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Abstract: 

This paper deals with the allocation of international and domestic flights (allocation of services) 

into multiple airports in a metropolitan area. Through the privatization of airports, there are various 

types of airport operation. Consequently, we set three alternative airport operations: (PP) separate 

operation by two private firms; (M) integrated operation by a single private firm; (G) integrated 

operation by the government. Moreover, airport operators face the several types of regulations such 

as on airport charges, allocation of services, or both: therefore, we examine three types of allocation 

such as the decentralized decision-making by airport operators on the provision of service, the 

airport charges, and both. By comparing these three allocations within and among regimes, this 

paper investigates two issues: i) the relationship between the allocation and the location of airports; 

ii) the relationship between the allocation and the types of airport operations. 
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1. Introduction 

It is observed that some metropolitan areas have multiple airports each of which have a different 

role. For example, in Osaka Metropolitan Area, Osaka International Airport provides domestic 

flights while Kansai International Airport provides both international and domestic flights. This 

paper deals with allocations of services among multiple airports in a metropolitan area as described 

above. The allocation of services among multiple airports might be the result of the regulation by 

the government or of the decentralized decision-making by airport operators. Also note that the 

airport privatization results in various types of airport operation such as public and private. This 

paper investigates the allocation of services among airports and the relationship between the 

allocation and the airport operation. Moreover, multiple airports in a metropolitan area arise as a 

result of new airport construction to address the shortage of capacity in the existing airports. 

Consequently, we also need to focus on the airport congestion. 

Several earlier studies focused on multiple airports in the same region: such as Pels et al. (2000), 

Van Dender (2005), De Borger and Van Dender (2006), and Basso and Zhang (2007). De Borger 

and Van Dender (2006) developed the model of the vertical relationship between users and airports 

including the capacity choice of airports. As argued in Brueckner (2002), carriers are not atomistic 

in the congested airport: therefore, the behavior of carriers should be included in the model. From 

this viewpoint, Basso and Zhang (2007) introduced the behavior of carriers into the similar model to 

De Borger and Van Dender (2006). These two articles studied the pricing and the capacity choices 
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of congested airports under several alternative regimes, such as separate operation by private firms 

and integrated operation by a single private firm. Pels et al. (2000) studied about the effect of the 

accessibility on the airfares and airport charges incorporating the vertical relationships among users, 

carriers, and airports: however, they focused on the case where airports are constrained by the 

average cost pricing. When airports are not congested, the allocation of services between airports is 

the problem to determine the number of airports providing a particular service (e. g. domestic or 

international flights)1. On the other hand, if the airport congestion exists, the congestion generates 

the interaction between different services provided at an airport. Consequently, we need to focus on 

the combination of multiple services. Van Dender (2005) focused on the competition between 

facility operators, including the case where two services are provided in each facility. However, he 

did not consider the allocation of services between facilities. 

We construct an economic model in which two airports are located on one-dimensional space. 

The model describes interaction among user’s choice, carrier’s competition, and policy choice of 

airport operator. Our model describes the tradeoff between the accessibility, the frequencies, and the 

airport congestion. The accessibility is better if the service is provided at both airports. On the other 

hand, the frequency is larger if the service is concentrated at a single airport: as a result, however, 

this airport becomes more congested. 

Using this model, we examine the allocation of services among airports in a metropolitan area 

                                                 
1 This problem resembles to the one studied by Takahashi (2004) and Akutagawa and Mun (2005). In those two 
articles, providers of public service decide whether or not providing the service at its facility. 
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under three alternative airport operations: (1) each airport is operated by a single private firm 

(Regime PP); (2) a single private firm operates two airports (Regime M); (3) the government 

operates two airports (Regime G). Operators under each regime can set airport charges and services 

to be provided at their airports.  

In reality, however, there exists the regulation on airport charges and services provided at airports. 

In consideration of the regulations, we investigate three types of allocations under each of three 

regimes, PP, M and G. First, we consider the case where airport operators set the services to be 

provided at their airports while airport charges are exogenously given. The second type is the 

allocation without regulation on the airport charges in which airport operators set both airport 

charges and the services to be provided at their airports. The third type is the surplus-maximizing 

allocation in which airport operators set airport charges while the government determines the 

allocation of services in order to maximize the social surplus. This type of allocation can be 

interpreted as the regulation on the allocation of services2. We also compare these three types of 

allocation within each regime and among three regimes. 

The rest of this paper is organized as follows. Section 2 introduces the model and describes the 

behaviors of users and carriers. In Section 3, we set the parameters for the simulation. In addition, 

by means of numerical simulations, this section shows the allocations under three regimes, PP, M 

and G, with exogenously fixed airport charges. Section 4 focuses on the case where airport operators 

                                                 
2 Several studies focused on the regulation of airports due to a growing number of privatized airports. Most of 
these studies, however, focused on the regulation on pricing (e. g. Oum et al. (2003) and Czerny (2006)). 
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under each of three regimes, PP, M, and G, set both the services and airport charges at their airports. 

Section 5 focuses on the case where airport operators set the airport charges while the government 

determines the allocation in order to maximize the social surplus. Section 6 compares three types of 

allocations derived in proceeding three sections. Finally, Section 7 summarizes the results and states 

some topics for the future study. 

 

2. The Model 

2.1. The Basic Setting 

Suppose a linear economy, as illustrated in Figure 1, which is consisted from the City and the 

Hinterland: 

Figure 1: The Economy and the Locations of Airports 

 

Each location of this economy is identified by the distance from the center of the City, 0. The 

segment [–b, b] represents the City: within this segment, users are uniformly distributed with 

density Cρ . The Hinterland is the outside the segment [–b, b]: in this region, users are uniformly 

–b bx1 

Density: Hρ  

Density: Cρ  

The City The Hinterland The Hinterland 

0

Airport 1 Airport 2 
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distributed with density H Cρ ρ< . 

The City has two airports, named as airports 1 and 2. Their locations are exogenously given and 

denoted by x1 and x2. Without loss of generality, we assume that x1<x2. Moreover, we assume that 

airport 2 locates at the fringe of the City: that is, x2=b. Airport 1 is congested while airport 2 is free 

from congestion3. Carriers incur the congestion cost when they utilize airport 1 while users do not. 

These two airports can provide two types of services, international and domestic flights. 

Hereafter, they are denoted by I and D respectively. Let us denote by aj the service provided at 

airport j (j=1, 2), then we have four types of services: that is, aj=I, D, ID, N. Note that ja ID=  

implies that airport j (j=1, 2) provides services I and D: ja N=  implies that airport j provides no 

services4. The allocation of services is represented by the set of services provided at two airports, 

(a1, a2). Table 1 summarizes the possible 16 allocation of services. 

Table A 1: Notations for the Allocations of Services between Two Airports 

a2 

a1 
ID I D N 

ID (ID, ID) (ID, I) (ID, I) (ID, N) 

I (I, ID) (I, I) (I, D) (I, N) 

D (D, ID) (D, I) (D, D) (D, N) 

N (N, ID) (N, I) (N, D) (N, N) 

2.2. Users 

                                                 
3 This situation can be interpreted as the case where airport 2 is newly constructed to address the shortage of the 
capacity of airport 1. This is observed in some metropolitan areas, such as Tokyo, Osaka, and Montreal. Moreover, 
in these cases, the newly constructed airport locates at the fringe of the city while the existing airport locates 
closer to the center. 
4 We do not exclude the possibility of the allocations such as (N, N), (S, N) and (N, S), in which some services 
are not provided in this region. In such case, we assume that users of the services not available at both airports 
choose other modes such as autos or railways. 
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The trip demand for service S (S=I, D) by an individual is inelastic. Individuals make trips by 

service S dS times per a given period unless the trip cost exceeds the reservation price, SC  (S=I, D). 

All users have the same value of the reservation price in consuming service S, SC . In addition, we 

set two assumptions: the trip demand for service D, dD, is larger than that for service I, dI; the 

reservation price for service I, IC , is higher than that for D, DC . 

The trip cost of service S at airport j for a user located at x, ( ),S
jC x is defined as: 

 ( ) ,
4

S S
j j jS

j

vhC x t x x P
F

= − + +  for j=1, 2 and S=I, D.   (1) 

The first term of the RHS in Eq. (1) represents the access cost to airport j in which t is the access 

cost per a distance. The second term of the RHS is the average waiting time cost at airport j in 

which S
jF  is the frequency of service S at airport j. The average waiting time cost is expressed the 

value of waiting time, v, multiplied by the average waiting time for service S at airport j, / 4 S
jh F , 

for a given operating hours of airport j, h. The last term of the RHS is the fare for service S at 

airport j. 

Each user chooses one of two airports so as to minimize the trip cost. Therefore, the demand of 

users at x for service S at airport j, ( )S
jq x , is derived as: 

 ( )
( ) ( ) ( ) [ ]
( ) ( ) ( ) [ ]
( ) ( ) ( )

       if  and for ,  and ,

      if  and for ,  and ,

0              if  or  for .

S S S S S
C j i j

S S S S S S
j H j i j

S S S S
j i j

d C x C x C x C x b b i j

q x d C x C x C x C x b b i j

C x C x C x C i j

ρ

ρ

⎧ ≤ ≤ ∈ − ≠
⎪⎪= ≤ ≤ ∉ − ≠⎨
⎪

> > ≠⎪⎩

 (2) 

Using Eq. (2), the aggregate demand for service S (S=I, D) at airport j (j=1, 2) is derived as: 

 ( ) ,
S
j

S
j

zS S
j jz

Q q x dx= ∫         (3) 
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where S
jz and S

jz  respectively represents the right-side and left-side of the market boundaries for 

service S at airport j. Solving Eq. (3) for the fare of service S at airport j, S
jP , we obtain the inverse 

demand function for service S at airport j5. 

On the relationship between boundaries, we have two cases:  

i) When service S is only provided at airport j, or when two airports provide service S and 

these markets are segregated, the trip cost is equalized to the reservation price at the 

boundaries: ( ) ( )SS S S S
jj j jC z C z C= = . 

ii) Two airports provide service S and these markets are adjacent: that is, 21
SSz z= . In this case, 

at the boundary, 21
SSz z= , the trip costs for both airports are equalized: ( ) ( )21 1 2

SS S SC z C z= . 

At the boundaries, 1
Sz  and 2

Sz , the trip cost is equalized to the reservation price: ( )11
SSC z  

( )2 2
S S SC z C= = . 

2.3. Carriers 

We assume that there are two carriers in each market S (S=I, D). Let us denote by Sk
jf  the 

number of flights at airport j (j=1, 2) operated by carrier k (k=1, 2) in market S. We assume that the 

symmetric equilibrium in which two carriers in each market provide the same number of flights 

with the same schedule at each airport. This situation is realized through the competition in the 

schedule of flights6. Consequently, the frequency of service S at airport j perceived by users, S
jF , is 

equal to Sk
jf . 

                                                 
5 Details are shown in Appendix A. 
6 This result is based on the minimum product differentiation by Hotelling (1929). 
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All flights from each airport are served with full capacity, σ . In addition carrier k providing 

service S at airport j faces the inverse demand ( | )Sk Slf fS
jp  in which 1 2( , )Skf Sk Skf f=  and 

1 2( , )Slf Sl Slf f=  respectively represent the vectors of frequencies provided by carriers k and l in 

market S. As a result, each carrier providing service S earns ( | )Sk Slf fS
jp σ  per a flight from airport j. 

A flight of service S from airport j generates the marginal cost S
jm  and the airport charge S

jr . 

Therefore, the profit for carrier k providing service S from airport j , ,Sk
jπ is, 

 ( ) ( )| | .Sk Sl Sk Slf f f fSk S S S Sk
j j j j jp m r fπ σ⎡ ⎤= − −⎣ ⎦     (4) 

Since carriers face the congestion when they use airport 1, the marginal cost , ,S
jm varies between 

airports: 

 1 1,

2

,

,

S S Sk
S k

S S

m c f

m

ω

ω

= +

=

∑  

where Sω  and c capture the marginal cost of an operation and congestion. In addition, we assume 

that the competition between two carriers in market S is the Cournot type: each carrier chooses the 

frequency. 

Recall that depending on the allocation of services, (a1, a2), carriers may not be allowed to 

operate the flights in a particular airport. Therefore, we have two types of profit maximization 

problem for carrier k providing service S7: 

i) If carriers providing service S are allowed to operate at a single airport j (j=1, 2), we have 

                                                 
7 If carrier k providing service S operates only at airport 1, or if carrier k providing service S operates at both 
airports, the profit might depend on the frequencies of carriers providing the other service T S≠  as well as the 
frequencies of the rival, l, due to the congestion at airport 1. 
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0Sk Sl
i if f= = ( i j≠ ). Consequently, carrier k sets only the frequency at airport j, Sk

jf , to 

maximize the profit ( | )Sk Slf fSk
jπ . 

ii) If carriers providing service S are allowed to operate at two airports, carrier k sets the 

frequencies at two airports, 1
Skf  and 2

Skf , to maximize the sum of profits in two airports 

( | )Sk Slf fSk
jj

π∑ . 

We consider the behavior of carriers providing service S in case of i) as an example. Let us 

denote by Sk*f  carrier k’s Nash Equilibrium frequency at airport j, then, it satisfies: 

 ( ) ( )* * *| max | ,
sk
j

Sk Sk
j j

f
π π=Sk Sl Sk Slf f f f  for S=I, D and k=1, 2, 

where *( ,0)Sk
jf=Sk*f  and ( ,0)Sl

jf=Sl*f . Moreover, since the equilibrium frequency of carrier k at 

airport j depends on the airport charges, ( , )I D
j jr r=jr , and the services to be provided at both 

airports, aj (j=1, 2), the equilibrium frequency of carrier k providing service S at airport j is 

expressed as 1 2( , ; , )Sk
jf a a∗

1 2r r . In case of ii), carriers set the frequencies at two airports in order to 

maximize the sum of the profits from two airports. Following the same procedure described above, 

we obtain the equilibrium frequency of carrier k at each airport. 

2.4. Airports 

There are two types of operators, the private firm and the government. The private firm 

maximizes the airport charge revenue by setting the services provided at its airport, the airport 

charges, or both, while the government maximizes the social surplus.  

This paper examines three alternative regimes of the airport operation as summarized below: 
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i) Regime PP: in this regime, each airport is operated by a single private firm. 

ii) Regime M: in this regime, a single private firm operates two airports. 

iii) Regime G: in this regime, the government operates two airports. 

2.5. The Sequence of the Game 

In following three sections, Sections 3, 4, and 5, we assume that, in the first stage, services to be 

provided, ja (j=1, 2), at each airport is chosen. In the second stage, the airport charge, S
jr , at each 

airport is determined. In the third stage, carriers determine the number of flights at each airport, Sk
jf , 

as described in Subsection 2.3. After that, as explained in Subsection 2.2, in the final stage, all users 

choose whether or not using service S. In addition, users who use service S determine which airport 

to use if service S is provided at both airports. 

The difference among following three sections is attributed to who chooses services to be 

provided, ja (j=1, 2) and the the airport charge, S
jr : 

i) In Section 3, the second stage is omitted since airport charges are exogenously fixed. In 

the first stage, airport operators set services to be provided at their airports; 

ii) In Section 4, in the first stage, airport operators set services at their airports. In the 

second stage, airport operators determine airport charges; 

iii) In Section 5, in the first stage, the government sets the services provided at two airports 

in order to maximize the social surplus. In the second stage, airport operators set airport 

charges at their airports. 
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In the following three sections, by means of numerical simulations, we derive the solutions. 

 

3. Choices by Operators with Parametric Airport Charges 

3.1. Parameters 

We set the values of parameters so that the solutions of the model are not far from the observed 

value in the real world. First, we consider the case where airport charges for service S, rj
S, are set as: 

 1 2 1537.39 (thousand yen),I Ir r= =  

 1 2 718.08 (thousand yen).D Dr r= =  

These values are the airport charges for services I and D at Kansai International Airport. Other 

parameter values are summarized in Table 2 below: 

Table 2: Parameter Values 

b  The boundary of the City 50 (kilometers) 

Cρ  Population density of the City 164 (thousand people) 

Hρ  Population density of the Hinterland 26 (thousand people) 
Id  Frequency for service I usage 0.17 (times per a year) 
Dd  Frequency for service D usage 0.73 (times per a year) 

v  Value of waiting time 3 (thousand yen per a year) 

h  Operating hours of airport 5475 (hours per a year) 

t  Access cost per a unit distance 0.01 (thousand yen per a kilometer) 
σ  Size of the aircraft 272 (seats) 

Iω  Marginal operation cost for service I 13522 (thousand yen per a flight) 
Dω  Marginal operation cost for service D 2015 (thousand yen per a flight) 

c  Marginal congestion cost for flights 0.01 (thousand yen per a square of flight) 
IC  Reservation price for service I 142 (thousand yen) 
DC  Reservation price for service D 29 (thousand yen) 

We set the size of the City as the segment of [–50, 50]. Population density of the City Cρ  is 
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calibrated so that the population of the City with the size of 100 square kilometers is equal to that of 

the Osaka Metropolitan Area. The population density of the Hinterland Hρ , on the other hand, is the 

average population density of Japan8. 

To calibrate the access cost per a distance, t, we calculate the access cost to Kansai International 

Airport by railway for 50 largest cities in Osaka Metropolitan Area. According to these values, we 

use the weighted average of the access costs per a kilometer for 50 cities as the value of t. 

We use the average size of the ANA’s aircraft for the value of σ . The values of the cost 

parameters, , ,I Dω ω and c, are calibrated from the following procedures. As Pels and Verhoef (2004) 

explained, the total delay cost for each carrier is equal to 5 % of its total operating cost. Therefore 

95 % of the total operating cost corresponds to the sum of costs for providing international and 

domestic flights. Using the financial data of JAL and ANA for 2004, we calculate the costs for 

providing each service S (S=I, D) according to the share of each service9 so that the sum of them is 

equal to 95 % of the total operating cost. Using the calculated total cost for providing each service, 

S, we set the average cost per a flight for each service, S, as the value of parameter Sω (S=I, D). To 

calibrate the value of parameter c, we set 5 % of the total operating costs as the total delay costs. We 

set the value of c so that the total congestion cost based on this model is equal to the sum of total 

delay costs. 

                                                 
8 To obtain this, we adjusted the area of Japan so that the area of Osaka Metropolitan Area was equal to 100 
square kilometers. 
9 The share of each service is equal to that of revenue passenger kilometers. 
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Based on these parameter values10, we derive the allocations in the following three subsections. 

3.2. Regime PP 

Under this regime, each airport is operated by a single private firm. Given the airport charges S
jr , 

the operator of airport j (j=1, 2) chooses the services to be provided at airport j, aj, so as to 

maximize the revenue, 1 2( , ; )jR a a PP% : 

 ( ) ( )1 2 1 2,
, ; , ; , .1 2r rS Sk

j j jS k
R a a PP r f a a=∑%  

The operator of airport j sets the services to be provided at airport j, aj, so as to maximize the 

revenue from its airport, 1 2( , ; )jR a a PP% . Let us denote by ( )ja PP%  services chosen by the operator 

of airport j (j=1, 2) then, given ai, this satisfies: 

 ( ) ( )( ) ( )( ) ( ), ; , ;  for ,j j i j j i j jR a PP a PP PP R a a PP PP a a PP∀≥ ≠% %% % % %  

where ( )ia PP%  is the service to be provided at the other airport i. 

The allocations under Regime PP in various locations of airport 1 are summarized in the 

following figure: 

Figure 2: The Allocation under Regime PP with Parametric Airport Charges 1 2( ( ), ( ))a PP a PP% %  

 

As shown in Figure 2, the allocation changes from (ID, ID) to (N, ID) through (D, ID) as two 

airports become closer. 

                                                 
10 Explanation of the rest of parameter values and the result of the calibration are summarized in Appendix B. 

–50 –25 0 50 25 

x1 

Airport 2

(ID, ID) (N, ID) (D, ID) 
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When two airports are distant, the dominant strategy for each airport operator is ID as shown in 

Table 4: 

Table 3: The Payoff Matrix at x1=0 (Unit: billion yen) 

a2 

a1 
ID I D 

ID 3.51, 2.86 4.51, 1.57 4.92, 1.34 

I 1.79, 4.47  1.79, 1.51 3.22, 2.96 

D 1.81, 4.52 2.81, 3.25 1.39, 1.27 

Hence, the allocation becomes (ID, ID). 

When the distance between two airports is moderate, the allocation becomes (D, ID). To explain 

this, we compare the user costs of two airports for service I at x1: 

 ( ) ( ) ( )1 1 2 1 1 2 1
1 2

.
4 4

I I I I
I I

vh vhC x C x P P t x b
F F

⎛ ⎞
− = − + − − −⎜ ⎟

⎝ ⎠
 

The first bracket terms represent the difference in fares between two airports. The second bracket 

and the last terms respectively represent the differences in the waiting time costs and in the access 

costs. Table 4 below compares these three terms at three locations of airport 1: 

Table 4: Difference in Trip Cost for Service I at Three Locations of Airport 1 (Unit: thousand yen) 

1x  1 2
I IP P−  

1 24 4I I

vh vh
F F

−  1t x b− −  Total 

15 3.19 -0.11 -3.5 -0.42 
20 3.32 -0.13 -3 0.19 
25 3.45 -0.15 -2.5 0.8 

According to Table 4, in absolute value, the differences in fares increases while the difference in 

sum of average waiting time and access costs decrease. Consequently, when x1 is larger than 20, 

service I at airport 1 loses its service I market because of the increase in the difference in fares. 



 15

To explain the reason why the difference in fares is generated, we decompose the fare of service I 

at each airport j as11: 

 ,
I I
j jI I

j j

m r
P η

σ
+

= ×  

where I
jη  represents the markup at airport j. Following table compares the marginal cost and the 

markup at each airport: 

Table 5: Comparison of Marginal Costs and Markups between Two Airports (Unit: thousand yen) 

1
IP  2

IP  
1x  

Fare Marginal cost Markup Fare Marginal cost Markup 

15 94.0 54.8 1.72 90.8 50.6 1.79 

20 94.0 54.7 1.72 90.7 50.6 1.79 

25 94.0 54.7 1.72 90.5 50.6 1.79 

As shown in this table, while the markup is higher at airport 2 than at airport 1, the marginal costs at 

airport 1 is higher than at airport 2 due to the congestion. According to Table 5, that airport 1 loses 

its service I market since the congestion increases the fare for service I at airport 1. Due to the 

similar reason, when two airports are sufficiently close (x1 is around 50), the allocation becomes (N, 

ID). 

By stopping the provision of service I, the operator of airport 1 can reduce the congestion. 

Reduction in the congestion increases the revenue from service D at airport 1. However, unless the 

operator of airport 1 loses its service I market, the operator does not stop providing service I 

because the increase in the revenue from service D cannot recover the loss of the revenue from 

                                                 
11 The fare for service I at each airport j can be rewritten as: 

 ,
I I
j jI I

j j

m r
P η

σ
+

= ×  

where I
jη  represents the markup at airport j. 
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service I due to stopping the provision of service I. 

3.3. Regime M 

Under this regime, a single private firm operates two airports. Given the airport charges, the 

operator determines the services provided at both airports (a1, a2) in order to maximize the sum of 

revenue in two airports, 1 2( , ; )R a a M% : 

 ( ) ( )1 2 1 2, ,
, ; , ; , .1 2r rS Sk

j jj S k
R a a M r f a a=∑%  

Denote by 1 2( ( ), ( ))a M a M% %  the allocation chosen by the operator, which is characterized as follows:  

 ( ) ( )
1 2

1 2 1 2,
( ), ( ) arg max , ; .

a a
a M a M R a a M= %% %  

The allocations under Regime M 1 2( ( ), ( ))a M a M% %  in different locations of airport 1 are shown in 

Figure 3. 

Figure 3: The Allocation under Regime M with Parametric Airport Charges 1 2( ( ), ( ))a M a M% %  

 

As shown in this figure, the operator sets the allocation (ID, ID) if two airports are distant. The 

operator sets the allocation (D, ID) when the distance between two airports is moderate. When two 

airports are sufficiently close, the allocation (N, ID) is chosen since all individuals use airport 2 

when they consume service D. 

To understand the reason why the operator changes the allocation from (ID, ID) to (D, ID), we 

decompose the change in revenue when the operator changes the allocation from (ID, ID) to (D, 

(N, ID) 

–50 –25 0 50 25 

x1 

Airport 2

(ID, ID) (D, ID) 
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ID): 

 ( ) ( ) 1 2 1 2, ; , ; ,I I D DR D ID M R ID ID M R R R R− = ∆ + ∆ + ∆ + ∆% %    (5) 

where S
jR∆  represents the change in the revenue from service S at airport j: 

 

( )
( ) ( )
( ) ( )
( ) ( )

1 1

2 2 2

1 1 1

2 2 2

, ; ,

, ; , ; ,

, ; , ; ,

, ; , ; .

I I

I I I

D D D

D D D

R R ID ID M

R R D ID M R ID ID M

R R D ID M R ID ID M

R R D ID M R ID ID M

∆ ≡ −

∆ ≡ −

∆ ≡ −

∆ ≡ −  

The first term of the RHS in (5), 1
IR∆ , is the loss of revenue due to stopping the provision of 

service I at airport 1. The second term, 2
IR∆ , is the effect on the revenue of the concentration of 

service I at airport 2 since, under the allocation (D, ID), only airport 2 provides service I. The third 

term, 1
DR∆ , represents the effect on the revenue of the reduction in congestion. Because providing 

a single service (D) at airport 1 imposes smaller congestion cost on the carriers of service D 

operating at airport 1, they change the number of flights: consequently, the revenue from service D 

at airport 1 changes. This change in service D at airport 1 affects service D at airport 2: as a result, it 

indirectly affects the revenue from service D at airport 2. This is captured by the last term of the 

RHS in (5), 2
DR∆ . 

Table 6 shows the values of four terms in (5) for three locations of airport 1. 
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Table 6: The Values of Four Terms in (5) at Three Locations of Airport 1 (Unit: billion yen) 

Locations of 

airport 1 

Distance 

b/w two 

airports 

1
IR∆  

the loss of reveue

2
IR∆  

the concentration 

effect 

1
DR∆  

the congestion 

effect 

2
DR∆  

the indirect effect 
Total 

1 0x =  50 –16.1 15.6 0.5 –0.4 –0.3

1 5x =  45 –16.2 15.8 0.5 –0.4 –0.2

1 10x =  40 –16.0 15.7 0.9 –0.3 0.3

Stopping the provision of service I at airport 1 reduces the congestion. As a result, carriers 

providing service D shift some of flights from airport 2 to airport 1 since airport 1 has an advantage 

of the location: therefore the revenue from service D at airport 1, 1
DR∆ , increases while the revenue 

at airport 2, 2
DR∆ , decreases. As a whole, the change in the allocation from (ID, ID) to (D, ID) 

increases the sum of revenues from service D at two airports. On the contrary, at all three locations 

of airport 1, the revenue from service I decreases when the operator changes the allocation from (ID, 

ID) to (D, ID) because stopping the provision of service I at airport 1 downscales the market of 

service I. As shown in Table 6, the operator changes the allocation from (ID, ID) to (D, ID) if the 

operator can recover the loss of the revenue from service I, 1 2
I IR R∆ + ∆ , by the increase in the 

revenue from service D, 1 2
D DR R∆ + ∆ . 

3.4. Regime G 

In this subsection, we consider the case where the government operates both airports. The 

allocation is set in order to maximize the social surplus, 1 2( , ; )SW a a G : 

 ( ) ( ) ( )1 2
, , ,

, ; ,
S S S Sk S

j jj
S j S k S j

SW a a G q x C C x dx Rπ⎡ ⎤= − + +⎣ ⎦∑ ∑ ∑∫    (6) 

where, starting from the left, three terms in the RHS respectively represent the consumer surplus, 
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the sum of carriers’ profits, and the airport charge revenue. Denote by 1 2( ( ), ( ))a G a G% %  the allocation 

set by the government which is characterized as follows: 

 ( ) ( )
1 2

1 2 1 2,
( ), ( ) arg max , ; .

a a
a G a G SW a a G=% %  

The allocations under Regime G, 1 2( ( ), ( ))a G a G% % , in different locations of airport 1, x1, are shown 

in the following figure: 

Figure 4: The Allocation under Regime G with Parametric Airport Charges 1 2( ( ), ( ))a G a G% %  

 

According to Eqs (1) and (4), we can rewrite Eq. (6) as follows: 

 

( ) ( ) ( ) ( )

( ) ( )

1 2 1 2
. , ,

2

1 2 1 1 2
,

, ; , ; ,

, , ; , .
2

S
j

S
j

z
S S Sk S

j j j
S j k S j z

S Sk

S s k

SW a a G C f a a t q x x x dx

vh a a c f a a

σ ω

σ δ

= − − −

⎛ ⎞
− − ⎜ ⎟

⎝ ⎠

∑ ∑ ∫

∑ ∑

1 2

1 2

r r

r r   (7) 

where ( )1 2,S a aδ is the number of airports providing service S12. In Eq. (7), the first term of the RHS 

is the total benefit of the allocation (a1, a2): we call this the social benefit. The second term 

represents the total access cost under the allocation (a1, a2). The third term is the total scheduling 

cost. The last term is the total congestion cost under the allocation (a1, a2). 

The allocation (ID, ID) minimizes the total access cost while it maximizes the total scheduling 

cost. As a result, when the allocation changes from (ID, ID) to (D, ID), the government faces the 
                                                 
12 When two airports provide service S (S=I, D) or two services, ID, then ( )1 2, , 2S a aδ = : if one of two airports 
provide service S or two services, ID, while the other provide service T ( )T S≠ or none of services, N, 
then ( )1 2, , 1S a aδ = : if two airports provide only the other service T or none of services, N, then ( )1 2, , 0S a aδ = . 

50 
1x

–50 –25 0 25 

(ID, ID) (N, ID) (D, ID) 

Airport 2 
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increase in the total access cost and the decrease in the total scheduling cost. In addition, under the 

allocation (D, ID), the congestion at airport 1 is smaller than under (ID, ID). The reduction in the 

congestion at airport 1 affects two components of the social surplus, the total congestion cost and 

the social benefit. Since under the allocation (D, ID), the number of services at airport 1 is reduced, 

the total congestion cost is smaller than under (ID, ID). In addition to this, the reduction in the 

congestion at airport 1 makes carriers providing service D shift some of flights from airport 2 to 

airport 1 because of the advantage of the location of airport 1. As a result, the social benefit of 

service D increases under the allocation (D, ID). On the other hand, the social benefit of service I 

decreases under the allocation (D, ID) because service I loses the market of airport 1.  

Table 7 below shows the differences in four components of social surplus between under the 

allocations (ID, ID) and (D, ID): 

<<Table 7 about here>> 

As shown in Table 7, although the sum of the differences in social benefit and congestion cost is 

positive at all locations of airport 1, the allocation changes from (ID, ID) to (D, ID) at x1 = 5. This 

is because the loss of social benefit for service I and the increase in the total access cost is recovered 

by the reduction in the congestion and scheduling costs. 

3.5. Comparison 

Figure 5 shows the comparison of the allocations among three regimes described in proceeding 

three subsections. 
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Figure 5: Comparison of the Allocations with Parametric Airport Charges 

 

The results under three regimes are qualitatively similar. As the distance between two airports 

becomes closer, the allocation changes from (ID, ID) to (N, ID) through (D, ID). However, the 

domain of (ID, ID) is the largest under Regime PP while it is the smallest under Regime G. Under 

Regime PP, the operator of airport 1 does not stop providing service I unless it loses the market of 

service I because the loss of the revenue from service I dominates the increase in the revenue from 

service D due to the reduction in the congestion. On the contrary, under Regime M, the operator 

recovers the loss of the revenue from service I at airport 1 by the increase in the revenue at airport 2. 

As a result, the operator stops providing service I at airport 1 before airport 1 loses the market of 

service I.  

The domain of (ID, ID) under Regime M is still larger than the one under Regime G. Under 

Regime M, since the airport charges are exogenously given, the monopolistic operator maximizes 

the sum of revenues by maximizing the total number of flights provided at both airports. 

Consequently, the monopolistic operator only cares about the effect of the congestion on the number 

of flights. Also note that, as shown Eq. (7), the maximization of the total number of flights results in 

x1 

Airport 2 
–50 –25 0 50 25 

1 2( ( ), ( ))a PP a PP% %  

(ID, ID) (D, ID) 1 2( ( ), ( ))a G a G% %  

1 2( ( ), ( ))a M a M% %  

(N, ID) 

(N, ID) (ID, ID) (D, ID) 

(ID, ID) (N, ID) (D, ID) 
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the maximization of the social benefit. Therefore, under Regime M, the operator considers the effect 

of the congestion on the social benefit while the government takes into account the congestion costs 

incurred by carriers, the access cost, and the scheduling cost as well as the effect of the congestion 

on the social benefit. 

In basic case as described above, we have assumed that airport charges at both airports are 

equalized. In the rest of this subsection, we consider the case where airport charges differ between 

airports. More precisely, we set airport charges as follows: 

 

1

2

1

2

1984.24 (thousand yen),

1537.39 (thousand yen),

897.60 (thousand yen),

718.08 (thousand yen).

I

I

D

D

r

r

r

r

=

=

=

=

 

In this case, airport charges at airport 1 are 1.25 times as high as those at airport 2. Following figure 

shows the allocations under three regimes: 

Figure 6: Comparison of the Allocations with Parametric Airport Charges 

 

By comparing with Figure 5, the allocation under Regime M changes drastically. In Figure 5, the 

allocation under Regime M changes from (ID, ID) to (N, ID) through (D, ID) while, in Figure 6, the 

allocation changes from (ID, D) to (ID, N). In Figure 6, the monopolistic private operator always 

x1 

Airport 2 
–50 –25 0 50 25 

1 2( ( ), ( ))a PP a PP% %  

(ID, ID) (D, ID) 1 2( ( ), ( ))a G a G% %  

1 2( ( ), ( ))a M a M% %  

(N, ID) 

(ID, N) (ID, D) 

(ID, ID) (N, ID) (D, ID) 
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allocates two services, ID, to airport 1 because the airport charges at airport 1 is sufficiently high so 

that the operator can recover the loss of the revenue due to the congestion. 

In addition to this, according to Figures 5 and 6, as the differences in airport charges between two 

airports become larger, we can expect that the social surplus under Regime M becomes inferior to 

the one under Regime PP. To confirm this expectation, we plot the change in social surpluses under 

three regimes as α  changes in the following figure: 

Figure 7: Change in Social Surpluses under Three Regimes at x1=0. 

 

 

According to Figure 7, the allocation under Regime M is at least as efficient as the one under 

Regime PP when α  is around 1.0. However, as the difference in airport charges becomes larger, 

the allocation under Regime M is inferior to the one under Regime PP. This is because the 

monopolistic operator tends to allocate two services to the airport where higher airport charges are 

1 2( ( ), ( ))a PP a PP% %  

(ID, ID) (D, ID) 1 2( ( ), ( ))a G a G% %  

1 2( ( ), ( ))a M a M% %  (D, ID) 

(ID, ID) 

(ID, ID) (ID, D) 

α

Regime G 

Regime PP 

Regime M 
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set. 

 

4. Allocations without Regulations on Airport Charges 

In this section, we consider the case where each operator under three regimes, PP, M and G, sets 

both the airport charges and the services provided at their airports. 

4.1. Regime PP 

Under this regime, each airport is operated by a single private firm. The operator of airport j (j=1, 

2) chooses the services to be provided at airport j, aj, then the airport charges, rj, so as to maximize 

the revenue, Rj:  

 ( ) ( )1 2 1 2,
; , ; , .S Sk

j j jS k
R a a r f a a= ∑j i j ir ,r r ,r      (8) 

Let us denote by *
jr  the vector of the airport charges set by the operator j at Nash Equilibrium, 

then it satisfies: 

 ( ) ( ) ( ) ( ){ }1 2 1 2; , max ; , | s.t.  for , ,S S
j j j j i jR a a R a a C x C x S I D= ≤ =

j

* * *
j i j ir

r ,r r ,r  (9) 

where *
ir  is the vector of the Nash Equilibrium airport charges set by the other operator i. In (9), 

the constraint implies that the operator of airport j plays the strategy of protecting its service S 

market if it faces the undercutting by its competitor i. Since the equilibrium airport charge depends 

on the allocation of services, (a1, a2), we can express the equilibrium airport charge for service S at 

airport j under the allocation (a1, a2) as ( )*
1 2, ;S

jr a a PP . 

By using Eq. (9), the allocation without regulation, ( ) ( )( )1 2,a PP a PP∗ ∗ , satisfies the following 
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relation: 

 ( ) ( )( ) ( )( ) ( ); , ; ,  for ,* * * *
j i j ir ,r r ,rj j i j j i j jR a PP a PP R a a PP a a PP∗ ∗ ∗ ∀ ∗≥ ≠  

where ( )ia PP∗  is the service chosen by the other operator under no regulation. According to the 

numerical simulation, we obtain the allocation under Regime PP without regulations as: 

 ( ) ( )( ) ( )1 2, , ,a PP a PP ID ID∗ ∗ = for 150 50.x− ≤ ≤  

As explained in Section 3, the dominant strategy for each airport is providing two services, ID 

unless operators lose their markets. Moreover, as shown in Eq. (9), each operator can adjust its 

airport charges in order to preserve its market area from the competitor. As a result, at any location 

of airport 1, the allocation under Regime PP without regulations becomes (ID, ID). 

4.2. Regime M 

Under this regime, a single private firm operates two airports. The operator determines the 

services provided at both airports (a1, a2), and then it sets the airport charges, (r1, r2). Let us define 

by 1 2( , ; , )R a a1 2r r  the sum of revenues from airport charges under the allocation, (a1, a2). 

Given the allocation, (a1, a2), the operator maximizes the revenue in setting the airport charge:  

 ( )1 2,
max , ; , .R a a

1 2
1 2r r

r r        (10) 

Solving (10), we obtain the airport charges under each of 16 allocations, (a1, a2), without 

regulations as ( )1 2, ;S
jr a a M∗ . 

Denote by 1 2( ( ), ( ))a M a M∗ ∗  the allocation under Regime M without regulation, then, this satisfies 

the following: 
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 ( ) ( )
1 2

1 2 1 2,
( ), ( ) arg max , ; , ,

a a
a M a M R a a∗ ∗ = * *

1 2r r  

where *
jr  is: 

 ( ) ( )( )1 2 1 2, ; , , ; .I D
j jr a a M r a a M∗ ∗=*

jr  

According to the comparison of the operator’s payoffs, the allocation under Regime M without 

regulation 1 2( ( ), ( ))a M a M∗ ∗  is shown in Figure 8. 

Figure 8: The Allocation under Regime M without Regulations 1 2( ( ), ( ))a M a M∗ ∗  

 

As shown in this figure, the operator sets the allocation (ID, ID) if two airports are distant. The 

number of services provided at airport 1 decreases as the distance between two airports becomes 

closer. As explained in Section 3, when the distance between two airports is smaller than 50, the 

operator stops providing service I at airport 1 because the loss of the revenue from service I at 

airport 1 is recovered by the increase in the revenue from service D. Moreover, when airport 1 

locates around 40, the operator allocates service I instead of service D to airport 1. This is because 

due to the higher airport charges for service I, the operator can recover the revenue from service D 

through the decrease in number of flights by providing service I at two airports. If two airports are 

sufficiently close to each other, the allocation (N, ID) is chosen. 

4.3. Regime G 

Under this regime, the government operates both airports. The government first determines the 

(I, ID) 

–50 –25 0 50 25 

x1 

Airport 2

(ID, ID) (N, ID) (D, ID) 
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allocation of services (a1, a2), and then it sets the airport charges, (r1, r2). Let us denote by 

( )1 2, ; ,SW a a1 2r r  the social surplus under the allocation (a1, a2). 

Given the allocation, this operator sets the airport charge, (r1, r2), to maximize the social surplus 

( )1 2, ; ,SW a a1 2r r . By solving this maximization problem, we obtain the surplus-maximizing airport 

charge for each of 16 allocations, (a1, a2), as *
1 2( , ; )S

jr a a G . 

 Denote by * *
1 2( ( ), ( )),a G a G the allocation chosen by the government, then it satisfies: 

 ( ) ( )
1 2

* *
1 2 1 2( ), ( ) arg max , ; , ,

a ,a
a G a G SW a a= * *

1 2r r  

where *
jr  is: 

 ( ) ( )( )1 2 1 2, ; , , ; .I D
j jr a a G r a a G∗ ∗=*

jr  

Figure 9 shows the allocation under Regime G without regulations, * *
1 2( ( ), ( ))a G a G . 

Figure 9: The Allocation under Regime G without Regulations * *
1 2( ( ), ( ))a G a G  

 

According to this figure, as long as two airports are relatively distant, the government chooses the 

allocation (ID, ID): two airports provide two services. As two airports become closer, the 

government stops providing service I at airport 1 and chooses the allocation (D, ID) since as 

explained in Section 3, by stopping the provision of service I at airport 1, the government can 

reduce the congestion costs incurred by carriers and scheduling costs incurred by users. If two 

airports are sufficiently close, the government decides not utilizing airport 1 and concentrates two 

Airport 2
–50 –25 0 50 25 

x1 

(ID, ID) (D, ID) (N, ID) 
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services in airport 2: the allocation (N, ID) is chosen. 

4.4. Comparison 

We show Figure 10 which compares the allocations under three regimes without regulations. 

Figure 10: Comparison of the Allocations without Regulations 

 

Under Regime PP, the allocation (ID, ID) is always realized. On the contrary, under Regimes M and 

G, allocations vary with the distance between two airports because each operator under these two 

regimes takes the congestion at airport 1 into account when they set the allocation. 

As the distance between two airports becomes smaller, the congestion at airport 1 worsens since 

the more individuals located in the City use airport 1. In such case, each operator under Regimes M 

and G has an incentive to reduce the congestion at airport 1 by stopping the provision of one of two 

services at airport 1. The difference between the allocations under two regimes, M and G, is 

attributed to how much the operator values the effect of the congestion. Under Regime M, the 

operator considers only the effect of the congestion on the number of flights. On the other hand, the 

government cares about the congestion costs incurred by carriers as well as the effect of the 

congestion on the number of flights. 

–50 –25 0 50 25 

x1 

Airport 2 

1 2( ( ), ( ))a M a M∗ ∗  

1 2( ( ), ( ))a PP a PP∗ ∗ (ID, ID) 

1 2( ( ), ( ))a G a G∗ ∗  
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(ID, ID) (D, ID) (N, ID) 



 29

Following table compares the social surpluses under three regimes without regulations: 

Table 8: The Comparison of Social Surpluses at Four Locations of Airport 1 (The unit: billion yen) 

 1 50x = −  1 25x = −  1 0x =  1 25x =  

Regime PP 675.6 690.7 622.8 598.7 

Regime M 487.2 504.1 427.4 415.6 

Regime G 758.5 748.3 728.7 705.5 

According to this table, Regime PP gives the larger social surplus than Regime M. As shown below, 

the difference in the social surpluses between Regimes PP and M is due to the difference in the 

airport charges. 

<<Table 9 about here>> 

This implies that, although the operator under Regime M cares about the congestion when the 

operator allocates the services between two airports, no competition in airport charges between two 

airports results in the lower social surplus. 

 

5. The Surplus-Maximizing Allocations 

In this section, we consider the case where each operator under three regimes, PP, M, and G sets 

the airport charges while the government sets the allocation in order to maximize the social surplus. 

5.1. Regime PP 

Given the allocation, 1 2( , )a a , the private firms set the airport charges to maximize the revenue as 

described in Subsection 4.1. In consideration of the airport charges set by the private firms, the 

government sets the allocation so as to maximize the social surplus. Denote by 1 2( ( ), ( ))O Oa PP a PP  
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the allocation chosen by the government, then it is numerically obtained as: 

 ( ) ( )( ) ( )1 2, , ,O Oa PP a PP ID ID= for 150 50.x− ≤ ≤  

At all pairs of locations, the government sets the allocation (ID, ID) to maximize the social surplus. 

Under the allocation (ID, ID), the competition between two airports reduces the airport charges 

for both services: consequently, the frequencies of both services at two airports increases. The 

increase in the frequencies leads to the increase in the social benefits as well as the increase in the 

social costs, such as the congestion and the access costs13. However, the government sets the 

allocation (ID, ID) since the increase in the social benefits dominates the increase in the social 

costs. 

5.2. Regime M 

A single private operator sets airport charges at both airports given the allocation 1 2( , )a a . For 

each of 16 allocations, the airport charge is obtained as described in Subsection 4.2. Taking this into 

account, the government determines the allocation, 1 2( , )a a , to maximize the social surplus. Denote 

by 1 2( ( ), ( ))O Oa M a M  the surplus-maximizing allocation under Regime M, then it becomes as shown 

in Figure 11: 

 

 

 

                                                 
13 Since the reduction in the airport charge due to the competition expands the market area of each airport, the 
increase in the access cost due to this expansion dominates the reduction of the access cost due to providing 
service S (S=I, D) at two airports: therefore, the access cost increases. 
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Figure 11: The Surplus-Maximizing Allocation under Regime M 1 2( ( ), ( ))O Oa M a M  

 

As shown in Figure 11, when two airports are sufficiently distant, the surplus-maximizing 

allocation under this regime becomes (ID, ID). As two airports become closer, the government 

reduces the services provided at airport 1. As explained in proceeding sections, as the distance 

between two airports becomes smaller, the congestion at airport 1 worsens. Consequently, the 

government stops providing one of two services in order to reduce the congestion at airport 1. In 

addition, the government allocates service I instead of service D to airport 1 if the distance between 

two airports is below 25 kilometers. Since the number of service I flights is smaller than the one for 

service D, the government can reduce the congestion cost by changing the service provided at 

airport 1 from D to I. Moreover, in our setting, the social benefit per a flight for service I, 

I ICσ ω− , is larger than the one for service D, D DCσ ω− . As a result, by changing the allocation 

from (D, ID) to (I, ID), the government can recover the loss of the social benefit through the 

decrease in service D flights through the reduction in the congestion cost and the increase in social 

benefit from service I. If two airports are sufficiently close, the government stops utilizing airport 1: 

as a result, the allocation becomes (N, ID). 

5.3. Regime G 

Under this regime, the regulation on the allocation implies that the government sets both airport 
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charges and the allocation in order to maximize the social surplus. Therefore, the 

surplus-maximizing allocation coincides with the one without regulation shown in Subsection 4.3: 

that is, 

 ( ) ( )( ) ( ) ( )( )* *
1 2 1 2, , ,O Oa G a G a G a G=  for 150 50.x− ≤ ≤  

5.4. Comparison 

Figure 12 shows the comparison of the surplus-maximizing allocations under three regimes: 

Figure 12: Comparison of the Allocations with Regulation on the Allocation 

 

Under Regime PP, the allocation (ID, ID) is always observed. On the contrary, under Regimes M 

and G, allocations vary with the distance between two airports. However, the domain of (ID, ID) 

under Regime M is larger than the one under Regime G. 

To explain this, we show the differences in four components of social surpluses between under 

(ID, ID) and (D, ID) as in the following table: 

<<Table 10 about here>> 

Since the government sets lower airport charges than the monopolistic operator does, the 

frequencies and the size of the market under Regime G becomes larger than under Regime M. As a 
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(ID, ID) (D, ID) 1 2( ( ), ( ))O Oa G a G  
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result, under Regime G, stopping the provision of service I at airport 1 reduces the congestion and 

the access costs. When airport 1 locates around –5, since the reduction in the congestion, scheduling, 

and access costs dominates the loss of the social benefit, the allocation changes from (ID, ID) to (D, 

ID) under Regime G. 

Under Regime M, since the operator sets high airport charges, the market size of each service is 

relatively small. Consequently, the allocation (ID, ID) assures the lower access cost than (D, ID). 

On the other hand, by stopping the provision of service I at airport 1, the government can reduce the 

congestion at airport 1. Reduction in the congestion has two positive effects on the social surplus, 

the increase in the social benefit and the reduction in the congestion cost incurred by carriers. 

However, when airport 1 locates around –5, the increase in the total access cost dominates the 

increase in the social benefit and the reduction in the congestion and scheduling costs: therefore, 

under Regime M, the government keeps the allocation (ID, ID). 

Following table compares the social surpluses among three regimes when the allocations are 

regulated. 

Table 11: The Comparison of Social Surpluses at Four Locations of Airport 1 (The unit: billion yen) 

 1 50x = −  1 25x = −  1 0x =  1 25x =  

Regime PP 675.6 690.7 622.8 598.7 

Regime M 487.2 504.1 437.5 415.6 

Regime G 758.5 748.3 728.7 705.5 

According to this table, even if the government sets the allocation in order to maximize the social 

surplus, Regime PP gives the larger social surplus than Regime M because of the competition in 
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airport charges between two airports. This implies that the regulation on the allocation is less 

effective in improving the social surplus than the competition between two airports. 

 

6.  Comparison 

By means of numerical simulations, we examined three types of allocations under three regimes, 

PP, M, and G. As described in Section 3, if the airport charges are exogenously fixed, the allocation 

under Regime M is at least as efficient as the one under Regime PP when the difference in the 

airport charges between airports is sufficiently small. This is because, in this case, the operator 

under Regime M cares about the congestion at airport 1 in order to maximize the revenue while the 

operator of airport 1 under Regime PP does not. On the other hand, as the difference in the airport 

charges between airports becomes larger, the allocation under Regime M becomes inferior to the 

one under Regime PP since the monopolistic operator excessively allocates two services to the 

airport where the higher airport charges are set. 

In Section 4, we considered the case where each operator sets both airport charges and the 

services provided at each airport. In this case, even though the monopolistic operator takes the 

congestion into account, the allocation under Regime M gives lower social surplus than the one 

under Regime PP because of the lack of the competition in airport charges between two airports. 

Moreover as shown in Section 5, even if the government sets the allocation in order to maximize the 

social surplus under Regime M, the allocation under Regime M is inferior to the allocation without 
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regulation under Regime PP. 

In the rest of this section, we compare three types of allocations under each regime. As shown in 

the following figure, the allocation with the parametric airport charges, a PP a PP1 2( ( ), ( ))% % , varies with 

the distance between two airports while the others are (ID, ID) at all locations of airport 1. 

Figure 13: Comparison of the Allocations under Regime PP 

 

This is because in the latter two allocations, airport 1 can adjust airport charges in order to preserve 

the markets of services I and D while airport 1 loses the markets when airport charges are 

exogenously given. Also note that the allocation without regulation perfectly coincides with the 

surplus-maximizing. As explained in Section 5, the competition in airport charges increases the 

social surplus through the increase in the total number of flights. 

Figure 14 below compares three types of the allocations under Regime M: 

Figure 14: Comparison of the Allocations under Regime M 
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allocation (I, ID) is observed while, in 
1 2( ( ), ( ))a M a M% % , (I, ID) is not observed. Moreover, the 

domain of (I, ID) is larger under 
1 2( ( ), ( ))O Oa M a M  than under 

1 2( ( ), ( ))a M a M∗ ∗  since the government 

cares about the congestion cost incurred by carriers as well as the change in the total number of 

flights through the change in the congestion while the monopolistic operator considers only the 

latter effect. 

Figure 15 compares three types of the allocations under Regime G: 

Figure 15: Comparison of the Allocations under Regime G 

 

Under Regime G, three types of the allocations are qualitatively similar. However, the domain of 

(ID, ID) is larger under the allocation with parametric airport charges 1 2( ( ), ( ))a G a G% % . This is due to 

the difference in the airport charges. As explained in Section 4, the government sets the negative 

airport charges under the surplus-maximizing allocation, 1 2( ( ), ( ))O Oa G a G  while under 1 2( ( ), ( ))a G a G% % , 

the airport charges are positive. As a result, under the surplus-maximizing allocation, the congestion 

and the access costs become larger than those under the allocation with parametric airport charges. 

 

7. Conclusion 

This paper focused on the allocation of services to two airports in a metropolitan area with the 
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tradeoff between the accessibility, the frequency, and the airport congestion. Under three types of 

airport operation, Regimes PP, M, and G, we considered three types of allocations such as (1) the 

allocation with parametric airport charges, (2) the allocation without the regulation on airport 

charges, and (3) the surplus-maximizing allocations. 

Our results are summarized as follows: 

i) In case of the allocation with parametric airport charges, if the difference in the airport 

charges between two airports is relatively small, the integrated operation (Regime M) 

allocates the services to two airports at least as efficient as the separate operation 

(Regime PP). 

ii) On the other hand, if the difference in the airport charges between two airports is 

relatively large, the integrated operation allocates the services to two airports 

inefficiently. 

iii) If each operator can set the airport charges at its airport, the separate operation is more 

efficient than the integrated operation due to the competition in airport charges under 

the integrated operation. 

iv) Under the separated operation, the allocation without regulation coincides with the 

surplus-maximizing allocation while, under the integrated operation, the operator 

tends to excessively allocate multiple services to the congested airport; 

v) The separate operation without regulations generates higher social surplus than the 
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integrated operation even if the government regulates the allocation in order to 

maximize the social surplus. 

Finally, we pose two topics for the future research. One is the mixed duopoly case, in which one 

of two airports is operated by the government and the other, by a private firm. In some metropolitan 

areas, public and private airports coexist: therefore, studying the mixed duopoly case might give 

some insights. The other is the regulations. In this paper, to derive the surplus-maximizing 

allocations, we implicitly assume that the regulation by the government is always feasible. In reality, 

however, the operators of the airports might outstand against the regulation: therefore, we should 

take the feasibility of the regulation into account. Also note that, as explained above, the regulation 

on the allocation gives little improvement on the social surplus under Regime M: therefore, we also 

need to consider the regulation on the airport charges. 

 

Appendix A: The Inverse Demand Functions 

As we explained in Subsection 2.2, we have two cases on the relationship between boundaries, 

we have two cases:  

i) When service S is only provided at airport j, or when two airports provide service S and 

these markets are segregated, the trip cost is equalized to the reservation price at the 

boundaries: ( ) ( )SS S S S
jj j jC z C z C= = . 

ii) Two airports provide service S and these markets are adjacent: that is, 21
SSz z= . In this case, 
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at the boundary, 21
SSz z= , the trip costs for both airports are equalized: ( ) ( )21 1 2

SS S SC z C z= . 

At the boundaries, 1
Sz  and 2

Sz , the trip cost is equalized to the reservation price: ( )11
SSC z  

( )2 2
S S SC z C= = . 

In case i), the inverse demand function ( | )S Sk
j jp f -f  is derived as follows: 

 

( ) ( )

( )( )
( )

( )
( )

( )( )
( )

( )
( )

1 2

1 2
1

1 2
1

,  if , ,
4

,  if , ,
4

( | )

,  if , ,
4

S S
j j SC HS S

j jSk S
H j H

S S
j j SC HS S

j jSk S
C H j C HS Sk

j j S S
j j SC HS S

j jSk S
C H j C H

S

t f fbt vhC z b b z
f d

t f fbt b x vhC z b z b
f d

p f
t f fbt b x vhC b z b z

f d

vhC

σρ ρ
ρ ρ

σρ ρ
ρ ρ ρ ρ

σρ ρ
ρ ρ ρ ρ

+−
+ − − < − <

+− +
+ − − < − ≤

+ +
=

+− −
+ − − − ≤ <

+ +

−

-f

( )1 2

,  if , .
4

S S
j j S S

j jSk S
j C

t f f
b z z b

f d
σ

ρ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ +⎪ − − ≤ ≤
⎪⎩

 

In case ii), the inverse demand function ( | )S Sk
j jp f -f  is derived as follows: 
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The values of dI and dD respectively correspond to the average trip frequencies of international 

and domestic flights in Japan. To obtain the values of v and h, we assume that the flights at each 

airport are daily operated with equal interval: therefore, all users of service S at each airport incur 

the identical average waiting time cost. We set 3,000 yen per an hour as the values of v, which is 

used in Cost and Benefit Analysis of Kobe Airport (Kobe City, 2004). We set 5,475 hours 

(365 days 15 hours× ) as the value of h. 

The reservation price for each service is obtained through the calibration. The following table 

shows the calibrated number of passengers for each service at two airports in Osaka Metropolitan 

Area. In the following table, we assume that airport 1 locates at x1=–11 (the distance between 

Osaka Station and Osaka International Airport): airport 2, at x2=36 (the distance between Osaka 

Station and Kansai International Airport). Due to the asymmetry in congestion, the number of 

passengers for domestic flights at each airport is different from the one in 2004. The total number of 

passengers for domestic flights, however, is close to the one in 2004. 

Table A1: The Results of the Calibration (Unit: thousand people) 

International Domestic 

 Airport 1 

(Osaka) 

Airport 2 

(Kansai) 

Airport 1 

(Osaka) 

Airport 2 

(Kansai) 

Calibration - 5583 6445 5204

The Passengers in 2004 - 5596 9742 2089
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Table 7: the Difference in Four Components of Social Surplus between the allocations (ID, ID) and (D, ID) (Unit: billion yen) 

Social Benefit 

( ) ( ) ( ) ( )
. , . ,

, ,S S Sk S S Sk
j j

S j k S j k
C f D ID C f ID IDσ ω σ ω− − −∑ ∑1x  

Service I Service D 

Total Congestion Cost 

( ) ( )
2 2

1 1
,

, , .Sk Dk

S k k
c f ID ID c f D ID
⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑
Total Access Cost 

Total Scheduling 

Cost 
Allocation 

-10 -10.54 0.94 5.98 -1.76 2.23 (ID, ID) 

-5 -9.33 0.95 6.13 -1.35 2.23 (ID, ID) 

0 -8.12 0.95 6.27 -0.86 2.23 (ID, ID) 

5 -6.91 0.96 6.42 -0.31 2.23 (D, ID) 
 

Table 9: The Comparison of Airport Charges at Four Locations of Airport 1 (The unit: thousand yen) 

1 50x = −  1 25x = −  1 0x =  1 25x =  
 

1
Ir  2

Ir  1
Dr  2

Dr  1
Ir  2

Ir  1
Dr  2

Dr  1
Ir  2

Ir  1
Dr  2

Dr  1
Ir  2

Ir  1
Dr  2

Dr  

PP 6634 6773 2937 2937 6729 6561 3183 2937 6838 6384 2602 2508 5413 5575 2432 2167

M 16814 16814 3637 3637 16767 16521 3767 4370 16721 16721 3644 3644 - 16134 3203 3396

G -16046 -16814 -6503 -7200 -15932 -16521 -6401 -6906 - -16134 -6557 -6613 - -16134 -6529 -6219
 

Table 10: The Difference in Four Components of Social Surplus between (ID, ID) and (D, ID) at Four Locations of Airport 1 (The unit: billion yen) 

Regime M Regime G 

1x Social 

Benefit 
Access Congestion Scheduling Allocation

Social 

Benefit 
Access Congestion Scheduling Allocation 

-15 -0.6 9.2 -2.9 -2.2 (ID, ID) 20.5 -6.4 -9.7 -2.2 (ID, ID) 

-10 -2.8 9.3 -2.2 -2.2 (ID, ID) 23.2 -10.8 -10.0 -2.2 (ID, ID) 

-5 -3.5 9.0 -1.9 -2.2 (ID, ID) 26.5 -15.8 -10.2 -2.2 (D, ID) 

 


