 + η
e−γ3b + B1e

γ1b + B2e
−γ2b + B3e

−γ3b +
1

η
= 0, (3.15)

γ1B1e
γ1b + γ2B2e

γ2b − γ3B3e
−γ3b = 1 (3.16)

γ2
1B1e

γ1b + γ2
2B2e

γ2b + γ2
3B3e

−γ3b = 0, (3.17)

B1 + B2 + B3 = 0. (3.18)

Equation (3.15) by explicitly evaluating

(A−α)v(x) = µv′(x)+
1

2
σ2v′′(x)+λ

(

∫ b−x

0

v(x + y)F (dy) +

∫ ∞

b−x

(v(b) + (x + y − b))F (y)dy

)

−(λ+α)v(x)

and setting it to zero. Equations (3.16) and (3.17) are thereto enforce first and second order smooth fit at point

b. The last equation imposes the functionv to be equal to zero at point zero. The vale function,V satisfies this

condition since whenever the value processX hits level zero bankruptcy is declared.

Lemma 3.2. There exists unique solutionB1, B2, B3 andb to the system of equations (3.15), (3.16), (3.17), and

(3.18) if and only if the quantityµ + λ/η > 0. Moreover,B1 > 0, B2 > 0 andB3 < 0.

Proof. Using (3.15), (3.16), and (3.17), we can expressB1, B2 andB3 as functions ofb: For allb > 0, we have

B1(b) =
e−γ1b

η

γ2γ3(η − γ1)

γ1(γ2 − γ1)(γ1 + γ3)
> 0,

B2(b) =
e−γ2b

η

γ3γ1(γ2 − η)

γ2(γ2 + γ3)(γ2 − γ1)
> 0, (3.19)

B3(b) = −
eγ3b

η

γ1γ2(η + γ3)

γ3(γ1 + γ3)(γ2 + γ3)
< 0.

Let us define

Q(b) , B1(b) + B2(b) + B3(b), b ≥ 0. (3.20)

Our claim follows once we show that the functionb → Q(b), b ≥ 0 has a unique root. The derivative ofQ(·)

Q′(b) = B′
1(b) + B′

2(b) + B′
3(b) < 0, (3.21)

thereforeQ(·) is decreasing. Explicitly computingQ(0) in (3.19), we obtain

Q(0) > 0 if and only if
1

ηγ1γ2γ3

(

− γ1γ2γ3 + η(−γ1γ2 + γ2γ3 + γ3γ1)
)

=
µ + λ/η

α
> 0.

Since

lim
b→∞

Q(b) = −∞ (3.22)

the claim follows.

3.2.3 Verification of Optimality

Lemma 3.3. LetB1, B2, B3 andb be as in Lemma 3.2. Thenv defined in (3.14) satisfies

(i) (A− α)v(x) < 0 for x ∈ (b,∞), (ii) v′(x) > 1 onx ∈ [0, b), (iii) v′′(x) < 0 onx ∈ [0, b).
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Proof. (i): On x ∈ (b,∞), v(x) = (x − b) + v0(b), we compute

(A− α)v(x) = µ + λ/η − α(x − b) − αv0(b
∗) < µ + λ/η − αv0(b)

= lim
x↓b

(A− α)v(x) = lim
x↑b

(A− α)v(x) = 0.

Here we used the continuity ofv(x), v′(x) andv′′(x) atx = b.

(ii) and (iii): SinceB1, B2 > 0 andB3 < 0,

v′′′0 (x) = B1γ
3
1eγ1x + B2γ

3
2eγ2x − B3γ

3
3e−γ3x > 0, (3.23)

i.e., v′′0 (·) is monotonically increasing inx. It follows from (3.17) thatv′′0 (b) = 0, thereforev′′0 (x) < 0 on

x ∈ [0, b). This proves (iii).

Sincev′′0 (x) < 0, x ∈ R+, v′0(·) is decreasing onR+. It follows from (3.17) thatv′0(b) = 1. Therefore,

v′0(x) > 1 onx ∈ [0, b). This proves (ii).

Proposition 3.1. Suppose thatµ + λ
η

> 0. Let B1, B2, B3 and b be as in Lemma 3.2. Then the functionv(·)

defined in (3.14) satisfies

v(x) = V (x) = sup
Z∈V

JZ(x). (3.24)

andZ defined in (3.6) is optimal.

Proof. Note that(A−α)v(x) = 0, x ∈ [0, b) as a result of (3.15). The functionv(·) is linear on[b,∞). It follows

from Lemma 3.3 that the functionv(·) satisfies all the conditions in the verification lemma.

Figure 4 shows the value function and its derivatives. As expected the value function is concave and is twice

continuously differentiable. Finally, we perform some sensitivity analysis of the optimal barrierb with respect
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Figure 4: The harvesting (dividend payout) problem with parameters(µ, λ, η, σ, α) =

(−0.05, 0.75, 1.5, 0.25, 0.1): (a) The value functionv(x) with b = 1.276. (b) v′(x) and v′′(x) to show

that the optimality conditions are satisfied.

to the parameters of the problem. Figure 5 shows the results.Graph (a): The first graph shows that as the

expected value of jump size1/η decreases, so does the threshold levelb, as one would expect.Graph (b): It

is interesting to observe thatb∗ increases first and start decreasing whenλ reaches a certain level, sayλmax. A

possible interpretation is as follows: In the range of(0, λmax), i.e. for smallλ, one wants to extract a large amount

of cash whenever jumps occur since the opportunities are limited. Asλ gets larger, one starts to be willing to let

the process live longer by extracting smaller amounts each time. On the other hand, afterλ ≥ λmax, one becomes

comfortable with receiving more dividends, causing the declining trend ofb∗. Graph (c): The smallµ in the
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absolute value sense implies that it takes more time to hit the absorbing state. Accordingly, it is safe to extract a

large amount of dividend. However, when the cost increases up to a certain level, sayµ∗, it becomes risky to extract

and henceb∗ increases. It is observed that after the cost level is beyondµ∗, one would become more desperate

to take a large dividend at one time in the fear of imminent insolvency caused by a largeµ (in the absolute value

sense). This is the downward trend ofb∗ on the left side ofµ∗. Graph (d): As the volatility goes up, then the

process tends to spend more time away from zero in both the positive and negative real line. Accordingly, the

threshold level increases to follow the process.
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Figure 5:Sensitivity analysis of the harvesting (dividend payout) problem to the parameters. The basis parameters

are(µ, λ, η, σ, α) = (−0.05, 0.75, 1.5, 0.25, 0.1): (a) jump size parameterη, (b) arrival rateλ, (c) drift rateµ and

(d) volatility σ.

4 Concluding Remarks

Before concluding, we compare two value functions, one for the IPO problem and the other for the harvesting

problem. We set parametersµ, σ, λ, η, andα equal and vary the level ofr > 1, the expected return at the IPO

market. Figure 6 exhibits the two value functions:v(x; 0) (solid line) for the IPO problem witha = 0 andv(x)

(dashed line) for the harvesting problem. We consider threedifferent values ofr here; (a)r = 1.25, (b) r = 1.5

and (c)r = 2. It can be observed that asr increases, the value function for the IPO problem shifts upward for all

the points ofx ∈ R+. This jump diffusion model, although simple, gives a quick indication as to which strategy

(IPO or harvesting) is more advantageous given the initial investment amountx. Moreover, as we discussed, this

model has both diffusion and jump components, allowing us tomodel different stage of the start-up company by

modifying the relative size of diffusion parameterσ and jump parameterλ/η.
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Figure 6:The comparison of two value functions with(µ, λ, η, σ, α) = (−0.05, 0.75, 1.5, 0.25, 0.1): (a)r = 1.25.

(b) r = 1.5 and (c)r = 2 where the value function for the IPO problem witha = 0 is shown in solid line and the

value function for the harvesting problem is shown in dashedline.
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